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Introduction 

• Cellular materials: “a cellular solid is one made up of  an interconnected 
network of solid struts or plates which form the edges and faces of cells” 

 

• Classification based on the topology 

– Honeycombs: 2-dimensional arrays of polygons (e.g. Bee hexagons) 

– Foams: 3-dimensional network of cell edges and cell faces 

• Network of cell edges open-cell foams 

• Network of cell faces closed-cell foams 

• Partly open- & partly closed-cell foams 

 

• Man-made cellular materials 
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(Gibson & Ashby 1999) 

Aluminum honeycomb Closed-cell 
polyurethane foam 

Open-cell nickel foam 



Introduction 

• Natural cellular materials 

3 
(Gibson & Ashby 1999) 

(a) cork  
(b) balsa 
(c) sponge  
(d) trabecular bone 
(e) coral  
(f) cuttlefish bone 
(g) iris leaf  
(h) plant stalk 



Introduction 

• Cellular materials are used in many applications  

– Light weight structures 

– Energy absorption 

– Packaging 

– Sound absorption 

– Thermal insulation 

– Etc. 
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Introduction 

• ARC (Action de Recherche concertée) project  
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“From imaging to geometrical modeling of complex micro-structured 
materials:  Bridging computational engineering and material science” 

Foam 
preparation 

Tomographical images 

Optimization 
analysis 

Homogenized mechanical & 
electromagnetic properties 

Finite element 
model 

Converged? 
NO 

YES 

Required 
material An optimization procedure for “material tailoring” 

Computational 

engineering  
Material science 

Computational modeling of 
micro-structured materials 

Material tailoring 



Introduction 

• Mechanical behavior of cellular materials 

– Buckling of thin components (cell struts, cell faces) can occur under 
compression loads leading to macroscopic localization 
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Force-displacement crushing response of aluminum honeycomb 
 (Experimental data from Papka & Kyriakides 1999) 



Introduction 

• Mechanical behavior of cellular materials (2) 

– Size effect 
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Effect of shear layer thickness in shear stress-strain response of 
Alporas foam (Experimental data from Chen & Fleck 2002) 



Introduction 

• Mechanical behavior of cellular materials (3) 

– Multi-scale behavior in nature 

– Intrinsic roles of different scale properties have to be accounted for 

– Macro-localization, micro-buckling, size effect phenomena have to be 
evaluated 
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Two-scale problems 

Micro-constitutive laws 



Introduction 

• Finite element modeling strategies for cellular materials 
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– Direct modeling-based approach 

• Direct models of cell struts, cell 
faces with beam, shell, bulk 
elements 

– Constitutive modeling-based approach 

• Cellular solids are considered as 
homogeneous media with suitable 
constitutive laws: 

– Phenomenological models 

» Curve fitting, parameters 
identification from numerical 
or experimental results 

– Homogenization models 

» Mean field, FFT, asymptotic, 
computational, etc. 

 

Material 
law 



Introduction 

• Finite element modeling strategies for cellular materials (2) 

– Direct modeling-based approach 

• Advantages: 

– Capture directly localization due to micro-buckling & size effects 

 

• Drawbacks 

– Enormous number of DOFs 

– Difficult to construct the FE model due to geometry complexities  

– Suitable for small problems with limited dimensions 
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Introduction 

• Finite element modeling strategies for cellular materials (3) 

– Constitutive modeling-based approach 

• Advantages 

– Suitable for large problems 

– Micro-buckling, macro-localization & size effects can be captured with 
suitable constitutive models  (e.g. computational homogenization) 

 

• Drawbacks 

– Phenomenological models 

» Details of the micro-structure during macro-loading cannot be observed 

» Material models and their parameters are difficult to be identified 

 

– Homogenization models 

» Occurrence of micro-buckling phenomena is still limited in the mean -
field, FFT, asymptotic homogenization frameworks 
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Introduction 

• Computational homogenization 

– This method is probably the most accurate method  to directly account for 
complex micro-structural behaviors 

 

 

– This method can model: 

• Micro-buckling of cell walls (e.g. Okumura et al. 2004, Takahashi et al. 2010) 

 

• Localization problems   (e.g. Kouznetsova et al. 2004, Massart et al. 2007,   

                      Nguyen et al. 2011, Coenen et al. 2012) 

 

• Size effects (e.g. Kouznetsova et al. 2004, Ebinger et al. (2005)) 
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Introduction 

• First-order computational homogenization framework (first-order FE2) 

– Macro-scale 

• Finite element model 

• At one integration point      is known,      is sought 

 

– Micro-scale 

• Representative Volume Element (RVE) 

• Usual finite elements  

• Microscopic boundary conditions 

 

– Transition 

• Down-scaling:        is used to define the BCs 

• Up-scaling:      and                     are  known from 

  resolutions of micro-scale problems 

 

– Scale separation 
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Introduction 

• Finite element solutions for strain softening problems suffer from:  

– Loss of solution uniqueness and strain localization 

– Mesh dependence  

 

 

 

 

 

 

 

 

• A generalized continuum is required at the macro-scale 

– Second-order computational homogenization framework (second-order FE2) 

 

• Macroscopic Mindlin strain gradient continuum 

• Microscopic classical continuum 

• Suitable for moderate localization bands & size effects 
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(Kouznetsova et al. 2004) 

The numerical results change with the size of 

mesh and direction of mesh 
Homogenous unique solution 

  

Loss of uniqueness 

Strain localized 

The numerical results change without 

convergence 



Introduction 

• Second-order computational homogenization framework (second-order FE2) 

– Macro-scale 

• Mindlin strain gradient continuum 

 

 

 

 

– Micro-scale 

• Usual finite elements 

• Second-order microscopic boundary conditions 

 

– Transition 

• Down-scaling:                  are used to define the BCs 

• Up-scaling:  Two stresses              and  

 4 tangent operators are known from resolutions of  

 micro-scale problems 
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Introduction 

• Selected approach & challenges 

– Microscopic classical continuum with periodic boundary condition (PBC) 

 

 

 

 

 

 

 

 

  

 

 

 

 

new method to enforce PBC on 

 non-conforming meshes 16 
RVE example  of 
random foam 

Matching nodes for PBC 

Convergence in terms of RVE size 



Introduction 

• Selected approach & challenges (2) 

– Macroscopic Mindlin strain gradient continuum 
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 efficient method to solve using usual finite elements 
 



Introduction 

• Selected approach & challenges (3) 

– Instabilities at both scales 
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Force-displacement crushing response of aluminum honeycomb 
 (Experimental data from Papka & Kyriakides 1999) 

 arc-length method to capture instabilities 



Topics 

• PBC enforcement based on the polynomial interpolation method 

 

 

• Second-order multi-scale computational homogenization scheme based on the 
Discontinuous Galerkin method (called second-order DG-based FE2 scheme) 

– DG method is used to solved the macroscopic Mindlin strain gradient 

– Usual FE 

– Parallel computation 

 

 

• Use of this second-order DG-based FE2 scheme to capture instabilities in 
cellular materials 

– Arc-length path following method is adopted at both scales because of the 
presence of  the macroscopic localization and micro-buckling 

– Parallel computation 

19 

(Nguyen, Geuzaine, Béchet & Noels  CMS 2012) 

(Nguyen, Becker & Noels  CMAME 2013) 

(Nguyen & Noels  IJSS 2014) 



Topics 

• PBC enforcement based on the polynomial interpolation method 

 

 

• Second-order multi-scale computational homogenization scheme based on the 
Discontinuous Galerkin method (called second-order DG-based FE2 scheme) 

– DG method is used to solved the macroscopic Mindlin strain gradient 

– Usual FE 

– Parallel computation 

 

 

• Use of this second DG-based FE2 scheme to capture instabilities in cellular 
materials 

– Arc-length path following method is adopted at both scales because of the 
presence of  the macroscopic localization and micro-buckling 

– Parallel computation 
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(Nguyen, Geuzaine, Béchet & Noels  CMS 2012) 

(Nguyen, Becker & Noels  CMAME 2013) 

(Nguyen & Noels  IJSS 2014) 



Polynomial interpolation method 

• Periodic boundary condition 

– Defined from the fluctuation field 

• First-order: 

• Second-order: 

 

 

– Stated on the RVE boundary 

• First-order PBC: 

 

 

• Second-order PBC: 

 

 

 

 

– Can be achieved by constraining opposite nodes 
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Polynomial interpolation method 

• Cellular materials 

– Usually random meshes 

– Important voids on the boundaries  

 

 

• Enforcement of the periodic boundary condition in FEM 

– For conforming meshes 

• Directly constrains on matching nodes 

 

– For general meshes 

• Slave/master approach (Yuan et al. 2008) 

• Weak periodicity (Larson et al. 2011) 

• Local implementation (Tyrus et al. 2008) 

 

• Polynomial interpolation method  (Nguyen et al. 2012) 

– For arbitrary RVE geometries 
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No void part on the 
RVE boundary 



Polynomial interpolation method 

• Polynomial interpolation method for PBC enforcement 

 

 

 

 

 

 

 

– Use of control nodes (new or existing nodes) to interpolate the fluctuation 
field at the RVE boundary 

 

– Use of interpolant functions (e.g. Lagrange, cubic spline , patch Coons, etc. ) 

 

– Fluctuations at boundary nodes are interpolated from control nodes 

 

– PBC is satisfied by using the same interpolation form for opposite parts 
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Polynomial interpolation method 

• Polynomial interpolation method for PBC enforcement (2) 

– First-order PBC 

 

 

 

 

 

– Second-order PBC 

 

 

 

 

 

 

 

– Interpolant functions                and control DOFs               depend on the 
interpolation methods 
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Polynomial interpolation method 

• Polynomial interpolation method for PBC enforcement (3) 

– Results in new constraints in terms of displacements of both boundary 
and control nodes 

 

• First order: 

• Second-order: 

 

– These linear constraints can be enforced  by  

• Constraints elimination 

• Lagrange multipliers 

 

– Suitable for  

• Arbitrary meshes 

• Important void parts on the RVE boundaries 

• Arbitrary interpolation forms 
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Polynomial interpolation method 

• 2D problems using Lagrange & cubic spline interpolations 

– Periodic hole structures 

• Hole radius = 0.2 mm 

• Elastic material: Young modulus= 70 GPa, Poisson ratio = 0.3 
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Periodic mesh 

Non-periodic mesh CEM: method based on matching nodes 

Convergence  of effective properties in 
terms of new DOFs added to system 



Polynomial interpolation method 

• 2D problems using Lagrange & cubic spline interpolations (2) 

– Honeycomb structures 

• Edge length = 1 mm & thickness = 0.1 mm 

• Elastic material: Young modulus= 68.9 GPa, Poisson ratio = 0.33   
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Convergence  of effective properties in 
terms of new DOFs added to system 

RVE mesh  from 
honeycomb structure  



Polynomial interpolation method 

• 3D problems using the patch Coons interpolation based on the Lagrange & 
cubic spline interpolations 
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Cubic spline Coons patch 
with 10 segments 

Lagrange Coons patch 
of order 15 



Polynomial interpolation method 

• Conclusions 

– A new method to enforce the PBC is presented 

• By using an interpolation formulation 

• For arbitrary meshes 

• For both 2-dimensional and 3-dimensional problems 

 

– This method provides a better estimation compared to the linear 
displacement BC which is usually used for non-conforming meshes 

 

– The key advantage of this method is the elimination of the need of 
matching nodes 
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Topics 

• PBC enforcement based on the polynomial interpolation method 

 

 

• Second-order multi-scale computational homogenization scheme based on the 
Discontinuous Galerkin method (called second-order DG-based FE2 scheme) 

– DG method is used to solved the macroscopic Mindlin strain gradient 

– Usual FE 

– Parallel computation 

 

 

• Use of this second DG-based FE2 scheme to capture instabilities in cellular 
materials 

– Arc-length path following method is adopted at both scales because of the 
presence of  the macroscopic localization and micro-buckling 

– Parallel computation 
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(Nguyen, Geuzaine, Béchet & Noels  CMS 2012) 

(Nguyen, Becker & Noels  CMAME 2013) 

(Nguyen & Noels  IJSS 2014) 



Mindlin strain gradient problem 

• Mindlin strain gradient 

 

 

 

• Numerical solution requires the continuity of the displacement field and 
of its derivatives. Some methods can be considered: 

– Mixed  methods (e.g. Shu et al. 1999) 

– Mesh-less method (e.g. Askes et al. 2002) 

– C1 finite elements (e.g. Papanicolopulos et al. 2012) 

– Discontinuous Galerkin (DG) method (e.g. Engel et al. 2002) 

 

 

• DG method is extended to large deformations and multi-scale analyses to 
solve  the Mindlin strain gradient continuum 

– Using only the displacement field as unknowns 

– Enforcing weakly inter-element continuities 
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Key principles of DG method 

• Finite element discretization 

• Same discontinuous polynomial approximation for 

 

– Test function h  

– Trial function d 

 

 

• Definition of trace operators on the inter-element interfaces 

– Jump operator 

– Mean operator 

 

• Continuity is weakly enforced, such that the method 

– Is consistent 

– Is stable 

– Has an optimal convergence rate 
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(a-1) - (a-1) + (a) - (a) + (a+1) - 
X 

(a+1) + 

Field 



DG method for strain gradient problems 

• As the strain gradient solution requires the C0 & C1 continuities, two 
formulations can be used: 

– Full Discontinuous Galerkin (FDG) formulation 

 
 

 

• Weak enforcement of  C0 & C1 continuities 

• Different DOFs at inter-element interfaces 

• Usual shape functions 

 

– Enriched Discontinuous Galerkin (EDG) formulation 

 

 

 

• Weak enforcement of  C1 continuity 

• Same DOFs as conventional FEM 

• Usual shape functions 
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(a-1) (a) 

X 

(a+1) 

Field 

(a-1)+ (a)+ 

X 

(a+1)+ 

Field 

(a-1)- (a)- (a+1)- 



DG method for strain gradient problems 

• Weak formulation obtained by repeating integrations by parts on each 
element : 
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First-order 
interface term 

Second-order 
interface term 

Traction BC 

 Bulk term 



DG method for strain gradient problems 

• First-order interface term 

  

 

 is rewritten as the sum of three 
terms: 

– Consistency  

 

 

– Compatibility 

 

 

– Stability controlled by 

 

 

– These terms vanish in the case 
of EDG formulation 

• Second-order interface term 

 

 

 is rewritten as the sum of three 
terms: 

– Consistency  

 

 

– Compatibility 

 

 

– Stability controlled by 
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characteristic mesh size 



DG method for strain gradient problems 

• Weak formulation obtained by DG method: 

• Bi-nonlinear term: 

– Bulk term 

 

 

– First-order  interface term (vanishes if using the EDG formulation) 

 

 

 

 

– Second-order interface term 

 

 

 

 

• Load term 
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DG method for strain gradient problems 

• Second-order DG-based FE2 scheme 

– DG solution of macroscopic Mindlin 
strain gradient problems 

• Interface & bulk integration points 

 

– Microscopic problems  

• Associated with both interface & 
bulk integration points 

 

– Scale transitions 

• Down-scaling:  two  kinematic 
strains are used to define the 
microscopic BCs 

 

• Up-scaling: two stresses and 4 
tangent operators are extracted 
from the resolutions of the 
microscopic problems 
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Integration points 



DG method for strain gradient problems 

• Parallel second-order DG-based FE2 scheme  

– Computation strategy 

Macroscopic problem 

Solve the micro-
problems  

… 

Distribute micro-BVPs in 
each partition to 
processors (micro-procs) 

Proc.  Proc.  

Proc.  

Part 0 Part n-1 Part k 
Distribute to   
processors 
(macro-procs) 
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DG method for strain gradient problems 

• Parallel second-order DG-based FE2 scheme  (2) 

– At the macro-scale 

• Macro-scale parallelization  

• Computation using FDG formulation with “ghost elements” 

– Communications required at each time step to exchange the nodal 
displacements at inter-partition interfaces only 

– At the micro-scale 

• All microscopic problems are separate in nature 
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DG method for strain gradient problems 

• Multi-scale study of the shear layer test 

– H = 1cm , 2cm,  4cm and 8cm 

 in order to consider size effects 

– RVE size d = 0.2cm 

– Material law 

• Bulk modulus = 175 GPa 

• Shear modulus = 81 GPa 

• Yield stress = 507 MPa 

• Hardening modulus = 200 MPa 
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DG method for strain gradient problems 

• Multi-scale study of the shear layer test (2) 

– Size effect 
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Deformed shape 
with H/d = 10 

Deformed shape 
with H/d = 40 

Deformation 
profile 



DG method for strain gradient problems 

• Conclusions 

– The Mindlin strain gradient problems are solved using the discontinuous 
Galerkin formulations with conventional finite elements 

 

– The resulting one-field formulation can easily be implemented in existing 
software 

 

– This formulation is used for second-order multi-scale computational 
homogenizations 

 

– The micro and macro-scale problems consider finite strains 

 

– Size effects in heterogeneous elasto–plastic materials can be studied 
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Topics 

• PBC enforcement based on the polynomial interpolation method 

 

 

• Second-order multi-scale computational homogenization scheme based on the 
Discontinuous Galerkin method (called second-order DG-based FE2 scheme) 

– DG method is used to solved the macroscopic Mindlin strain gradient 

– Usual FE 

– Parallel computation 

 

 

• Use of this second-order DG-based FE2 scheme to capture instabilities in 
cellular materials 

– Arc-length path following method is adopted at both scales because of the 
presence of  the macroscopic localization and micro-buckling 

– Parallel computation 
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(Nguyen, Geuzaine, Béchet & Noels  CMS 2012) 

(Nguyen, Becker & Noels  CMAME 2013) 

(Nguyen & Noels  IJSS 2014) 



Second-order DG-based FE2 scheme for cellular materials 

• Microscopic classical continuum 

– Enforcement of PBC using the  polynomial interpolation method 

– Arc-length path following method 

• Macroscopic Mindlin strain gradient continuum 

– Resolution with Discontinuous Galerkin formulation 

– Arc-length path following method 

• Full parallel computations 

– Macroscopic parallel distribution using ghost elements 

– Microscopic parallel distribution 

 

• Why the arc-length path following method?  

– Load-based increments (pure load,  arc-length increments, etc.) are 
preferred to improve the Newton-Raphson convergence 

– Presence of critical points (e.g. limit points)  & unstable equilibrium paths 
for which the conventional Newton-Raphson method fails arc-length 
increments 
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Second-order DG-based FE2 scheme for cellular materials 

• Path following method  

– Macro-scale problem 

• Path following with applied loading 

 

• Arc-length constraint 

 

 

– Micro-scale problems 

• Path following method on the 
applied boundary conditions 

 

 

 

 

• Arc-length constraint 

 

 

• Compute by increments until  
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Second-order DG-based FE2 scheme for cellular materials 

• Compression of an hexagonal honeycomb plate 

– Plate: H  = 102 mm, L =  65.8mm 

– Honeycomb: l = 1mm, t  = 0.1 mm 

– Elasto-plastic material 

• Bulk modulus = 67.55 GPa 

• Shear modulus = 25.9 GPa 

• Initial yield stress = 276 MPa 
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Unit cell 
mesh Full model Mesh 0 Mesh 1 Mesh 2 



Second-order DG-based FE2 scheme for cellular materials 

• Compression of an hexagonal honeycomb plate (2) 

– Captures the softening onset 

– Captures the softening response 

– No macro-mesh  size effect 
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Second-order DG-based FE2 scheme for cellular materials 

• Compression of an hexagonal honeycomb plate (3) 

– Influence of cell size 

• Same honeycomb structure: l = 1mm, t = 0.1 mm 

• Different plate dimensions 
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Second-order DG-based FE2 scheme for cellular materials 

• Compression of a hexagonal honeycomb plate with a centered hole  

– Central radius: r = 15mm 

– Honeycomb:  l = 1mm, t= 0.1mm 

– Elasto-plastic material  

• Bulk modulus = 67.55 GPa 

• Shear modulus = 25.9 GPa 

• Initial yield stress = 276 MPa 
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Multi-scale model 

Geometry & BCs 

Full model with 
300.000 quadratic 

triangles 



Second-order DG-based FE2 scheme for cellular materials 

• Compression of a hexagonal honeycomb plate with a centered hole (2) 

– Results given by full and multi-scale models are comparable  
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Second-order DG-based FE2 scheme for cellular materials 

• A second-order DG-based FE2 scheme was developed with the following 
novelties: 

– The periodic boundary condition is enforced  using the polynomial 
interpolation method  without the need of conforming meshes 

 

– The macroscopic Mindlin strain gradient problem is solved using the 
Discontinuous Galerkin method with conventional finite elements 

 

– The arc-length path following method is applied at both scales to capture 
their instabilities  
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Current works 

• Polypropylene foam 

– Experimental tests (F. Wan) 

 

 

 

 

 

 

 

• Imperfections reduce the stiffness 

– Random cell sizes and shapes 

– Non-uniform distribution of solid materials of cell walls 

– Curvature of  cell walls 

– Loss of cell walls 

– Corrugation of cell walls 

– Fracture of cell walls 

– ... 
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Current works 

• Homogenized properties based on the tetrakaidecahedron unit cell 

– Ideal unit cell models 
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Closed unit cell 

Open unit cell 
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Current works 

• Homogenized properties based on the tetrakaidecahedron unit cell (2) 

– Unit cell with mass concentration at cell edges 

• Mass concentration parameter: φ= mass at cell edge/ total mass 
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Perspectives 

• Experimental validation in the context of the ARC project with the RVE 
meshes coming from tomographical images of the microstructure 

 

 

• Electromagnetic-mechanical coupling problems since electromagnetic 
properties are modified during the mechanical loading (as the shape is 
deformed) 

 

 

• Discontinuous-continuous schemes for sharper localization problems 
following the works of Massart et al.  2007, Nguyen et al.  2011 or 
Coenen et al. 2012 

 

 

• Material tailoring with required properties by computational 
homogenization schemes 

 

• … 
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Thank you for your attention! 



Annex 1 - Macro-scale path following resolution 

Corrector 
step 

Update increment 

Solve all micro--BVPs 
End 

Predictor step 

YES 

YES 

NO 

NO 

Compute macro—strains      
at all Gauss points  

Assemble stiffness  

Store solution and 
set initial state for 
all micro—BVPs 

Send macro—strains  
to microscopic BVPs 

Homogenized 
stresses and 

tangents 

Initialization 

Adjust 

Compute residual  
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Assemble stiffness  



Annex 2 - Micro-scale path following resolution 

Corrector step 

Predictor step 

YES 

Adjust 

Update increment 
and compute strain 

Parameterize with        and load the microscopic state reached 
at the end of the previous macro arc-length increment 

Compute stiffness 
& load vector   

Update 
displacement field 

Load control 

Store data 
for next 

step 

Compute 
residual 

YES 

YES 

NO NO 

NO 

Micro—material law 

Extract  
macro—properties  
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Tangent 
operators 

Compute stiffness 
& load vector   



Annex 3 – Computation time 
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Computation time and used memory of the full model and multi–scale models. 
These computations were performed in the same machine with one processor 


