Elasto-Inertial Turbulence in polymeric flows

V. E. Terrapon
Y. Dubief
J. Soria

APS-DFD 2013
Pittsburgh
Acknowledgements

Collaborators

Yves Dubief University of Vermont, USA
Julio Soria Monash University, Australia
King Abdulaziz University, Kingdom of Saudi Arabia

Financial support

• Marie Curie FP7 CIG
• Vermont Advanced Computing Center
• US National Institutes of Health
• Australian Research Council
• Center for Turbulence Research Summer Program
Polymers and turbulence

Newtonian Viscoelastic

Laminar

Transition

Turbulent

Re

10^1

10^3

10^5

Elastic turbulence

Early turbulence

Drag reduction

Elasto-Inertial Turbulence (EIT)

- State of small-scale turbulence
- Contributions from both elastic and inertial instabilities
- Observed over a wide range of Reynolds numbers
- Possibly state characterizing MDR
Polymers and turbulence

- Is drag reduction
 - a viscous and large-scale effect (Lumley)
 - an elastic and small-scale effect (de Gennes)
- What is the nature of EIT?
 - Relative contributions of elastic and inertial instabilities?
 - Characteristics of MDR?
 - Dynamical interactions between flow and polymers?
Polymers and turbulence

Newtonian

Viscoelastic

- Elastic turbulence
- Early turbulence
- Drag reduction

Approach
- Channel flow simulations
- FENE-P model
- Accurate numerics
- Transitional Reynolds numbers

Transition

Re

Laminar

Turbulent

Transition

10^1

10^3

10^5
Transitional viscoelastic flows

Channel flow simulations

Friction factor

- Departure from laminar state at $Re \sim 800$
- Smooth transition from laminar to MDR state
- Flow dynamics controlled by elastic and inertial instabilities
Transitional viscoelastic flows

Channel flow simulations

Friction factor

Re=1000, Wi⁺=24
- Not laminar
- Elastic contributions

Re=6000, Wi⁺=96
- Inertial & elastic contributions
- Turbulent?
- New state?

Isosurface of Q_α invariant
Transitional viscoelastic flows

Pipe flow experiment with PAAm solution

Friction factor

Results of numerical simulations are confirmed by experimental measurements

Samanta et al., PNAS 110(26), 2013
Qualitative flow behavior

Second invariant of the velocity gradient tensor: $Q_a = \frac{1}{2} (\Omega^2 - S^2)$
Qualitative flow behavior

Polymer extension \((C_{ii} / L^2)^{1/2} \)

\[\text{Re} = 1000 \]
\[\text{Wi}^+ = 24 \]
Qualitative flow behavior

Second invariant of the velocity gradient tensor: $Q_a = \frac{1}{2} (\Omega^2 - S^2)$
Qualitative flow behavior

Polymer extension \((C_{ii} / L^2)^{1/2} \)

\[\text{Re} = 6000 \]
\[Wi^+ = 96 \]
Typical structures

Contour of pressure and isolines of second invariant Q_a

- Train of cylindrical Q_a structures of alternating sign
- On each side of sheet
- Associated with polymeric part of pressure
- Correlated with polymer body force f_p
Flow topology

EIT flow – Joint-PDF

- Change from shear flow \((R_a=Q_a=0)\) to mixed flow
- At low \(Re\), symmetric distribution around 2D flow \((R_a=0)\)
- At higher \(Re\), “teardrop” shape similar to Newtonian turbulence
Energy transfers

Turbulent kinetic energy budget

\[\int P \, dV - \int \varepsilon \, dV - \int \Pi_e \, dV = 0 \]

Production
Dissipation
Transfer between elastic energy and turbulent kinetic energy

Transfers of turbulent kinetic energy
Re=1000, Wi+=24

Energy transfer from polymers to flow!

\[P \int V - \int \varepsilon \, dV - \int \Pi_e \, dV = 0 \]
Energy spectrum

$E(\kappa_x)$

$\kappa_x^{-5/3}$

$\kappa_x^{-14/3}$

κ_x^0

κ_x^2

$\kappa_x^{-14/3}$ spectrum agrees well with elastic turbulence and hybrid simulation of Watanabe and Gotoh (JFM 2013)
Our current understanding

Hyperbolic transport equation
\[\partial_t C + (\mathbf{u} \cdot \nabla) C = \ldots \]
- Formation of very thin sheets
- Trains of cylindrical structures

Pressure Poisson equation
\[\nabla^2 p = 2Q_a - \frac{1-\beta}{\mathrm{Re}} \nabla \cdot (\nabla \cdot \mathbf{T}) \]
- Elliptical pressure redistribution of energy
- Excitation of extensional sheet flow

Mixed extensional-shear flow
... = \mathbf{C} (\nabla \mathbf{u}) + (\nabla \mathbf{u})^T \mathbf{C} - \mathbf{T}
- Increase of extensional viscosity (anisotropic)
- Anisotropic polymer body force

- MTFC RESEARCH GROUP
- APS-DFD 2013
Conclusion and future work

Key take-away messages

• EIT is a new state of small-scale turbulence driven by both elastic and inertial instabilities
• EIT could characterize MDR regime
• EIT explains seemingly contradictory phenomena in viscoelastic turbulence
• EIT provides support to de Gennes’ theory

Next steps

• Further characterize EIT
• Understand the exact mechanisms during transition process

Samanta et al., “Elasto-inertial turbulence”, PNAS 110(26), 2013
Terrapon, Dubief & Soria, Proceedings of the TSFP-8, 2013