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Abstract

The objective of this thesis is to develop an efficient multi–scale finite element frame-

work to capture the macroscopic localization due to the micro–buckling of cell walls and

the size effect phenomena arising in structures made of cellular materials.

Under the compression loading, the buckling phenomenon (so–called micro–buckling)

of the slender components (cell walls, cell faces) of cellular solids can occur. Even

if the tangent operator of the material of which the micro–structure is made, is still

elliptic, the presence of the micro–buckling can lead to the loss of ellipticity of the

resulting homogenized tangent operator. In that case, localization bands are formed

and propagate in the macroscopic structure. Moreover, when considering a cellular

structure whose dimensions are close to the cell size, the size effect phenomenon cannot

be neglected since deformations are characterized by a strain gradient.

On the one hand, a classical multi–scale computational homogenization scheme (so–

called first–order scheme) looses accuracy with the apparition of the macroscopic local-

ization or the high strain gradient arising in cellular materials because the underlying

assumption of the local action principle, in which the stress state on a macroscopic ma-

terial point depends only on the strain state at that point, is no–longer suitable. On the

other hand, the second–order multi–scale computational homogenization scheme pro-

posed by Kouznetsova et al. (2004b) exhibits a good ability to capture such phenomena.

Thus this second–order scheme is improved in this thesis with the following novelties so

that it can be used for cellular materials.

First, at the microscopic scale, the periodic boundary condition is used because of its

efficiency. As the meshes generated from cellular materials exhibit a large void part on

the boundaries and are not conforming in general, the classical enforcement based on the

matching nodes cannot be applied. A new method based on the polynomial interpolation

without the requirement of the matching mesh condition on opposite boundaries of the

representative volume element (RVE) is developed.
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Next, in order to solve the underlying macroscopic Mindlin strain gradient continuum

of this second–order scheme by the displacement–based finite element framework, the

presence of high order terms (related to the higher stress and strain) leads to many com-

plications in the numerical treatment. Indeed, the resolution requires the continuities

not only of the displacement field but also of its first derivatives. This work uses the dis-

continuous Galerkin (DG) method to weakly impose these continuities. This proposed

second–order DG–based FE2 scheme appears to be easily integrated into conventional

parallel finite element codes.

Finally, the proposed second–order DG–based FE2 scheme is used to model cellular

materials. As the instability phenomena are considered at both scales, the path following

technique is adopted to solve both the macroscopic and microscopic problems. The

micro–buckling leading to the macroscopic localization and the size effect phenomena

can be captured within the proposed framework.

Keywords: Cellular materials; Computational homogenization; Micro–buckling;

Size effect; Finite element; Second order; Periodic boundary condition; Polynomial in-

terpolation; Discontinuous Galerkin; Path following
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Chapter 1

Motivation

In recent years, there has been a growing interest in artificially micro–structured

materials. The behavior of these complex materials not only depends on the materials

of which their micro–structure is made, but also on the spatial distribution of their

microscopic constituents. For instance, cellular materials can exhibit exceptional prop-

erties resulting from their micro–structure arrangement. These materials are used in

many engineering applications including aerospace, packaging, shock absorption, etc, as

discussed by Gibson and Ashby (1997), Banhart (2001), Scheffler and Colombo (2006),

Mills (2007), Lefebvre et al. (2008).

Cellular materials exhibit complex deformation mechanisms, as summarized by Gib-

son and Ashby (1997), Gibson (2000, 2005) for examples. The cellular structures consist

of slender members as cell struts and cell faces, which may buckle under compression

loading, a phenomenon known as micro–buckling. The micro–buckling of cell walls

is the most important deformation mechanism under compression loading. This phe-

nomenon can initiate at the weaker cells and propagate throughout the whole macro-

scopic structure inside localization bands. The apparition of localization bands due to

the micro–buckling of cell walls was observed in experiments by Papka and Kyriakides

(1998a,b, 1999a), Chung and Waas (2002), Wilbert et al. (2011), Khan et al. (2012)

for honeycombs and by Bart-Smith et al. (1998), Bastawros et al. (2000), Zhou et al.

(2004), Dillard et al. (2005), Zhou et al. (2005), Jeon and Asahina (2005), Jang and

Kyriakides (2009) for foams. Another important phenomenon in cellular materials is

the size effect, which was observed as the dependence of the mechanical behavior on the

ratio of specimen and cell sizes. Experiments about the size effect existing in cellular

solids were reported by Andrews et al. (2001), Chen and Fleck (2002), Tekoglu et al.
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10 Motivation

(2011). The size effect can arise from a change in the constraint of the cell walls at the

boundary of a specimen as well as from stress–free cut cell edges at the surface of a

specimen as noted by Onck et al. (2001).

Foam preparation Tomographical images Finite element model

Homogenized propertiesOptimization analysis⊗

Required material

Converged?
NO

YES

- -

?

��

6

?

Figure 1.1: ”Material tailoring” in order to obtain the required (such as mechanical,
electromagnetic, acoustic, etc) material properties for synthesized foams.

Recently, a strong growth in the use of advanced materials in engineering applica-

tions motivates ”material tailoring”, in which the required material properties can be

achieved by manipulating the micro–structure, as discussed by Le et al. (2012) for ex-

ample. Fig. 1.1 depicts a material design procedure based on an optimization analysis

for synthesized materials. A high quality finite element model is created from the tomo-

graphical images of their micro–structure. The homogenized behavior is then estimated

from this finite element model by an appropriate method. After an optimization anal-

ysis, the required properties are reached or a correction step is followed. For such a

tailoring, in a linear range, it is necessary to provide an efficient method to estimate the

homogenized properties from a model of the micro–structure of these materials. When

considering non–linear materials and instability (e.g. localization, buckling) phenom-

ena, the homogenized properties are not enough since the structure deformation is not

homogeneous at the structural scale, e.g localization bands due to the micro–buckling

propagate in the structure made of cellular materials. Therefore, the full structure has

to be considered.

The present work is carried out in the context of the ”ARC No09/14−02 BRIDGING”

project. In this project, we are interested in studying foamed materials produced by

the Chemistry Department. In particular, we are interested in extracting the mechan-

ical properties including micro–buckling to predict their mechanical behavior. These

materials are used to shield electromagnetic waves and their electromagnetic properties
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depend on their micro–structure. As their micro–structure shape is deformed under me-

chanical loading, their electromagnetic properties can be modified motivating the study

of their deformation. The purpose of this thesis is to model the mechanical properties

of structures made of cellular materials in an efficient computational way.
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Chapter 2

Finite element modeling of

structures made of cellular

materials: state of the art

Nowadays, the finite element method is widely used to predict both the elastic and

inelastic as well as both the static and dynamic responses of many structures, see the

references by Zienkiewicz and Taylor (1977), Crisfield et al. (2012). Because of its ability

to model complex structures with complex constitutive behaviors, the finite element

method has been widely applied to study the behavior of cellular materials.

-r

-

(a) macroscopic continuum

(b) micro–structure with cell walls

(c) detail of cell walls

with grain boundaries,

other phases, inclusions,

voids, etc

Figure 2.1: Multiple scales involved in cellular materials.
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14 State of the art

In the modeling of structures made of complex micro–structured materials, e.g. cel-

lular materials, the intrinsic mechanical role of the underlying micro–structure in the

structural behavior has been widely recognized. Fig. 2.1 shows the multiple scales in-

volved in cellular materials. At the structural scale (so–called macroscopic scale), when

the dimensions of a structure are much larger than the cell size, this structure is viewed

as a homogeneous medium. The microscopic scale is described by cell walls, cell dis-

tribution, cell shape, cell size and thickness of cell walls, etc. The cell walls are made

of a base–material with the presence of grain boundaries, other phases, inclusions and

voids, etc. When considering the behavior of structures made of cellular materials, this

multi–scale nature must be considered.

Modeling 

methods 

Direct  

modeling—based  

methods 

Constitutive 

modeling—based 

methods 

Phenomenological 

methods 

Homogenization 

methods 

Mean field 

Asymptotic 

FFT 

Computational 

… 

Figure 2.2: Modeling strategy of cellular materials.

From the computational point–of–view, there are basically two approaches used to

study the behavior of a structure made of cellular materials: the direct and constitutive

modeling–based methods as summarized in Fig. 2.2. A brief review of these methods is

given in what follows.
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2.1 Direct modeling

In the direct modeling approach, all the discrete cell walls of cellular solids are

discretized by standard finite elements, such as beam, shell or bulk ones. Beam elements

are a natural choice for cell struts of open–cell foams and cell walls of in–plane arrays of

honeycombs in which two dimensional problems are generally adapted. Shell elements

are a natural choice for cell faces of closed–cell foams. In general, bulk elements can be

used but this leads to an enormous number of unknowns, thus beam and shell elements

are usually preferred. With the direct modeling, the whole structure is discretized at

once and the mechanical behavior of the cell walls is described by constitutive laws that

specify the stress–strain relationship.

As examples, when considering the in–plane behavior of honeycombs, beam elements

were used by Papka and Kyriakides (1998a, 1999b) to study the in–plane compression

behavior of hexagonal honeycombs, by Mangipudi and Onck (2011) to consider the

damage of cell walls of Voronöı honeycombs and by Onck et al. (2001), Chen and Fleck

(2002), Tekoglu and Onck (2005, 2008), Tekoglu et al. (2011) to capture the size effect

phenomenon. Beam elements were also used to model the crushing of random open–cell

foams by Gaitanaros et al. (2012). Li et al. (2014) used shell elements to study the

crushing response of three–dimensional random closed–cell foams.

The intrinsic deformation localization and size effect phenomena are directly cap-

tured since the deformation state of the cell walls is directly computed. However, the

use of direct models to study the behavior of a large structure leads to an enormous

number of unknowns. The resolution of the resulting system of equations is still a chal-

lenge for modern computers even using parallel computing. Moreover, it is impossible

to construct finite element models for large problems with details of cell walls because

of the geometrical complexity. Therefore, this approach is strictly limited and suitable

for problems with limited sizes.

2.2 Constitutive modeling

While studying the behavior of structures made of cellular materials, when the struc-

ture dimensions are much larger than the cell size, the direct modeling–based approach

becomes impossible motivating the use of the constitutive modeling–based approach. In

this approach, a cellular solid is modeled by a homogeneous medium. The behavior at

smaller scales is then taken into account by a suitable material model. This constitutive
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law can be modeled by either phenomenological or homogenization methods.

2.2.1 Phenomenological methods

A constitutive law is a priori defined and its parameters are identified by curve

fitting from numerical tests or experimental results. Some phenomenological models

were proposed by Deshpande and Fleck (2000), Miller (2000), Hanssen et al. (2002),

Reyes et al. (2003), Forest et al. (2005), Yang et al. (2008). The localization phenomenon

can be integrated in the constitutive modeling as proposed by Forest et al. (2005).

To deal with the size effect phenomenon, Tekoglu and Onck (2005) used a Cosserat

continuum and its parameters were identified from direct modeling results. Dillard et al.

(2006) worked with a micro–morphic continuum and its parameters were identified from

experiments. Finally, Gibson and Ashby (1997) constructed a micro–mechanical model

based on the unit cell of cellular structures.

This approach is more efficient than the direct modeling–based one when considering

a large problem because the element size at the macroscopic scale can be much larger

than the cell size. However, this approach is still limited by the fact that the details of

the micro–structure evolution cannot be observed during the macroscopic loading and

by the fact that the material model and its parameters are difficult to be identified.

2.2.2 Homogenization methods

Homogenization methods are applied to determine the apparent or overall properties

of heterogeneous materials. Kanoute et al. (2009) gave a survey about homogenization

methods for composite materials. The use of homogenization constitutive laws leads

to the multi–scale modeling of heterogeneous structures. Fig. 2.3 represents the basic

strategy of a general multi–scale approach. At the macroscopic scale, the structure

    

u

Down–scaling

PPq

J
J]

RVE

Up–scalingū = ū0ū = ū0

T̄ = T̄0T̄ = T̄0

Figure 2.3: Multi–scale homogenization approach for heterogeneous materials.
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is considered as a homogeneous medium with prescribed displacement and traction

boundary conditions. In order to account for the heterogeneities of the micro–structure,

each macroscopic material point is associated with a separate characteristic volume

element extracted from the micro–structure at that point. In general for both periodic

and random structures, this corresponds to the representative volume element (RVE)1,

see e.g. Kanit et al. (2003). For periodic structures, this characteristic volume can be

chosen as the repeated unit cell. Each microscopic boundary value problem (BVP) is

then formulated at each macroscopic material point and the stress–strain constitutive

relationship at that point is estimated from the resolution of its underlying microscopic

BVP. The transition between the different scales is guaranteed by the down–scaling and

up–scaling procedures as follows.

• Down–scaling (so–called macro–micro transition): The measures of macroscopic

strains (e.g. deformation gradient) are computed at each macroscopic point (inte-

gration point in the context of the finite element analysis) and used to formulate

the microscopic boundary condition of the associated microscopic BVP.

• Up–scaling (so–called micro–macro transition): For given measures of macroscopic

strains, the associated microscopic BVP is solved and the macroscopic stress mea-

sures (e.g. first Piola–Kirchhoff stress) are then computed from its resolution.

This macro–micro separation strategy relies on the principle of separation of scales.

Following Zaoui (2002), when considering heterogeneous structures, this principle is

formulated as

L� lm � lµ � d0 and lM � lm , (2.1)

implying that all scales are separated. In Eq. (2.1), L is the size of the macroscopic

structure, lM is the fluctuation length scale of the prescribed mechanical loading, lm is

the RVE size, lµ is the characteristic length scale of the underlying microscopic hetero-

geneities and d0 is lower length bound below which the continuum mechanics is no more

valid. In the case of structures made of cellular materials, the condition lm � lµ � d0

implies that each cell wall is viewed as a homogeneous one. In this case, the contin-

uum mechanics remains valid at the microscopic BVPs. The mechanical behavior of

1A simple definition of RVE following Drugan and Willis (1996): ”It is the smallest material vol-
ume element of the composite for which the usual spatially constant (overall modulus) macroscopic
constitutive representation is a sufficiently accurate model to represent mean constitutive response”.
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cell walls is usually modeled by certain constitutive laws that specify the stress–strain

relationship. The conditions lM � lm and L � lm lead to consider the macroscopic

problem according to the local action principle, in which each macroscopic material

point is viewed as the center of its underlying RVE and in which the response of the

associated microscopic BVP is homogeneous at the macroscopic point–of–view. Thus

two–scale problems can be formulated in terms of classical Cauchy continua.

However, the buckling of cell walls leads to the occurrence of deformation localization

bands and the macroscopic length scale lM tends to become smaller. The condition

lM � lm is no longer fully satisfied. In this case, another enhanced multi–scale scheme

must be considered as mentioned by Geers et al. (2010) and as it will be discussed later.

Depending on the method applied to solve the microscopic BVPs, different homoge-

nization methods are available in the literature, e.g. mean field, asymptotic, fast Fourier

transform, computational, etc. In the following, these homogenization methods are

briefly recalled.

Mean field homogenization (MFH)

The MFH approach is an efficient (semi–)analytic framework for the modeling of

multi–phase materials. Most of MFH methods are based on the extension from the

single inclusion results established by Eshelby (1957) to multiple inclusions interacting

in an average way. Most common extensions of the Eshelby (1957) solution are the

Mori–Tanaka scheme proposed by Mori and Tanaka (1973), Benveniste (1987) and the

self–consistent scheme pioneered by Kröner (1958), Hill (1965) for elastic multi–phase

materials. The MFH methods were also developed for non–linear behaviors of hetero-

geneous materials to account for the non–linearity of the constituents such as elastic,

visco–elastic, elasto–plastic and elasto–visco–plastic behaviors, as summarized by Pier-

ard (2006) and for damage by Wu et al. (2013a).

The MFH methods are developed for composite materials but they can be extended

to porous solids by considering one of their constituents as voids without stiffness. Thus

the effective properties depend on the properties of the material of which the solid part is

made and on the fraction of the void part. The use of the MFH methods to estimate the

elastic properties of cellular solids was studied by Chao et al. (1999), Schjodt-Thomsen

and Pyrz (2001), Gong et al. (2011), Miled et al. (2011), Koudelka et al. (2012), Bardella

et al. (2012), El Ghezal and Doghri (2013). In the elasto–plastic regime, Kitazono et al.

(2003) used this approach to estimate the elastic properties and the yield stress of



2.2 Constitutive modeling 19

closed–cell metal foams but the micro–buckling and size effect phenomena were not

dealt with.

The MFH methods are very efficient to estimate the homogenized properties of het-

erogeneous materials from the computational point–of–view. However, by using semi–

analytic formulations, the fluctuations at the micro–structures during the macroscopic

loading cannot be accurately observed.

Asymptotic homogenization (AH)

The asymptotic homogenization (AH) approach is an effective tool to model hetero-

geneous problems with periodic micro–structures. A survey about asymptotic homog-

enization was given by Kalamkarov et al. (2009). One important assumption of this

approach is to distinguish two separate length scales associated to the microscopic and

macroscopic problems denoted by lm and lM respectively. The scale ratio ε is defined

by

ε =
lm
lM

. (2.2)

In a small neighborhood of each macroscopic point x̄, all physical fields are assumed to

depend on both the local coordinates x̄ and microscopic stretched coordinates x = x̄/ε.

Each physical field, e.g. displacement and stress, is expanded into a power series of

ε. The equilibrium equation is rewritten for different orders of ε leading to different

partial differential equations with periodic boundary conditions. These equations can be

numerically solved by the finite element method. The AH approach was mostly applied

for linear elastic composite materials, but it can be extended to inelastic behaviors such

as elasto–plasticity as achieved by Fish et al. (1997), or such as failure as proposed by

Muravleva (2007).

The AH methods are restricted to simple periodic micro–structure geometries and

simple material models, mostly at small strains. However, these methods were applied

for elastic cellular solids by e.g. Fang et al. (2005) and for elasto–plastic ones by e.g.

Khanoki and Pasini (2013) but the micro–buckling was not computed. Accounting for

the non–linear behavior and randomness of cellular materials is still a challenge with

this approach.
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FFT–based homogenization

The fast Fourier transform (FFT) approach pioneered by Moulinec and Suquet (1994,

1995) is mesh–less and can be used to solve the microscopic BVP with the direct use of

digital images of the micro–structure. In order to close the microscopic BVP, the periodic

boundary condition is applied. At each Fourier point, which corresponds to a pixel in

the case of 2–dimensional images or a voxel in the case of 3–dimensional ones, given

mechanical material properties are assigned. The microscopic BVP is then rewritten

as an implicit integral equation (so–called Lippmann–Schwinger equation), in which an

associated Green operator is introduced. This non–linear equation is iteratively solved

in the Fourier space by applying a Fourier transformation. Since the discrete problem

of Fourier points is considered, the fast Fourier transform (FFT) is used. The unknown

fields (e.g displacement and strain) are then obtained at each Fourier point. The basic

scheme proposed by Moulinec and Suquet (1994, 1995) for linear elastic behaviors was

extended to the non–linear case by Moulinec and Suquet (1998), Idiart et al. (2009),

Lebensohn et al. (2012) for examples.

This approach uses digital images instead of detailed meshes of the micro–structure

and thus it can be directly coupled with 3–dimensional imaging techniques (e.g. to-

mography). However, the basic scheme proposed by Moulinec and Suquet (1994, 1995)

cannot handle problems with the presence of rigid inclusions and voids (like porous

solids). Several alternative schemes have been proposed to deal with these problems by

Michel et al. (2001), Brisard and Dormieux (2010) for examples, but they are limited

to the case of cellular materials with high porosity. However, in the context of cellular

materials, this approach can be used to determine the homogenized properties of cell

walls as proposed by Němeček et al. (2013).

Computational homogenization (FE2)

The computational homogenization approach extracts the equivalent properties from

the resolution of a finite element analysis on a complex square or cubic representative

volume element (RVE), which contains one or several cellular cells of different sizes and

shapes. As it models the details of the micro–structure by a finite element analysis,

the computational homogenization approach has potentially the ability to capture the

micro–buckling of cell walls and the size effect phenomena. As compared with other

homogenization methods, the computational homogenization approach is probably the

most accurate technique for micro–structured materials with strong non–linear behaviors
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and allows assessing the macroscopic influence of the micro–structural parameters with

high accuracy. In this thesis, we will investigate the possibility of using this approach

to study cellular materials.

Recent reviews about the multi–scale computational homogenization approach were

given by Geers et al. (2010), Nguyen et al. (2011). Not only mechanical problems but also

thermal problems (Özdemir et al., 2008b), electromagnetic problems (Niyonzima et al.,

2012) or multi–physical problems like thermo–mechanical problems (Özdemir et al.,

2008a), electro–mechanical problems (Schröder and Keip, 2010) have been addressed

with this approach.

As said, while considering computational homogenization methods, each microscopic

BVP provides the stress–strain relation at a macroscopic point via the resolution of a

finite element problem. Each microscopic BVP is associated with an appropriate bound-

ary condition, e.g. periodic boundary condition, related to the macroscopic quantities,

e.g. macroscopic strains. The micro–structure constituents are modeled with an arbi-

trary non–linear geometrical framework and with an arbitrary non–linear constitutive

laws.

Depending on the scale transition between macroscopic and microscopic BVPs, dif-

ferent computational homogenization schemes were proposed. A comprehensive numer-

ical treatment of a multi–scale computational homogenization procedure in the finite

strain framework was given in Kouznetsova (2002). Classical FE2 (so–called first–order)

schemes consider the classical Cauchy continuum at both the macroscopic and micro-

scopic scales. This method is valid when the microscopic and macroscopic length scales

are fully separated, as in the works of Miehe and Koch (2002), Kouznetsova (2002)

for examples. When the microscopic and macroscopic length scales become compara-

ble (with the presence of localization and failure, etc), several enhanced schemes were

proposed.

• Second–order FE2 enhanced schemes: A homogenized generalized continuum is

considered at the macroscopic scale. The underlying constitutive law is deter-

mined from the resolution of either a microscopic classical Cauchy continuum or

a microscopic generalized one. We can refer to the second–order scheme with

macroscopic Mindlin strain gradient continuum with the work of Kouznetsova

et al. (2004b) and the second–order scheme with macroscopic Cosserat continuum

with the works of Onck (2002), Feyel (2003) in which the underlying Cosserat

constitutive law is estimated from the resolution of a microscopic classical Cauchy
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continuum, as in the work of Feyel (2003) or of a microscopic Cosserat one, as in

the work of Onck (2002).

• Continuous–discontinuous FE2 schemes: The transition from micro–discontinui-

ties to macro–discontinuities was considered by Massart et al. (2007), Belytschko

et al. (2008), Souza and Allen (2010), Nguyen et al. (2011) and Coenen et al.

(2012).

The FE2 approach is widely used to estimate the equivalent properties of cellular ma-

terials by using the finite element method as reported by Daxner (2010). Sehlhorst

et al. (2009) worked with classical FE2 for in–plane finite strain behaviors of perturbed

hexagonal honeycomb. However, the the size effect phenomenon was not considered in

this work. Ebinger et al. (2005) used the second–order FE2 to capture the size effect

phenomenon of structures made of elastic honeycombs. The microscopic buckling of cell

walls was considered at the microscopic scale with the periodic boundary condition for

a specific macroscopic loading (axial, uniaxial, etc) for elastic problems by Okumura

et al. (2002), Ohno et al. (2002), Jouneid and Sab (2009) for examples and for elasto–

plastic problems by Okumura et al. (2004), Takahashi et al. (2010) for examples. The

microscopic buckling leading to the macroscopic loss of ellipticity was observed for a

given prescribed macroscopic strain by Okumura et al. (2004), Takahashi et al. (2010)

for examples. However, the multi–scale study of the interaction between macroscopic

instabilities and the microscopic buckling for structures made of cellular materials was

not dealt with in these studies.

Other methods

Besides the presented homogenization methods for cellular materials, several other

methods were proposed, such as the discrete homogenization method proposed by Reis

and Ganghoffer (2012) or such as the numerical homogenization based on the finite cell

method with the work of Düster et al. (2012). These works are still limited to the linear

elastic regime.
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Contributions

The computational homogenization approach is probably the most accurate tech-

nique for micro–structured materials with highly non–linear behaviors and allows as-

sessing the macroscopic influence of the micro–structural parameters in multiple scales.

Among all the multi–scale computational homogenization schemes, the second–order

FE2 scheme proposed by Kouznetsova et al. (2004b) exhibits a good capability to cap-

ture both the localization and size effect phenomena related to heterogeneous materials.

This second–order FE2 scheme is thus adopted in this thesis to study the behavior of

cellular materials. However, this method has never been, to our knowledge, used to

predict the localization on structures made of such materials. To this end, we introduce

the following three originalities:

• Periodic boundary condition (PBC) enforcement using a polynomial interpolation

method: When considering the first–order FE2 scheme, many numerical studies, as

considered by Kanit et al. (2003), Terada et al. (2000), Larsson et al. (2011) for ex-

amples, show that the PBC is the most efficient in terms of convergence rate when

the size of representative volume element increases. Although rigorous for periodic

structures, this conclusion also holds true if the micro-structure does not possess

the geometrical periodicity as shown by Kanit et al. (2003), Terada et al. (2000),

Larsson et al. (2011). Because of its efficiency, this work takes an interest in ap-

plying the PBC in multi–scale problems for arbitrary meshes. Recently, the finite

element model of real cellular materials were obtained from micro–tomography,

by Youssef et al. (2005), Veyhl et al. (2011), Fiedler et al. (2012) for examples. In

these applications, the meshes generated from real materials are non–conforming

and therefore, the PBC cannot be enforced by the matching node technique moti-
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vating the development of a suitable method for non–conforming meshes based on

the polynomial interpolation, see Nguyen et al. (2012). The details of this method

are described in chapter 4. In order to apply the PBC within the second–order FE2

scheme, the polynomial interpolation method is also extended to the second–order

FE2 scheme.

• Second–order discontinuous Galerkin (DG)–based FE2 scheme: The resolution of

the Mindlin (1964, 1965) strain gradient continuum within the second–order FE2

scheme requires, not only the continuity of the displacement field, but also the

continuity of its first derivatives. Since the discontinuous Galerkin (DG) method

is known to be an effective tool to weakly constrain the continuity, see the works of

Engel et al. (2002), Hansbo and Larson (2002), Noels and Radovitzky (2006, 2008),

Bala Chandran (2007) for examples, the DG method is adopted in this thesis to

constrain the continuities of the displacement field and of its first derivatives at the

macroscopic scale, as developed in Nguyen et al. (2013). The use of DG method to

solve the Mindlin strain gradient problem arising on the second–order FE2 leads

to a second–order DG–based FE2 scheme. This method can be integrated into

conventional parallel finite element codes without significant effort. This second–

order DG–based FE2 scheme is detailed in chapter 5.

• Multi–scale computational homogenization of structures made of cellular materi-

als: The proposed second–order DG–based FE2 scheme is used to consider the

macroscopic localization due to the micro–buckling and size effect phenomena in

structures made of cellular materials. Because of the presence of instabilities at

both scales, the arc–length path following method reported by Wempner (1971),

Riks (1979), Bellini and Chulya (1987), Riks (1992), Fafard and Massicotte (1993),

Zhou and Murray (1995), is used. The modeling strategy is presented in chapter 6

showing that the micro–buckling leading to the macroscopic localization and the

size effect phenomena can be captured within the proposed framework, as shown

by Nguyen and Noels (2013).

This thesis is based on the compilation of two published papers by Nguyen et al.

(2012, 2013) and on a submitted paper by Nguyen and Noels (2013). These three papers

are attached in Appendix A, B and C respectively and summarized in the following three

chapters.



Chapter 4

Imposing periodic boundary

condition on arbitrary meshes by

polynomial interpolation

The related article is given in Appendix A.

In the computational homogenization method, at each macroscopic material point,

the stress–strain relation is always available through the resolution of the microscopic

boundary value problem (BVP) associated with that point. In order to make the equi-

librium state of the RVEs well–posed, the microscopic boundary conditions must be

correctly defined. In general, a different choice leads to a different constitutive response.

For a general microscopic BVP, three classical boundary conditions –a linear displace-

ment boundary condition (Dirichlet condition), constant traction boundary condition

(Neumann condition), or periodic boundary condition– can be used. Numerical studies

implemented by Kanit et al. (2003), Terada et al. (2000), Larsson et al. (2011) show

that the periodic boundary condition provides a better convergence rate compared to

linear and constant traction ones with the increase of the RVE size as shown in Fig.

4.1: for these three kinds of boundary conditions, the increase of the RVE size leads to

a better estimation of the effective properties, but for a given RVE size, the periodic

boundary condition provides a better estimation than the linear displacement or than

the constant traction boundary conditions. Although rigorous for periodic structures,

this conclusion also holds if the micro-structure does not possess the geometrical pe-

riodicity as shown by Kanit et al. (2003), Terada et al. (2000), Larsson et al. (2011).

Because of its efficiency, this work takes an interest in applying the periodic boundary
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(a) (b)

Figure 4.1: Illustration of the convergence with the RVE size following Terada et al.
(2000): (a) Representative volume element (RVE) with different sizes and (b) Conver-
gence of average properties with increasing RVE sizes for different boundary condition
types: linear displacement, constant traction and periodic boundary conditions.

condition to arbitrary meshes.

To enforce the periodic boundary condition, the classical method consists in enforcing

linear constraints for degrees of freedom of matching nodes on two opposite RVE sides,

see Fig. 4.2. This method requires a conforming mesh (so–called periodic mesh) which

s
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Figure 4.2: Matching nodes to apply the periodic boundary condition.

has the same mesh distribution on two opposite parts of the RVE boundary. The

enforcement of linear constraints for the degrees of freedom of matching nodes can then

be done by the use of the Lagrange multiplier method as achieved by Michel et al. (1999),

Miehe and Koch (2002), Kaczmarczyk et al. (2008) or directly by constraint eliminations
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as done by Michel et al. (1999), Perić et al. (2010). Recently, the finite element models

of cellular materials were obtained from micro–tomography by Youssef et al. (2005),

Veyhl et al. (2011), Fiedler et al. (2012) for examples. The meshes generated from real

cellular materials are non–conforming and therefore, the periodic boundary condition

cannot be enforced using the matching node technique, motivating the development of

a suitable method for general settings.

In order to apply the periodic boundary condition without the requirement of con-

forming meshes, Yuan and Fish (2008) proposed a master/slave approach to impose the

periodic boundary condition for non-matching meshes. Larsson et al. (2011) developed

a weak enforcement of the periodic boundary condition by introducing independently

the finite element discretization of the traction boundary and by allowing the transition

from the strongest form (periodic boundary condition) to the weakest form (Neumann

condition). Tyrus et al. (2007) implemented the periodic boundary condition for peri-

odic composite materials and for an arbitrary non-periodic mesh by enforcing a linear

displacement field at the intersections of fiber and RVE side and a cubic displacement

field at the intersection of matrix and RVE side. Although efficient, this method requires

a priori knowledge of the deformation shape of the RVE and is thus only applicable to

a periodic 2D unit-cell (composite fibers located solely at the corners of the 2D-RVE).

This work proposes to enhance the method proposed by Tyrus et al. (2007) by con-

sidering new general functions describing the boundary deformation, without requiring

a priori knowledge of the deformed shape, of the material structure or of the mesh dis-

tribution (periodic or non-periodic). In this new method, the displacement field of two

opposite RVE sides is interpolated by linear combinations of some shape functions. The

degrees of freedom of the two opposite RVE sides are then substituted by the coefficients

of these shape functions. This method is general in the 2-dimensional and 3-dimensional

cases for periodic or random materials.

For simplicity and efficiency, the two polynomial interpolations chosen in the case

of two dimensional problems are: the Lagrange interpolation using the Lagrange shape

functions and the cubic spline interpolation using the Hermite shape functions. This

method allows the periodic boundary condition to be enforced without the requirement

of a periodic mesh, from the “weakest constraint” (linear displacement boundary con-

dition) corresponding to the polynomial order 1 to the “strongest constraint” (periodic

boundary condition) corresponding to the infinite polynomial order. Although this last

case is theoretical, it can be approximated by an interpolated function of degree high
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enough. In the case of three–dimensional problems, the simple Coons patch interpolation

formulation based on Lagrange or cubic spline interpolations on the edges of the RVE is

developed but other three–dimensional interpolation types can be directly applied. The

proposed method is easy to be implemented, and allows extracting effective material

properties of a heterogeneous materials using a RVE of reduced size, for periodic and

non-periodic structures.

All the mathematical developments and numerical demonstrations are presented in

the related article by Nguyen et al. (2012) and given in Appendix A. In this paper,

the methodology is formulated in case of small strains but can be directly extended

to the non–linear case for both the first– and second–order multi–scale computational

homogenization framework. This extension is detailed in chapter 6.



Chapter 5

Second–order multi–scale

computational homogenization

scheme based on the discontinuous

Galerkin method

The related article is given in Appendix B.

The second–order multi–scale computational homogenization scheme proposed by

Kouznetsova et al. (2004b), which is an extension from the classical one, is a full gra-

dient geometrically non–linear approach. This scheme considers a macroscopic Mindlin

strain gradient continuum combined with the microscopic classical continuum. In this

scheme, both the deformation gradient and its gradient are used at each macroscopic

material point to define the microscopic boundary condition. The macroscopic first

Piola–Kirchhoff and higher–order stresses are computed from the microscopic BVP res-

olution by the generalized version of the Hill–Mandel macro–homogeneity condition.

In order to solve the macroscopic Mindlin strain gradient continuum, the addition of

higher–order terms, which are related to the higher–order stress and higher–order strain,

leads to many complications in the numerical treatment of the finite element framework.

With the conventional displacement–based finite element formulations, the solution of

this second–order continuum requires not only the continuity of the displacement field

but also the continuity of its derivatives. In other words, at least the C1 continuity of

interpolation shape functions must be used. In order to resolve these problems, the C1 fi-

nite elements were developed by e.g. Papanicolopulos et al. (2009), Papanicolopulos and
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Zervos (2012). Alternative approaches consider a mixed formulation as in the works of

Amanatidou and Aravas (2002), Shu et al. (1999), or the micromorphic formulation with

the work of Hirschberger et al. (2007) from which the strain gradient formulation can

be recovered. In these works, the strategy of introducing another unknown field besides

the unknown displacement field raises the number of degrees of freedom. Therefore,

the use of C0 conventional continuous elements is preferred. Another effective approach

is the continuous– discontinuous Galerkin (C0/DG) method proposed by Engel et al.

(2002), Bala Chandran (2007). This approach, which uses conventional C0 continuous

interpolation shape functions, is formulated in terms of the displacement unknowns only

and weakly enforces the continuity of the higher–order derivatives at the inter–element

boundaries by the DG formulation. However, in the mentioned works, no multi–scale

approach was considered and the material model at the macroscopic scale was linear

elastic.

As a generalization of weak formulations, DG methods allow the discontinuities of

the problem unknowns in the interior of the domain, see for elliptic problems the works

of Ten Eyck and Lew (2006), Noels and Radovitzky (2006) and their references. The

domain is divided into sub–domains on which the integration by parts is applied, leading

to boundary integral terms on the sub–domain interfaces involving the discontinuities.

The role of these terms is to weakly enforce the consistency and the continuity of the

problem unknowns. When considering problems involving higher–order derivatives, the

DG method can also be seen as a way of weakly imposing the high–order continuity.

This advantage has been exploited in the mechanics of beams and plates by Engel et al.

(2002), Hansbo and Larson (2002), of shells by Noels and Radovitzky (2008), and of

Mindlin’s theory by Engel et al. (2002), Bala Chandran (2007). The jump discontinuities

in the DG method can be related to the unknown fields and their derivatives or to

their derivatives only. The DG methods have also been developed for strain–gradient

damage by Wells et al. (2004) and for gradient plasticity by Djoko et al. (2007), McBride

and Reddy (2009), where the discontinuity of the equivalent strain across inter–element

interfaces is weakly enforced. In mathematical analyzes, the DG methods were also used

to weakly impose the C0 continuity of the displacement field in the works of Abdulle

(2008, 2012) when solving multi–scale elliptic problems at the macro–scale.

The purpose of this chapter is to establish a second–order multi–scale computational

homogenization for finite deformations based on the DG formulation at the macro–

scale, while the micro–problem is formulated in terms of the standard equilibrium and
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boundary conditions. The DG method is used to weakly constrain the C1 continuity

by inter–element integrals. The C0 continuity can be either weakly imposed by the DG

formulation or strongly constrained using the conventional C0 displacement–based finite

element. Thus two formulations can be considered:

• The full DG (FDG) formulation, which constrains weakly the C0 and C1 continu-

ities, and

• The enriched DG (EDG) formulation with high–order term enrichments into the

conventional C0 finite element framework to weakly constrain the C1 continuity.

Considering a DG formulation allows traditional finite element to be considered

although the strain–gradient continuum is used. Furthermore, as the shape functions

remain continuous with the EDG formulation, the number of degrees of freedom in this

case is the same as for conventional C0 finite elements. On the contrary, the FDG method

suffers from an explosion in the number of degrees of freedom as the shape functions are

now discontinuous. Nevertheless, the FDG formulation is advantageous in the case of

parallel implementations using face–based ghost elements as developed by Becker et al.

(2011), Wu et al. (2013b).

All the mathematical developments and numerical benchmarks are detailed in the

paper by Nguyen et al. (2013) and given in Appendix B. First, a DG method for Mindlin

strain gradient problems in finite deformations is developed. Three–dimensional imple-

mentations of both the EDG and FDG methods are presented in this paper showing that

they can be integrated into conventional parallel finite element codes without significant

effort. Then, a non–linear second–order FE2 scheme based on the DG method is estab-

lished. The numerical solution of a shear layer problem is considered to demonstrate

the efficiency of the proposed method.

As noted by Kouznetsova et al. (2004b), the second–order multi–scale computational

homogenization can study problems with the presence of moderate localization bands

and size effects. This proposed DG–based FE2 scheme is used to study the macroscopic

localization phenomenon due to the microscopic buckling of cell walls and the arising size

effect in cellular materials. The application for cellular materials is detailed in chapter

6.
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Chapter 6

Multi–scale computational

homogenization of structures made

of cellular materials

The related submitted article is given in Appendix C.

The review of the literature given in chapter 2 shows that the localization and size ef-

fect phenomena arising in cellular materials could potentially be captured by the second–

order multi–scale computational homogenization scheme proposed by Kouznetsova et al.

(2004b). However, this second–order scheme cannot resolve strong localization bands

beyond a quadratic nature in the displacements. In spite of its limitations, this scheme

can still be used to capture moderate localization bands and size effect phenomena

typical of cellular materials as demonstrated in this work.

The DG–based multi–scale scheme developed in chapter 5 is used to study the in–

plane behavior of structures made of the hexagonal honeycomb. As the instabilities are

considered at both the macroscopic and microscopic scales, the path following method

reported in Wempner (1971), Riks (1979), Bellini and Chulya (1987), Riks (1992), Fafard

and Massicotte (1993), Zhou and Murray (1995) is used to solve both the macroscopic

and the microscopic BVPs.

The Voronöı technique is used to generate the regular and perturbed micro–structures

of hexagonal honeycomb as shown in Fig. 6.1. A regular set of points, from which the

regular hexagonal layout is generated, is created and characterized by an edge length l.

A perturbed set of points is then created by modifying the coordinates of each control
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(x i , y i)

x i=x i+δ d cos (φ)

y i= y i+δd sin (φ)
d

φ

(a) (b) (c)

Figure 6.1: Voronöı diagram of the hexagonal honeycomb: (a) regular control points,
(b) generated regular hexagones and (c) coordinate perturbation at each control point
i. The coordinate perturbation is controled by φ, which is a random angle in [0 2π], by
d which is the random distance in [0 l] where l is an edge length of regular hexagon and
by δ which is the control parameter defining the perturbation intensity.

point of regular one in a random way such that

xi = xi + δd cos(φ) and

yi = yi + δd sin(φ), (6.1)

where d is a random value in [0 l], φ is a random value in [0 2π], and where δ is the

control parameter which allows controlling the perturbation level of the resulting micro–

structure. The same thickness t is added for all the cell walls in order to generate the

complete micro–structure.

Because of the structure randomness, the micro–structures loose their periodicity

leading to the non–conforming meshes. In order to enforce the periodic boundary con-

dition in this case, the polynomial interpolation method developed in chapter 4 without

the requirement of the conforming meshes is used after being extended to the second–

order FE2 scheme.

The first numerical test studies the application of the polynomial interpolation

method extended to second–order boundary condition from the work of Nguyen et al.

(2012). Both elastic and elasto–plastic constitutive laws are used to model the material

behavior of cell walls. Under the vertical compression loading, the buckling of cell walls

occurs. The loss of ellipticity of the homogenized tangent operator is observed in the

elato–plastic case. The resulting macroscopic instability is expected to be captured by

the proposed DG–based FE2 scheme.

The second numerical test consists of the compression of a plate made of an hexagonal

honeycomb. Both the direct and multi–scale simulations are conducted. In the multi–



35

scale models, because of the introduction of some randomness in the micro–structures,

each macroscopic material point is associated with a local RVE which differs from the

other RVEs attached to the other macroscopic positions. In order to take into account

this randomness, a library of RVE meshes with a certain number of examples is gen-

erated. Each microscopic BVP located at a macroscopic position takes a random RVE

mesh from the mesh library. The obtained results show that the proposed DG–based

FE2 scheme can capture the macroscopic localization band for small values of control

parameter δ. The size of the RVEs within this scheme is limited by the fact that it may

not be larger than the macroscopic length scale characterizing the quadratic variation in

the displacements at the macroscopic scale as mentioned by Kouznetsova et al. (2004a).

Using a small RVE size is acceptable for cellular materials as a single cell remains repre-

sentative. For random micro–structures, choosing a small RVE size potentially leads to

large variations of the homogenized properties as shown by Kanit et al. (2003). A com-

promise should thus be made. The results obtained with different levels of imperfection

ranging from a quasi–perfect micro–structure, for which a single cell is representative,

to a 30% imperfect micro–structure are analyzed. A larger value of the perturbation

δ leads to a softer result on the macroscopic force–displacement behavior, which is not

necessarily physical because the use of the unit cells with high randomness as the RVEs

is no longer valid. Thus this approach cannot be used for structures with high degrees

of imperfection, but is shown to predict with accuracy the behavior of structure made

of regular micro–patterns for which a single cell can be considered as a RVE. In this

case, a possible further research towards continuous–discontinuous computational ho-

mogenization schemes following the works of Massart et al. (2007), Nguyen et al. (2011)

and Coenen et al. (2012) should be conducted.

The third numerical test considers the behavior of a rectangular plate with a cen-

tral hole made of the elasto–plastic honeycomb. The presence of the central hole leads

to a critical region with locally high strains. When the macroscopic compression dis-

placement is large enough, microscopic buckling occurs within this region and leads to

the softening behavior in which the macroscopic force decreases with an increase of the

prescribed macroscopic displacement. When the cell size tends to be much smaller than

the macroscopic dimensions, a classical first–order response is recovered. The capacity

of the proposed method to predict the size effect existing during the softening response

of structures made of cellular materials is thus demonstrated.
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Chapter 7

Conclusions & perspectives

In this thesis, the main objective was to develop a multi–scale finite element frame-

work to model the macroscopic localization due to the micro–buckling of cell walls and

the size effect phenomena arising in structures made of cellular materials. Toward this

end, the general review of the literature given in chapter 2 showed that such phenomena

could be potentially captured by the second–order multi–scale computational homoge-

nization scheme proposed by Kouznetsova et al. (2004b). We have thus improved this

method so that it can be used for cellular materials. In particular, this work has devel-

oped the following novelties.

As the meshes of a representative volume element extracted from cellular materials

are normally non–conforming and contain a large void part on the boundary, a novel

method based on the polynomial interpolation method was developed to enforce the

periodic boundary condition on arbitrary meshes. This method allows enforcing strongly

the periodic boundary condition, without the need of conforming meshes, from the

”weakest constraint” corresponding to the linear displacement boundary condition to the

”strongest constraint” corresponding to the periodic boundary condition. The proposed

method was shown to be easy to be implemented, and allows extracting the effective

material properties of a heterogeneous structures using a representative volume element

of reduced size. The polynomial interpolation method was first developed for first–order

FE2 scheme and then extended to second–order FE2 scheme.

In order to solve the Mindlin strain gradient underlying in this second–order scheme,

not only the continuity of the displacement field but also the continuity of its first

derivatives must be guaranteed at the macroscopic scale. We have proposed to adapt

the discontinuous Galerkin (DG) method, which is known as an excellent tool to weakly
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constrain the continuities, to enforce the continuity of the displacement field and of

its derivatives. A second–order DG–based FE2 was then formulated showing that this

method can be integrated into conventional parallel finite element codes without signif-

icant effort.

The proposed second–order DG–based FE2 scheme was then used to capture the

macroscopic localization due to the micro–buckling of cell walls and the size effect phe-

nomena. As the presence of the instabilities was considered at both the macroscopic

and microscopic scales, the path following method with arc–length increments was used

at both scales. Some numerical applications were provided showing that this approach

can predict the macroscopic localization due to the micro–buckling and the size effects

existing in structures made of cellular materials.

However, our framework can only capture moderate macroscopic localization bands

with a linear variation of the deformation gradient over the representative volume el-

ement as noted by Geers et al. (2010). In this case, the size of the representative

volume element is smaller than the width of localization bands. In the case of sharper

localization bands, e.g. when fracture of cell walls occurs, a possible further research

towards continuous–discontinuous computational homogenization schemes following the

works of Massart et al. (2007), Nguyen et al. (2011) and Coenen et al. (2012) should be

conducted.

(a) (b) (c)

Figure 7.1: Finite element model from X–Ray tomographical images of a closed–cell
polymeric foam: (a) X–Ray tomographical images from real micro–structure, (b) 3–
dimensional rendering by image superposition and (c) geometrical model reconstruction
by using the Laguerre tessellation (source from ARC project provided by C. Leblanc).

The computational multi–scale model developed in this thesis is currently restricted

to theoretical simulations and compared with direct numerical simulations. It has not
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been validated via experiments yet. However, in the context of the ARC project, a team

is currently building finite element models from imaging of foamed materials, see Fig.

7.1 , and characterization tests are now conducted. Thus in the near future, with a

finite element model created from tomographical images, the multi–scale computational

study of real cellular materials is expected to be implemented.

The multi–scale framework presented in this thesis might be extended to study

multi–physics problems such as mechanical–electromagnetic coupling during mechan-

ical loading in which the influence of the micro–structure shape and of its evolution

during macroscopic loading is accounted for.

Finally, the presented multi–scale framework can be used for material tailoring in the

design of material parameters of the micro–structured materials. An objective function

needs then to be specified for the optimization analysis according to the desired material

properties.
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