
On Periodic Reference Tracking Using Batch-Mode Reinforcement Learning
with Application to Gene Regulatory Network Control

Aivar Sootla, Natalja Strelkowa, Damien Ernst, Mauricio Barahona, Guy-Bart Stan

Abstract— In this paper, we consider the periodic reference
tracking problem in the framework of batch-mode reinforce-
ment learning, which studies methods for solving optimal con-
trol problems from the sole knowledge of a set of trajectories.
In particular, we extend an existing batch-mode reinforcement
learning algorithm, known as Fitted Q Iteration, to the periodic
reference tracking problem. The presented periodic reference
tracking algorithm explicitly exploits a priori knowledge of the
future values of the reference trajectory and its periodicity.
We discuss the properties of our approach and illustrate it on
the problem of reference tracking for a synthetic biology gene
regulatory network known as the generalised repressilator. This
system can produce decaying but long-lived oscillations, which
makes it an interesting application for the tracking problem.

Index Terms— reference tracking; fitted Q iteration; rein-
forcement learning, synthetic biology; gene regulatory networks

I. INTRODUCTION

There are many problems in engineering, which require
forcing the system to follow a desired periodic reference tra-
jectory (e.g., in repetitive control systems [1]). One approach
to solve these problems is to define first a distance between
the state of the system nt and the desired reference point dt
at time t. The next step is to seek for a control policy that
minimises this distance for all t subject to problem specific
constraints. In the case of systems in the Euclidean state-
space, for example, the Euclidean distance can be used.

In this paper, we are interested in solving reference
tracking problems of discrete-time systems using data-based
optimal control. In our setting, the dynamics of the system
is only known in the form of one-step system transitions.
A one-step system transition is a four-tuple {n,u, r,n+},
where n+ denotes a successor state of the system in a state n
subjected to an input u, and r is an instantaneous reward for
performing an action u at a state n. We assume that r can be
computed for every state-action pairs; therefore, we consider
only triplets {n,u,n+} as one-step transitions. Inference of

A. Sootla and G.-B. Stan (corresponding author) are with the
Centre for Synthetic Biology and Innovation and the Department
of Bioengineering, M. Barahona is with the Department of
Mathematics, Imperial College London, UK {a.sootla,
g.stan, m.barahona}@imperial.ac.uk, N. Strelkowa
is with Boehringer-Ingelheim Pharma GmbH & Co KG., Germany,
natalja.strelkowa@boehringer-ingelheim.com, and
D. Ernst is with the Montefiore Institute, University of Liège, Belgium
dernst@ulg.ac.be, A. Sootla and G.-B. Stan acknowledge the
support of EPSRC through the project EP/J014214/1. Dr Stan is further
supported by the EPSRC Science and Innovation Award EP/G036004/1. N.
Strelkowa contributed to the paper while being a PhD student at Imperial
College, and was supported by the Wellcome Trust grant 080711/Z/06/Z. D.
Ernst acknowledges support of the Belgian Network DYSCO (Dynamical
Systems, Control, and Optimization), funded by the Interuniversity
Attraction Poles Programme, initiated by the Belgian State, Science Policy
Office.

Learning and
Control
Algorithm

Control Using Reinforcement Learning

Input measurements

1 2

34

Real System

Light Stimuli

GFP and mCherry RFP Read-outs
Output measurements

Optimisation
objective

Fig. 1. A schematic depiction of an exogenously controlled generalised
repressilator. Numbered circles represent different genes. An arrow with a
flat end connecting two circles represents a repressive action from one gene
product onto the other one. For example, gene 2 is repressed by gene 1.

near-optimal policies from one-step system transitions is the
central question of batch-mode reinforcement learning [2],
[3]. Note that reinforcement learning [4] focuses on a more
general problem of policy inference from interactions with
the system. Usually, in batch-mode reinforcement learning,
very few assumptions are made on the structure of the con-
trol problem. This gives batch-mode reinforcement learning
algorithms a high degree of flexibility in comparison with
other control methods. Batch-mode reinforcement learning
has had numerous applications in many disciplines such as
engineering [5], HIV treatment design [6], and medicine [7].
In this paper, one batch-mode reinforcement learning algo-
rithm is considered, namely the Fitted Q Iteration (FQI)
algorithm [8]. This algorithm focuses on the computation
of a so called Q function, which is used to compute a
near-optimal control policy. The algorithm computes the Q
function using an iterative procedure based on the Bellman
equation, a regression method and the collected samples of
system trajectories.

The focus of this paper is on an extension of FQI to the
reference tracking problem. In our extension, we explicitly
take into account the future reference trajectory values and
the period T . Moreover, regression is separated into T
independent regression problems, which can save computa-
tional effort. The algorithm is implemented in Python and is
available at www3.imperial.ac.uk/people/a.sootla.

To illustrate our reference tracking method, we consider
its application to synthetic biology gene regulatory networks,
specifically to a network called a generalised repressilator.
The repressilator is a ring of three mutually repressing
genes pioneered in [9], and theoretically generalised to rings
consisting of more than three genes in [10]. Repression is an
interaction between two genes, such that the protein product
of the repressing gene prevents protein expression of the

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

978-1-4673-5716-6/13/$31.00 ©2013 IEEE 4086

repressed gene. Or simply put, where one gene can turn off
the other. A generalised repressilator with a sufficiently large,
even number of genes (such as the four-gene ring in Figure 1)
can exhibit decaying but very long-lived oscillations [11].
The objective of this paper is to force one or several protein
concentrations to follow a priori defined reference trajec-
tories, namely: sinusoids and ramps. A deeper background
on synthetic biology and its control applications is provided
in [12], where we consider a regulation problem of a toggle
switch system.

The paper is organised as follows. Section II covers the
FQI Algorithm. In Section III, an extension of FQI to the
reference tracking problem is presented. In Section IV our
illustrative application, reference tracking for the generalised
repressilator system, is given. Section V concludes the paper.

II. FITTED Q ITERATION (FQI)
Consider a deterministic discrete-time dynamical system

nt+1 = f(nt,ut), (1)

where the bold values n stand for vectors with elements ni,
nt is the state of the system at time t, and ut is a control
input, which at each time t belongs to a compact set U .
Consider also, associated with this dynamical system, an
optimal control problem, which is defined in terms of the
maximisation of an infinite sum of discounted rewards:

max
µ(·)

∞∑
i=t

γi−tr(ni, µ(ni)),

where r(·, ·) is a reward function, µ(·) is a mapping from
the state-space onto U , which is called the feedback control
policy, and γ is a positive constant smaller than one, which
is called the discount factor. In this paper, it is assumed
that r(·, ·) is a given function. The goal is to compute the
optimal policy based only on one-step transitions of the
system (1). One-step system transitions are given as a set
F = {nl,ul,n+

l }
#F
l=1 , where n+

l denotes a successor state
of the system in state nl subjected to input ul (if the function
f(·, ·) is known then n+

l is simply equal to f(nl,ul)).
The central object in FQI is the Q function, which is

defined as follows:

Q(nt,ut) = r(nt,ut) + max
µ(·)

∞∑
i=t+1

γi−tc(ni, µ(ni)).

The main idea of the approach is to exploit the celebrated
Bellman equation

Q(n,u) = r(n,u) + γ max
u′∈U

Q(f(n,u),u′), (2)

which can be theoretically solved using an iterative procedure

Qk(n,u) = r(n,u) + γ max
u′∈U

Qk−1(f(n,u),u
′),

where Q0 = r and Q∞ is the unique solution to (2) due
to the fact that T (Q) = r + γmaxu′∈U Q is a contraction
mapping (cf. [3]). It also provides a convenient expression
for the computation of the optimal feedback control policy:

µ∗(n) = argmax
u∈U

Q(n,u). (3)

Algorithm 1 Fitted Q Iteration (FQI)
Inputs: Set of one-step system transitions F =
{nl,ul,n+

l }
#F
l=1 , reward r(·, ·), stopping criterion

Outputs: Policy µ̂∗(n)
k ← 0 and Q̂0(·, ·)← r(·, ·)
repeat
k ← k + 1 and compute (5) to obtain the values of
Q̂k(·, ·) for all {nl,ul} in F
Estimate the function Q̂k(n,u) using a regression al-
gorithm with input pairs (nl,ul) and function values
Q̂k(nl,ul).

until stopping criterion is satisfied
Compute the policy according to (6)

However in the continuous state-space case, this iterative
procedure is hard to solve, especially when only the one-
step system transitions in F are given. The FQI algorithm
provides a solution to this problem from the sole knowledge
of F . The solution is obtained by computing a sequence of
functions Q̂1, Q̂2, . . . that approximates the sequence Q1,
Q2, Indeed, let Q̂0 = r and for every (nl,ul,n

+
l) in F

compute:

Q̂1(nl,ul) = r(nl,ul) + γmax
u∈U

Q̂0(n
+
l ,u). (4)

This expression gives Q̂1 only for nl, ul in F , while
the entire function Q̂1(·, ·) is estimated using regres-
sion (e.g., EXTremly RAndomized or EXTRA Trees al-
gorithm [13]). Now the iterative procedure is derived by
generalising (4) as follows:

Q̂k(nl,ul) = r(nl,ul) + γmax
u∈U

Q̂k−1(n
+
l ,u), (5)

where at each step Q̂k(·, ·) is estimated using regression. If
the iteration procedure stops at the iteration number N , an
approximate policy can be computed as follows:

µ̂∗N (n) = argmax
u∈U

Q̂N (n,u). (6)

A major property of the FQI algorithm is convergence [8].
This is understood as convergence of Q̂k to a fixed state-
action value function Q̂∗ given a fixed set F as k grows
to infinity. A sufficient condition for convergence is the use
of kernel-based approximators on the regression step [14].
Note that to ensure convergence using the EXTRA Trees al-
gorithm, it is required to fix the structure of the trees, i.e., the
kernel representation of the Q̂ function approximation must
not change from one iteration to another. However, a variable
kernel representation of EXTRA Trees may provide better
numerical results in comparison with the fixed one during the
initial iterations [8]. Hence, one may fix the structure of the
regression trees after a certain amount of iterations as a trade-
off between a guarantee on convergence and good numerical
performance. A stopping criterion can be also derived. Let
V̂ ∗ be defined as max

u∈U
lim
N→∞

Q̂N , and V̂ N = max
u∈U

Q̂N be a

4087

value function after N iterations, then:

‖V̂ N − V̂ ∗‖∞ ≤ 2
γN‖r‖∞
(1− γ)2

. (7)

We solve our control problem using one-step transitions;
therefore, it can be assumed without loss of generality that
the state-space is bounded and so is the reward function.
Hence, the number of iterations can be bounded in advance
based on the prescribed accuracy and the value of γ. The
resulting iterative method is outlined in Algorithm 1.

III. PERIODIC REFERENCE TRACKING USING THE
FITTED Q ITERATION ALGORITHM

Let f(·, ·) be an unknown function, and g(·) be a known
function with a period T . Consider, a system:

nt+1 = f(nt,ut)

dt+1 = g(dt),
(8)

where d takes only a finite number of values {vi}Ti=1, g(vi)
is equal to vi+1 for all i smaller than T , and g(vT) is equal
to v1. The reference tracking problem is defined as follows:

max
µ(·,·)

∞∑
i=t

γi−tr(ρ(ni,di),ni,ui)

subject to system dynamics (8), and
µ(nt,dt) = ut ∈ U ,

(9)

where r is a given instantaneous reward function, ρ(·, ·) is
a function defining the distance between the current state ni
and reference di, and µ(·, ·) is a feedback control policy.
In order to track the reference d, increasing the value of
the reward r must reduce the distance ρ. The instantaneous
reward can optionally depend on the control signal u and the
states n in order to provide additional constraints in the state-
space and/or control action space. As for FQI, the control
policy is inferred based solely on the trajectories given in the
form of one-step system transitions F = {nl,ul,n+

l }
#F
l=1 ,

where n+
l denotes a successor state of the system in state

nl subjected to input ul.
The variable d can be seen as an additional state in

the extended state-space {n,d}. Based on this extended
state-space we can derive the Bellman equation for the
tracking problem and the following iterative procedure for
the computation of the Q function:

Qk(n,d,u) = r(ρ(n,d),n,u)+

max
u′∈U

Qk−1(n
+, g(d),u′) ∀n,d,u, (10)

where Q0 is equal to r. It can be shown that this iterative
procedure has a unique solution Q∗ based on a similar
contraction mapping argument as in the previous section.
Hence the optimal policy in the extended state-space is
computed as:

µ(n,d) = max
u∈U

Q∗(n,d,u).

The input set to the algorithm normally consists of the
one-step system transitions F = {nl,ul,n+

l }
#F
l=1 . However,

since our state-space has been extended to include d, F
should now include d as well. Since the time evolution of d
is known a priori we can simply modify the set as follows
T F = {nl,vi,ul,n+

l , g(vi)}i,l, where i = 1, . . . , T and
l = 1, . . . ,#F . This will effectively copy T times the
training set F . Now given this modification, we can proceed
to the computational procedure. As before Q̂0 is equal to r
and the next iterates can be obtained as follows:

Q̂k(nl,vi,ul) = r(ρ(nl,vi),nl,ul)+

max
u′∈U

Q̂k−1(n
+
l , g(vi),u

′) ∀l, vi. (11)

According to the FQI framework, every function Q̂k(·, ·, ·)
must be estimated by a regression algorithm, which uses
the input set {nl,vi,ul}i,l and the corresponding values of
the approximated function Q̂k(nl,vi,ul). This input set can
grow significantly, if the period T of the reference trajectory
is large, which can render a regression algorithm computa-
tionally intractable. For example, with only a thousand one-
step system transitions {nl,ul,n+

l }
#F
l=1 and period T equal

to 200, the total number of samples {nl,vi,ul}i,l is equal to
200 000. Therefore, it is proposed to break up the regression
of Q̂k(·, ·, ·) into T independent regression problems, one for
every function Q̂k(·,vi, ·). This can be done, because the
time evolution of d is known in advance and d takes a finite
number of values. To make these ideas more transparent, (11)
is rewritten using a different notation as follows:

Q̂vi

k (nl,ul) = r(ρ(nl,vi),nl,ul)+

max
u∈U

Q̂
g(vi)
k−1 (n+

l ,u) ∀l, vi, (12)

where Q̂vi

k (·, ·) stands for the function Q̂k(·,vi, ·). For every
value vi, the regression algorithm will approximate the
function Q̂vi

k (·, ·) by using the input set {nl,ul}l and the
corresponding values Q̂vi

k (nl,ul). Thus the initial regression
problem is indeed separated into T independent problems.

Our approach can be also seen as a modification of the Q̂k
function approximator. The first layer of our approximator
is a deterministic branching according to the values vi.
After that a regression algorithm is performed to approximate
the functions Q̂vi

k (·, ·) as prescribed. Finally, if the iterative
procedure has stopped at iteration N , a near-optimal policy
can be computed as follows:

µ̂∗N (n,d) = max
u∈U

Q̂d
N (n,u). (13)

Our approach is outlined in Algorithm 2. Periodicity is a
crucial assumption, since the period of the reference trajec-
tory corresponds to the number of different Q̂vi

k functions
built in this algorithm. Convergence of Algorithm 2 can be
established using the following lemma.

Lemma 1: Algorithm 2 converges under similar condi-
tions and considerations as the FQI algorithm in [8]. More-
over, the bound (7) is valid for Algorithm 2.
The proof is a straightforward adaptation of the convergence
proof in [8] and therefore omitted. The remarks on FQI
convergence are valid for this case, as well. Since only the

4088

Algorithm 2 Reference Tracking Fitted Q Iteration
Inputs: Sets of one-step system transitions F =
{nl,ul,n+

l }
#F
l=1 , function g(·) and reference values {vi}Ti=1,

reward r(ρ(·, ·), ·, ·), stopping criterion
Outputs: Policy µ̂∗(n,d)
k ← 0 and Q̂·0(·, ·)← r(ρ(·, ·), ·, ·)
repeat
k ← k + 1 and compute (12) to obtain the values of
Q̂vi

k (·, ·) for all {nl,ul} in F and vi
Estimate the functions Q̂vi

k (n,u) for every vi using
a regression algorithm with input pairs (nl,ul) and
function values Q̂vi

k (nl,ul).
until stopping criterion is satisfied
Compute the policy using (13)

regression step is modified, Algorithm 2 can be applied to
the stochastic systems as well. If we assume that the reward
function is time-independent, i.e.,d is constant, and g(v) is
equal to v, Algorithm 2 is reduced to Algorithm 1, since
equation (12) becomes:

Q̂v
k(nl,ul) = r(ρ(nl,v),nl,ul)+max

u′∈U
Q̂v

k−1(n
+
l ,u

′) ∀l.

The regression can be applied directly to one-step transitions
T F = {nl,vi,ul,n+

l ,v
+}l=#F,i=T

i,l=1 . The computational
cost of this large regression problem is O(T · #F log(T ·
#F) [13]. If we follow the proposed algorithm and split
this large regression into T smaller regression problems,
we obtain O(T · #F log(#F)), which is a reduction of
O(T ·#F log(T)) floating point operations.

IV. TRACKING OF PERIODIC TRAJECTORIES BY THE
GENERALIZED REPRESSILATOR

A. System Description

As an illustrative application of our method we consider
the problem of periodic reference tracking for a six gene
generalised repressilator system. There are two major species
associated with every gene (the mRNA and protein concen-
trations), which results in a twelve state system. Throughout
the section we adopt the following notation: pi denotes the
protein concentration produced by the translation of mRNA
mi of gene i. By definition of the generalised repressilator,
the transcription of mRNA mi is repressed by the previous
gene expression product pi−1 in the network. With a slight
abuse of notation, we assume that p−1 is equal to pn in order
to model the cyclic structure of the generalised repressilator.
The dynamics of the generalised repressilator system can be
described by the following set of deterministic equations:

ṁi =
ci1

1 + (pi−1)2
− ci2mi + δi1b1u

1 + δi2b2u
2

ṗi = ci3m
i − ci4pi,

(14)

where i is an integer from one to six, and δij is equal to
one, if i is equal to j, and equal to zero otherwise. We
assume that the protein concentrations are given as readouts,

0 200 400 600 800
0

5

10

15

20

25

Time (a.u.)

Pr
ot

ei
n

co
nc

et
ra

ti
on

s
(a

.u
.)

Natural Unstable Oscillations in a Repressilator

Fig. 2. Natural oscillatory behaviour of a generalised repressilator system
consisting of 6 genes. The blue line represents the time evolution of the
protein concentration produced by the expression of gene 1; the cyan line
represents the time evolution of the protein concentration produced by the
expression of gene 2. The oscillations have a period of approximately 150
arbitrary time units but are, however, not stable.

for instance via fluorescent markers [15], [16] (e.g., green flu-
orescent protein, GFP or red fluorescent protein, mCherry).
On the other hand, we assume that the control inputs are
implemented as light pulses of specific non-overlapping
wavelengths activating a photo-sensitive promoter controlling
the expression of genes 1 and 2 [17], [18]. When a photo-
sensitive promoter is activated through a light pulse the
concentration of the gene product 1 (or 2) is increased by
a small amount through the expression of gene 1 (or 2).
The control signal u1 only acts on the mRNA dynamics of
gene 1, whereas the control signal u2 only acts on the mRNA
dynamics of gene 2. The influence of the light signals on the
rate of mRNA production of genes 1 and 2 is denoted by
b1 and b2, respectively. To simplify the system dynamics
and as it is usually done for the repressilator model [9],
we consider the corresponding parameters of the mRNA and
protein dynamics for different genes to be equal. Hence, the
trajectories will be very similar between the different genes.
We chose the parameter values according to [11]:

∀i : ci1 = 1.6, ci2 = ci3 = 0.16, ci4 = 0.06, b1 = b2 = 5,

where it is shown that the dynamics of this system exhibit
a long-lived oscillatory behaviour around an unstable limit
cycle as depicted in Figure 2. The “natural” period of these
slowly decaying oscillations is around 150 time units.

B. Algorithm Parameters and Implementation

The instantaneous reward function is defined differently
for each considered example. In the first case, the objective
is for the concentration of protein p2 to track an a priori
specified reference trajectory. In the two other cases, the
objective is for the concentrations of two proteins p1 and p2

to track their respective reference trajectories. When tracking
of two protein concentrations needs to be ensured, the reward
function will depend on these two protein concentrations p1

and p2 and on the corresponding references d1t and d2t . Note
that here and in the sequel dit stands for the i-th element
of the vector dt. When tracking needs to be ensured for
only one protein concentration (i.e., p2), the reward function
will only depend on p2 and the scalar reference d2t . In both
cases, the reward depends on the control signals ui in order
to penalise the use of light stimuli and thus minimise the
metabolic burden caused by heterologous gene expression.

4089

The reward is defined using a distance between the observed
state pi and the reference trajectories dit:

r(p,d,u) = −100(α(p1−d1t)2+(p2−d2t)2)−0.05(u1+u2),

where α will be equal to one or zero depending on how
many reference trajectories we want to track simultaneously.

The set of system transitions is generated according to
the following procedure. 300 system trajectories starting in
a random initial state are generated. The control actions
applied to generate the trajectories are random as well. Every
trajectory has at most 300 samples. These state transitions are
then gathered in the set F . The discount factor γ is equal
to 0.75, the choice of which is guided by considerations
similar to the ones in [8]. The stopping criterion is simply
a bound on the number of iterations, which for the purpose
of this paper is 30. At every iteration every Qvi function is
approximated using EXTRA Trees, which was shown to be
an effective regression algorithm for the FQI framework [13].
The parameters for the algorithm are set to the default values
from [8]. The algorithm is implemented in Python using the
machine learning [19], parallelisation [20], graphics [21] and
scientific computation [22] toolboxes.

C. Results

One sinusoidal reference trajectory, different periods. In
this example, we are going to force the concentration of the
protein 2 to track a sinusoid with different periods. Here
α = 0 and the sinusoid is chosen to resemble the natural
oscillations in terms of amplitude and offset from zero:

d2t = 8 + 7 · sin(Tt/(2π)).

We test the algorithm for the following periods T = 50,
150, 250. We can increase the concentration of the protein
2 directly through application of the control signal u2. We
can also decrease the concentration of the protein 2 through
increasing the concentration of the protein 1, which acts as
a repressor for gene 2. The results of several simulations
are depicted in Figure 3. The natural oscillations have a
period of approximately 150 time units, therefore the blue
dashed curve is easiest to follow. Using repression by gene
1, the algorithm manages to find a schedule of light pulses
that allows to track the dotted red curve, even though the
period is much larger than 150. However, due to the inherent
dynamics of the system, the algorithm cannot bring down the
concentration of protein 2 fast enough to properly track the
cyan curve. The repression by gene 1 is not strong enough in
this case to allow accurate tracking. It is important to remark
that tracking of the trajectory by protein 2 results in damping
of the oscillations in the other proteins and mRNA dynamics.

Two sinusoidal reference trajectories. For this simulation
we chose two sinusoids (i.e.,α is equal to one), where the
second sinusoid lags behind the first one:

d1t = 8 + 7 · sin(200t/(2π))
d2t = 8 + 7 · sin(200(t+ 200/3)/(2π)).

Genes, their protein products and the corresponding refer-
ence trajectories are colour coded in this example: the blue

0 100 200 300 400
0

5

10

15

20

Time (a.u.)

P
ro
te
in

co
n
ce

tr
at
io
n
s
(a
.u
.)

Fig. 3. Tracking a sinusoid in a six gene repressilator. The figure is colour
coded: lines with the same colour correspond to the same simulation. Each
solid curve represents the time evolution of the concentration protein 2,
which attempts to follow the same colour reference trajectory, represented
by a dashed line. The cyan colour corresponds to the period T = 50, the
blue colour to T = 150 and the red colour to T = 250.

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

18

Time (a.u.)

P
ro

te
in

 c
o

n
ce

tr
at

io
n

s
(a

.u
.)

Fig. 4. Tracking two sinusoids in a six gene repressilator. The blue colour
represents gene 1 in the repressilator, which represses gene 2 represented
by the cyan colour. The dashed lines represent the reference trajectories;
the solid lines represent the protein concentration tracking the reference
with identical colour; finally, the coloured circled dots correspond to time
instant at which control inputs in the form of light pulses were applied.
Due to restrictions imposed by the system’s dynamics the cyan reference
should lag behind the blue one and the lag should be large enough to ensure
appropriate tracking.

colour corresponds to protein 1 and the cyan colour corre-
sponds to protein 2. The “blue” gene represses the “cyan”
one, hence an increase in the “blue” protein concentration
can be used to decrease the concentration of the “cyan”
protein. However, the concentration of the “blue” protein
cannot be decreased directly. The sinusoids are chosen with
approximate knowledge of the natural oscillation dynamics:
in terms of amplitude and mean value of oscillations. Their
period is chosen equal to 200 time samples. As depicted
in Figure 4, the algorithm can force the concentration of
the first two proteins to follow both sinusoids. Moreover,
numerous simulations were conducted starting from different
initial conditions, which yielded similar tracking results after
the initial transient period had elapsed. It is worth noting
the interesting behaviour exhibited by the “blue” protein
concentration: At some point the protein concentration starts
growing without any light stimulation. This can be explained
by the repressilator oscillatory dynamics, where the protein’s
concentration can grow periodically. Moreover, since the
“blue” protein concentration cannot be decreased directly,
it can grow significantly as can be observed during the time

4090

 200 400 600 800 1000 1200
0

10

15

20

Time (a.u.)

Pr
ot
ei
n
co
nc
et
ra
ti
on

s
(a
.u
.)

0 1400

5

100 300 400 500
0

2

4

6

8

10

12

14

Time (a.u.)

P
ro
te
in

co
n
ce

tr
at
io
n
s
(a
.u
.)

600200

Fig. 5. Tracking the ramps in a six gene repressilator. Similar colour and
line coding is used as in the figure above. In the upper panel, the algorithm
finds it hard to keep both genes at low levels due to the inherent constraints
imposed by the dynamics of the generalised repressilator; hence, the system
cannot follow these ramp trajectories. Note that even though the first period
is followed perfectly, the “blue” protein then starts to grow and we have no
means to decrease its concentration. In the lower panel the ramp is changed
so that the period of time spent at low concentrations is much shorter. This
solves the above described issue.

range between 800 and 1000 time units. It also means that
controlling this system with a larger period will be harder
due to this fast growth of the “blue” protein concentration
induced by the dynamics of the system.

Two ramp reference trajectories. The two ramp tracking
setting is very similar to the two sinusoids tracking setting.
However, in the situation depicted in upper panel of Figure 5
unsuccessful simultaneous tracking of two ramps is occur-
ring. The reasons for such behaviour are the same as above.
The difference is that they are more pronounced in this case
due to large time intervals during which a low reference
value needs to be followed by one of the proteins. Note that
the first ramp is followed almost perfectly by both protein
concentrations. However, after a long time interval of low
reference value, the concentration of the “blue” protein starts
to grow due the inherent dynamics of the system. With a
modified ramp such behaviour disappears as depicted in the
lower panel of Figure 5. Even though tracking is not perfect,
the algorithm manages to find an approximate solution to the
optimal control problem, which is quite remarkable given the
very limited amount of information provided by the input-
output data in such setting.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented a periodic reference
tracking reinforcement learning algorithm. The algorithm is
based on the established Fitted Q Iteration framework, and
inherits its properties. The proposed algorithm makes full
use of the a priori knowledge of the reference trajectory,

which results in better sample efficiency in comparison with
other approaches proposed in the literature. The algorithm is
illustrated on the problem of tracking a periodic trajectory
for the generalised repressilator system. This system has re-
ceived considerable attention from the synthetic and systems
biology communities due to its ability to produce long-lived
oscillatory behaviours. The algorithm was able to find near
optimal solutions to the periodic tracking reference problem,
even when the period of the reference trajectory was smaller
than the natural period of oscillation of the system.

REFERENCES

[1] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control
system: a new type servo system for periodic exogenous signals,” IEEE
Trans. Autom. Control, vol. 33, no. 7, pp. 659–668, 1988.

[2] R. Fonteneau, S. Murphy, L. Wehenkel, and D. Ernst, “Batch mode
reinforcement learning based on the synthesis of artificial trajectories,”
Annals of Operations Research, vol. 208, no. 1, pp. 383–416, 2013.

[3] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
CRC Pr I Llc, 2010.

[4] R. Sutton and A. Barto, Reinforcement Learning, an Introduction.
MIT Press, 1998.

[5] M. Riedmiller, “Neural fitted Q iteration – first experiences with a data
efficient neural reinforcement learning method,” in Machine Learning:
ECML 2005, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2005, vol. 3720, pp. 317–328.

[6] G.-B. Stan, F. Belmudes, R. Fonteneau, F. Zeggwagh, M.-A. Lefebvre,
C. Michelet, and D. Ernst, “Modelling the influence of activation-
induced apoptosis of CD4+ and CD8+ T-cells on the immune system
response of a HIV-infected patient,” IET Systems Biology, vol. 2, no. 2,
pp. 94–102, 2008.

[7] S. A. Murphy, “Optimal dynamic treatment regimes,” Journal of the
Royal Statistical Society: Series B (Statistical Methodology), vol. 65,
no. 2, pp. 331–355, 2003.

[8] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode
reinforcement learning,” J Mach Learn Res, vol. 6, pp. 503–556, 2005.

[9] M. Elowitz and S. Leibler, “A synthetic oscillatory network of tran-
scriptional regulators,” Nature, vol. 403, no. 6767, pp. 335–338, 2000.

[10] H. Smith, “Oscillations and multiple steady states in a cyclic gene
model with repression,” J Math Biol, vol. 25, no. 15, pp. 169–190, Jul
1987.

[11] N. Strelkowa and M. Barahona, “Switchable genetic oscillator oper-
ating in quasi-stable mode,” J R Soc Interface, vol. 7, no. 48, pp.
1071–1082, 2010.

[12] A. Sootla, N. Strelkowa, D. Ernst, M. Barahona, and G. Stan, “Tog-
gling the genetic switch using reinforcement learning,” March 2013,
arXiv:1303.3183.

[13] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.

[14] D. Ormoneit and S. Sen, “Kernel-based reinforcement learning,”
Machine Learning, vol. 49, no. 2-3, pp. 161–178, 2002.

[15] L. Cai, N. Friedman, and X. S. Xie, “Stochastic protein expression
in individual cells at the single molecule level,” Nature, vol. 440, pp.
358–362, 2006.

[16] M. R. Bennett and J. Hasty, “Microfluidic devices for measuring gene
network dynamics in single cells,” Nat Rev Genet, vol. 10, no. 9, pp.
628–638, September 2009.

[17] S. Shimizu-Sato, E. Huq, J. M. Tepperman, and P. H. Quail, “A light-
switchable gene promoter system,” Nat Biotech, vol. 20, no. 10, pp.
1041–1044, 2002.

[18] A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spa-
tiotemporal control of cell signalling using a light-switchable protein
interaction,” Nature, vol. 461, pp. 997–1001, 2009.

[19] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[20] “Joblib: running python function as pipeline jobs.” [Online]. Available:
http://packages.python.org/joblib

[21] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[22] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online]. Available: http://www.scipy.org/

4091

