Benthic-Pelagic coupling in the Black Sea – A model study

Capet Arthur, Beckers Jean-Marie, Grégoire Marilaure

Quasi-enclosed basin.

• Quasi-enclosed basin.

- Quasi-enclosed basin.
- Important drainage area

- Quasi-enclosed basin.
- Important drainage area
- \rightarrow High river discharge

- Quasi-enclosed basin.
- Important drainage area
- \rightarrow High river discharge.
- \rightarrow Strong stratification.

- Quasi-enclosed basin.
- Important drainage area
- \rightarrow High river discharge.
- \rightarrow Strong stratification.

- Quasi-enclosed basin.
- Important drainage area
- \rightarrow High river discharge.
- \rightarrow Strong stratification.
- \rightarrow Confined active layer

- Quasi-enclosed basin.
- Important drainage area
- \rightarrow High river discharge.
- \rightarrow Strong stratification.
- \rightarrow Confined active layer
- → High sensitivity
- to external forcings

North Western Shelf

Black Sea Context

- NWS is a large, shallow and productive area.
- → Benthic-pelagic coupling is key to NWS biogeochemistry

Objectives

General objective : Modeling (3D) the biogeochemical cycles in the Black Sea on a wide range of scales

($15 \text{ km} \rightarrow \text{basin wide}$; $1h \rightarrow 50 \text{ yr}$)

Questions

General objective : Modeling (3D) the biogeochemical cycles in the Black Sea on a wide range of scales

($15 \text{ km} \rightarrow \text{basin wide}$; $1h \rightarrow 50 \text{ yr}$)

 Can we refine the representation of the benthic-pelagic exchanges in a practical way ?

Questions

General objective : Modeling (3D) the biogeochemical cycles in the Black Sea on a wide range of scales

- ($15 \text{ km} \rightarrow \text{basin wide}$; $1h \rightarrow 50 \text{ yr}$)
- Can we refine the representation of the *benthic-pelagic* exchanges in a practical way ?
- What are the variabilities of diagenetic process and benthic fluxes?

Questions

General objective : Modeling (3D) the biogeochemical cycles in the Black Sea on a wide range of scales

- ($15 \text{ km} \rightarrow \text{basin wide}$; $1h \rightarrow 50 \text{ yr}$)
- Can we refine the representation of the *benthic-pelagic* exchanges in a practical way ?
- What are the variabilities of diagenetic process and benthic fluxes?
- What are the *implications* in terms of biogeochemical budget ?

The Model - GHER3D

GHER 3D biogeochemical model

Atmospheric model & data

River inputs (nutrients, freshwater, suspended matter)

Sedimenting variables (POM, Diatoms)

$$N_{min}, C_{min}, \dots \xrightarrow{?} F_{O_2}, F_{NO_x}, F_{NH_4^+}, F_{PO_4^{3-}} \dots$$

[mmol / m²/s]

Benthic fluxes are not simply proportionnal to the remineralised quantities.

→ Diagenetic processes depends on environmental condition

Benthic fluxes are not simply proportionnal to the remineralised quantities.

→ Diagenetic processes depends on environmental condition

Level (3): vertically integrated

$$F_{\text{NH}_4} = N_{min}.(1 - p_{nit})$$

$$F_{\text{NO}_x} = N_{min}. p_{nit} - C_{min}. p_{denit}. 0.8$$

Level (3): vertically integrated

$$F_{\text{NH}_4} = N_{min}.(1 - p_{nit})$$

$$F_{\text{NO}_x} = N_{min}. p_{nit} - C_{min}. p_{denit}. 0.8$$

 p_{nit} Parameters representing the p_{denit} integrated diagenetic processes

Level (3): vertically integrated

$$F_{\text{NH}_4} = N_{min}.(1 - p_{nit})$$

$$F_{\text{NO}_x} = N_{min}. p_{nit} - C_{min}. p_{denit}. 0.8$$

 p_{nit} Parameters representing the p_{denit} integrated diagenetic processes

These should vary according to environmental conditions !!

Earth-Science Reviews 51 (2000) 173-201

www.elsevier.com/locate/earscirev

On the coupling of benthic and pelagic biogeochemical models

Karline Soetaert*, Jack J. Middelburg, Peter M.J. Herman, Kerst Buis

Netherlands Institute of Ecology, Centre for Estuarine and Coastal Ecology, PB 140, Yerseke 4400 AC, Netherlands

Received 17 February 1999; accepted 7 December 1999

$$\frac{\partial O2_i}{\partial t} = \frac{\partial C_i}{\partial t} = \frac{\partial O3_i}{\partial t} = \frac{\partial O$$

 the benthic diagenesis in the 3D model to environmental conditions

K. Soetaert et al. / Earth-Science Reviews 51 (2000) 173–201

Results

Bottom environmental conditions

25th and 75th interquartile range of spatial variability within each regions

Diagenetic Rates Variability

Aerobic respiration

Denitrification

C)

Dissimilatory manganese reduction Dissimilatory iron reduction Sulphate reduction Methanogenesis

Implications for BGC cycles

Shelf Budgets

~40 % of oxygen consumption below the mixed layer in summer Denitrification : 55 % of N input

(River+Atm. Dep.)

- ~ 4 % of NPP

Implications : Temporal buffer at seasonal scales

Implications : Temporal buffer at interannual scales

 Hypoxia is intensified by the accumulation of organic matter in the sediments → Inertia after reduction of N discharge.

Capet et al., 2013, <u>Drivers, mechanisms and long term variability of seasonal hypoxia in the</u> <u>Black Sea north-western shelf. Is there any recovery after Eutrophication?</u>, Biogeoscience

Implications : N cycle Export toward the Open Basin

Conclusion

- Can we refine the representation of the benthic-pelagic exchanges in a practical way ?
 - \rightarrow Yes , and this is required for a sound representation of the biogeochemical cycles at basin scale.
- What are the variabilities of diagenetic process and benthic fluxes?
 - → Important Spatial variability
 - \rightarrow Important effects on Seasonal and interannual dynamics
- What are the *implications* in terms of biogeochemical budget ?
- \rightarrow Shelf : "Inertial hypoxia", Denitrification
- \rightarrow Open Sea : Resuspension allows enhanced export.

Conclusion

• Are we OK now ?

Conclusion

Are we OK now ? Not yet !

Type of substrate and living benthos affect diagenesis ...

.. And living benthos is responding to environmental conditions ...

Implications : N cycle Export toward the Open Basin

Implications : Hypoxia

