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Section 3.4

Adapting PR curve to another ratio P/N

It is possible to adapt a given PR curve to another ratio between positives and negatives than
the one adopted to generate it (Hue et al., 2010). Let us assume a PR curve estimated from P1

positives and N1 positives and let us estimate from this curve a new curve corresponding to P2 = P1

positives and N2 6= N1 negatives respectively drawn from the same distribution as the original P1

positives and N1 negatives. For a given confidence threshold, the recall (i.e., the proportion of
positives greater than the threshold) is unchanged since P1 = P2. Denoting by TP1 and TP2 (resp.
FP1 and FP2) the number of positives (resp. negatives) with a score greater than the threshold in
both cases, we have precision1 = TP1

TP1+FP1
and precision2 = TP2

TP2+FP2
. Given that TP1 = TP2 and

FP2 = N2
N1

FP1 in average, it is easy to show that precision1 and precision2 are related as follows:

precision2 =
precision1

precision1 + N2
N1

(1− precision1)
. (1)

Using this formula, one can thus approximate the PR curve for an arbitrary ratio between positives
and negatives from the knowledge of at least one PR curve (corresponding to an arbitrary ratio).
Note that this PR curve can also be derived from a ROC curve and the knowledge of the actual
ratio P

N using the fact that, for any confidence threshold, we have:

precision =
TPR

TPR + FPRN
P

, (2)

and that both TPR and FPR are known from the ROC curve.

Section 5.2

Effect of false negatives on evaluation

To estimate the effect of false negatives on the PR and ROC curves, we suppose that the ranking
of the examples in a test fold is fixed and then compute the change in PR and ROC curve when a
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proportion x of positives are turned into negatives. The assumption under this model is that false
negative examples will get confidence scores distributed similarly as scores of positive examples.
We will discuss the relevance of this assumption below.

Given this modification, the error counts in the confusion matrix are modified as follows, in
average and for a given confidence thresholds (using the notations of Section 3):

Pnew = P − P · x = (1− x)P Nnew = N + P · x
TPnew = TP − TP · x = (1− x)TP FPnew = FP + TP · x
FNnew = FN − FN · x = (1− x)FN TNnew = TN + FN · x

From these changes, we can compute the resulting variations in TPR, FPR, and precision that
define ROC and PR curves:

TPRnew =
TPnew

Pnew
=

(1− x)TP

(1− x)P
= TPR (3)

FPRnew =
FPnew

Nnew
=

FP + TP · x
N + P · x

> FPR (4)

Precnew =
TPnew

TPnew + FPnew
=

(1− x)TP

(1− x)TP + FP + TP · x
= (1− x)Prec < Prec (5)

Inequality (4) is valid as soon as the ranking is better than random. Indeed, it can be shown by
some straightforward manipulations that inequality (4) is equivalent to the following inequality:

TP

FP
>

P

N
,

which is verified for any classifier that is better than random (i.e., a classifier that puts more
positives above the confidence threshold than expected at random).
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