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Abstract

Disordered regions, i.e., regions of proteins that do not adopt a stable three-dimensional structure, have been shown to play
various and critical roles in many biological processes. Predicting and understanding their formation is therefore a key sub-
problem of protein structure and function inference. A wide range of machine learning approaches have been developed to
automatically predict disordered regions of proteins. One key factor of the success of these methods is the way in which
protein information is encoded into features. Recently, we have proposed a systematic methodology to study the relevance
of various feature encodings in the context of disulfide connectivity pattern prediction. In the present paper, we adapt this
methodology to the problem of predicting disordered regions and assess it on proteins from the 10th CASP competition, as
well as on a very large subset of proteins extracted from PDB. Our results, obtained with ensembles of extremely
randomized trees, highlight a novel feature function encoding the proximity of residues according to their accessibility to
the solvent, which is playing the second most important role in the prediction of disordered regions, just after evolutionary
information. Furthermore, even though our approach treats each residue independently, our results are very competitive in
terms of accuracy with respect to the state-of-the-art. A web-application is available at http://m24.giga.ulg.ac.be:81/
x3Disorder.
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Introduction

Disordered regions refer to regions in proteins that do not adopt

a stable three-dimensional structure when they are not in presence

of their partner molecules. Over the last decade, several

experimental studies have shown that proteins with disordered

regions play various and critical functions in many biological

processes. The flexibility of these regions makes it possible for a

protein to interact, recognize and bind to many partners. For

example, disordered regions are often involved in regulatory and

signaling interactions [2] such as the regulation of cell division, the

transcription of DNA or the translation of ARNm. They also play

a role in the self-assembly of protein complexes, and in the storage

of small molecules [3,4].

Several automatic methodologies have been proposed to predict

disordered regions from primary sequences. They range from

simple methods based on the sequence complexity [5] to more

sophisticated machine learning approaches often relying on neural

networks or Support Vector Machines (SVMs)[6–10]. For

example, the Poodle tool is based on three adjacent classifiers,

which are specialized in making short [11] or long [12] disordered

regions predictions, or unfolded protein predictions [13], while the

Spritz tool [14] uses two specialized SVMs for either short or long

disordered regions. Recently, meta-predictors have also appeared

in the literature. These approaches consist in combining predic-

tions of a large number of existing disordered regions predictors

[15,16], e.g., GSmetaDisorder gathers no less than 12 different

predictors. Nowadays, there exist more than 50 disordered region

predictors. Fortunately, since 2004, a part of the biannual

competition ‘‘Critical Assessment of Techniques for Protein Structure

Prediction’’ (CASP) is devoted to the comparison of the participant

disordered regions predictors. For more information about

disordered regions predictors, one can refer to the reports of these

assessments [17] or to the recent comprehensive overview of

computational protein disorder prediction methods made by Deng

et al. [18].

In machine learning, the way to encode information into vectors

of features typically has a major impact on the classification

accuracy. In the context of bioinformactics, and specifically in the

case of protein structure inference, candidate features are typically

grouped into parameterized families of features (we use the term

‘feature function’ to denote such a family), where each family

provides a different kind of physical or biological information.

Recently, we have developed a systematic feature function

selection methodology [1] for the inference of disulfide bridges

within protein structures, and which allowed us to identify a

minimal subset of relevant feature functions for this problem.

The main contribution of the present paper is the adaptation of

the selection pipeline presented in our previous work [1] to

establish a relevant representation of residues in the context of

disordered regions prediction. For this purpose, we consider

various feature encodings and, in addition to the primary

structure, three in-sillico annotations: position-specific scoring
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matrices (PSSM), predicted secondary structures and predicted

solvent accessibilities. We apply the feature function selection

pipeline in combination with Extremely randomized Trees (ETs),

a model which gave excellent results in previous work [1]. In order

to avoid any risk of overfitting or over-estimation of our models,

we use three distinct datasets: Disorder723 [19], Casp10 (http://

www.predictioncenter.org/casp10/) and Pdb30. We first apply

feature selection on Disorder723 and then assess the relevance of

the selected feature functions both on Casp10 and on Pdb30.

The main result of our study is to highlight a novel feature

function encoding the proximity along the primary sequence of

residues predicted as being accessible (resp. inaccessible) to the

solvent. This feature function is identified as the second most

important for predicting the belonging of a residue to a disordered

region, just after evolutionary information derived from the

PSSM. To our best knowledge, these features encoding solvent

accessibility have never been highlighted in previous studies of

disordered regions prediction. The majority of the remaining

relevant feature functions that we found (e.g., evolutionary

information and sequence complexity) were already suggested by

other studies of disordered regions [5], and we thus confirm in a

fair way their relevance. Furthermore, even though our approach

treats each residue independently, i.e., without explicitly modelling

global properties of disordered regions, our predictors are very

competitive in terms of accuracy with respect to Casp10

assessments and to our very large independent test set extracted

from Pdb30.

Materials and Methods

There exist a huge number of manners to encode proteins into

an appropriate form for machine learning algorithms, i.e., vectors

of (categorical or numerical) features. In this study, we consider a

number of feature functions, which aim at encoding a particular

property of the protein into a vector of features of fixed length. For

example, the enumeration of the 11 amino acids at the flanks of a

residue of interest is a feature function that, given a residue

position within a protein, returns a vector of 11 categorical

features. To form more sophisticated representations, feature

functions can be combined through the concatenation of their

encoding vectors.

Among the large number of possible combinations, our study

aims at identifying the minimal feature function set that is relevant

for disordered regions prediction. In [1], this identification is

performed through a forward feature function selection algorithm

for the problem of disulfide bridge prediction. In order to work,

this algorithm requires four components to be specified: a dataset,

a list of candidate feature functions, a base learner and a criterion

to optimize.

This section describes how we have adapted each of these four

components to the problem of predicting disordered regions of

proteins. The first part presents the three datasets (Disorder723,

Casp10 and Pdb30) and how we enrich the primary structures of

each of these datasets with three annotations: position-specific

scoring matrices (PSSM), predicted secondary structures (SS) and

predicted solvent accessibilities (SA). The second part of this

section formulates disordered regions prediction as a supervised-

learning problem and, more specifically, as a binary classification

problem, which aims at predicting the disorder state (ordered or

disordered) of each protein residue. It also defines five measures to

assess the quality of the predictions. The third part briefly

describes the forward feature functions selection methodology and

enumerates the candidate feature functions that we consider

during the selection process. Finally, the last part of this section

introduces ensembles of extremely randomized trees, which are

used as the base learner within the feature function selection

algorithm.

Datasets and annotations
This study relies on three datasets. The first one, Disorder723

(http://casp.rnet.missouri.edu/download/disorder.dataset), has

been built by Cheng et al. [19] and was extracted from the

Protein Data Bank [20] in May 2004. The dataset is made of 723

non-redundant chains that contain at least 30 amino acids in

length and that were solved by X-ray diffraction with a resolution

of around 2.5 Å. In order to reduce the over-representation of

particular protein families, the dataset has been filtered by

UniqueProt [21], a protein redundancy reduction tool based on

the HSSP distance [22], with a cut-off distance of 10.

The second dataset, Casp10, is the one used during the 10th

CASP competitions that took place in 2012. During the

competition, the candidate predictors have to make blind

predictions, i.e, they have to predict disordered regions of proteins

close to being solved or close to being published and that have no

detectable similarity to available structures. At the end, the

candidate predictors were assessed on 94 experimentally deter-

mined proteins available for download on the official CASP

website(http://predictioncenter.org/download_area/CASP10/

targets/casp10.DR_targets.tgz). Note that unlike Disorder723,

the way to resolve protein structures is not restricted to X-ray

diffraction and that CASP10 also contains protein structures

determined by NMR.

The last dataset, that we denote by Pdb30, is far larger than the

two previous ones. We created Pdb30 on one of the clustered

versions of the Protein Data Bank (as of August 31, 2013) available

at http://www.rcsb.org/pdb/statistics/clusterStatistics.do. The

clustering is defined on a protein chain basis with a maximum

pairwise sequence identity of 30%. The authors of this clustered

version of PDB used BLASTClust [23] to perform the clustering

and selected the representative structure of each cluster according

to their quality factor. We then filtered out any proteins that were

less than 30 amino acids in length, that had no X-ray structure or

that had resolution coarser than 2.5 Å. Next, we discarded the

proteins that share a sequence identity of at least 30% with a

protein of Disorder723 (our training set). The final dataset is made

of 12,090 proteins and 2,991,008 residues of which 193,874 (6.5%)

are disordered. Figure 1 shows a histogram of the protein lengths.

The average (+ standard deviation) protein length is 247.4 +
162.8. Figure 2 shows a histogram of the disordered region lengths

of our dataset. The average disordered region length is 12.3 +
15.6. The dataset is available at: http://m24.giga.ulg.ac.be:81/

x3Disorder/pdb30.dataset.

In our experiment, we use Disorder723 to identify a subset of

relevant feature functions while Casp10 and Pdb30 are used to

assess the quality of the selected feature functions. It is important

to note that no protein in the Casp10 or Pdb30 sets share more

than 30% sequence identity with one of those of Disorder723. This

therefore makes it possible to fairly evaluate and compare our

results with those that have participated to the 10th CASP

competition.

We use the same definition of disorder as Cheng et al. and as the

CASP competition, i.e., segments longer than three residues but

lacking atomic coordinates in the crystal structure are labelled as

‘‘disordered’’ whereas all other residues are labelled as ‘‘ordered’’.

According to this definition, Table 1 shows that the three datasets

contain * 6% of disordered residues and * 94% of ordered

residues. Some residues in Casp10 were not classified by the CASP

Feature Encoding for Disordered Regions Prediction
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assessors. These residues were not taken into account in our

experiments.

We enrich the primary structure (denoted as AA) by using three

additional annotations: evolutionary information in the form of a

position-specific scoring matrix (PSSM), predicted secondary

structure (SS) and predicted solvent accessibility (SA). We

computed the PSSMs by running three iterations of the PSI-

BLAST program [24] on the non-redundant NCBI database [25].

To produce predicted annotations, we used the SSpro and

ACCpro [3] programs for the predicted secondary structure

(‘‘helix’’, ‘‘strand’’ or ‘‘coil’’) and the predicted solvent accessibility

(under or over 25% exposed), respectively.

Problem statement
Let P be the space of all proteins and P~(AA,PSSM,

SS,SA,Y )[P one particular protein described as the 5-tuple

Figure 1. Protein length distribution of PDB30. There are 12,090 proteins. The average protein length is of 247.4 residues.
doi:10.1371/journal.pone.0082252.g001

Figure 2. Disordered region length distribution of PDB30. There are 15,726 disordered regions. The average length of a disordered region is
of 12.3 residues and the average number of disordered regions per protein is of 1.3.
doi:10.1371/journal.pone.0082252.g002
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containing its primary structure AA, its PSSM, its two predicted

annotations SS and SA, and its disordered regions Y . Each of

these annotations is described as a sequence of n labels, where n is

the number of residues composing P. For example, the primary

structure is defined as AA~(AA1,AA2, . . . ,AAn), where AAi is

the label corresponding to the amino acid of the i-th residue of P,

and the disordered regions annotation is defined as

Y~(y1,y2, . . . ,yn), where yi[fordered,disorderedg. The disor-

dered regions prediction task consists in assigning a label yi to each

residue of P.

In the supervised-learning formulation of the problem, we

assume to have access to a dataset of proteins in which residues are

labeled either ordered or disordered. We denote this dataset

D~fP(i)gi[½1,N�, where P(i)[P is the i-th protein. Given such a

dataset D, the aim is to learn a disordered regions predictor

f : P\Y?Y that maps a protein P[P to a sequence ŶY of n
predicted labels ŷyi[fordered,disorderedg, where n is the length of

P.

It is important to note that disordered regions are segments, i.e.

consecutive residues tend to share the same label. More and more

machine learning approaches such as conditional random fields

[27], recursive neural networks [19], meta-predictors [28] or post-

filtering steps [29] are able to exploit the structured aspect of the

problem.

However, as the goal of this study is to determine a set of

relevant feature functions in general, we do not focus on such

advanced prediction approaches here. We instead simplify the

general problem into a standard binary classification problem.

The aim is to learn a predictor f : (P\Y)|N?fordered,
disorderedg that maps the i-th residue of a protein P to the

predicted label yi. This formulation is rather simple in the sense

that it treats each residue independently, i.e., regardless with

respect to predictions made on neighboring residues of the same

protein.

Evaluation measures. In order to evaluate the quality of the

predictions made by our models, we consider five residue-level

performance measures: the balanced accuracy (Acc), the sensitiv-

ity, the specificity, the area under the ROC curve (AUC) and the

F-measure. Each of these measures can be formulated using a

tuple of four values: the number of true positives (TP), false positives

(FP), true negatives (TN), and false negatives (FN), where a positive

example is a disordered residue and a negative example is an

ordered residue. Therefore, a true positive is a correctly predicted

disordered residue and a false negative is an ordered residues

falsely predicted as a disordered one.

According to these notations, the sensitivity [TP7(TPzFN)]
is the fraction of disordered residues that are successfully predicted

as disordered, whereas the specificity [TN7(TNzFP)] is the

fraction of ordered residues that are successfully predicted as

ordered. As the problem of disordered regions prediction is

strongly imbalanced (only * 6% of residues are disordered), using

the conventional accuracy may inflate performance estimate and is

therefore not appropriate. However, the balanced accuracy,

defined as the arithmetic mean of sensitivity and specificity, is

robust against imbalanced datasets as well as the F-measure, which

is used in recent CASP assessments. The F-measure is defined as

the harmonic mean of the precision – the fraction of predicted

disordered residues that are truly disordered – and the sensitivity

(also called recall).

Since, a large number of available binary classifiers produce

probabilities rather than strict classes, these criteria rely on a user-

defined decision threshold to discriminate positive from negative

examples. Depending on how users fixed their threshold, a bias

might be introduced, which might lead to an unfair comparison

between distinct studies. To tackle this issue, one can compare the

performance of distinct models by their ROC curve, which is

obtained by plotting the sensitivity against the false positive rate

[FP7(FPzTN)] when varying the decision threshold. However,

the comparison is not easy, especially when the curves are similar.

A common simplification is therefore to calculate the area under

the ROC curve (AUC). An area of 1.00 corresponds to a perfect

predictor while an area of 0.50 corresponds to a random predictor.

Forward feature function selection
Recently, we have developed a tractable and interpretable

feature function selection methodology [1], which aims at

identifying a minimal set of relevant feature functions among a

larger group of candidate feature functions. Note that this

approach focuses on identifying feature functions rather than

individual features. Figure 3 roughly depicts this algorithm. It is a

wrapper approach that repeatedly evaluates subsets of feature

functions through an objective function S, which typically cross-

validates the base learner B on a dataset D, and that is directly

driven by the scores returned by S. To obtain interpretable results,

the method relies on a rather simple scheme, which consists in

constructing the feature function set greedily in a forward way:

starting from an empty set (line 1, in Figure 3) and adding (line 4)

the feature function that maximizes S (line 3), to the current set of

feature functions at each iteration. For a more detailed version of

this algorithm, we refer the reader to our previous work [1].

The remaining of this section describes the list of our candidate

feature functions. Some of these feature functions are identical to

those presented in our previous work, while some others are a

generalization of what we did previously and others are completely

novel.

Candidate feature functions. The feature generation is

performed through residue feature functions w : (P\Y)|N?Rd that,

given the residue position i of a protein P, computes a vector of d
real-valued features.

Among the panel of candidate functions w already described in

our previous work, we adopted i) the number of residues function, ii)

the number of cysteines function, iii) the labels global histogram function,

iv) the labels local histogram function and, v) the labels local window

function. In addition to them, we defined three other feature

functions directly computed from the primary sequence and four

annotation-related feature functions. We now describe in detail all

these feature functions. However, since only few of these features

will effectively be selected, the reader can understand the rest of

our study without considering the detailed descriptions of all

candidate feature functions.

N Number of residues: returns the number of residues in the primary

sequence.

Table 1. Composition of datasets.

Proteins
Ordered
residues

Disordered
residues Residues

DISORDER723 723 201,703 (93.55%) 13,909 (6.45%) 215,612

CASP10 94 22,688 (93.79%) 1502 (6.20%) 24,190

PDB30 12,090 2,797,134 (93.52%) 193,874 (6.48%) 2,991,008

Number of proteins, number (and portion) of ordered/disordered residues and
number of residues in DISORDER723, CASP10 and PDB30 datasets. All datasets have
roughly the same proportion of disordered residues (* 6%). PDB30 contains
*127 times more proteins and *124 times more residues than CASP10.
doi:10.1371/journal.pone.0082252.t001
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N Number of cysteines: returns the number of cysteine residues in

the primary sequence. This feature is made from the intuition

that larger the number of cysteines is, larger the number of

disulfide bonds will be, which usually lead to more stable

structures.

N Unnormalized global histogram: computes twenty features, one per

standard amino acid type, which are the numbers of residues

of each type in the primary structure.

N Position of residue: returns the position i of the residue in the

primary structure.

N Relative position of residue: computes one feature which is the

residue position i divided by the protein length n. Although

this feature may seem redundant with the previous one, the

encoded information is different. The previous feature aims at

encoding the absolute position of the residue with respect to

the N-terminus. The intuition behind this feature is that the

position of a residue might determine its disordered state (e.g.,

the first four residues are prone to be disordered). Whereas, the

relative position, which varies in ½0,1�, suggests a position

regardless of the protein length.

We use the following notations to describe the annotation-

related feature functions. For each type of annotation A[fAA,
PSSM, SS, SAg, LA is the set of labels corresponding to A and

LA~jLAj is the size of this set. We thus have: LAA~20,

LPSSM~21 (the twenty amino acids and the gap), LSS~3,

LSA~2. For a given primary structure of length n, an annotation

A is represented as a set of probabilities aAi,l[½0,1� where i[½1,n�
denotes the residue position and l[LA is a label. E.g., aSS

3,helix is the

probability that the third residue of the protein is part of a helix.

In the general case, the aAi,l probabilities may take any value in

range ½0,1� to reflect uncertainty about annotations. However,

since the predictions made by SSpro and ACCpro are classes and

that primary structures (AA) are always known perfectly, we have:

a
A[fAA,SS,SAg
i,l ~

1 if l is the residue or predicted class of the i{th residue

0 otherwise:

 

As PSSM elements typically range in ½{7,7�, we scale them to

½0,1� by using the function proposed in [30] and defined as

following:

aPSSM
i,l ~

0:0 if x ƒ {5

0:5z0:1x if {5 v x v 5

1:0 if x § 5

0
B@ ,

where x is the value from the raw profile matrix.

For each annotation A, we have defined seven different feature

functions:

N Labels global histogram: computes one feature per label l[LA,

equal to 1
n

Pn
p~1 aAi,l .

N Labels local histogram: computes one feature per label l[LA equal

to 1
W

PizW=2

p~i{W=2
aAp,l and one special feature equal to the

percentage of out-of-bounds positions, i.e., positions p such that

p 6 [½1,n�.
N Labels local window: computes one feature per label l[LA and

per relative position d[½{ W
2

, W
2
�, equal to aAizd,l . When the

position is out-of-bounds, i.e., izd½1,n�, the feature is set to 0.

N Separation profile window: this feature function is inspired from

the cysteine separation profile window function, which focuses on

the distances that separate consecutive cysteine residues and

encodes the distances around the cysteine residue of interest

into features. According to the results presented in our

previous work, this feature function led to an impressive

improvement of our disulfide connectivity pattern predictor.

Here, we propose a generalization of this function in order to

be able to tackle any kind of annotation A. Figure 4 shows an

illustration of a separation profile window of size 11 over

exposed residues.

Given a residue position i, our generalized feature function

describes the proximity of the W
2

closest residues of the N-terminus

side to the i-th residue (respectively, the W
2

closest residues of the T-

terminus side) that share a common label l,Vl[LA. The proximity

of a residue at the j-th position is expressed as the distance, in

terms of number of amino acids in the primary structure, that

separates the j-th from the i-th residue, i.e., jj{ij. Note that, when

using probabilistic predictors, the label of a residue is determined

as the one with the highest probability aAi,:.

When the number of residues that share l at the N-terminus side

(respectively, at the T-terminus side) is insufficient, the missing

distances are set to the greatest distance, i.e, the distance with the

farthest residue that share l within the same terminus side.

Figure 3. Forward feature function selection algorithm. In order to identify the relevant feature function set, the algorithm requires four
components: a dataset, a list of candidate feature functions, a base learner and a criterion to optimize.
doi:10.1371/journal.pone.0082252.g003
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N Labeled segments window: this is similar to the labels local window

function except that rather than describing neighboring

residues at position izd, it describes neighboring segments

sizd. A segment consists in a sub-sequence of consecutive

residues that share a common label l, in the sense of the

highest probability aA:,:.

Therefore, given a segment si, the function returns one

description of this segment (in the form of feature vectors) per

relative position d[½{ W
2

, W
2
�. A segment sizd is described by LA

(one per label l[LA) plus one features. Among the first LA features,

the one corresponding to the label of sizd is equal to 1 while the

other ones are set to 0. The last feature is the length of sizd. When

the position sizd is out-of-bounds the features are all set to 0.

N Dimeric global histogram: this feature function is an extension of

labels global histogram with the difference that instead of

calculating the frequency of occurrence of each single label,

it computes the frequency of occurrence of each pairs of labels.

A pair of labels is formed by the labels of two consecutive

residues (a word of size 2). The hope is that the distribution of

some pairs of labels are significantly different in the case of

disordered residues with respect to ordered ones. For example,

a larger proportion of consecutive exposed residues may

intuitively involve a larger disposition to form disordered

regions. More formally, it returns one feature per pair of labels

(li,lj)[LA|LA, equal to

1

n{1

Xn{1

p~1

1
argmax

l[LA
aAp,l~li ^

argmax

l[LA
aApz1,l~lj

( )
:

N Dimeric local histogram: this feature function is identical to the

dimeric global histogram one except that it computes the

frequency within a sliding window. More formally, given a

residue position k, it returns one feature per pair of labels

(li,lj)[LA|LA equal to

1

W

XkzW=2

p~k{W=2

1
argmax

l[LA
aAp,l~li ^

argmax

l[LA
aApz1,l~lj

( )
:

Our candidate feature functions are summarized in Table 2.

Note that five of them are parameterized by window size

parameters. To apply the feature function selection algorithm,

we consider the following discrete sets of window sizes:

N Local windows, separation profile window, labeled segments

window and dimeric local histogram: 1, 5, 11, 15, 21.

N Local histograms: 10, 20, 30, 40, 50, 60, 70, 80, 90.

This setting leads to a total of 109 candidate features functions.

Ensembles of extremely randomized trees
This tree-based ensemble method, proposed by Geurts et al.

[31], is similar to the popular Random Forests approach [32]. The

Figure 4. Illustration of the separation profile window function
on exposed residues. Top: the functions first computes the amino
acid distances that separate the residue of interest (highlighted by a red
square). Middle: the separation profile of exposed residues. Bottom: the
feature function returns the window (highlighted by a green rectangle)
of size 11 centered around the residue of interest. In this example, the
window slightly goes beyond the end of the sequence. As explained in
the main text, in such cases we replace non available features by the
maximal possible value, which is the 6 shown in red here.
doi:10.1371/journal.pone.0082252.g004

Table 2. Feature functions used in our experiments to
encode residues.

Symbol Parameter d Description

n - 1 Number of
residues

nC - 1 Number of
cysteines

nAA - 20 Unnormalized
global
histogram

i - 1 Position of
residue

i=n - 1 Relative
position of
residue

hglobal (A) - LA Labels global
histogram

hlocal (A,W ) window size LAz1 Labels local
histogram

w(A,W ) window size W :LA Labels local
window

sep(A,W ) window size W{1 Separation
profile window

seg(A,W ) window size W :(LAz1) Labeled
segments
window

diglobal (A) - L2
A Dimeric global

histogram

dilocal (A,W ) window size L2
A Dimeric local

histogram

Symbols, parameters, number of features (d) and description of our candidate
feature functions. Top: feature functions that are directly computed from the
primary structure. Bottom: feature functions defined for every kind of annota-
tion A[fAA, PSSM , SS, SAg.
doi:10.1371/journal.pone.0082252.t002
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main differences with the latter are that extremely randomized

tree ensembles (ETs) do not rely on bootstrap replicates (unlike the

Random Forests method, each tree is built using all learning

samples), and that cut-points are selected in a random fashion,

which was shown to lead to better generalization performances

[31]. The method has three hyper-parameters: K , the number of

random splits tested per node creation, T , the number of trees

composing the ensemble, and Nmin, the minimum number of

samples required to allow for splitting a node.

We use the probabilistic version of ETs, in which each leaf is

associated with a probability of disorder, which is the empirical

proportion of disordered residues among the training samples

associated to that leaf. In order to make one prediction, we

traverse each of the T trees and return the average of the

probabilities of disorder associated to the corresponding T leaves.

Results

This section describes our experimental study on disordered

regions prediction. The first part presents the results of the main

contribution of this paper, which aims at determining a relevant

representation on Disorder723. The second part aim at construct-

ing a model based on this relevant representation and ETs, and

assessing this model on Casp10 and Pdb30. In the third part, we

investigate the novel feature function and attempt to interpret its

role in the prediction of disordered regions.

Identification of a set of relevant feature functions
We now apply the feature function selection approach on top of

ETs with the candidate feature functions of Table 2. We use a

default setting of hyper-parameters of ETs that corresponds to an

ensemble of 1 000 fully developed trees (T~1 000, Nmin~2) and

K is set to the square root of the total number of features
ffiffiffi
d
p

, as

proposed by Geurts et al [31].

To avoid any risk of over-estimation, we performed the selection

on 10 different train/test splits of Disorder723. The performance

measure being maximized by each run is the cross-validated AUC

score of the training set. Table 3 reports the selected feature

functions for each of the 10 independent runs. For the five

iterations we consider, we observe that the selected feature

functions on each of the 10 train/test splits are always

w(PSSM,21), sep(SA,21), hlocal(AA,:) with a window size

varying in f50,60,70g, w(SS,:) with a sliding window size in

f11,15g and w(AA,:) with a window size in f1,5,11,15g.
Regardless to window size parameters, the fact that we observed

these feature functions during each run is very strong, since the

selection algorithm has to select between 109 different candidate

feature functions.

Note that, among the selected feature functions, two of them

(the second and the fourth) rely on predicted structural annota-

tions (the predicted solvent accessibility and the predicted

secondary structure, respectively), which tend to show that

predicted structural annotations contribute to make better

disordered regions predictors.

Not surprisingly, the most important feature function detected

by the selection is a sliding window of evolutionary information,

which confirms that disordered regions differ from ordered regions

in terms of their conservation profile. This feature function is also

important for many other protein structure prediction tasks (e.g.,

[1]).

On the other hand, the second most important feature function

highlighted by our algorithm, namely sep(SA,:), has - to our best

knowledge - never been proposed in previous studies. Its discovery

at a very early iteration was unexpected. It suggests that the

proximities of a residue r (in terms of amino acid positions in the

primary sequence) to its nearest exposed or to its nearest buried

residues are correlated with the fact that r belongs to a disordered

region. It is important to note the difference with w(SA,:). Indeed,

w(SA,:) describes the solvent accessibility label of the flanking

residues of r. The proximity is fixed and limited by the number of

flanking residues to take into consideration. Whereas, sep(SA,:)
describes the inverse. Namely, it describes the proximity of the

nearest residues to r that correspond to fixed labels.

One way to explain the usefulness of this feature function is to

look at the distributions of the distances that separate disordered

(resp. ordered) residues to their nearest buried residue. Figure 5

shows the probability of a residue of being disordered (resp.

ordered) according to the distance to its nearest buried residue,

Table 3. Forward feature functions selection with 10 train/test splits.

Fold Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

1 w(PSSM,21) sep(SA,21) hlocal (AA,60) w(SS,11) w(AA,1)

2 w(PSSM,21) sep(SA,21) hlocal (AA,60) w(SS,11) w(AA,11)

3 w(PSSM,21) sep(SA,21) hlocal (AA,60) w(SS,11) w(AA,5)

4 w(PSSM,21) sep(SA,21) hlocal (AA,50) w(SS,11) w(AA,1)

5 w(PSSM,21) sep(SA,21) hlocal (AA,50) w(SS,15) w(AA,15)

6 w(PSSM,21) sep(SA,21) hlocal (AA,60) w(SS,15) w(AA,5)

7 w(PSSM,21) sep(SA,21) hlocal (AA,70) w(SS,15) w(AA,15)

8 w(PSSM,21) sep(SA,21) hlocal (AA,50) w(SS,11) w(AA,5)

9 w(PSSM,21) sep(SA,21) hlocal (AA,50) w(SS,11) w(AA,1)

10 w(PSSM,21) sep(SA,21) hlocal (AA,60) w(SS,11) w(AA,1)

Mean

Cross-validated 0.852 + 0.003 0.876 + 0.003 0.884 + 0.003 0.890 + 0.003 0.894 + 0.003

Validation 0.850 + 0.029 0.874 + 0.021 0.883 + 0.022 0.888 + 0.022 0.892 + 0.22

Mean: averages over the ten cross-validated scores and the ten validation scores. The cross-validated score is the mean of AUC scores obtained when cross-validating the
training set of a run. The validation score is the AUC score obtained when evaluating the test set.
doi:10.1371/journal.pone.0082252.t003
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over the pdb30 dataset. We remark that the probability of a

residue being disordered increases quickly when its distance to the

next buried residue increases, and is above 0.5 as soon as the

closest buried residue is at least 5 residues away.

Another important aspect of this discovery is that the

sep(SA,21) feature function is systematically detected just before

the local amino acid composition hlocal(AA,:) and far before

w(AA,:). Indeed, these other two feature functions describe in

different ways the sequence complexity, which is well-known to be

low within disordered regions [5]. This therefore reinforces the

fact that sep(SA,21) may be a key-aspect in our understanding of

protein disordered regions and, consequently, protein structure-

function relationships.

The fourth selected feature function is a short sliding window

over predicted secondary structures w(SS,:). The usefulness of

these features may be related to the strong difference between the

distributions of predicted secondary structures within disordered

regions with respect to ordered ones. For example, Table 4 shows

that 70:98% of disordered residues are predicted as coils against

40:57% as it is the case with ordered residues and that solely

5:76% are predicted as sheets against 20:76% for ordered regions.

According to these results, we focus in the following on assessing

the relevance of the feature functions w(PSSM,21), sep(SA,21),

hlocal(AA,60), w(SS,11) and w(AA,1), where we chose windows

sizes by taking the most frequent sizes reported in Table 3. Indeed,

contrarily to the observation made in [1] that suggested a very

small number of relevant feature functions in the context of

disulfide bridge prediction, the selection algorithm identified here

a larger set of interesting feature functions.

Evaluation of the selected feature functions
We now compare our models in terms of accuracy against a

number of state-of-the-art methods on DISORDER723, C10 and

PDB30. As previously, we use ETs with a default setting of its

hyper-parameters. For each run, we use 80% of the training set to

build an ensemble of trees predicting the probability to belong to a

disordered region for a residue, and the remaining 20% to fix an

‘optimal’ decision threshold on this probability.

For DISORDER723, we consider two baselines. Both evaluated

their predictive performance using a 10-fold cross-validation on

DISORDER723. The first baseline is Cheng et al. [19], the authors of

the DISORDER723 dataset. They proposed an ensemble of 1D-

recursive neural networks that reached an area under the ROC

curve of 0.878. The second baseline is Eickholt et al. [33], who

used boosted ensembles of deep networks to make predictions.

They obtained a very high balanced accuracy (82.2%) and AUC

(0.899).

The top of Table 5 reports our predictive performances when

including successively the feature functions w(PSSM,21),

sep(SA,21), hlocal(AA,60), w(SS,11) and w(AA,1), while the

bottom of the Table 5 reports the scores of the two baselines from

the literature. We observe that using only w(PSSM,21) leads to a

balanced accuracy (Acc) of 77.5%, an AUC of 0.853 and a F-

measure of 49.6, which already outperforms the state of the art

(46.3).

Figure 5. Probability of being (dis)ordered w.r.t. the distance to the nearest buried residue. For a given distance d , the probability
p½Disorderjd� of being disordered is calculated as the portion of disordered residues among the residues that have their nearest buried residue
located at a distance d . We computed these curves on the actual values of the solvent accessibility of PDB30.
doi:10.1371/journal.pone.0082252.g005

Table 4. Distribution of predicted secondary structure.

Ordered Disordered Total

Predicted
helices

77,989 38.67% 3,235 23.26% 81,224 37.67%

Predicted
sheets

41,874 20.76% 801 5.76% 42,675 19.79%

Predicted
coils

81,840 40.57% 9,873 70.98% 91,713 42.54%

Total 201,703 13,909 215,612

Distribution of the number of ordered/disordered residues and the total number
of residues for each secondary structure class on DISORDER723.
doi:10.1371/journal.pone.0082252.t004
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Moreover, we remark that by incrementally adding the

remaining selected feature functions to the set systematically leads

to significant improvements on Acc, AUC and F-measure. We

have used the paired t-test on the AUC scores to statistically assess

the significance of each increment. We noted that the correspond-

ing p-values (2:6e{3, 5:4e{4, 2:2e{4 and 4:6e{3) are well below

the classical null hypothesis threshold (0.05). This observation

reinforces the fact that the selected feature functions are relevant.

When comparing our model based on all five selected feature

functions to the state-of-the-art, we obtain a disordered regions

predictor, which is very competitive in term of Acc (81.1%),

equivalent in term of AUC (0.894) and clearly better in term of F-

measure of 55.3. The middle of Table 5 shows the impact on the

predictive performance of our model when we do not consider

sep(SA,21) among the input feature functions. As expected, the

scores significantly deteriorate with a p-value of 1:9e{2 with

respect to the model that comprise sep(SA,21). This observation

reinforces the fact that this kind of feature function should be taken

into account when predicting disordered regions.

To assess our models on CASP10, we compare our results against

several baselines such as DNdisorder and PreDNdisroder, which

were developed by Eickholt et al. [33]. Among the baselines, a

number of them participated in the 10th CASP experiment. In

order to make the comparison in a fair way, we construct our

models on DISORDER723 using feature functions that were selected

according to DISORDER723. Moreover, since DISORDER723 does

not contain any overlapping sequences with CAPS10 and that

DISORDER723 was formed well before CASP10, we are in the same

blind prediction setting than the participants of the competition.

The top part of Table 6 reports our results with the different sets

of relevant feature functions while the bottom part of Table 6

reports the scores obtained by the baselines considered in [33].

Once again, we observe that enlarging the feature functions set

systematically leads to significant improvements except for

w(AA,1). Two reasons may explain this phenomena, either the

CASP10 dataset is too small and, consequently, prone to larger

variances than big datasets, or the fifth iteration of the selection

procedure starts to overfit DISORDER723, which means that

w(AA,1) is not portable to other datasets. We believe that the

second reason is more likely to be the true explanation, because

the function w(AA,1) consists in discriminating disordered

residues from ordered ones based on their amino acid type, which

may be too dataset specific. As mentioned, the p-value of 4:6e{3

determined when including this feature set was indeed quite larger

than those resulting from the inclusion of the other feature sets.

According to Table 6, we remark that our model based on

fw(PSSM,21), sep(SA,21), hlocal(AA,60), w(SS,11)g achieves

excellent performances with respect to the state-of-the-art. We

even slightly improve the state-of-the-art with a balanced accuracy

of 77.29% against 77.06%, however, according to the variations,

this improvement is not significant. We nevertheless outperformed

the method of Eickholt et al. [33] (DNdisorder), which presented

similar performances than our model on DISOPRED723.

Although CASP10 is an entirely independent test set that had no

detectable similarity to available structures at this time, its very

limited size does not enable it to capture the universe of protein

disorder. This is why we also evaluated our model on the far larger

dataset PDB30. Table 7 compares the predictive performances

obtained by three freely and easily downloadable methods

(DISOPRED2[34], IUPred[35] and ESpritz[36]) with respect to

our model. We observe that our approach outperforms the three

baselines with a balanced accuracy of 80.3% and presents a

comparable area under the ROC curve (0.883) to ESpritz, even

though our approach treats each residue independently, i.e.,

without explicitly exploiting the key-fact that disordered regions

are made of contiguous residues. Figure 6 shows the ROC curves

for DISORDER2, ESpritz and IUpred on PDB30. We observe

that our method and ESpritz are very close to each other and that

ESpritz is slightly better in the low false positive rate.

Table 5. Accuracy evaluation on the DISORDER723 dataset.

Features Balanced Acc Sensitivity Specificity AUC F-measure

10-fold cross validation of our
algorithm over DISORDER723

fw(PSSM,21)g
77.5 + 2.43 74.1 + 5.95 80.8 + 3.13 0.853 + 0.028 49.6 + 3.38

fw(PSSM,21),sep(SA,21)g
79.0 + 1.95 76.5 + 4.14 81.6 + 2.59 0.875 + 0.019 51.7 + 4.20

fw(PSSM,21),sep(SA,21),hlocal (AA,60)g
80.3 + 2.17 78.2 + 4.90 82.4 + 2.47 0.884 + 0.019 52.7 + 3.85

fw(PSSM,21),sep(SA,21),hlocal (AA,60),w(SS,11)g
80.6 + 1.69 79.0 + 4.64 82.2 + 2.11 0.891 + 0.020 53.4 + 3.55

fw(PSSM,21),sep(SA,21),hlocal (AA,60),w(SS,11),w(AA,1)g
81.1 + 1.83 78.6 + 4.69 83.5 + 2.08 0.894 + 0.021 55.3 + 3.27

fw(PSSM,21),hlocal (AA,60),w(SS,11),w(AA,1)g
80.4 + 1.94 76.8 + 5.30 83.9 + 2.37 0.883 + 0.026 54.5 + 2.70

Baselines tested on DISORDER723

Cheng et al. (2005) [19] - - - 0.878 -

Eickholt et al. (2013) [33] 82.21 + 0.49 74.60 + 1.1 89.84 + 0.18 0.899 + 0.002 46.34 + 4.5

Top: the mean and standard deviation of the scores obtained when 10-folds cross-validating DISORDER723 through the relevant feature functions. Bottom: baselines using
DISORDER723 to assess their model.
doi:10.1371/journal.pone.0082252.t005
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Note that since PDB30 and DISORDER723 are independent, the

evaluation of our model is fair. However, we do not have access to

the learning stage of the compared methods, which has possibly

used sequences similar to the ones present in Pdb30. This may

lead to an over-estimation of the predictive performance of those

methods.

Discussion

Predicting and understanding the nature of disordered regions is

a key sub-problem of protein structure and function inference.

This paper has adapted the algorithm presented in our previous

work [1] on disulfide bridge prediction in order to identify the best

Table 6. Accuracy evaluation on the CASP10 dataset.

Features Balanced Acc Sensitivity Specificity AUC F-measure

Models learnt on DISORDER723 by our algorithm and tested on CASP10

fw(PSSM,21)g
71.94 + 0.71 70.71 + 1.3 73.16 + 0.32 0.795 + 0.007 39.47 + 0.73

fw(PSSM,21),sep(SA,21)g
74.95 + 0.69 70.31 + 1.4 79.59 + 0.29 0.834 + 0.006 38.51 + 0.81

fw(PSSM,21),sep(SA,21),hlocal (AA,60)g
77.17 + 0.67 71.64 + 1.3 82.69 + 0.28 0.847 + 0.006 39.95 + 0.88

fw(PSSM,21),sep(SA,21),hlocal (AA,60),w(SS,11)g
77.29 + 0.66 74.17 + 1.3 80.41 + 0.29 0.851 + 0.006 40.24 + 0.84

fw(PSSM,21),sep(SA,21),hlocal (AA,60),w(SS,11),w(AA,1)g
77.35 + 0.65 72.84 + 1.3 81.85 + 0.29 0.850 + 0.006 39.82 + 0.87

Baseline performances on CASP10 as published by the CASP10 competition

metaprdos2 (340) 77.06 + 0.92 64.73 + 1.4 89.40 + 0.98 0.8727 + 0.006 41.24 + 2.9

PreDisorder (125) 76.86 + 0.67 67.19 + 1.7 86.34 + 0.94 0.839 + 0.006 37.50 + 1.5

POODLE (216) 76.84 + 0.78 62.74 + 1.6 90.94 + 0.26 0.866 + 0.006 43.06 + 1.0

PreDNdisorder [6] 76.55 + 0.75 61.74 + 1.8 91.36 + 0.61 0.864 + 0.006 43.42 + 1.5

ZHOU-SPARKS-X (413) 75.68 + 0.76 64.81 + 1.4 86.55 + 0.96 0.859 + 0.006 36.43 + 1.9

DNdisorder (424) 75.19 + 0.71 61.92 + 1.4 88.46 + 0.29 0.848 + 0.006 38.02 + 1.1

CSpritz (484) 75.13 + 1.4 66.31 + 1.3 83.94 + 2.4 0.822 + 0.007 33.64 + 3.7

Espritz (380) 73.16 + 1.6 59.24 + 1.4 87.08 + 2.6 0.846 + 0.006 34.58 + 4.7

espritz_nopsi_X 71.98 + 0.97 53.10 + 1.5 90.87 + 0.77 0.815 + 0.007 37.56 + 2.4

PrDOS-CNF (369) 70.35 + 0.88 41.95 + 1.8 98.74 + 0.14 0.896 + 0.005 52.50 + 1.4

biomine_dr_mixed (478) 69.17 + 0.68 39.95 + 1.4 98.40 + 0.11 0.884 + 0.006 49.40 + 1.3

biomine_dr_pdb_c (228) 67.81 + 1.2 36.88 + 2.6 98.74 + 0.15 0.882 + 0.006 47.65 + 2.1

iupred_short 63.26 + 0.70 30.68 + 1.5 95.84 + 0.25 0.664 + 0.007 32.34 + 1.2

Top: the scores obtained when evaluating CASP10 on models learnt on DISORDER723 through the relevant feature functions found on DISORDER723. Bottom: comparison
of a number of predictors, which participated in or evaluated their model to the 10th CASP experiment. These results were reported by [33]. In parenthesis: the group
number of the methods that participated in the CASP10 experiment. The standard deviations were calculated by a bootstrapping procedure in which 80% of the
dataset was sampled 1000 times, as it was done by [33].
doi:10.1371/journal.pone.0082252.t006

Table 7. Evaluation on the PDB30 dataset.

Method Balanced Acc Sensitivity Specificity AUC F-measure

Our method 80.36 + 4:8e{2 82.67 + 9:3e{2 78.06 + 2:3e{2 0.8835 + 4:5e{4 33.12 + 6:3e{2

At 94.7% of specificity 76.73 + 5:1e{2 58.79 + 10:1e{2 94.67 + 1:3e{2 0.8835 + 4:5e{4 49.89 + 8:4e{2

DISOPRED2 [34] 76.96 + 5:7e{2 60.01 + 11:3e{2 93.90 + 1:3e{2 0.8658 + 4:9e{4 48.40 + 8:8e{2

ESpritz [36] 78.49 + 5:6e{2 62.26 + 11:3e{2 94.71 + 1:3e{2 0.8856 + 4:4e{4 52.20 + 9:2e{2

IUPred [35] 74.99 + 5:8e{2 55.98 + 11:4e{2 93.99 + 1:4e{2 0.8363 + 5:6e{4 46.13 + 8:9e{2

Predictive performances of three freely and easily downloadable methods on PDB30. The standard deviations were calculated over the same 100 bootstrap copies of
the whole dataset. Given the huge size of the dataset, all differences (even if they are sometimes tiny) are statistically significant. Notice that (except for the AUC
calculation), our method uses a classification threshold that was selected on the training dataset (Disorder723) so as to maximize the balanced accuracy,
which explains its difference in (sensitivity, specificity) pattern, as compared to the other methods. Changing the threshold so as to yield a 94.7% specificity
on Pdb30, would reduce its sensitivity to 58.8%.
doi:10.1371/journal.pone.0082252.t007
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way to represent protein residues in order to be usable by

disordered region predictors. To this end, we used extremely

randomized tree ensembles as an ‘off-the-shelf’ base learner in our

feature function selection pipeline. We applied our approach to

the DISORDER723 dataset from the literature, so as to select

relevant subsets of feature functions and to build simple residue-

wise disorder prediction models.

Our experiments have shown that the combination of the

feature functions w(PSSM,21) (a local window of size 21 of

evolutionary information), sep(SA,21) (a window of 21 of the

separation profile of predicted solvent accessibility), hlocal(AA,60)
(a local histogram of size 60 of primary structure) and w(SS,11) (a

local window of size 11 of predicted secondary structure) is a

relevant representation of protein residues in the context of

disordered regions prediction.

From a biological point of view, the major contribution of this

paper is the discovery of the sep(SA,:) feature function, which has

- to our best knowledge - never been highlighted as important in

this context. This observation suggests that the proximities (in

terms of amino acid distances) between consecutive exposed (and

consecutive buried) residues should play a role in the formation of

disordered regions and, consequently, in protein structure-function

relationships.

To validate these observations with respect to the state-of-the-

art in disorder prediction, we also evaluated our model on the set

of proteins used in the CASP10 competition. On CASP10, our model

constructed on the DISORDER723 dataset turned out to obtain a

very competitive assessment in terms of various predictive

accuracy indicators, in spite of the fact that our work was focusing

on feature identification rather than accuracy maximization. Since

CASP10 is a small dataset that does not capture the whole universe

of protein disorder, we further assessed our model on the

independent and very large PDB30 dataset, which contains

12,090 proteins and 2,991,008 residues. On PDB30, our model

obtained as well very competitive results with respect to three

state-of-the-art methods, by clearly beating two of them and being

at a tie with the third one.

From a methodological point of view, our paper also shows that

the systematic feature family selection pipeline proposed in [1] and

adapted here, is a viable and robust approach to yield

interpretable information about relevant representations for

protein structure inference and allows at the same time to build

predictors with state-of-the-art accuracy. Still, it might be the case

that extremely randomized tree ensembles with their defaults

settings are not the best classifiers for disordered regions

prediction. Also, in our predictors we treated each residue

independently, i.e., without taking advantage of the structured

nature of the problem. Therefore, a main direction for future

research is to evaluate more sophisticated classifiers using the

feature functions highlighted by the present study.
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