Computational homogenization of cellular materials
capturing micro-buckling, macro-localization and size effects

Van Dung NGUYEN
vandung.nguyen@ulg.ac.be
March 2014
Introduction

• **Cellular materials**: “a cellular solid is one made up of an interconnected network of solid struts or plates which form the edges and faces of cells”

 (Gibson & Ashby 1999)

• **Classification based on the topology**
 – Honeycombs: 2-dimensional arrays of polygons (e.g. Bee hexagons)
 – Foams: 3-dimensional network of cell edges and cell faces
 • Network of cell edges → open-cell foams
 • Network of cell faces → closed-cell foams
 • Partly open- & partly closed-cell foams

• **Man-made cellular materials**

 - Aluminum honeycomb
 - Open-cell nickel foam
 - Closed-cell polyurethane foam
Introduction

- Natural cellular materials

 (a) cork
 (b) balsa
 (c) sponge
 (d) trabecular bone
 (e) coral
 (f) cuttlefish bone
 (g) iris leaf
 (h) plant stalk

(Gibson & Ashby 1999)
Introduction

- Cellular materials are used in many applications
 - Light weight structures
 - Energy absorption
 - Packaging
 - Sound absorption
 - Thermal insulation
 - Etc.
Introduction

• ARC (Action de Recherche concertée) project

“From imaging to geometrical modeling of complex micro-structured materials: Bridging computational engineering and material science”

Material science

Computational modeling of micro-structured materials

Material tailoring

Computational engineering

Foam preparation

Tomographical images

Finite element model

Optimization analysis

Homogenized mechanical & electromagnetic properties

Converged?

Required material

An optimization procedure for “material tailoring”
Introduction

• Mechanical behavior of cellular materials
 – Buckling of thin components (cell struts, cell faces) can occur under compression loads leading to macroscopic localization

Force-displacement crushing response of aluminum honeycomb
(Experimental data from Papka & Kyriakides 1999)
Introduction

• Mechanical behavior of cellular materials (2)
 – Size effect

Effect of shear layer thickness in shear stress-strain response of Alporas foam (Experimental data from Chen & Fleck 2002)
Introduction

- Mechanical behavior of cellular materials (3)
 - Multi-scale behavior in nature
 - Intrinsic roles of different scale properties have to be accounted for
 - Macro-localization, micro-buckling, size effect phenomena have to be evaluated

Two-scale problems

(a) macroscopic continuum

(b) micro-structure with cell walls

(c) detail of cell walls with grain boundaries, other phases, inclusions, voids, etc
Introduction

• Finite element modeling strategies for cellular materials
 – Direct modeling-based approach
 • Direct models of cell struts, cell faces with beam, shell, bulk elements
 – Constitutive modeling-based approach
 • Cellular solids are considered as homogeneous media with suitable constitutive laws:
 – Phenomenological models
 » Curve fitting, parameters identification from numerical or experimental results
 – Homogenization models
 » Mean field, FFT, asymptotic, computational, etc.
Introduction

• Finite element modeling strategies for cellular materials (2)
 – Direct modeling-based approach
 • Advantages:
 – Capture directly localization due to micro-buckling & size effects

• Drawbacks
 – Enormous number of DOFs
 – Difficult to construct the FE model due to geometry complexities
 – Suitable for small problems with limited dimensions
Introduction

• Finite element modeling strategies for cellular materials (3)
 – Constitutive modeling-based approach
 • Advantages
 – Suitable for large problems
 – Micro-buckling, macro-localization & size effects can be captured with suitable constitutive models (e.g. computational homogenization)
 • Drawbacks
 – Phenomenological models
 » Details of the micro-structure during macro-loading cannot be observed
 » Material models and their parameters are difficult to be identified
 – Homogenization models
 » Occurrence of micro-buckling phenomena is still limited in the mean-field, FFT, asymptotic homogenization frameworks
Introduction

• **Computational homogenization**
 – This method is probably the most accurate method to directly account for complex micro-structural behaviors

 – This method can model:
 • Micro-buckling of cell walls (e.g. Okumura et al. 2004, Takahashi et al. 2010)
 • Localization problems (e.g. Kouznetsova et al. 2004, Massart et al. 2007, Nguyen et al. 2011, Coenen et al. 2012)
 • Size effects (e.g. Kouznetsova et al. 2004, Ebinger et al. (2005))
Introduction

• First-order computational homogenization framework (first-order FE²)
 – Macro-scale
 • Finite element model
 • At one integration point \bar{F} is known, \bar{P} is sought
 – Micro-scale
 • Representative Volume Element (RVE)
 • Usual finite elements
 • Microscopic boundary conditions
 – Transition
 • Down-scaling: \bar{F} is used to define the BCs
 • Up-scaling: \bar{P} and $\partial \bar{P}/\partial \bar{F}$ are known from resolutions of micro-scale problems
 – Scale separation

$$l_{\text{discrete}} \ll l_{\text{micro}} \ll l_{\text{macro}}$$
Introduction

• Finite element solutions for strain softening problems suffer from:
 – Loss of solution uniqueness and strain localization
 – Mesh dependence

A generalized continuum is required at the macro-scale
 – Second-order computational homogenization framework (second-order FE²) (Kouznetsova et al. 2004)
 • Macroscopic Mindlin strain gradient continuum
 • Microscopic classical continuum
 • Suitable for moderate localization bands & size effects

The numerical results change with the size of mesh and direction of mesh
The numerical results change without convergence
Introduction

- **Second-order computational homogenization framework (second-order FE²)**
 - **Macro-scale**
 - Mindlin strain gradient continuum
 \[\mathbf{P} \otimes \nabla_0 - \mathbf{Q} : (\nabla_0 \otimes \nabla_0) = 0 \text{ in } B_0 \]
 \[\begin{align*}
 \mathbf{\bar{u}} &= \mathbf{\bar{u}}^0 \quad \text{on } \partial_D B_0 \\
 \mathbf{\bar{T}} &= \mathbf{\bar{T}}^0 \quad \text{on } \partial_N B_0 \\
 \mathbf{D\bar{u}} &= \mathbf{D\bar{u}}^0 \quad \text{on } \partial_T B_0 \\
 \mathbf{\bar{R}} &= \mathbf{\bar{R}}^0 \quad \text{on } \partial_M B_0
 \end{align*} \]
 - **Micro-scale**
 - Usual finite elements
 - Second-order microscopic boundary conditions
 - **Transition**
 - Down-scaling: \(\mathbf{\bar{F}}, \mathbf{\bar{F}} \otimes \nabla_0 \) are used to define the BCs
 - Up-scaling: Two stresses \(\mathbf{\bar{P}}, \mathbf{\bar{Q}} \) and 4 tangent operators are known from resolutions of micro-scale problems
Introduction

• **Selected approach & challenges**
 – Microscopic classical continuum with periodic boundary condition (PBC)

→ new method to enforce PBC on non-conforming meshes
Introduction

• Selected approach & challenges (2)
 – Macroscopic Mindlin strain gradient continuum

\[\bar{P} \otimes \nabla_0 - \bar{Q} : (\nabla_0 \otimes \nabla_0) = 0 \text{ in } B_0 \]
\&
\[\begin{cases} \tilde{u} = \tilde{u}^0 \quad \text{on } \partial_D B_0 \\ \tilde{T} = \tilde{T}^0 \quad \text{on } \partial_N B_0 \\ D\tilde{u} = D\tilde{u}^0 \quad \text{on } \partial_T B_0 \\ \tilde{R} = \tilde{R}^0 \quad \text{on } \partial_M B_0 \end{cases} \]

⇒ efficient method to solve using usual finite elements
Introduction

• Selected approach & challenges (3)
 – Instabilities at both scales

Force-displacement crushing response of aluminum honeycomb
(Experimental data from Papka & Kyriakides 1999)

→ arc-length method to capture instabilities
Topics

- PBC enforcement based on the \textit{polynomial interpolation method}

 (Nguyen, Geuzaine, Béchet & NoelsCMS 2012)

- Second-order multi-scale computational homogenization scheme based on the Discontinuous Galerkin method (called \textit{second-order DG-based FE2 scheme})
 - DG method is used to solve the macroscopic Mindlin strain gradient
 - Usual FE
 - Parallel computation

 (Nguyen, Becker & NoelsCMAME 2013)

- Use of this \textit{second-order DG-based FE2 scheme} to capture instabilities in cellular materials
 - Arc-length path following method is adopted at both scales because of the presence of the macroscopic localization and micro-buckling
 - Parallel computation

 (Nguyen & NoelsIJSS 2014)
Topics

• PBC enforcement based on the *polynomial interpolation method*

 (Nguyen, Geuzaine, Béchet & Noels CMS 2012)

• Second-order multi-scale computational homogenization scheme based on the Discontinuous Galerkin method (called *second-order DG-based FE\(^2\) scheme*)

 – DG method is used to solved the macroscopic Mindlin strain gradient

 – Usual FE

 – Parallel computation

 (Nguyen, Becker & Noels CMAME 2013)

• Use of this *second DG-based FE\(^2\) scheme* to capture instabilities in cellular materials

 – Arc-length path following method is adopted at both scales because of the presence of the macroscopic localization and micro-buckling

 – Parallel computation

 (Nguyen & Noels IJSS 2014)
Polynomial interpolation method

- Periodic boundary condition
 - Defined from the fluctuation field
 - First-order: \(\mathbf{w} = \mathbf{u} - (\mathbf{F} - \mathbf{I}) \cdot \mathbf{X} \)
 - Second-order:
 \[
 \mathbf{w} = \mathbf{u} - (\mathbf{F} - \mathbf{I}) \cdot \mathbf{X} - \frac{1}{2} (\mathbf{F} \otimes \nabla_0) : (\mathbf{X} \otimes \mathbf{X})
 \]
 - Stated on the RVE boundary
 - First-order PBC:
 \[
 \mathbf{w}(\mathbf{X}^+) = \mathbf{w}(\mathbf{X}^-) \quad \text{and} \quad \mathbf{w}(\mathbf{X}^J) = \mathbf{0}
 \]
 - Second-order PBC:
 \[
 \mathbf{w}(\mathbf{X}^+) = \mathbf{w}(\mathbf{X}^-) \quad \text{and} \quad \int_{S_i} \mathbf{w}(\mathbf{X}) \, d\mathbf{V} = 0 \quad \forall S_i \subset \partial V_0
 \]
 - Can be achieved by constraining opposite nodes
Polynomial interpolation method

- **Cellular materials**
 - Usually random meshes
 - Important voids on the boundaries

- **Enforcement of the periodic boundary condition in FEM**
 - For conforming meshes
 - Directly constrains on matching nodes
 - For general meshes
 - Slave/master approach (Yuan et al. 2008)
 - Weak periodicity (Larson et al. 2011)
 - Local implementation (Tyrus et al. 2008)
 - Polynomial interpolation method (Nguyen et al. 2012)
 - For arbitrary RVE geometries

No void part on the RVE boundary
Polynomial interpolation method

- Polynomial interpolation method for PBC enforcement

 - Use of control nodes (new or existing nodes) to interpolate the fluctuation field at the RVE boundary

 - Use of interpolant functions (e.g. Lagrange, cubic spline, patch Coons, etc.)

 - Fluctuations at boundary nodes are interpolated from control nodes

 - PBC is satisfied by using the same interpolation form for opposite parts
Polynomial interpolation method

• Polynomial interpolation method for PBC enforcement (2)

 – First-order PBC

 \[w^- (X) = \sum_k N^k (X) w^k + \sum_k M^k (X) \theta^k, \]

 \[w^+ (X) = \sum_k N^k (X) w^k + \sum_k M^k (X) \theta^k \text{ and} \]

 \[w (X^I) = 0 \]

 – Second-order PBC

 \[w^- (X) = \sum_k N^k (X) w^k + \sum_k M^k (X) \theta^k, \]

 \[w^+ (X) = \sum_k N^k (X) w^k + \sum_k M^k (X) \theta^k \text{ and} \]

 \[\int_{S \subset \partial V^-} \left(\sum_k N^k (X) w^k + \sum_k M^k (X) \theta^k \right) d\partial V = 0 \]

 – Interpolant functions \(N^k, M^k \) and control DOFs \(w^k, \theta^k \) depend on the interpolation methods
Polynomial interpolation method

- Polynomial interpolation method for PBC enforcement (3)
 - Results in new constraints in terms of displacements of both boundary and control nodes
 \[\tilde{C}\tilde{u}_b - g = 0 \]
 - First order: \(g = g(\tilde{F}) \)
 - Second-order: \(g = g(\tilde{F}, \tilde{F} \otimes \nabla_0) \)
 - These linear constraints can be enforced by
 - Constraints elimination
 - Lagrange multipliers
 - Suitable for
 - Arbitrary meshes
 - Important void parts on the RVE boundaries
 - Arbitrary interpolation forms
Polynomial interpolation method

- 2D problems using Lagrange & cubic spline interpolations
 - Periodic hole structures
 - Hole radius = 0.2 mm
 - Elastic material: Young modulus = 70 GPa, Poisson ratio = 0.3

Periodic mesh

Non-periodic mesh

Convergence of effective properties in terms of new DOFs added to system

CEM: method based on matching nodes
Polynomial interpolation method

- 2D problems using Lagrange & cubic spline interpolations (2)
 - Honeycomb structures
 - Edge length = 1 mm & thickness = 0.1 mm
 - Elastic material: Young modulus= 68.9 GPa, Poisson ratio = 0.33

RVE mesh from honeycomb structure

Convergence of effective properties in terms of new DOFs added to system
Polynomial interpolation method

- 3D problems using the patch Coons interpolation based on the Lagrange & cubic spline interpolations

\[\bar{\varepsilon} = \begin{bmatrix} 0.01 & 0.005 & 0.005 \\ 0.005 & 0.01 & -0.005 \\ 0.005 & -0.005 & -0.01 \end{bmatrix} \]

\[\bar{\sigma}_{\text{Lagrange}} = \begin{bmatrix} 281.583 & 92.392 & 121.181 \\ 92.392 & 270.111 & -115.835 \\ 121.181 & -115.835 & -247.78 \end{bmatrix} \text{ MPa} \]

\[\bar{\sigma}_{\text{spline}} = \begin{bmatrix} 281.399 & 91.9833 & 121.239 \\ 91.983 & 268.85 & -115.614 \\ 121.239 & -115.614 & -248.214 \end{bmatrix} \text{ MPa} \]

Lagrange Coons patch of order 15
Cubic spline Coons patch with 10 segments
Conclusions

- A new method to enforce the PBC is presented
 - By using an interpolation formulation
 - For arbitrary meshes
 - For both 2-dimensional and 3-dimensional problems

- This method provides a better estimation compared to the linear displacement BC which is usually used for non-conforming meshes

- The key advantage of this method is the elimination of the need of matching nodes
Topics

• PBC enforcement based on the *polynomial interpolation method*
 (Nguyen, Geuzaine, Béchet & Noels CMS 2012)

• **Second-order multi-scale computational homogenization scheme based on the Discontinuous Galerkin method (called second-order DG-based FE\(^2\) scheme)**

 – DG method is used to solved the macroscopic Mindlin strain gradient

 – Usual FE

 – Parallel computation

 (Nguyen, Becker & Noels CMAME 2013)

• Use of this second DG-based FE\(^2\) scheme to capture instabilities in cellular materials

 – Arc-length path following method is adopted at both scales because of the presence of the macroscopic localization and micro-buckling

 – Parallel computation

 (Nguyen & Noels IJSS 2014)
Mindlin strain gradient problem

• Mindlin strain gradient

\[\bar{P} \otimes \nabla_0 - \bar{Q} : (\nabla_0 \otimes \nabla_0) = 0 \quad \text{in } B_0 \quad \& \quad \begin{cases} \bar{u} = \bar{u}^0 & \text{on } \partial_D B_0 \\ \bar{T} = \bar{T}^0 & \text{on } \partial_N B_0 \\ D\bar{u} = D\bar{u}^0 & \text{on } \partial_T B_0 \\ \bar{R} = \bar{R}^0 & \text{on } \partial_M B_0 \end{cases} \]

• Numerical solution requires the continuity of the displacement field and of its derivatives. Some methods can be considered:
 – Mixed methods (e.g. Shu et al. 1999)
 – Mesh-less method (e.g. Askes et al. 2002)
 – \(C^1 \) finite elements (e.g. Papanicolopulos et al. 2012)
 – Discontinuous Galerkin (DG) method (e.g. Engel et al. 2002)

• DG method is extended to large deformations and multi-scale analyses to solve the Mindlin strain gradient continuum
 – Using only the displacement field as unknowns
 – Enforcing weakly inter-element continuities
Key principles of DG method

- Finite element discretization
- Same **discontinuous** polynomial approximation for
 - Test function φ_h
 - Trial function $\delta \varphi$

- Definition of trace operators on the inter-element interfaces
 - Jump operator $[\bullet] = \bullet^+ - \bullet^-$
 - Mean operator $\langle \bullet \rangle = \frac{1}{2} (\bullet^+ + \bullet^-)$

- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has an optimal convergence rate
DG method for strain gradient problems

- As the strain gradient solution requires the C^0 & C^1 continuities, two formulations can be used:
 - Full Discontinuous Galerkin (FDG) formulation
 \[
 \begin{align*}
 \mathbf{U}^k &= \left\{ \mathbf{u} \in L^2(B_0) \mid \mathbf{u}|_{\Omega_0} \in P^k \forall \Omega_0 \in B_0 \right\} \\
 \mathbf{U}_c^k &= \left\{ \delta \mathbf{u} \in \mathbf{U}^k \mid \delta \mathbf{u}|_{\partial DB_0} = 0 \right\}
 \end{align*}
 \]
 - Weak enforcement of C^0 & C^1 continuities
 - Different DOFs at inter-element interfaces
 - Usual shape functions
 - Enriched Discontinuous Galerkin (EDG) formulation
 \[
 \begin{align*}
 \mathbf{U}^k &= \left\{ \mathbf{u} \in H^1(B_0) \mid \mathbf{u}|_{\Omega_0} \in P^k \forall \Omega_0 \in B_0 \right\} \\
 \mathbf{U}_c^k &= \left\{ \delta \mathbf{u} \in \mathbf{U}^k \mid \delta \mathbf{u}|_{\partial DB_0} = 0 \right\}
 \end{align*}
 \]
 - Weak enforcement of C^1 continuity
 - Same DOFs as conventional FEM
 - Usual shape functions
DG method for strain gradient problems

- Weak formulation obtained by repeating integrations by parts on each element:

\[\sum_e \int_{\Omega_e^0} \delta \vec{u} \cdot [\bar{\mathbf{P}} \otimes \nabla_0 - \bar{\mathbf{Q}} : (\nabla_0 \otimes \nabla_0)] \, dB = 0 \]

\[\int_{\partial B_0} \delta \vec{u} \cdot \bar{\mathbf{P}} \cdot \bar{\mathbf{N}} + (\delta \vec{u} \otimes \nabla_0) : (\bar{\mathbf{Q}} \cdot \bar{\mathbf{N}}) \, d\partial B \]

\[+ \sum_e \int_{\partial I \Omega_e^0} \delta \vec{u} \cdot \bar{\mathbf{P}} \cdot \bar{\mathbf{N}} + (\delta \vec{u} \otimes \nabla_0) : \bar{\mathbf{Q}} \cdot \bar{\mathbf{N}} \, d\partial B \]

\[- \int_{B_0} \left[\bar{\mathbf{P}} : (\delta \vec{u} \otimes \nabla_0) + \bar{\mathbf{Q}} : (\delta \vec{u} \otimes \nabla_0 \otimes \nabla_0) \right] \, dB = 0 \]

\[\bar{\mathbf{P}} = \bar{\mathbf{P}} - \bar{\mathbf{Q}} : \nabla_0 \]
DG method for strain gradient problems

• First-order interface term

\[\int_{\partial_I B_0} \left[\delta \tilde{u} \cdot \tilde{P} \right] \cdot \tilde{N} \, d\partial B \]

is rewritten as the sum of three terms:

- Consistency

\[\int_{\partial_I B_0} \left[\delta \tilde{u} \right] \cdot \left\langle \tilde{P} \right\rangle \cdot \tilde{N}^- \, d\partial B \]

- Compatibility

\[\int_{\partial_I B_0} \left[\tilde{u} \right] \cdot \left\langle \tilde{P} (\delta \tilde{u}) \right\rangle \cdot \tilde{N}^- \, d\partial B \]

- Stability controlled by \(\beta_P \)

\[\int_{\partial_I B_0} \left([\tilde{u}] \otimes \tilde{N}^- \right) : \left\langle \frac{\beta_P}{h_s} C^0 \right\rangle : \left(\delta \tilde{u} \otimes \tilde{N}^- \right) \, d\partial B \]

These terms vanish in the case of EDG formulation

• Second-order interface term

\[\int_{\partial_I B_0} \left[(\delta \tilde{u} \otimes \nabla_0) : \tilde{Q} \right] \cdot \tilde{N} \, d\partial B \]

is rewritten as the sum of three terms:

- Consistency

\[\int_{\partial_I B_0} \left[\delta \tilde{u} \otimes \nabla_0 \right] : \left\langle \tilde{Q} \right\rangle \cdot \tilde{N}^- \, d\partial B \]

- Compatibility

\[\int_{\partial_I B_0} \left[\tilde{u} \otimes \nabla_0 \right] : \left\langle \tilde{Q} (\delta \tilde{u}) \right\rangle \cdot \tilde{N}^- \, d\partial B \]

- Stability controlled by \(\beta_Q \)

\[\int_{\partial_I B_0} \left([\tilde{u} \otimes \nabla_0] \otimes \tilde{N}^- \right) : \left\langle \frac{\beta_Q}{h_s} J^0 \right\rangle : \left([\delta \tilde{u} \otimes \nabla_0] \otimes \tilde{N}^- \right) \, d\partial B \]

\(h_s \) characteristic mesh size
DG method for strain gradient problems

- Weak formulation obtained by DG method: \(a (\bar{u}, \delta \bar{u}) = b (\delta \bar{u}) \quad \forall \delta \bar{u} \in U^K_c \)

- Bi-nonlinear term: \(a (\bar{u}, \delta \bar{u}) = a^{\text{bulk}} (\bar{u}, \delta \bar{u}) + a^{\text{PL}} (\bar{u}, \delta \bar{u}) + a^{\text{QI}} (\bar{u}, \delta \bar{u}) \)
 - Bulk term
 \[
a^{\text{bulk}} (\bar{u}, \delta \bar{u}) = \int_{B_0} \left[\bar{P} : (\delta \bar{u} \otimes \nabla_0) + \bar{Q} : (\delta \bar{u} \otimes \nabla_0 \otimes \nabla_0) \right] dB
 \]
 - First-order interface term (vanishes if using the EDG formulation)
 \[
a^{\text{PL}} (\bar{u}, \delta \bar{u}) = \int_{\partial_1 B_0} \left[\| \delta \bar{u} \| \cdot \langle \bar{P} (\bar{u}) \rangle \cdot \hat{N}^- + \| \bar{u} \| \cdot \langle \bar{P} (\delta \bar{u}) \rangle \cdot \hat{N}^- \
ight.
 \]
 \[
 + [\| \bar{u} \| \otimes \hat{N}^- : \left(\frac{\beta_P}{h_s} C^0 \right) : [\| \delta \bar{u} \| \otimes \hat{N}^-] \] \[d\partial B ,
 \]
 - Second-order interface term
 \[
a^{\text{QI}} (\bar{u}, \delta \bar{u}) = \int_{\partial_1 B_0} \left[[\delta \bar{u} \otimes \nabla_0] : \langle \bar{Q} (\bar{u}) \rangle \cdot \hat{N}^- + [\bar{u} \otimes \nabla_0] : \langle \bar{Q} (\delta \bar{u}) \rangle \cdot \hat{N}^- \
ight]
 \[
 + [\| \bar{u} \| \otimes \hat{N}^- : \left(\frac{\beta_Q}{h_s} J^0 \right) : [\| \delta \bar{u} \| \otimes \nabla_0 \otimes \hat{N}^-] \] \[d\partial B .
 \]

- Load term
 \[
b (\delta \bar{u}) = \left(\int_{\partial N B_0} \bar{T}^0 \cdot \delta \bar{u} d\partial B + \int_{\partial M B_0} \bar{R}^0 \cdot D\delta \bar{u} d\partial B \right)
 \]
DG method for strain gradient problems

- **Second-order DG-based FE² scheme**
 - DG solution of macroscopic Mindlin strain gradient problems
 - Interface & bulk integration points

- Microscopic problems
 - Associated with both interface & bulk integration points

- Scale transitions
 - Down-scaling: two kinematic strains are used to define the microscopic BCs
 - Up-scaling: two stresses and 4 tangent operators are extracted from the resolutions of the microscopic problems
DG method for strain gradient problems

• Parallel second-order DG-based FE2 scheme
 – Computation strategy

Distribute to n processors (macro-procs)

Distribute micro-BVPs in each partition to p processors (micro-procs)

Solve the micro-problems
DG method for strain gradient problems

• Parallel second-order DG-based FE² scheme (2)
 – At the macro-scale
 • Macro-scale parallelization
 • Computation using FDG formulation with “ghost elements”
 – Communications required at each time step to exchange the nodal displacements at inter-partition interfaces only
 – At the micro-scale
 • All microscopic problems are separate in nature

(Becker et al. 2012, Wu et al. 2013)
DG method for strain gradient problems

• Multi-scale study of the shear layer test
 – $H = 1\text{cm}, 2\text{cm}, 4\text{cm}$ and 8cm in order to consider size effects
 – RVE size $d = 0.2\text{cm}$
 – Material law
 • Bulk modulus = 175 GPa
 • Shear modulus = 81 GPa
 • Yield stress = 507 MPa
 • Hardening modulus = 200 MPa
DG method for strain gradient problems

- Multi-scale study of the shear layer test (2)
 - Size effect

Deformation profile

Deformed shape with $H/d = 10$

Deformed shape with $H/d = 40$
DG method for strain gradient problems

• Conclusions
 – The Mindlin strain gradient problems are solved using the discontinuous Galerkin formulations with conventional finite elements
 – The resulting one-field formulation can easily be implemented in existing software
 – This formulation is used for second-order multi-scale computational homogenizations
 – The micro and macro-scale problems consider finite strains
 – Size effects in heterogeneous elasto–plastic materials can be studied
Topics

• PBC enforcement based on the polynomial interpolation method
 (Nguyen, Geuzaine, Béchet & Noels CMS 2012)

• Second-order multi-scale computational homogenization scheme based on the Discontinuous Galerkin method (called second-order DG-based FE2 scheme)
 – DG method is used to solved the macroscopic Mindlin strain gradient
 – Usual FE
 – Parallel computation
 (Nguyen, Becker & Noels CMAME 2013)

• Use of this second-order DG-based FE2 scheme to capture instabilities in cellular materials
 – Arc-length path following method is adopted at both scales because of the presence of the macroscopic localization and micro-buckling
 – Parallel computation
 (Nguyen & Noels IJSS 2014)
Second-order DG-based FE\(^2\) scheme for cellular materials

- **Microscopic classical continuum**
 - Enforcement of PBC using the polynomial interpolation method
 - Arc-length path following method

- **Macroscopic Mindlin strain gradient continuum**
 - Resolution with Discontinuous Galerkin formulation
 - Arc-length path following method

- **Full parallel computations**
 - Macroscopic parallel distribution using ghost elements
 - Microscopic parallel distribution

- **Why the arc-length path following method?**
 - Load-based increments (pure load, arc-length increments, etc.) are preferred to improve the Newton-Raphson convergence
 - Presence of critical points (e.g. limit points) & unstable equilibrium paths for which the conventional Newton-Raphson method fails → arc-length increments
Second-order DG-based FE² scheme for cellular materials

- **Path following method**
 - **Macro-scale problem**
 - Path following with applied loading
 \[
a(\tilde{\mathbf{u}}, \delta \tilde{\mathbf{u}}) = \tilde{\mu} b(\delta \tilde{\mathbf{u}})
 \]
 - Arc-length constraint
 \[
 \tilde{h}(\Delta \tilde{\mathbf{u}}, \Delta \tilde{\mu}) = \frac{\Delta \tilde{\mathbf{u}}^T \Delta \tilde{\mathbf{u}}}{\psi^2} + \Delta \tilde{\mu}^2 - \Delta l^2 = 0
 \]
 - **Micro-scale problems**
 - Path following method on the applied boundary conditions
 \[
 \tilde{\mathbf{C}}\tilde{\mathbf{u}}_b - g(\tilde{\mathbf{F}}, \tilde{\mathbf{F}} \otimes \nabla_0) = 0
 \]
 \[
 (\tilde{\mathbf{F}}, \tilde{\mathbf{F}} \otimes \nabla_0) = (\tilde{\mathbf{F}}, \tilde{\mathbf{F}} \otimes \nabla_0)_0
 + \mu [(\tilde{\mathbf{F}}, \tilde{\mathbf{F}} \otimes \nabla_0)_{1} - (\tilde{\mathbf{F}}, \tilde{\mathbf{F}} \otimes \nabla_0)_{0}]
 \]
 - Arc-length constraint
 \[
 h(\Delta \mathbf{u}, \Delta \mu) = \frac{\Delta \mathbf{u}^T \Delta \mathbf{u}}{\psi^2} + \Delta \mu^2 - \Delta l^2 = 0
 \]
 - Compute by increments until \(\mu = 1 \)
Second-order DG-based FE² scheme for cellular materials

- Compression of an hexagonal honeycomb plate
 - Plate: $H = 102$ mm, $L = 65.8$mm
 - Honeycomb: $l = 1$ mm, $t = 0.1$ mm
 - Elasto-plastic material
 - Bulk modulus = 67.55 GPa
 - Shear modulus = 25.9 GPa
 - Initial yield stress = 276 MPa

Full model

Mesh 0

Mesh 1

Mesh 2

Unit cell mesh
Second-order DG-based FE² scheme for cellular materials

- Compression of an hexagonal honeycomb plate (2)
 - Captures the softening onset
 - Captures the softening response
 - No macro-mesh size effect
Second-order DG-based FE2 scheme for cellular materials

- Compression of an hexagonal honeycomb plate (3)
 - Influence of cell size
 - Same honeycomb structure: $l = 1$ mm, $t = 0.1$ mm
 - Different plate dimensions

(a) overall response

(b) zoom at the strain softening onset
Second-order DG-based FE² scheme for cellular materials

- Compression of a hexagonal honeycomb plate with a centered hole
 - Central radius: \(r = 15 \) mm
 - Honeycomb: \(l = 1 \) mm, \(t = 0.1 \) mm
 - Elasto-plastic material
 - Bulk modulus = 67.55 GPa
 - Shear modulus = 25.9 GPa
 - Initial yield stress = 276 MPa

Geometry & BCs

Full model with 300,000 quadratic triangles

Multi-scale model
Second-order DG-based FE2 scheme for cellular materials

- Compression of a hexagonal honeycomb plate with a centered hole (2)
 - Results given by full and multi-scale models are comparable
A second-order DG-based FE² scheme was developed with the following novelties:

- The periodic boundary condition is enforced using the polynomial interpolation method without the need of conforming meshes.

- The macroscopic Mindlin strain gradient problem is solved using the Discontinuous Galerkin method with conventional finite elements.

- The arc-length path following method is applied at both scales to capture their instabilities.
Current works

• Polypropylene foam
 – Experimental tests (F. Wan)

 ![SEM image of a PP foam with 4% CNTs](image)

 Imperfections → reduce the stiffness
 – Random cell sizes and shapes
 – Non-uniform distribution of solid materials of cell walls
 – Curvature of cell walls
 – Loss of cell walls
 – Corrugation of cell walls
 – Fracture of cell walls
 – ...

![Stress-strain curve](chart)
Current works

- Homogenized properties based on the tetrakaidecahedron unit cell
 - Ideal unit cell models

![Closed unit cell](image)

![Open unit cell](image)

→ Imperfections must be considered
Current works

- Homogenized properties based on the tetrakaidecahedron unit cell (2)
 - Unit cell with mass concentration at cell edges
- Mass concentration parameter: $\phi = \text{mass at cell edge/ total mass}$

![Diagram showing homogenized properties and reduced modulus graph]
Perspectives

• Experimental validation in the context of the ARC project with the RVE meshes coming from tomographical images of the microstructure

• Electromagnetic-mechanical coupling problems since electromagnetic properties are modified during the mechanical loading (as the shape is deformed)

• Discontinuous-continuous schemes for sharper localization problems following the works of Massart et al. 2007, Nguyen et al. 2011 or Coenen et al. 2012

• Material tailoring with required properties by computational homogenization schemes

• ...
Thank you for your attention!
Annex 1 - Macro-scale path following resolution

Initialization

Adjust ΔL

Assemble stiffness

Predictor step

Update increment

Corrector step

End

YES

NO

$\bar{L} \geq L_{\text{max}}$

Compute macro—strains at all Gauss points

Send macro—strains to microscopic BVPs

Solve all micro--BVPs

Homogenized stresses and tangents

Assemble stiffness

Store solution and set initial state for all micro—BVPs

YES

NO

$\bar{\varepsilon} < \text{Tol}$

Compute residual
Annex 2 - Micro-scale path following resolution

Parameterize with μ and load the microscopic state reached at the end of the previous macro arc-length increment

$\mathbf{F}, \mathbf{F} \otimes \mathbf{\nabla}_0$

Adjust Δl

Compute stiffness & load vector

Predictor step

Update increment and compute strain

Corrector step

Load control

$\Delta l = 1 - \mu_{prev}$

Load control

$\mu_{prev} = \mu$

$\mu = \mu + \Delta \mu$

$\varepsilon < \text{Tol}$

Compute residual

$\mu = 1$

Extract macro—properties

\mathbf{P}, \mathbf{Q}

Tangent operators

Store data for next step

Update displacement field

YES

$\mu > 1$

NO

YES

Compute stiffness & load vector

NO

YES

NO

$\mu_{prev} = \mu$

$\mu = \mu + \Delta \mu$

$\varepsilon < \text{Tol}$

Compute residual

$\mu = 1$

Extract macro—properties

\mathbf{P}, \mathbf{Q}

Tangent operators

58
Annex 3 – Computation time

<table>
<thead>
<tr>
<th>Method</th>
<th>CPU time per iteration</th>
<th>Used memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full model</td>
<td>92 seconds</td>
<td>5.6 gigabytes</td>
</tr>
<tr>
<td>Multi–scale model, mesh 0</td>
<td>36 seconds</td>
<td>1.3 gigabytes</td>
</tr>
<tr>
<td>Multi–scale model, mesh 1</td>
<td>84 seconds</td>
<td>2.6 gigabytes</td>
</tr>
<tr>
<td>Multi–scale model, mesh 2</td>
<td>146 seconds</td>
<td>4.0 gigabytes</td>
</tr>
</tbody>
</table>

Computation time and used memory of the full model and multi–scale models. These computations were performed in the same machine with one processor.