

University of Liège Aerospace & Mechanical Engineering Department

Computational homogenization of cellular materials capturing micro-buckling, macro-localization and size effects

Van Dung NGUYEN vandung.nguyen@ulg.ac.be March 2014

Cellular materials: "a cellular solid is one made up of an interconnected network of solid struts or plates which form the edges and faces of cells"

(Gibson & Ashby 1999)

Universit

- Classification based on the topology
 - Honeycombs: 2-dimensional arrays of polygons (e.g. Bee hexagons)
 - Foams: 3-dimensional network of cell edges and cell faces
 - Network of cell edges →open-cell foams
 - Network of cell faces → closed-cell foams
 - Partly open- & partly closed-cell foams
- Man-made cellular materials

Aluminum honeycomb

Open-cell nickel foam

Closed-cell polyurethane foam

2

50 µm

• Natural cellular materials

1 mm 200 µm 2mm 1mm

(Gibson & Ashby 1999)

(a) cork

(b) balsa

(c) sponge

(d) trabecular bone

(e) coral

(f) cuttlefish bone

(g) iris leaf

(h) plant stalk

• Cellular materials are used in many applications

- Light weight structures
- Energy absorption
- Packaging
- Sound absorption
- Thermal insulation
- Etc.

Université de Liège

"From imaging to geometrical modeling of complex micro-structured materials: Bridging computational engineering and material science"

Mechanical behavior of cellular materials

 Buckling of thin components (cell struts, cell faces) can occur under compression loads leading to macroscopic localization

Force-displacement crushing response of aluminum honeycomb (Experimental data from Papka & Kyriakides 1999)

• Mechanical behavior of cellular materials (2)

Size effect

Effect of shear layer thickness in shear stress-strain response of Alporas foam (Experimental data from Chen & Fleck 2002)

Mechanical behavior of cellular materials (3)

- Multi-scale behavior in nature
- Intrinsic roles of different scale properties have to be accounted for
- Macro-localization, micro-buckling, size effect phenomena have to be evaluated

Université de Liège

- Finite element modeling strategies for cellular materials
 - Direct modeling-based approach
 - Direct models of cell struts, cell faces with beam, shell, bulk elements
- Constitutive modeling-based approach
 - Cellular solids are considered as homogeneous media with suitable constitutive laws:
 - Phenomenological models
 - » Curve fitting, parameters identification from numerical or experimental results
 - Homogenization models
 - » Mean field, FFT, asymptotic, computational, etc.

- Finite element modeling strategies for cellular materials (2)
 - Direct modeling-based approach
 - Advantages:
 - Capture directly localization due to micro-buckling & size effects
 - Drawbacks
 - Enormous number of DOFs
 - Difficult to construct the FE model due to geometry complexities
 - Suitable for small problems with limited dimensions

- Finite element modeling strategies for cellular materials (3)
 - Constitutive modeling-based approach
 - Advantages
 - Suitable for large problems
 - Micro-buckling, macro-localization & size effects can be captured with suitable constitutive models (e.g. computational homogenization)
 - Drawbacks
 - Phenomenological models
 - » Details of the micro-structure during macro-loading cannot be observed
 - » Material models and their parameters are difficult to be identified
 - Homogenization models
 - » Occurrence of micro-buckling phenomena is still limited in the mean field, FFT, asymptotic homogenization frameworks

Computational homogenization

 This method is probably the most accurate method to directly account for complex micro-structural behaviors

- This method can model:
 - Micro-buckling of cell walls (e.g. Okumura et al. 2004, Takahashi et al. 2010)
 - Localization problems (e.g. Kouznetsova et al. 2004, Massart et al. 2007, Nguyen et al. 2011, Coenen et al. 2012)
 - Size effects (e.g. Kouznetsova et al. 2004, Ebinger et al. (2005))

- First-order computational homogenization framework (first-order FE²)
 - Macro-scale
 - Finite element model
 - At one integration point $\bar{\mathbf{F}}$ is known, $\bar{\mathbf{P}}\,$ is sought
 - Micro-scale
 - Representative Volume Element (RVE)
 - Usual finite elements
 - Microscopic boundary conditions
 - Transition
 - Down-scaling: $\bar{\mathbf{F}}$ is used to define the BCs
 - Up-scaling: $\bar{\mathbf{P}}$ and $\partial \bar{\mathbf{P}} / \partial \bar{\mathbf{F}}$ are known from resolutions of micro-scale problems
 - Scale separation

 $l_{discrete} \ll l_{micro} \ll l_{macro}$

- Finite element solutions for strain softening problems suffer from:
 - Loss of solution uniqueness and strain localization
 - Mesh dependence

- A generalized continuum is required at the macro-scale
 - Second-order computational homogenization framework (second-order FE²) (Kouznetsova et al. 2004)
 - Macroscopic Mindlin strain gradient continuum
 - Microscopic classical continuum
 - Suitable for moderate localization bands & size effects

- Second-order computational homogenization framework (second-order FE²)
 - Macro-scale
 - Mindlin strain gradient continuum

$$\bar{\mathbf{P}} \otimes \boldsymbol{\nabla}_0 - \bar{\mathbf{Q}} : (\boldsymbol{\nabla}_0 \otimes \boldsymbol{\nabla}_0) = \mathbf{0} \quad \text{in } B_0 \quad \& \quad \begin{cases} \bar{\mathbf{u}} = \bar{\mathbf{u}}^0 & \text{on } \partial_D B_0 \\ \bar{\mathbf{T}} = \bar{\mathbf{T}}^0 & \text{on } \partial_N B_0 \\ D\bar{\mathbf{u}} = D\bar{\mathbf{u}}^0 & \text{on } \partial_T B_0 \\ \bar{\mathbf{R}} = \bar{\mathbf{R}}^0 & \text{on } \partial_M B_0 \end{cases}$$

- Micro-scale
 - Usual finite elements
 - Second-order microscopic boundary conditions
- Transition
 - Down-scaling: $\bar{\mathbf{F}},\bar{\mathbf{F}}\otimes\boldsymbol{\nabla}_{0}$ are used to define the BCs
 - Up-scaling: Two stresses P, Q and 4 tangent operators are known from resolutions of micro-scale problems

 \mathbf{P}

 ∇_0

 $\partial ar{\mathbf{Q}}$

 $\partial ar{\mathbf{F}}\otimes oldsymbol{
abla}_{0}$

 $\overline{\partial \bar{\mathbf{F}}}^{\,,\,}\overline{\partial \bar{\mathbf{F}}}\otimes$

 $\partial ar{\mathbf{P}}$

 $\partial \mathbf{Q}$

 $\overline{\partial ar{\mathbf{F}}}$

 $ar{\mathbf{F}},ar{\mathbf{F}}\otimesoldsymbol{
abla}_0$

• Selected approach & challenges

Microscopic classical continuum with periodic boundary condition (PBC)

new method to enforce PBC on non-conforming meshes

RVE example of random foam

16

• Selected approach & challenges (2)

Macroscopic Mindlin strain gradient continuum

$$\bar{\mathbf{P}} \otimes \boldsymbol{\nabla}_0 - \bar{\mathbf{Q}} : (\boldsymbol{\nabla}_0 \otimes \boldsymbol{\nabla}_0) = \mathbf{0} \text{ in } B_0 \quad \& \quad \begin{cases} \bar{\mathbf{u}} = \bar{\mathbf{u}}^0 & \text{ on } \partial_D B_0 \\ \bar{\mathbf{T}} = \bar{\mathbf{T}}^0 & \text{ on } \partial_N B_0 \\ D\bar{\mathbf{u}} = D\bar{\mathbf{u}}^0 & \text{ on } \partial_T B_0 \\ \bar{\mathbf{R}} = \bar{\mathbf{R}}^0 & \text{ on } \partial_M B_0 \end{cases}$$

\rightarrow efficient method to solve using usual finite elements

Selected approach & challenges (3)

Instabilities at both scales

Force-displacement crushing response of aluminum honeycomb (Experimental data from Papka & Kyriakides 1999)

 \rightarrow arc-length method to capture instabilities

Université de Liège

PBC enforcement based on the *polynomial interpolation method*

(Nguyen, Geuzaine, Béchet & Noels CMS 2012)

- Second-order multi-scale computational homogenization scheme based on the Discontinuous Galerkin method (called *second-order DG-based FE² scheme*)
 - DG method is used to solved the macroscopic Mindlin strain gradient
 - Usual FE
 - Parallel computation

(Nguyen, Becker & Noels CMAME 2013)

- Use of this second-order DG-based FE² scheme to capture instabilities in cellular materials
 - Arc-length path following method is adopted at both scales because of the presence of the macroscopic localization and micro-buckling
 - Parallel computation

(Nguyen & Noels IJSS 2014)

PBC enforcement based on the *polynomial interpolation method*

(Nguyen, Geuzaine, Béchet & Noels CMS 2012)

- Second-order multi-scale computational homogenization scheme based on the Discontinuous Galerkin method (called *second-order DG-based FE² scheme*)
 - DG method is used to solved the macroscopic Mindlin strain gradient
 - Usual FE
 - Parallel computation

(Nguyen, Becker & Noels CMAME 2013)

- Use of this *second DG-based FE² scheme* to capture instabilities in cellular materials
 - Arc-length path following method is adopted at both scales because of the presence of the macroscopic localization and micro-buckling
 - Parallel computation

(Nguyen & Noels IJSS 2014)

- Periodic boundary condition
 - Defined from the fluctuation field
 - First-order: $\mathbf{w} = \mathbf{u} \left(\bar{\mathbf{F}} \mathbf{I}\right) \cdot \mathbf{X}$
 - Second-order:

$$\mathbf{w} = \mathbf{u} - \left(\bar{\mathbf{F}} - \mathbf{I}\right) \cdot \mathbf{X} - \frac{1}{2} \left(\bar{\mathbf{F}} \otimes \boldsymbol{\nabla}_{0}\right) : (\mathbf{X} \otimes \mathbf{X})$$

Stated on the RVE boundary

• First-order PBC:

$$\mathbf{w}(\mathbf{X}^+) = \mathbf{w}(\mathbf{X}^-) \text{ and }$$

$$\mathbf{w}(\mathbf{X}^I) = \mathbf{0}$$

• Second-order PBC:

$$\mathbf{w}(\mathbf{X}^{+}) = \mathbf{w}(\mathbf{X}^{-}) \text{ and}$$
$$\int_{S_{i}} \mathbf{w}(\mathbf{X}) \, d\partial V = \mathbf{0} \quad \forall S_{i} \subset \partial V$$

Can be achieved by constraining opposite nodes

Polynomial interpolation method for PBC enforcement

- Use of control nodes (new or existing nodes) to interpolate the fluctuation field at the RVE boundary
- Use of interpolant functions (e.g. Lagrange, cubic spline, patch Coons, etc.)
- Fluctuations at boundary nodes are interpolated from control nodes
- PBC is satisfied by using the same interpolation form for opposite parts

- Polynomial interpolation method for PBC enforcement (2)
 - First-order PBC

$$\begin{split} \mathbf{w}^{-}\left(\mathbf{X}\right) &= \sum_{k} \mathbb{N}^{k}\left(\mathbf{X}\right) \mathbf{w}^{k} + \sum_{k} \mathbb{M}^{k}\left(\mathbf{X}\right) \boldsymbol{\theta}^{k},\\ \mathbf{w}^{+}\left(\mathbf{X}\right) &= \sum_{k} \mathbb{N}^{k}\left(\mathbf{X}\right) \mathbf{w}^{k} + \sum_{k} \mathbb{M}^{k}\left(\mathbf{X}\right) \boldsymbol{\theta}^{k} \text{ and}\\ \mathbf{w}\left(\mathbf{X}^{I}\right) &= \mathbf{0} \end{split}$$

Second-order PBC

$$\mathbf{w}^{-}(\mathbf{X}) = \sum_{k} \mathbb{N}^{k} (\mathbf{X}) \mathbf{w}^{k} + \sum_{k} \mathbb{M}^{k} (\mathbf{X}) \boldsymbol{\theta}^{k},$$
$$\mathbf{w}^{+}(\mathbf{X}) = \sum_{k} \mathbb{N}^{k} (\mathbf{X}) \mathbf{w}^{k} + \sum_{k} \mathbb{M}^{k} (\mathbf{X}) \boldsymbol{\theta}^{k} \text{ and}$$
$$\int_{S \subset \partial V^{-}} \left(\sum_{k} \mathbb{N}^{k} (\mathbf{X}) \mathbf{w}^{k} + \sum_{k} \mathbb{M}^{k} (\mathbf{X}) \boldsymbol{\theta}^{k} \right) d\partial V = \mathbf{0}$$

Boundary nodeControl node

- Interpolant functions $\mathbb{N}^k, \mathbb{M}^k$ and control DOFs $\mathbf{w}^k, \boldsymbol{\theta}^k$ depend on the interpolation methods

- Polynomial interpolation method for PBC enforcement (3)
 - Results in new constraints in terms of displacements of both boundary and control nodes

$$ilde{\mathbf{C}} ilde{\mathbf{u}}_b - \mathbf{g} = \mathbf{0}$$

- First order: $\mathbf{g} = \mathbf{g}\left(\bar{\mathbf{F}}\right)$
- Second-order: $\mathbf{g} = \mathbf{g} \left(\bar{\mathbf{F}}, \bar{\mathbf{F}} \otimes \boldsymbol{\nabla}_0 \right)$
- These linear constraints can be enforced by
 - Constraints elimination
 - Lagrange multipliers
- Suitable for
 - Arbitrary meshes
 - Important void parts on the RVE boundaries
 - Arbitrary interpolation forms

- 2D problems using Lagrange & cubic spline interpolations
 - Periodic hole structures
 - Hole radius = 0.2 mm
 - Elastic material: Young modulus= 70 GPa, Poisson ratio = 0.3

Non-periodic mesh

Convergence of effective properties in terms of new DOFs added to system

- 2D problems using Lagrange & cubic spline interpolations (2)
 - Honeycomb structures
 - Edge length = 1 mm & thickness = 0.1 mm
 - Elastic material: Young modulus= 68.9 GPa, Poisson ratio = 0.33

RVE mesh from honeycomb structure

Convergence of effective properties in terms of new DOFs added to system

 $\bar{\varepsilon} =$

0.01

0.005

3D problems using the patch Coons interpolation based on the Lagrange & cubic spline interpolations

$$\bar{\sigma}_{\text{Lagrange}} = \begin{bmatrix} 281.583 & 92.392 & 121.181 \\ 92.392 & 270.111 & -115.835 \\ 121.181 & -115.835 & -247.78 \end{bmatrix} \text{MPa}$$
$$\bar{\sigma}_{\text{spline}} = \begin{bmatrix} 281.399 & 91.9833 & 121.239 \\ 91.983 & 268.85 & -115.614 \\ 121.239 & -115.614 & -248.214 \end{bmatrix} \text{MPa}$$

0.005

Lagrange Coons patch of order 15

Université de Liège

Cubic spline Coons patch with 10 segments

- Conclusions
 - A new method to enforce the PBC is presented
 - By using an interpolation formulation
 - For arbitrary meshes
 - For both 2-dimensional and 3-dimensional problems
 - This method provides a better estimation compared to the linear displacement BC which is usually used for non-conforming meshes
 - The key advantage of this method is the elimination of the need of matching nodes

PBC enforcement based on the *polynomial interpolation method*

(Nguyen, Geuzaine, Béchet & Noels CMS 2012)

- Second-order multi-scale computational homogenization scheme based on the Discontinuous Galerkin method (called *second-order DG-based FE² scheme*)
 - DG method is used to solved the macroscopic Mindlin strain gradient
 - Usual FE
 - Parallel computation

(Nguyen, Becker & Noels CMAME 2013)

- Use of this second DG-based FE2 scheme to capture instabilities in cellular materials
 - Arc-length path following method is adopted at both scales because of the presence of the macroscopic localization and micro-buckling
 - Parallel computation

(Nguyen & Noels IJSS 2014)

Mindlin strain gradient

$$\bar{\mathbf{P}} \otimes \boldsymbol{\nabla}_0 - \bar{\mathbf{Q}} : (\boldsymbol{\nabla}_0 \otimes \boldsymbol{\nabla}_0) = \mathbf{0} \quad \text{in } B_0 \quad \& \quad \begin{cases} \bar{\mathbf{u}} = \bar{\mathbf{u}}^0 & \text{on } \partial_D B_0 \\ \bar{\mathbf{T}} = \bar{\mathbf{T}}^0 & \text{on } \partial_N B_0 \\ D\bar{\mathbf{u}} = D\bar{\mathbf{u}}^0 & \text{on } \partial_T B_0 \\ \bar{\mathbf{R}} = \bar{\mathbf{R}}^0 & \text{on } \partial_M B_0 \end{cases}$$

- Numerical solution requires the continuity of the displacement field and of its derivatives. Some methods can be considered:
 - Mixed methods (e.g. Shu et al. 1999)
 - Mesh-less method (*e.g.* Askes et al. 2002)
 - **C**¹ finite elements (*e.g.* Papanicolopulos et al. 2012)
 - Discontinuous Galerkin (DG) method (*e.g.* Engel et al. 2002)

- DG method is extended to large deformations and multi-scale analyses to solve the Mindlin strain gradient continuum
 - Using only the displacement field as unknowns
 - Enforcing weakly inter-element continuities

- Finite element discretization
- Same **discontinuous** polynomial approximation for

- Definition of trace operators on the inter-element interfaces
 - Jump operator $\llbracket \bullet \rrbracket = \bullet^+ \bullet^-$
 - Mean operator $\langle \bullet \rangle = \frac{1}{2} \left(\bullet^+ + \bullet^- \right)$
- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has an optimal convergence rate

Unive

- As the strain gradient solution requires the C⁰ & C¹ continuities, two formulations can be used:
 - Full Discontinuous Galerkin (FDG) formulation

$$\begin{cases} \mathbf{U}^{k} = \left\{ \bar{\mathbf{u}} \in \mathbf{L}^{2} \left(B_{0} \right) & | \quad \bar{\mathbf{u}} |_{\Omega_{0}^{e}} \in \mathbb{P}^{k} \forall \Omega_{e}^{0} \in B_{0} \right\} \\ \mathbf{U}_{c}^{k} = \left\{ \delta \bar{\mathbf{u}} \in \mathbf{U}^{k} & | \quad \delta \bar{\mathbf{u}} |_{\partial_{D} B_{0}} = \mathbf{0} \right\} \end{cases}$$

- Weak enforcement of *C*⁰ & *C*¹ continuities
- Different DOFs at inter-element interfaces
- Usual shape functions

- Enriched Discontinuous Galerkin (EDG) formulation

$$\begin{cases} \mathbf{U}^{k} = \left\{ \bar{\mathbf{u}} \in \mathbf{H}^{1}\left(B_{0}\right) & | \quad \bar{\mathbf{u}}|_{\Omega_{0}^{e}} \in \mathbb{P}^{k} \quad \forall \Omega_{e}^{0} \in B_{0} \right\} \\ \mathbf{U}_{c}^{k} = \left\{ \delta \bar{\mathbf{u}} \in \mathbf{U}^{k} & | \quad \delta \bar{\mathbf{u}}|_{\partial_{D}B_{0}} = \mathbf{0} \right\} \end{cases}$$

- Weak enforcement of *C*¹ continuity
- Same DOFs as conventional FEM
- Usual shape functions

Weak formulation obtained by repeating integrations by parts on each element :

First-order interface term

$$\int_{\partial_I B_0} \left[\! \left[\delta \bar{\mathbf{u}} \cdot \bar{\hat{\mathbf{P}}} \right] \! \right] \cdot \bar{\mathbf{N}} \, d\partial B$$

is rewritten as the sum of three terms:

Consistency

$$\int_{\partial_I B_0} \left[\!\!\left[\delta \bar{\mathbf{u}} \right]\!\!\right] \cdot \left\langle \bar{\hat{\mathbf{P}}} \right\rangle \cdot \bar{\mathbf{N}}^- \, d\partial B$$

Compatibility

$$\int_{\partial_I B_0} \left[\!\!\left[\bar{\mathbf{u}} \right]\!\!\right] \cdot \left\langle \bar{\hat{\mathbf{P}}} \left(\delta \bar{\mathbf{u}} \right) \right\rangle \cdot \bar{\mathbf{N}}^- \, d\partial B$$

Stability controlled by β_P

$$\int_{\partial_I B_0} \left(\llbracket \bar{\mathbf{u}} \rrbracket \otimes \bar{\mathbf{N}}^- \right) : \left\langle \frac{\beta_P}{h_s} \mathbb{C}^0 \right\rangle : \left(\delta \bar{\mathbf{u}} \otimes \bar{\mathbf{N}}^- \right) \, d\partial B$$

These terms vanish in the case of EDG formulation

• Second-order interface term

$$\int_{\partial_I B_0} \left[\!\!\left[(\delta \bar{\mathbf{u}} \otimes \boldsymbol{\nabla}_0) : \bar{\mathbf{Q}} \right]\!\!\right] \cdot \bar{\mathbf{N}} \, d\partial B$$

is rewritten as the sum of three terms:

Consistency

$$\int_{\partial_I B_0} \left[\!\left[\delta \bar{\mathbf{u}} \otimes \boldsymbol{\nabla}_0\right]\!\right] : \left\langle \bar{\mathbf{Q}} \right\rangle \cdot \bar{\mathbf{N}}^- \, d\partial B$$

Compatibility

$$\int_{\partial_{I}B_{0}} \left[\!\left[\bar{\mathbf{u}} \otimes \boldsymbol{\nabla}_{0}\right]\!\right] : \left\langle \bar{\mathbf{Q}}\left(\delta\bar{\mathbf{u}}\right)\right\rangle \cdot \bar{\mathbf{N}}^{-} \, d\partial B$$

– Stability controlled by
$$\beta_Q$$

$$\int_{\partial_I B_0} \left(\llbracket \bar{\mathbf{u}} \otimes \boldsymbol{\nabla}_0 \rrbracket \otimes \bar{\mathbf{N}}^- \right) \stackrel{!}{:} \left\langle \frac{\beta_Q}{h_s} \mathbb{J}^0 \right\rangle \stackrel{!}{:} \\ \left(\llbracket \delta \bar{\mathbf{u}} \otimes \boldsymbol{\nabla}_0 \rrbracket \otimes \bar{\mathbf{N}}^- \right) \, d\partial B$$

- Weak formulation obtained by DG method: $a(\bar{u}, \delta \bar{u}) = b(\delta \bar{u})$
- Bi-nonlinear term: $a(\bar{\mathbf{u}}, \delta \bar{\mathbf{u}}) = a^{\text{bulk}}(\bar{\mathbf{u}}, \delta \bar{\mathbf{u}}) + a^{\text{PI}}(\bar{\mathbf{u}}, \delta \bar{\mathbf{u}}) + a^{\text{QI}}(\bar{\mathbf{u}}, \delta \bar{\mathbf{u}})$
 - Bulk term

$$\mathbf{a}^{\mathrm{bulk}}\left(\bar{\mathbf{u}},\delta\bar{\mathbf{u}}\right) = \int_{B_0} \left[\bar{\mathbf{P}}:\left(\delta\bar{\mathbf{u}}\otimes\boldsymbol{\nabla}_0\right) + \bar{\mathbf{Q}}\overset{\cdot}{:}\left(\delta\bar{\mathbf{u}}\otimes\boldsymbol{\nabla}_0\otimes\boldsymbol{\nabla}_0\right)\right] \, dB$$

- First-order interface term (vanishes if using the EDG formulation)

$$\begin{split} \mathbf{a}^{\mathrm{PI}}\left(\bar{\mathbf{u}},\delta\bar{\mathbf{u}}\right) &= \int_{\partial_{I}B_{0}} \left[\left[\!\left[\delta\bar{\mathbf{u}}\right]\!\right] \cdot \left\langle \bar{\hat{\mathbf{P}}}\left(\bar{\mathbf{u}}\right)\right\rangle \cdot \bar{\mathbf{N}}^{-} + \left[\!\left[\bar{\mathbf{u}}\right]\!\right] \cdot \left\langle \bar{\hat{\mathbf{P}}}\left(\delta\bar{\mathbf{u}}\right)\right\rangle \cdot \bar{\mathbf{N}}^{-} \\ &+ \left[\!\left[\bar{\mathbf{u}}\right]\!\right] \otimes \bar{\mathbf{N}}^{-} : \left\langle \frac{\beta_{P}}{h_{s}} \mathbf{C}^{0} \right\rangle : \left[\!\left[\delta\bar{\mathbf{u}}\right]\!\right] \otimes \bar{\mathbf{N}}^{-} \right] d\partial B \,, \end{split}$$

Second-order interface term

$$\begin{aligned} \mathbf{a}^{\mathrm{QI}}\left(\bar{\mathbf{u}},\delta\bar{\mathbf{u}}\right) &= \int_{\partial_{I}B_{0}} \left[\left[\left[\delta\bar{\mathbf{u}}\otimes\nabla_{0} \right] \right] : \left\langle \bar{\mathbf{Q}}\left(\bar{\mathbf{u}}\right) \right\rangle \cdot \bar{\mathbf{N}}^{-} + \left[\left[\bar{\mathbf{u}}\otimes\nabla_{0} \right] \right] : \left\langle \bar{\mathbf{Q}}\left(\delta\bar{\mathbf{u}}\right) \right\rangle \cdot \bar{\mathbf{N}}^{-} \\ &+ \left[\left[\bar{\mathbf{u}}\otimes\nabla_{0} \right] \right] \otimes \bar{\mathbf{N}}^{-} \vdots \left\langle \frac{\beta_{Q}}{h_{s}} \mathbf{J}^{0} \right\rangle \vdots \left[\left[\delta\bar{\mathbf{u}}\otimes\nabla_{0} \right] \right] \otimes \bar{\mathbf{N}}^{-} \right] d\partial B \,. \end{aligned}$$

• Load term $\mathbf{b} \left(\delta \bar{\mathbf{u}} \right) = \left(\int_{\partial_N B_0} \bar{\mathbf{T}}^0 \cdot \delta \bar{\mathbf{u}} \, d\partial B + \int_{\partial_M B_0} \bar{\mathbf{R}}^0 \cdot \mathbf{D} \delta \bar{\mathbf{u}} \, d\partial B \right)$ Univers

 $\forall \delta \bar{\mathbf{u}} \in \mathbf{U}_c^k$

DG method for strain gradient problems

- Second-order DG-based FE² scheme
 - DG solution of macroscopic Mindlin strain gradient problems
 - Interface & bulk integration points
 - Microscopic problems
 - Associated with both interface & bulk integration points
 - Scale transitions
 - Down-scaling: two kinematic strains are used to define the microscopic BCs
 - Up-scaling: two stresses and 4 tangent operators are extracted from the resolutions of the microscopic problems

Université

Université de Liège

- Parallel second-order DG-based FE² scheme
 - Computation strategy

- At the macro-scale
 - Macro-scale parallelization
 - Computation using FDG formulation with "ghost elements"
 - Communications required at each time step to exchange the nodal displacements at inter-partition interfaces only
- At the micro-scale
 - All microscopic problems are separate in nature

Université de Liège

(d) Communications

(Becker et al. 2012, Wu et al. 2013)

- Multi-scale study of the shear layer test
 - H = 1cm , 2cm, 4cm and 8cm
 in order to consider size effects
 - RVE size d = 0.2cm
 - Material law
 - Bulk modulus = 175 GPa
 - Shear modulus = 81 GPa
 - Yield stress = 507 MPa
 - Hardening modulus = 200 MPa

(a) Macroscopic mesh

- Multi-scale study of the shear layer test (2)
 - Size effect

Deformation profile

Deformed shape with H/d = 10

Deformed shape with H/d = 40

Conclusions

- The Mindlin strain gradient problems are solved using the discontinuous
 Galerkin formulations with conventional finite elements
- The resulting one-field formulation can easily be implemented in existing software
- This formulation is used for second-order multi-scale computational homogenizations
- The micro and macro-scale problems consider finite strains
- Size effects in heterogeneous elasto-plastic materials can be studied

PBC enforcement based on the polynomial interpolation method

(Nguyen, Geuzaine, Béchet & Noels CMS 2012)

- Second-order multi-scale computational homogenization scheme based on the Discontinuous Galerkin method (called second-order DG-based FE2 scheme)
 - DG method is used to solved the macroscopic Mindlin strain gradient
 - Usual FE
 - Parallel computation

(Nguyen, Becker & Noels CMAME 2013)

- Use of this second-order DG-based FE² scheme to capture instabilities in cellular materials
 - Arc-length path following method is adopted at both scales because of the presence of the macroscopic localization and micro-buckling
 - Parallel computation

(Nguyen & Noels IJSS 2014)

Microscopic classical continuum

- Enforcement of PBC using the polynomial interpolation method
- Arc-length path following method
- Macroscopic Mindlin strain gradient continuum
 - Resolution with Discontinuous Galerkin formulation
 - Arc-length path following method
- Full parallel computations
 - Macroscopic parallel distribution using ghost elements
 - Microscopic parallel distribution
- Why the arc-length path following method?
 - Load-based increments (pure load, arc-length increments, etc.) are preferred to improve the Newton-Raphson convergence
 - Presence of critical points (e.g. limit points) & unstable equilibrium paths for which the conventional Newton-Raphson method fails -> arc-length increments

45

• Path following method

- Macro-scale problem
 - Path following with applied loading

 $\mathbf{a}\left(\bar{\mathbf{u}},\delta\bar{\mathbf{u}}\right)=\bar{\mu}\mathbf{b}\left(\delta\bar{\mathbf{u}}\right)$

• Arc-length constraint

$$\bar{h}(\Delta \bar{\mathbf{u}}, \Delta \bar{\mu}) = \frac{\Delta \bar{\mathbf{u}}^T \Delta \bar{\mathbf{u}}}{\Psi^2} + \Delta \bar{\mu}^2 - \Delta L^2 = 0,$$

- Micro-scale problems
 - Path following method on the applied boundary conditions

$$ilde{\mathbf{C}} ilde{\mathbf{u}}_b - \mathbf{g}\left(ar{\mathbf{F}},ar{\mathbf{F}}\otimesoldsymbol{
abla}_0
ight) = oldsymbol{0}$$

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Arc-length constraint

$$h(\Delta \mathbf{u}, \Delta \mu) = \frac{\Delta \mathbf{u}^T \Delta \mathbf{u}}{\psi^2} + \Delta \mu^2 - \Delta l^2 = 0$$

- Compute by increments until $\,\mu=1$

- Compression of an hexagonal honeycomb plate
 - Plate: H = 102 mm, L = 65.8mm
 - Honeycomb: I = 1mm, t = 0.1 mm
 - Elasto-plastic material
 - Bulk modulus = 67.55 GPa
 - Shear modulus = 25.9 GPa
 - Initial yield stress = 276 MPa

• Compression of an hexagonal honeycomb plate (2)

- Captures the softening onset
- Captures the softening response
- No macro-mesh size effect

- Compression of an hexagonal honeycomb plate (3)
 - Influence of cell size
 - Same honeycomb structure: I = 1mm, t = 0.1 mm
 - Different plate dimensions

- Compression of a hexagonal honeycomb plate with a centered hole
 - Central radius: r = 15mm
 - Honeycomb: I = 1mm, t= 0.1mm
 - Elasto-plastic material
 - Bulk modulus = 67.55 GPa
 - Shear modulus = 25.9 GPa
 - Initial yield stress = 276 MPa

Full model with 300.000 quadratic triangles

Multi-scale model

Geometry & BCs

- Compression of a hexagonal honeycomb plate with a centered hole (2)
 - Results given by full and multi-scale models are comparable

- A second-order DG-based FE² scheme was developed with the following novelties:
 - The periodic boundary condition is enforced using the polynomial interpolation method without the need of conforming meshes
 - The macroscopic Mindlin strain gradient problem is solved using the Discontinuous Galerkin method with conventional finite elements
 - The arc-length path following method is applied at both scales to capture their instabilities

Current works

Polypropylene foam

- Experimental tests (F. Wan)

SEM image of a PP foam with 4% CNTs

Imperfections → reduce the stiffness

- Random cell sizes and shapes
- Non-uniform distribution of solid materials of cell walls
- Curvature of cell walls
- Loss of cell walls
- Corrugation of cell walls
- Fracture of cell walls

Current works

- Homogenized properties based on the tetrakaidecahedron unit cell
 - Ideal unit cell models

Open unit cell

→imperfections must be considered

- Homogenized properties based on the tetrakaidecahedron unit cell (2)
 - Unit cell with mass concentration at cell edges
 - Mass concentration parameter: **φ**= mass at cell edge/ total mass

 Experimental validation in the context of the ARC project with the RVE meshes coming from tomographical images of the microstructure

• Electromagnetic-mechanical coupling problems since electromagnetic properties are modified during the mechanical loading (as the shape is deformed)

• Discontinuous-continuous schemes for sharper localization problems following the works of Massart et al. 2007, Nguyen et al. 2011 or Coenen et al. 2012

• Material tailoring with required properties by computational homogenization schemes

Thank you for your attention!

Université de Liège

Method	CPU time per iteration	Used memory
Full model	92 seconds	5.6 gigabytes
Multi-scale model, mesh 0	36 seconds	1.3 gigabytes
Multi-scale model, mesh 1	84 seconds	2.6 gigabytes
Multi-scale model, mesh 2	146 seconds	4.0 gigabytes

Computation time and used memory of the full model and multi–scale models. These computations were performed in the same machine with one processor