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Introduction

On (R2, g0), we consider the Schrödinger equation

∆φ = Eφ,

where
∆ = ∂2x + ∂2y , E ∈ R.

Coordinates (u, v) separate this equation⇐⇒ ∃ solution
of the form f (u)g(v)

Coordinates (u, v) orthogonal⇐⇒ g0(∂u, ∂v ) = 0
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There exist 4 families of orthogonal separating
coordinates systems :

1 Cartesian coordinates
2 Polar coordinates (r , θ) :{

x = r cos(θ)
y = r sin(θ)

3 Parabolic coordinates (ξ, η) :{
x = ξη
y = 1

2
(ξ2 − η2)

4 Elliptic coordinates (α, β) :{
x =

√
d cos(α) cosh(β)

y =
√
d sin(α) sinh(β)
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Figure: Coordinates lines corresponding to the parabolic
coordinates system
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Figure: Coordinates lines corresponding to the elliptic coordinates
system
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Separating coordinates systems allow to simplify the
resolution of the Schrödinger equation :

Example : in cartesian coordinates (x , y), f (x)g(y) is a
solution of ∆φ = Eφ i�{

∂2x f − E1f = 0
∂2yg − (E − E1)g = 0
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Bijective correspondence

{Separating coordinates systems}

←→

{Second order symmetries of ∆ : second order

di�erential operators D such that [∆,D] = 0}

Coordinates system Symmetry
(x , y) ∂2x
(r , θ) L2θ
(ξ, η) 1

2
(∂xLθ + Lθ∂x)

(α, β) L2θ + d∂2x

with Lθ = x∂y − y∂x
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Link between the symmetry and the coordinates
system : if the second-order part of D reads as(

∂x ∂y
)
A

(
∂x
∂y

)
,

the eigenvectors of A are tangent to the coordinates
lines.

Example : second-order part of L2θ :(
∂x ∂y

)( y2 −xy
−xy x2

)(
∂x
∂y

)
,

eigenvectors of A in this case :(
x

y

)
,

(
−y
x

)
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On a n-dimensional pseudo-Riemannian manifold (M, g),

∆Y := ∇ig
ij∇j −

n − 2
4(n − 1)

Sc,

where Sc is the scalar curvature of g.

Symmetry of ∆Y : D ∈ D(M) such that [∆Y ,D] = 0

Conformal symmetry of ∆Y : D1 ∈ D(M) such that
∃D2 ∈ D(M) such that ∆Y ◦ D1 = D2 ◦∆Y
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(M, g) conformally �at : for each x ∈ M, there exist a
neighborhood U of x and a function f on U such that
e2f g is �at on U

Conformal symmetries of ∆Y known (M. Eastwood,
J.-P. Michel)

(M, g) Einstein : Ric = 1

n
Sc g

Existence of a second order symmetry (B. Carter)
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1 Second order conformal symmetries of ∆Y

Conformal Killing tensors
Structure of the conformal symmetries

2 Examples
DiPirro system
Conformal Stäckel metrics in dimension 3

3 Application to the R-separation
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If D is a conformal symmetry of ∆Y , there exists an
operator D ′ such that ∆Y ◦ D = D ′ ◦∆Y

σ(∆Y ) = H = gijpipj , then {H, σ(D)} ∈ (H), i.e. σ(D)
is a conformal Killing tensor

If D is a symmetry of ∆Y , [∆Y ,D] = 0, then
{H, σ(D)} = 0, i.e. σ(D) is a Killing tensor

The existence of a (conformal) Killing tensor is necessary
to have the existence of a (conformal) symmetry of ∆Y

Is this condition su�cient ?
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If K is a (conformal) Killing tensor of degree 2, there
exists a (conformal) symmetry of ∆Y with K as
principal symbol i� Obs(K )[ is an exact one-form, where

Obs =
2(n − 2)

3(n + 1)
pi∂pj

∂pl

(
C k

jl
i∇k − 3Ajl

i
)

C : Weyl tensor :

Cabcd = Rabcd −
2

n − 2
(ga[cRicd ]b − gb[cRicd ]a)

+
2

(n − 1)(n − 2)
Sc ga[cgd ]b

A : Cotton-York tensor :

Aijk = ∇kRicij−∇jRicik+
1

2(n − 1)
(∇jSc gik −∇kSc gij)
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If Obs(K )[ = 2df , the (conformal) symmetries of ∆Y

whose the principal symbol is given by K are of the form

Q(K )− f + LX + c ,

where X is a (conformal) Killing vector �eld, where
c ∈ R and where Q denotes the natural and conformally
invariant quantization (see works by P. Mathonet, F.
Radoux, A. Cap, J. �ilhan).
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On R3, diagonal metrics admitting diagonal Killing
tensors are classi�ed :

Hamiltonian H = gijpipj :

1
2(γ(x1, x2) + c(x3))

(
a(x1, x2)p21 + b(x1, x2)p22 + p23

)
,

Killing tensor K :

c(x3)a(x1, x2)p2
1

+ c(x3)b(x1, x2)p2
2
− γ(x1, x2)p2

3

γ(x1, x2) + c(x3)
,

a, b, γ ∈ C∞(R2), c ∈ C∞(R).

In this situation, Obs(K )[ exact⇒existence of
symmetries.
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Conformal Stäckel metric g : g s.t. the Hamilton-Jacobi
equation

gij(∂iW )(∂jW ) = 0

admits additive separation in an orthogonal coordinate
system.

Coordinate x ignorable for g : ∂x is a conformal Killing
vector �eld for g.

If g admits one ignorable coordinate x1, then

g = Q
(
dx21 + (u(x2) + v(x3))(dx22 + dx23 )

)
.
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∂x1 is a conformal Killing vector �eld and

K = (u(x2) + v(x3))−1(v(x3)p22 − u(x2)p23)

a conformal Killing 2-tensor.

In general, Obs(K )[ not closed⇒no conformal
symmetries with principal symbol K .
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Schrödinger equation : (∆Y + V )ψ = Eψ, V ∈ C∞(M)
is a �xed potential and E ∈ R a free parameter

Solving Schrödinger equation : �nding a solution for all
E

Schrödinger equation at zero energy : (∆Y + V )ψ = 0,
V ∈ C∞(M) is a �xed potential



Higher
symmetries of
the conformal
Laplacian

F. Radoux, ULg
(IAP DYGEST)

Joint work with
J.-P. Michel
(ULg, IAP

DYGEST) and J.
Silhan (Masaryk
University in

Brno)

Second order
conformal
symmetries of
∆Y
Conformal Killing
tensors

Structure of the
conformal
symmetries

Examples

DiPirro system

Conformal Stäckel
metrics in
dimension 3

Application to
the R-separation

Schrödinger equation : (∆Y + V )ψ = Eψ, V ∈ C∞(M)
is a �xed potential and E ∈ R a free parameter

Solving Schrödinger equation : �nding a solution for all
E

Schrödinger equation at zero energy : (∆Y + V )ψ = 0,
V ∈ C∞(M) is a �xed potential



Higher
symmetries of
the conformal
Laplacian

F. Radoux, ULg
(IAP DYGEST)

Joint work with
J.-P. Michel
(ULg, IAP

DYGEST) and J.
Silhan (Masaryk
University in

Brno)

Second order
conformal
symmetries of
∆Y
Conformal Killing
tensors

Structure of the
conformal
symmetries

Examples

DiPirro system

Conformal Stäckel
metrics in
dimension 3

Application to
the R-separation

Schrödinger equation : (∆Y + V )ψ = Eψ, V ∈ C∞(M)
is a �xed potential and E ∈ R a free parameter

Solving Schrödinger equation : �nding a solution for all
E

Schrödinger equation at zero energy : (∆Y + V )ψ = 0,
V ∈ C∞(M) is a �xed potential



Higher
symmetries of
the conformal
Laplacian

F. Radoux, ULg
(IAP DYGEST)

Joint work with
J.-P. Michel
(ULg, IAP

DYGEST) and J.
Silhan (Masaryk
University in

Brno)

Second order
conformal
symmetries of
∆Y
Conformal Killing
tensors

Structure of the
conformal
symmetries

Examples

DiPirro system

Conformal Stäckel
metrics in
dimension 3

Application to
the R-separation

Schrödinger equation at zero energy R-separable in an
orthogonal coordinates system (x i ) (gij = 0 if i 6= j)

⇐⇒

∃ n + 1 functions R, hi ∈ C∞(M) and n di�erential
operators Li := ∂2i + li (x

i )∂i + mi (x
i ) such that

R−1(∆Y + V )R =
n∑

i=1

hiLi .
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Schrödinger equation R-separable in an orthogonal
coordinates system (x i )

⇐⇒

∀ E ∈ R, ∃ n + 1 functions R, hi ∈ C∞(M) and n

di�erential operators Li := ∂2i + li (x
i )∂i + mi (x

i ) such
that

R−1(∆Y + V )R − E =
n∑

i=1

hiLi .

R
∏n

i=1
φi (x

i ) solution of one of the two previous
equations

⇐⇒

Liφi = 0 ∀i
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Schrödinger equation at zero energy R-separates in an
orthogonal coordinate system if and only if :

(a) ∃ a n-dimensional linear space of conformal Killing
2-tensors I such that

{K1,K2} ∈ (H) for all K1,K2 ∈ I,
as endomorphisms of TM, the tensors in I admit a

basis of common eigenvectors.

(b) For all K ∈ I, ∃ second order conformal symmetry D,
i.e. an operator such that [∆Y + V ,D] ∈ (∆Y + V ),
with principal symbol σ2(D) = K .
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Link between the (conformal) symmetries and the
R-separating coordinate systems :

Hyperplans orthogonal to the eigenvectors of the tensors
in I ←→ integrable distributions

Leaves of the corresponding foliations←→Coordinate
hyperplans of the R-separating coordinate systems



Higher
symmetries of
the conformal
Laplacian

F. Radoux, ULg
(IAP DYGEST)

Joint work with
J.-P. Michel
(ULg, IAP

DYGEST) and J.
Silhan (Masaryk
University in

Brno)

Second order
conformal
symmetries of
∆Y
Conformal Killing
tensors

Structure of the
conformal
symmetries

Examples

DiPirro system

Conformal Stäckel
metrics in
dimension 3

Application to
the R-separation

Link between the (conformal) symmetries and the
R-separating coordinate systems :

Hyperplans orthogonal to the eigenvectors of the tensors
in I ←→ integrable distributions

Leaves of the corresponding foliations←→Coordinate
hyperplans of the R-separating coordinate systems
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