
Effects of dietary protein content and 2-hydroxy-4-methylthiobutanoic
acid or DL-methionine supplementation on performance and oxidative
status of broiler chickens
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Abstract

Besides its typical role as an amino acid in protein synthesis, methionine is an important intermediate in methylation reactions. In addition,

it can also be converted to cysteine and hence plays a role in the defence against oxidative stress. The present study was conducted to

investigate further the role of DL-methionine (DLM) and its hydroxy analogue, DL-2-hydroxy-4-methylthiobutanoic acid (DL-HMTBA),

on zootechnical performance and oxidative status of broiler chickens. Male broiler chickens were reared on two diets differing in

crude protein (CP) content (low-protein, 18·3 % v. high-protein, 23·2 % CP) and were supplemented either with 0·25 % DLM or 0·25 %

DL-HMTBA. Reducing the dietary protein content resulted in an impaired body weight gain (P,0·0001). However, supplementation of

DL-HMTBA to the low-protein diet partially alleviated these negative effects (P¼0·0003). This latter phenomenon could be explained

by the fact that chickens fed DL-HMTBA-supplemented diets displayed a better antioxidant status as reflected in lower lipid peroxidation

probably as a consequence of their higher hepatic concentrations of total and reduced glutathione compared with their DLM counterparts.

On the other hand, within the high protein levels, uric acid might be an important antioxidant to explain the lower lipid peroxidation of

high-protein DL-HMTBA-supplemented chickens. Hepatic methionine sulfoxide reductase-A gene expression was not significantly affected

by the dietary treatments. In conclusion, the present study indicates that there are interactions between dietary protein content and

supplementation of methionine analogues with respect to broiler performance and antioxidant status, also suggesting a causal link

between these traits.
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Lysine and methionine are generally considered to be the first

limiting amino acids in commercial wheat/maize–soyabean-

based broiler chicken diets. Methionine deficiency results

in reduced protein accretion rate and feather growth as

well as impaired immune competence(1,2). The deficiency

symptoms can be counteracted by adding chemically

synthesised DL-methionine (DLM) or its hydroxy analogue,

DL-2-hydroxy-4-methylthiobutanoic acid (DL-HMTBA), to the

diet. In addition, the impact of DLM supplementation on

animal performance interacts strongly with the crude protein

(CP) content of the diet (e.g. Garcia Neto et al.(3)).

Supplementation of DLM to a 20 % crude protein diet for

broilers reduced their abdominal fat weight, whereas this

was not the case when the diet contained 23 % CP(4). Breast

meat yield was increased and abdominal fat content was

decreased with increasing DLM supplementation, and this

response was more pronounced in chickens reared on a

diet with a lower protein level (20·5 % CP) compared with

a higher protein level (26 %)(5). Fatufe & Rodehutscord(6)

reported that the response to methionine in terms of feed

intake, body weight gain and feed efficiency was more

pronounced when this amino acid was added to a low-

protein (18·3 %) compared with an adequate-protein (22·9 %)

ration in 8- to 21-d-old birds.

Besides the typical role of an amino acid as a building

block in protein synthesis (anabolic function), methionine
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has several other prominent roles in metabolism. It is an

important intermediate in methylation reactions and can also

be converted to cysteine, which is required for the synthesis

of glutathione (GSH) and taurine. It is well recognised that

these sulphur compounds have a crucial role in the defence

against oxidative stress (reviewed by Métayer et al.(7)).

Indeed, GSH and cysteine can act as direct scavengers of

reactive oxygen species (ROS) and hence alleviate their

deleterious effects on lipid, protein and DNA structures.

Amino acid residues of proteins are very prone to oxidative

damage, and this is particularly true for methionine residues.

Fortunately, most cells are equipped with specific reductases:

methionine sulfoxide reductase (Msr)-A and -B. These

enzymes catalyse the reduction of the two stereoisomeric

oxidation products of methionine, namely methionine sul-

foxide-R and -S, back to methionine. In this way, the cyclic

oxidation/reduction of methionine residues can even be

considered as an important antioxidant defence system(8).

It is therefore hypothesised that extra methionine supplemen-

tation may be beneficial in alleviating oxidative stress by its

ROS-scavenging activity.

Broiler chickens reared on diets with a low CP content

are characterised by impaired body-weight gain, poor feed

efficiency and augmented fat deposition(9). In addition, inter-

mediary metabolism and endocrine functioning are also

disturbed (reviewed by Swennen et al.(9)). As an example,

plasma corticosterone levels of chickens reared on a low-

protein diet are chronically elevated(10). This chronic exposure

to high corticosterone concentrations enhances lipid peroxi-

dation(11,12). Furthermore, chickens fed a diet with low protein

content are also characterised by a significantly elevated

metabolic rate, as is sometimes also reflected in higher

plasma 3,30,5-triiodothyronine levels(9,13). An increased meta-

bolic rate is associated with higher oxygen consumption and

hence an augmented ROS production can be inferred. There-

fore, the aims of the present study were as follows:

(1) to elaborate further on the interaction between dietary

methionine supplementation and the CP content of the

basal diet on broiler chicken performance;

(2) to assess whether a low-protein diet (18·3 v. 23·2 %

CP) is unfavourable in terms of redox balance and

to assess whether supplementation with methionine

sources could alleviate the deleterious effects of a redox

imbalance;

(3) to assess whether dietary supplementation with an equi-

molar amount of the DL-hydroxy analogue DL-HMTBA

elicits the same effects as synthetic DLM on bird perform-

ance, intermediary metabolism, endocrine status and

redox balance. Because DL-HMTBA has been shown to

be more efficiently converted to cysteine and taurine

than L-methionine(14), this could lead to an ameliorated

antioxidant action.

Materials and methods

The experimental protocol was approved by the Ethics Com-

mission for Experimental Use of Animals of the K. U. Leuven.

Experimental set-up

Newly hatched male chicks (n 310; Ross 308) were obtained

from a local hatchery (Belgabroed, Merksplas, Belgium).

All chicks were reared in floor pens with wood shavings as

litter. Temperature was set at 348C for day-olds and gradually

decreased to 208C at 5 weeks of age. The lighting schedule

provided 23 h of light per d.

Until 14 d of age, all chicks received a commercial starter diet

(22·3 % CP and 12·7 MJ metabolisable energy/kg) ad libitum.

At 14 d of age, the chickens were divided into four treatment

groups of seventy-five chickens receiving one of the four

experimental diets ad libitum (Table 1). The four treatment

groups were divided randomly over the poultry house with

three pens per treatment group and twenty-five broiler chick-

ens per pen. The levels of soyabean, soyabean meal, soya oil

and celite were manipulated to create changes in protein

and fat content and to keep the metabolisable energy level

similar for both diets (12·5 MJ metabolisable energy/kg). This

resulted in two isoenergetic diets with a high (23·2 %) or a

low (18·3 %) CP level. For both diets, the National Research

Council recommendations (1994) for essential amino acids

were met. The low- and high-CP diets were supplemented

either with 0·25 % DLM or with 0·25 % DL-HMTBA (Adisseo

SAS, Antony, France), resulting in a total of four diets.

Measurements and sampling

Individual body weights and feed intake per pen were

recorded on a weekly basis. At 4 and 6 weeks of age, fifteen

broiler chickens per treatment group (five chickens per pen)

were euthanised, and the liver, right pectoralis major of the

breast, abdominal fat pad and heart were excised and

weighed. Samples of the liver were immediately snap frozen

in liquid N2 and stored at 2808C. In addition, blood samples

were collected from a wing vein using a heparinised syringe

and kept on ice. After centrifugation, plasma was stored in a

frozen condition (2208C) until the analysis for hormone and

metabolite concentrations.

Plasma analyses

Plasma triiodothyronine (T3) concentrations were measured

by RIA as described by Darras et al.(15). The antiserum for

T3 was purchased from Byk-Belga (Diegem, Belgium).

Plasma corticosterone levels were measured using a commer-

cially available double antibody RIA kit (IDS Limited, Boldon,

UK). The detection limit of the assay was 0·39 ng/ml.

Plasma uric acid (VetTest 9820378) concentrations were

determined using the VetTest 8008 analyser (Idexx Labora-

tories, Inc., Westbrook, ME, USA). The apparatus is based on

dry chemical technology and colorimetric reaction. Sample

analysis is carried out on selective testing discs (Idexx Labora-

tories, Inc.) by means of a laser reading the bar codes.

Plasma superoxide dismutase (SOD) activity was assessed

using the SOD assay kit (Dojindo Molecular Technologies

Inc., Rockville, MD, USA) according to the manufacturer’s

recommendations using a microplate reader (Victor3 Ve
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Multilabel Counter 1420, PerkinElmer, Waltham, MA, USA).

Plasma lipid peroxidation was estimated by spectrophoto-

metric determination of thiobarbituric acid reacting substances

(TBARS) with the modified method of Lin et al.(11,12). TBARS

were expressed as nmol malondialdehyde (MDA) per ml

plasma. Plasma ferric reducing/antioxidant power (FRAP)

was determined using a room temperature assay with

a 5 min time window as described by Lin et al.(11,12).

Ceruloplasmin levels in the plasma were measured with the

p-phenylenediamine endpoint method(16).

Hepatic glutathione analysis

For the quantification of total GSH and oxidised GSH or GSH

disulfide (GSSG) concentrations in the liver samples, an enzy-

matic recycling method using GSH reductase was used.

The preparation of the samples and the colorimetric endpoint

measuring method was carried out according to the manufac-

turer’s recommendation (Glutathione assay kit, no. 703002;

Cayman Chemical Company, Ann Arbor, MI, USA). Reduced

GSH levels could then be calculated by subtracting twice

the GSSG concentration from the total GSH concentration.

Total GSH, GSSG and reduced GSH were expressed relative

to the protein concentration of the liver samples used.

The total protein concentration of the samples was determined

by using the Pierce BCA Protein Assay (Thermoscientific,

Rockford, IL, USA).

Reverse transcription and RT-PCR

The liver tissue was homogenised with a homogeniser

(Ultra-turrax, Janke & Kunkel, Staufen, Germany), and RNA

was extracted using TRIzol reagent (Invitrogen, Life Tech-

nologies, Paisley, UK), according to the manufacturer’s

recommendations. Total RNA concentration was quanti-

fied and its integrity was verified by means of an UV

spectrophotometer.

Total RNA (2 mg) was reverse transcribed using Avian

Myeloblastosis Virus-RT (Promega, Catalogue no. M5108,

Madison, WI, USA).

The primers for Msr-A, GSH synthetase and GSH reductase

were designed using Primer premier 5.0 using the GenBank

sequences for Msr-A (accession no. XM_420035.2), the

GenBank sequences for GSH synthetase (accession no.

XM_425692.2) and the Ensembl sequences for GSH reductase

(accession no. ENSGALT00000016706), respectively. The

primer that was used for the reference gene glucose-6-

phosphate dehydrogenase (accession no. AI981686) was

Table 1. Diet components and calculated and analysed contents of the experimental diets

High-protein Low-protein

DLM DL-HMTBA DLM DL-HMTBA

Ingredients (%)
Soyabean meal 41·1 41·1 – –
Full-fat soyabeans – – 37·6 37·6
Soya oil 7 7 2·58 2·58
Maize 51 51 51 51
Trace mineral–vitamin premix* 0·5 0·5 0·5 0·5
Phytase premix 0·1 0·1 0·1 0·1
Celite† – – 7·86 7·86

Calculated energy and nutrient content
Metabolisable energy (MJ/kg) 12·5 12·5 12·5 12·5
CP (%) 23·2 23·2 18·3 18·3
DL-Met (99 %)‡ 0·29 0·036 0·30 0·098
DL-HMTBA (88 %)‡ – 0·28 – 0·28
Met equivalence (%) 0·64 0·64 0·59 0·59
Met þ Cys 1·02 0·73 0·80 0·59
Met equivalence þ Cys (%) 1·02 1·02 0·89 0·89

Analysed energy and nutrient content
Metabolisable energy (MJ/kg) 12·46 12·47 12·45 12·45
CP (%) 22·3 21·3 18·1 18·7
DL-Met (%) 0·62 0·38 0·53 0·38
DL-HMTBA (%) – 0·2 – 0·2
Lys (%) 1·23 1·19 0·95 1·01
Arg (%) 1·76 1·64 1·3 1·42
Thr (%) 0·88 0·73 0·85 0·75
Val (%) 1·08 1·01 0·79 0·88
Ca (%) 0·85 0·85 0·85 0·85
Non-phytate P (%) 0·44 0·44 0·44 0·44
Na (%) 0·16 0·16 0·16 0·16

DLM, DL-methionine; DL-HMTBA, DL-2-hydroxy-4-methylthiobutanoic acid; CP, crude protein, NRC, National Research Council.
* Premix supplied the following amount of vitamins and minerals per kg of diet: vitamin A, 12 000 IU; vitamin D3, 3000 IU; vitamin E, 50 IU;

vitamin K3, 2·5 mg; vitamin B1, 2·2 mg; vitamin B2, 0·035 mg; vitamin niacin, 38 mg; folic acid, 1 mg; biotin, 0·2 mg; choline-Cl, 650 mg;
Fe, 45 mg; Cu, 25 mg; Mn, 60 mg; Co, 1 mg; Zn, 70 mg; I, 2 mg; Se, 0·4 mg; ethoxyquin, 35 mg; butylated hydroxytoluene, 25 mg.

† Celite is an energy-inert material used to obtain isoenergetic diets.
‡ For all diets, the NRC recommendations (1994) for essential amino acid were met. Specifically for methionine, DLM (Adisseo France SAS)

was added to the diets irrespective of protein level to achieve the NRC recommendations of 4 g Met/kg. Finally, the low- and high-CP
diets were supplemented either with DLM (0·25 %) or with DL-HMTBA (0·25 %), resulting in a total of four diets.
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from De Boever et al. (17). Desalted primers for the target gene

Msr-A (forward primer, 50-TGA CTT TGG CAC TCA GTA TCG

C-30; reverse primer, 50-GGC ACC AAA ACC GCT TTC T-30),

GSH synthetase (forward primer, 50-AGA AGG AGG AGG

GAA CAA CC-30; reverse primer, 50-GCC TGA CAT AGA CAC

CGA AA-30), GSH reductase (forward primer, 50-CCA TGT

GGT GGT GGA CGA GT-30; reverse primer, 50-GCA GAG

GTA GGG TGG ATA GCA-30) and glucose-6-phosphate dehy-

drogenase (forward primer, 50-CGG GAA CCA AAT GCA CTT

CGT-30; reverse primer, 50-CGC TGC CGT AGA GGT ATG

GGA-30) were purchased commercially (Invitrogen, Zwolle,

The Netherlands).

Real-time PCR to quantify Msr-A, GSH synthetase and GSH

reductase mRNA was performed using the ABI Prism 7700

Sequence Detector (ABI PRISMe; Life Technologies, Carlsbad,

CA, USA.

The sequence detection software supplied with the 7700

Sequence Detector was used to analyse the raw data from

the real-time reading of the fluorescence and to calculate the

cycle threshold value for each reaction. The cycle threshold

values were converted into a standard curve, to which

each sample (average of three cycle threshold values) was

compared to calculate the starting template concentrations.

Expression levels of Msr-A, GSH synthetase and GSH

reductase in each sample were normalised to the expression

levels of the reference gene glucose-6-phosphate dehydrogen-

ase. The average value of the high CP–DL-HMTBA group was

set at 1 and the average value of the other three groups was

expressed relative to the high CP–DL-HMTBA group.

Statistical analysis

All data were analysed by two-factor ANOVA, with dietary

protein level (23·2 or 18·3 % CP) and supplement source

(DLM or DL-HMTBA) as classification variables (SAS version

9.1; SAS Institute, Inc., Cary, NC, USA). If a significant

(P,0·05) overall effect of the model was discerned, treatment

means were separated by Tukey’s test. Statistical significance

is accepted when P,0·05.

Results

Body weight, feed intake and proportional organ weights

Data on body weight and proportional breast muscle, abdomi-

nal fat pad, heart and liver weights collected at 4 weeks of

age are summarised in Table 2. It was clear that the chickens

reared on the low-protein diets attained a significantly lower

body weight (protein effect, P,0·0001) at 4 weeks of age,

irrespective of the supplement source (DLM or DL-HMTBA).

These reduced body weights of the low CP-fed broilers

were also associated with significantly (protein effect,

P,0·0001) lower proportional (right) breast muscle weights.

As expected, proportional abdominal fat pad weights of

chickens fed the low-protein diets were significantly higher

than those of chickens reared on a high-protein diet (protein

effect, P,0·0001). The supplement source had no differential

effect on body weight or on proportional breast and abdo-

minal fat pad weight. Chickens fed a low-protein diet had

significantly higher proportional heart weights (protein effect,

P¼0·041), but this effect of dietary protein on the percentage

of heart weight was also dependent on the supplement

source (protein £ supplement source effect, P¼0·02). Indeed,

chickens reared on a low-protein diet and receiving DLM as

a supplement were characterised by a significantly higher

proportional heart weight compared with that of their high-

protein DLM-fed counterparts. DL-HMTBA-supplemented

chickens had an intermediate proportional heart weight.

The (proportional) liver weights were not different between

the treatment groups.

The retardation in body-weight gain due to low dietary CP

content (protein effect, P,0·0001) persisted at 6 weeks of age

Table 2. Body weights and proportional organ and tissue weights of 4-week-old broiler chickens raised on diets with low
(18·3 %) or high (23·2 %) crude protein (CP) content and supplemented with 0·25 % DL-methionine (DLM) or 0·25 % DL-2-
hydroxy-4-methylthiobutanoic acid (DL-HMTBA)

(Mean values with their pooled standard errors, n 15/dietary treatment)

Proportional weight

Met source BW (g) Liver (%) Heart (%) Abdominal fat (%) Breast muscle (%)

Protein level (%)
18·3 DLM 1156 2·48 0·37a 1·47 7·44

DL-HMTBA 1145 2·41 0·34a,b 1·41 7·31
23·2 DLM 1428 2·69 0·32b 1·11 8·17

DL-HMTBA 1424 2·59 0·34a,b 1·09 8·57
Pooled SEM 25 0·05 0·006 0·04 0·11
Main effects

Protein level 18·3 1150b 2·41 0·35 1·43a 7·38b

23·2 1426a 2·64 0·33 1·10b 8·37a

Met source DLM 1292 2·58 0·35 1·29 7·81
DL-HMTBA 1285 2·47 0·34 1·24 7·95

Probabilities
Protein level ,0·0001 NS 0·041 ,0·0001 ,0·0001
Met source NS NS NS NS NS
Interaction NS NS 0·02 NS NS

a,b Mean values with unlike superscript letters within a column were significantly different according to corresponding probabilities.
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(Table 3). However, supplementation of the low-protein diet

with DL-HMTBA alleviated this growth-depressing effect of

low dietary protein to some extent, as these chickens were

able to attain a significantly higher average slaughter weight

compared with that of their low-protein DLM-supplemented

counterparts (supplement source effect, P¼0·003). Chickens

reared on the low-protein diets also had the lowest propor-

tional breast muscle weights (protein effect, P,0·0001) and

lowest proportional liver weights (protein effect, P¼0·042).

However, the proportional liver weights of the DL-HMTBA-

supplemented chickens were, on average, higher than those

of the DLM-supplemented chickens (supplement source

effect, P¼0·011). The stimulatory effect of low dietary protein

content (protein effect, P,0·0001) on proportional abdominal

fat pad deposition was even more pronounced at slaughter

age, irrespective of DLM or DL-HMTBA supplementation.

In agreement with the observations at 4 weeks of age, the

low-protein DLM-fed chickens were characterised by the

highest proportional heart weights compared with the other

treatment groups (protein £ supplement source interaction,

P¼0·0012).

Chickens reared on the low-protein diets consumed, on

average, less feed than their counterparts fed the high-protein

diets, irrespective of the supplement source (data not shown).

The reducing effect of dietary protein content on feed intake

was significant at weeks 3 (P¼0·0068) and 6 (P¼0·0053).

Redox balance

At 4 weeks of age, lipid peroxidation – as reflected in plasma

TBARS levels – was highest (supplement source effect,

P¼0·011) for the DLM-supplemented chickens (Table 4).

Table 3. Body weights and proportional organ and tissue weights of 6-week-old broiler chickens raised on diets with
low (18·3 %) or high (23·2 %) crude protein (CP) content and supplemented with 0·25 % DL-methionine (DLM) or 0·25 %
DL-2-hydroxy-4-methylthiobutanoic acid (DL-HMTBA)

(Mean values with pooled standard errors, n 15/dietary treatment)

Proportional weight

Met source BW (g) Liver (%) Heart (%) Abdominal fat (%) Breast muscle (%)

Protein level (%)
18·3 DLM 2024 1·76 0·32a 1·64 8·19

DL-HMTBA 2301 1·92 0·28b 1·68 8·28
23·2 DLM 2492 1·89 0·28b 1·12 9·31

DL-HMTBA 2707 2·02 0·30a,b 1·03 8·99
Pooled SEM 46 0·03 0·004 0·06 0·12
Main Effects

Protein level 18·3 2153b 1·84b 0·30 1·66a 8·23b

23·2 2599a 1·96a 0·29 1·07b 9·16a

Met source DLM 2258b 1·83b 0·30 1·38 8·75
DL-HMTBA 2518a 1·98a 0·29 1·33 8·63

Probabilities
Protein level ,0·0001 0·042 NS ,0·0001 ,0·0001
Met source 0·0030 0·011 NS NS NS
Interaction NS NS 0·0012 NS NS

a,b Mean values with unlike superscript letters within a column were significantly different according to corresponding probabilities.

Table 4. Plasma thiobarbituric acid reacting substances (TBARS), ferric reducing/antioxidant power (FRAP), ceruloplasmin
and uric acid levels of 4-week-old broiler chickens raised on diets with low (18·3 %) or high (23·2 %) crude protein (CP) content
and supplemented with 0·25 % DL-methionine (DLM) or 0·25 % DL-2-hydroxy-4-methylthiobutanoic acid (DL-HMTBA)

(Mean values with their pooled standard errors, n 15/dietary treatment)

Met source TBARS (nmol/l) FRAP (mmol Fe2þ/l) Ceruloplasmin (U/l) Uric acid (mg/l)

Protein level (%)
18·3 DLM 3·89 1981a 74·9 57·3

DL-HMTBA 2·75 1506c 55·4 57·0
23·2 DLM 4·09 1976a 114 72·4

DL-HMTBA 1·83 1750b 64·8 76·7
Pooled SEM 0·33 36 4·92 2·2
Main effects

Protein level 18·3 3·32 1744 65·1b 57·3b

23·2 2·96 1863 89·7a 74·5a

Met source DLM 3·99a 1979 94·7a 64·9
DL-HMTBA 2·29b 1628 60·1b 66·8

Probabilities
Protein level NS NS 0·0037 ,0·0001
Met source 0·011 ,0·0001 ,0·0001 NS
Interaction NS 0·0021 NS NS

a,b,c Mean values with unlike superscript letters within a column were significantly different according to corresponding probabilities.
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DL-HMTBA-supplemented chickens displayed a lower plasma

FRAP capacity compared with that of the DLM-supplemented

chickens (supplement source effect, P,0·0001). This sup-

plement source effect on plasma FRAP capacity was even

more pronounced with the low-protein diet (protein £

supplement source interaction, P¼0·0021). DLM-supplemented

chickens displayed overall higher plasma ceruloplasmin

levels (supplement source effect, P,0·0001) at 4 weeks of

age compared with their DL-HMTBA counterparts. Chickens

reared on a high-protein diet also had, on average, higher

plasma ceruloplasmin levels (protein effect, P¼0·0037). Plasma

uric acid concentrations were only affected by dietary protein

content (protein effect, P,0·0001), as chickens reared on a

low-protein diets were characterised by significantly lower

plasma uric acid levels, irrespective of the supplement source.

At 6 weeks of age, a significant (P¼0·0002) protein £

supplement source interaction was observed as significant

differences in plasma TBARS levels were observed between

the DL-HMTBA- and DLM-supplemented chickens but only

when reared on a high-CP diet (Table 5). A significant

protein £ supplement source interaction (P¼0·0012) was also

present for plasma FRAP capacity: DL-HMTBA-supplemented

chickens were characterised by a higher plasma FRAP capacity

but only when a high-CP diet was provided. Circulating

ceruloplasmin levels were clearly affected by the supple-

ment source (P¼0·0031). Indeed, plasma obtained from

DL-HMTBA-supplemented chickens contained significantly

lower concentrations of ceruloplasmin compared with that

from DLM-supplemented chickens, regardless of the dietary

protein level. Higher dietary CP content was associated

with significantly (protein effect, P¼0·0007) higher plasma

uric acid levels. However, this effect was only observed

for DL-HMTBA-supplemented chickens (supplement source

effect, P¼0·0012), resulting in a significant (P¼0·0014)

protein £ supplement source interaction.

Plasma SOD activity was not significantly influenced by

either the dietary protein level or the supplement source

at 4 weeks of age (data not shown). At 6 weeks of age,

DL-HMTBA-supplemented chickens had, on average, higher

plasma SOD activities compared with those of their DLM-

supplemented counterparts, but this difference was not

statistically discernable at the 5 % level.

Statistical analysis revealed a tendency (P¼0·062) towards

an interaction between protein level and supplement source

for hepatic total GSH levels of 6-week-old chickens. Indeed,

low-protein DL-HMTBA-supplemented chickens had some-

what higher amounts of total GSH compared with other

treatment groups. Furthermore, there was also a tendency

(P¼0·095) towards a supplement source effect on hepatic

reduced GSH amounts as DL-HMTBA-supplemented chickens

had, on average, higher amounts of the reduced form of GSH.

Statistical analysis did not reveal any significant effects on GSH

synthetase, glutathione reductase or Msr-A gene expression in

the livers from 6-week-old chickens (Table 6).

Plasma hormones

At 4 weeks of age, chickens reared on the low-protein

diets had, on average, higher plasma T3 levels (protein

effect, P¼0·0030) than their counterparts fed the high-protein

diets (Table 7). DL-HMTBA supplementation significantly

(supplement source effect, P¼0·0006) reduced circulating

T3 levels of 4-week-old chickens on the high-protein diets.

However, at 6 weeks of age, higher T3 concentrations were

measured in the plasma obtained from low-protein DL-

HMTBA-supplemented chickens compared with those from

low-protein DLM-fed chickens (protein £ supplement source

interaction, P¼0·012).

In general, plasma corticosterone levels were significantly

lower for the DL-HMBTA-supplemented chickens (at 4 weeks

Table 5. Plasma thiobarbituric acid reacting substances (TBARS), ferric reducing/antioxidant power (FRAP),
ceruloplasmin and uric acid levels of 6-week-old broiler chickens raised on diets with low (18·3 %) or high (23·2 %)
crude protein (CP) content and supplemented with 0·25 % DL-methionine (DLM) or 0·25 % DL-2-hydroxy-
4-methylthiobutanoic acid (DL-HMTBA)

(Mean values with their pooled standard errors, n 15/dietary treatment)

Met source TBARS (nmol/l) FRAP (mmol Fe2þ/l) Ceruloplasmin (U/l) Uric acid (mg/l)

Protein level (%)
18·3 DLM 6·98a,b 934a,b 40·3 38·7b

DL-HMTBA 9·15a 793b 29·2 39·0b

23·2 DLM 8·72a 806a,b 38·3 39·6b

DL-HMTBA 4·43b 964a 32·0 68·5a

Pooled SEM 0·46 24 1·47 2·7

Main effects
Protein level 18·3 7·99 866 35·1 38·8b

23·2 6·57 885 35·2 54·1a

Met source DLM 7·85 868 39·3a 39·2b

DL-HMTBA 6·63 885 30·7b 54·8a

Probabilities
Protein level NS NS NS 0·0007
Met source NS NS 0·0031 0·0012
Interaction 0·0002 0·0012 NS 0·0014

a,b Mean values with unlike superscript letters within a column were significantly different according to corresponding probabilities.
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of age: supplement source effect, P¼0·025) compared with

those of their DLM-supplemented counterparts. At 6 weeks

of age, this observation was especially true for DL-HMTBA-

supplemented chickens reared on a high-protein diet

(protein £ supplement source interaction, P¼0·013).

Discussion

Zootechnical performance and plasma bioindicators

Body-weight gain was significantly depressed by feeding a

diet with a reduced (18·3 v. 23·2 %) CP content. This obser-

vation is in agreement with many other studies (reviewed

by Swennen et al.(9)).

The higher proportional abdominal fat pad weights of the

chickens reared on the low-protein diets are in agreement

with previous studies and follow from the involuntary over-

consumption of energy compared with protein (reviewed by

Swennen et al.(9)). This excess energy is then partially depos-

ited as fat and partially lost as heat(13).

Another clear effect is the marked reduction in plasma uric

acid concentrations in plasma obtained from chickens reared

on a low-protein diet. This phenomenon has been observed

several times before (reviewed by Swennen et al.(9)) and illus-

trates the improved efficiency of nitrogen utilisation (better

dietary protein retention and less protein degradation/amino

acid oxidation) with lower protein intake.

However, DL-HMTBA supplementation to the low-protein

diet partially alleviated the growth-depressing effect of

the low-protein diet. This is in contrast with the statement of

Sauer et al.(1) from their meta-analysis study that on an

equimolar basis, the biological efficiency of methionine

hydroxy analogue-free acid is 81 % of the value for DLM for

daily body-weight gain. On the other hand, using multiple

regression models, Vasquez-Anon et al.(18) did not observe a

statistically significant difference in predicted responses for

body-weight gain between DLM and DL-HMTBA, and these

authors even mentioned a trend (P#0·1) for a higher peak

body-weight gain response for DL-HMTBA.

For comparing the relative activity of methionine sources,

Kratzer & Littell(19) pointed out that the non-linear common

plateau asymptotic regression model is not accurate due to

the lack of a common plateau. Instead, the authors(19) pro-

posed to use a non-linear separated asymptotic plateau

regression. Using published broiler growth data(20) and the

non-linear separated asymptotic plateau regression approach,

the authors(19) demonstrated that the relative efficiency of

methionine sources is dependent on the applied dosage

with a better efficiency for DLM at a lower dosage but a

better efficiency of HMTBA at higher levels.

However, one other explanation that could contribute to

a better performance effect of DL-HMTBA should be linked

to the acidifying potential of this molecule. Indeed, both

in vitro and in vivo DL-HMTBA shows effective changes in

the gut microbiota as in the case of organic acids(21).

It was striking that low-protein DLM-supplemented chick-

ens were consistently characterised by the lowest body

weights and the highest proportional heart weights of allT
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treatment groups. Based on the proportional growth theory,

and given the fact that the heart is an early maturing organ

(allometric b-coefficient is approximately 0·85)(22), it is under-

standable that lighter chickens have a higher proportional

heart weight compared with that of heavier animals. However,

it cannot be excluded that the supplement source per se could

have an effect on heart tissue development.

Redox balance

The level of TBARS in the plasma is an indicator of (cell

membrane) lipid peroxidation (reviewed by Benzie(23)). The

dietary protein content had no significant effect on plasma

TBARS levels whereas DL-HMTBA supplementation resulted

in a consistently lower lipid peroxidation compared with

DLM supplementation within the high protein groups. This

favourable effect is not due to an elevation in the total anti-

oxidant capacity of the plasma, as the FRAP capacity of the

plasma of DL-HMTBA-supplemented chickens was sometimes

lower than that of the DLM-supplemented chickens. Cerulo-

plasmin is a Cu-containing acute-phase protein with powerful

antioxidant capacities (e.g. Park et al.(24)). It is hence inferred

that elevated circulating ceruloplasmin levels will contri-

bute to a better antioxidant defence. However, DL-HMTBA-

supplemented chickens were clearly characterised by lower

plasma ceruloplasmin levels. Furthermore, uric acid is also

recognised as an important antioxidant in mammals(25), and

especially in birds(26). Still, in the present study, there is no

consistent indication that this antioxidant is involved in the

lower lipid peroxidation status of DL-HMTBA-supplemented

chickens, as there were no significant differences in circulating

uric acid levels between DL-HMTBA- and DLM-supplemented

chickens, except at 6 weeks of age, as high-protein DL-

HMTBA-supplemented chickens were characterised by the

highest plasma uric acid levels. Therefore, the non-enzymatic

antioxidant capacity of the plasma is not likely to be the

predominant causal mechanism for the reduced lipid peroxi-

dation status of the DL-HMTBA-supplemented chickens,

except maybe within the high-protein treatment. There is

also no direct evidence that the enzymatic antioxidant capacity

of the plasma is involved. Based on plasma SOD activity,

there were no statistical differences between DL-HMTBA-

and DLM-supplemented chickens except for a tendency

towards higher SOD activity for DL-HMTBA chickens at

6 weeks of age. However, it must be recognised that SOD

is only one of the many ROS-scavenging enzymes besides

catalase and GSH-recycling enzymes(27).

As there is no clear evidence that the non-enzymatic anti-

oxidant defence mechanisms are responsible for the lower

lipid peroxidation status of DL-HMTBA-supplemented chick-

ens, it might be DL-HMTBA itself. Indeed, compared with

DLM, DL-HMTBA is more efficiently converted to cysteine as

a constituent of taurine and GSH(14). These sulphur-containing

compounds are very powerful antioxidants(7), and a more

efficient synthesis and hence higher availability could defi-

nitely contribute to an ameliorated ROS-scavenging system.

This hypothesis is sustained by the tendency towards higher

amounts of total GSH in the liver of 6-week-old low-protein

DL-HMTBA-supplemented chickens. It is important to note

that this elevation is entirely due to an increase in reduced

GSH (representing the major portion of GSH) and not in

GSSG. It can be postulated that the favourable redox balance

due to DL-HMTBA supplementation to low-protein diets is

now mediated by the GSH system and not so much by uric

acid as in the case of high-protein diets.

Both Msr-A and -B are responsible for reduction in oxidised

methionine residues and therefore are recognised as primary

antioxidant defence mechanisms(8). As far as we are aware

of, this is the first time that hepatic gene expression of

Msr-A has been measured in an avian species. Although we

could not observe any treatment differences in Msr-A mRNA

levels, this does not mean that the recycling of methionine

Table 7. Plasma triiodothyronine (T3) and corticosterone levels of 4- and 6-week-old broiler chickens raised on
diets with low (18·3 %) or high (23·2 %) crude protein (CP) content and supplemented with 0·25 %
DL-methionine (DLM) or 0·25 % DL-2-hydroxy-4-methylthiobutanoic acid (DL-HMTBA)

(Mean values with their pooled standard errors, n 15/dietary treatment)

T3 (ng/ml) Corticosterone (ng/ml)

Met source Week 4 Week 6 Week 4 Week 6

Protein level (%)
18·3 DLM 1·97 0·79b 8·44 6·49a,b

DL-HMTBA 1·71 1·80a 6·03 8·10a,b

23·2 DLM 1·86 1·19a,b 6·88 8·33a

DL-HMTBA 1·36 1·16a,b 3·81 3·41b

Pooled SEM 0·06 0·11 0·62 0·67

Main effects
Protein level 18·3 1·84a 1·26 7·23 7·24

23·2 1·61b 1·18 5·35 5·87
Met source DLM 1·91a 0·99 7·66a 7·41

DL-HMTBA 1·54b 1·46 4·92b 5·58
Probabilities

Protein level 0·0030 NS NS NS
Met source 0·0006 NS 0·0250 NS
Interaction NS 0·0120 NS 0·0130

a,b Mean values with unlike superscript letters within a column were significantly different according to corresponding probabilities.
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is not an important mechanism in these species. More research

is needed to elucidate the contribution of Msr-A in the oxidant

defence mechanism of non-mammalian species.

On the other hand, it could also be that DL-HMTBA reduces

the production of ROS and hence cellular damage. Indeed,

DL-HMTBA-supplemented chickens were also characterised

by significantly lower plasma T3 levels, at least at 4 but not

at 6 weeks of age. Lower plasma T3 levels are indicative for

lower heat production(13), thus less oxygen consumption

and consequently reduced formation of free oxygen radicals.

Furthermore, DL-HMTBA-supplemented chickens had signifi-

cantly lower circulating corticosterone levels. As corticoster-

one is a powerful trigger of oxidative stress as reflected in

enhanced lipid peroxidation(11,12), the lower plasma corticos-

terone levels could also partially explain the reduced TBARS

levels in these birds. It remains to be established how

DL-HMTBA could directly affect glucocorticoid metabolism.

In conclusion, reducing the dietary protein content of broi-

ler diets resulted in an impaired zootechnical performance

compared with that of broilers reared on a higher dietary

protein level. However, supplementation of the DLM hydroxy

analogue, DL-HMTBA, to the low-protein diet alleviated these

negative effects to a certain extent. In addition, the low-

protein DL-HMTBA-supplemented chickens displayed better

antioxidant status as reflected in lower lipid peroxidation

probably due to their somewhat higher hepatic concentrations

of total and reduced GSH levels compared with their DLM

counterparts. On the other hand, within the high protein

levels, uric acid might be an important antioxidant to explain

the lower lipid peroxidation of high-protein DL-HMTBA-

supplemented chickens. The present study indicates that

there are interactions between dietary protein content and

supplementation of DLM (analogues) with respect to broiler

performance and redox status, also suggesting a causal link

between these traits.
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