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ABSTRACT: We analyze the structure of generalized off-diagonal and transverse-momentum
dependent quark-quark and gluon-gluon correlators for a spin-1/2 hadron. Using the light-
front formalism, we provide a parametrization in terms of the parton generalized transverse-
momentum dependent distributions that emphasizes the multipole structure of the correla-
tor. The results for the quark-quark correlation functions are consistent with an alternative
parametrization given in terms of Lorentz covariant structures. The parametrization for the
gluon-gluon generalized correlator is presented for the first time and allows one to introduce
new correlation functions which can be relevant for phenomenological applications.
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1 Introduction

Both the generalized parton distributions (GPDs) [1-7], appearing in the description
of hard exclusive reactions like deeply virtual Compton scattering, and the transverse-
momentum dependent parton distributions (TMDs) [8-11], appearing in the description
of semi-inclusive reactions like semi-inclusive deep inelastic scattering and Drell-Yan pro-
cess, have been intensively studied in the last two decades. These distributions provide us
with essential information about the distribution and the orbital motion of partons inside
hadrons, and allow us to draw three-dimensional pictures of the nucleon, either in mixed
position-momentum space or in pure momentum space [12].

Despite numerous suggestions in the literature [13—-19], no nontrivial model-independent
relations between GPDs and TMDs have been found [20, 21]. However, both the GPDs
and the TMDs appear to be two different limits of more general correlation functions called
generalized TMDs! (GTMDs) [20, 21] which can show up in the description of hard QCD
processes [22, 23]. They depend on the 3-momentum of the partons and, in addition, con-
tain information on the momentum transfer to the hadron. The quark GTMDs typically
appear at subleading twist and in situations where the standard collinear factorization
cannot be applied, see e.g. refs. [24-26]. On the other hand, gluon GTMDs have been
extensively used in the description of high-energy processes like e.g. diffractive vector

1Such functions are also known under the name of unintegrated GPDs.



meson production [27] and Higgs production at the Tevatron and the LHC [28-30] using
the kp-factorization framework. In ref. [31] is also suggested an approximate method for
constraining the unpolarized gluon GTMD. The GTMDs have a direct connection with
Wigner distributions of the parton-hadron system [4, 32-34] which represent the quantum-
mechanical analogues of the classical phase-space distributions and have recently been
discussed to access the orbital angular momentum structure of partons in hadrons [35-38].

The parametrization of the generalized (off-diagonal) quark-quark correlation functions
for a spin-0 and spin-1/2 hadron has been given for the first time in refs. [20, 21]. Here,
we want to extend this study to the generalized gluon-gluon correlator, proposing a con-
venient formalism which allows us to discuss in a unified framework also the quark-quark
correlator. Such a formalism is based on the light-front quantization and on the analysis
of the multipole pattern given by the parton operators entering the two-parton general-
ized correlators at different twists. We first identify the spin-flip number of each parton
operator, defined in terms of the helicity and orbital angular momentum transferred to the
parton. To each spin-flip number we can then associate a well-defined multipole structure
that can be represented in terms of the four-vectors at our disposal, multiplied by Lorentz
scalar functions representing the parton GTMDs.

The various step of this derivation are presented as follows. In the next section we
introduce the definition of the two-parton generalized correlator. In section 3, we describe
the derivation of the parametrization of the generalized correlators in terms of GTMDs. In
particular, we discuss the angular momentum structure and multipole pattern of the two-
parton correlators at different twists. Taking into account also the constraints of discrete
symmetries and hermiticity, we obtain a basis to parametrize both the quark-quark and
the gluon-gluon correlation functions. The results in the gluon sector are given here for the
first time, while the parametrization in the quark sector is alternative, but equivalent, to
that one given in terms of Lorentz covariant structures in ref. [20]. The relations between
these two sets of quark GTMDs are given in the appendix. At leading twist, we also present
the results for the light-front helicity amplitudes, discussing the physical interpretation of
the twist-2 GTMDs in terms of nucleon and parton polarizations. In section 4, we discuss
the TMD limit and the GPD limit of the GTMDs, and provide the dictionary to relate
them with other existing parametrizations of the gluon and quark distribution functions.

In the last section we draw our conclusions.

2 Generalized parton correlators

The maximum amount of information on the parton distributions inside the nucleon is
contained in the fully-unintegrated two-parton correlator W for a spin-1/2 hadron. The
general quark-quark correlator is defined as? [4, 20, 32, 33]

1 d4Z ik-z A z K
WIAP AN = 5 [ 7 NI WAL )

2Note that these are just the naive definitions. Complications associated with e.g. renormalization,

rapidity divergences and soft factors are not addressed here as they do not affect the parametrization.



and the general gluon-gluon correlator can be defined likewise

4
WAL (PR A, Nim) = / (;1754 ¢ () N2TR[GM (= 5) WGP (5) W] [p, A).

(2.2)
These correlators are functions of the initial (final) hadron light-front helicity A (A’), the
average hadron four-momentum P = (p'+p)/2, the average parton four-momentum k, and
the four-momentum transfer to the hadron A = p’—p. The superscript I in eq. (2.1) stands
for any element of the basis {1, s, 7", v"7s, i0"”~5} in Dirac space. The Wilson contours
W = W(-35,5|nm) and W = W(5,—%[n'n) ensure the color gauge invariance of the
correlators [39], connecting the points —Z and 3 wvia the intermediary points —5 +n Neo-n
and 5 +n ")oo - n by straight lines®, where n is a lightlike vector n? = 0. Since any rescaled
four-vector an with some positive parameter « could be used to specify the Wilson contours,

the correlators actually depend on the four-vector

_P2n
- P-n

N (2.3)

The parameters 1) indicate whether the Wilson contours are future-pointing () = +1)
or past-pointing (") = —1). For convenience, we choose the spatial axes such that 7 o &,
and work in a symmetric frame, see figure 1.

k— A2 k+ A2

P—A)2 P+A/2

Figure 1. Kinematics for the fully-unintegrated two-parton correlator in a symmetric frame.

Explicitly, the Wilson contour can be decomposed as

oL B B .
W(=5,5lm) = [ =5, =%, =55 =%, moo, =] [ = S moo, =5 5 100, =]
+ 7yt 2 + S oA - 2
x [5omoe, =5 5 oo, F 5 moo, F 5 5 F (24)

and analogously for W, In eq. (2.4), [aT,a™,d@p;b", b, by] denotes the Wilson line con-
necting the points a” = (a™,a™,dr) and b* = (b*,b,br) along a straight line. Hereafter,
for a generic four vector v* we use the light-front components v+ = (v° 4 v3)/v/2 and the

ans S < T — (] 2
transverse components vp = (v', v°).

3More complicated Wilson contours can also be relevant depending on the process, see refs. [40-42]. Tn
this case, one can still adopt the general parametrization derived in this paper, absorbing the gauge-link
dependence in the distribution functions.



The two-parton correlators defining TMDs, GPDs, PDFs, FFs and charges are ob-
tained by considering specific limits or projections of egs. (2.1) and (2.2). These correla-
tors have in common the fact that the parton fields are taken at the same light-front time
2+t = 0. We then focus our attention on the k™ -integrated version of egs. (2.1) and (2.2)

W/[\FJ\(P’“’U’ET’A,N§ n) = /dk‘_ W/@\(Rk,A,N;n)

1 [dz=d%p ,,.p+ iR Er ) AT
— 1T z 1R -2 A/ _z T z A 2.5
5 [ e o NI WG|, 25)
WA (P A N) = [ d W (P AN )
1 dz™ dQZT ixPt 2~ —ikp-Z AN v z o[z /
— b [ S g K (-5 W YW )|
(2.6)

where x = k™ /P is the fraction of average longitudinal momentum and kr is the average
transverse momentum of the parton. These correlators are parametrized in terms of the so-
called GTMDs, which can be considered as the mother distributions of GPDs and TMDs. A
complete parametrization of the quark-quark correlator (2.5) in terms of GTMDs has been
given in ref. [20]. In the present work, we give for the first time a complete parametrization
of the gluon-gluon correlator (2.6), and provide the dictionary between the corresponding
daughter functions (GPDs, TMDs, PDFs) and other partial parametrizations given in the
literature. Moreover, we present an alternative (but equivalent) parametrization of the
quark-quark correlator (2.5) which emphasizes better the underlying multipole pattern.

3 Parametrization

The correlators (2.5) and (2.6) can generally be written as

dz— d%zp in Pt —ilm 2
W/\O’A:/We F b () N O(z) |p, A) i

=u(p/, A')Mou(p,A), (3.1)

where O(z) stands for the relevant quark or gluon operator, and M © is a matrix in Dirac
space, with O = [I'] in the quark sector and O = pv;po in the gluon sector. A general,
model-independent parametrization of these objects is obtained by giving an explicit form
of M© in terms of the four-vectors at our disposal (P, k, A, N), of the Dirac matrices
(1,7vs,9",---), of the invariant tensors g,, and €,,,,, and of Lorentz scalar functions
X(z,&, /2%’ ET . ﬁT, A?p, ;) where, for convenience, we denoted the set of all parameters n
simply by n;.

Traditionally, one writes down all the possible structures compatible with the Lorentz
covariance, the discrete symmetry and the hermiticity constraints. All the allowed struc-
tures are usually not independent. Using on-shell relations like e.g. the Gordon identities,
one can eventually extract an independent subset. Such an independent subset can be
thought of as a basis for the parametrization of the correlators. Note however that because



of the on-shell identities, one has a certain freedom in choosing the actual basis. Most of the
time, the basis with the simplest structures is chosen. However, such a choice will generally
not display the underlying twist and multipole patterns. As a result, the corresponding
Lorentz scalar functions have often no simple physical interpretation.

Alternatively, one can use the light-front formalism. It has the advantage of unravelling
the underlying twist and multipole patterns. Another advantage is that it is also much
easier in practice, especially when there are many four-vectors at our disposal. The two
methods are of course equivalent. They lead at the end to the same number of independent
structures and can be translated into each other.

3.1 Angular momentum and multipole pattern

The quark spinors 1 (k, A) and gluon polarization four-vectors e#(k, \) have definite light-
front helicity A corresponding to the eigenvalue of J, = S, + L., where S, is the standard
spin operator and L, is the orbital angular momentum (OAM) operator given in momentum

space by
I:z = —1 (ET X ﬁkT)z
e, O 32
T okg Tt oky

When discussing the angular momentum along the z direction, it is convenient to use the
polar combinations ar 1, = a' & ia? for the transverse indices.

It turns out to be particularly convenient to work with a complete set of partonic
operators having a well-defined spin-flip number defined as AS, = X — X+ AL,, where \
(X') is the initial (final) parton light-front helicity and AL, is the eigenvalue of the operator

N
9 9 0 0 (3-3)
=k —k + A —Ap —,
Bokr "ok, T TToAr  Troap
where k = (ky + k;)/2 and A = ky — k; with k; (ky) the initial (final) parton momentum.
For example, one can easily see that the generic structure k' k7> AR AT carries my —

ma + mg — my units of OAM. For the quark operators, we have

AS, =0 S, P, V=, AT, Tt L TER (3.4)
AS. =+1 VR AR ThE (3.5)
AS, =—1 vE AR T (3.6)

where the scalar, pseudoscalar, vector, axial-vector and pseudotensor quark bilinears are
respectively given by

S = Y, (3.7)
P =959, (3.8)
VH =y, (3.9)
AF = Pytysy, (3.10)
TH = ahioc" ys1). (3.11)



For the gluon operators, we have

SATEGET el pEids pod— 5}_,gp{+i;—j}7 5}121"[-1-2';—]']’

AS: =0 _ Z'EQZF{H;*J'}’ _Z'GQZF[H;*J'}’ iFLR;LR, %F{Jr*;LR}’ %FH*;LR]’ (3.12)
AS, = +1 ri+—*R} pl—=R %p{LR;iR}, %p[LR;iRL (3.13)
AS, = —1 D=L} pl—tl] %F{LR;iL}7 %P[LR;iL]’ (3.14)
AS, = +2 DEEER I‘{'*‘R%—R}’ I‘['*‘R%—R]’ (3.15)
AS, = -2  TELEL [‘{+L;—L}7 I‘[‘*‘L%—L], (3.16)
where i, j = 1,2 are transverse indices, e%FQ = ¢ T2 = 41, and where we have defined

LT = 2T [GM(=5) WGP (5) W' [z P, (3.17)

rluvieo} %(PW;P” + [Pk (3.18)

rlvieel — L (puvieo _proiuvy, (3.19)

Interestingly, the twist-2 partonic operators have AL, = 0 leading therefore to a simple
interpretation in terms of light-front helicities AS, = X — \. For the higher-twist partonic
operators, a simple interpretation does not exist since the light-front helicities are usually
mixed with the OAM.

Just like the quark spinors and the gluon polarization four-vectors, the nucleon states |p, A)
have definite light-front helicity A corresponding to the eigenvalue of J, =8, +L.. By
conservation of angular momentum, the amplitude WE/ A is associated with the change of
OAM A/, = AS, — (A" — A). Since ET and A are the only possible transverse vectors
available?, A/, has to coincide with the eigenvalue obtained by applying the OAM operator
(3.3) to the amplitude Wle A- Therefore, the general structure of the amplitude WAO, A 1
given in terms of explicit global powers of kr and 5T, accounting for the change of OAM,
multiplied by a Lorentz scalar function X (x,¢&, E%, ke - AT, 5%7 7;). Since any structure of
the form (kL Agr + krAr)/2 = k- AT, krkr = 12% or ApRA = 5% can be reabsorbed in
the definition of the Lorentz scalar functions X (z, €, E%, k- &T, 5%, 7;), there can only be
i(kT]>\<4§T)z

2 independent structures for each value of Af,. For A¢, = 0, we choose 1 and ,

. . k}?@) AT]:?(L) . ..
while for A¢, = £m with m > 0, we choose 17 and — 7> as the independent explicit

global structures. Powers of the nucleon mass M have been added such that each structure
has vanishing mass dimension. As a result, each amplitude W/(\), A can be written in one of

By definition, N does not have any transverse component. Moreover, one has always the possibility
to choose a light-front frame such that Pr = 6T. This is related to the fact that, thanks to translation
invariance, a parametrization does not actually depend on P apart from a trivial global factor.



the following forms

i(kr x Ar),
Al =0 =g+ Tﬂxﬂ r): g, (3.20)
k A
AL, = +1 Ppry = ?\(IL) P+ Z]\Z(L) P, (3.21)
ks AbL
AL, = +2 D1y = =15 Da+ —15> D, (3.22)
k3 A3
Al, = +3 FR(L) = E? F, + ]@(?)L) EFy, (3'23)

where a, b simply label the Lorentz scalar functions associated with the two independent
structures for a given A/, .

3.2 Discrete symmetry and hermiticity constraints

The hermiticity constraint relates amplitudes with initial and final light-front helicities
interchanged, and changes the sign of the momentum transfer

WOA(PE, A, Nim) = [WR (Pok, —A, Ning)J7, (3.24)

where a* is the complex conjugate of a, and Oy is given by [['|y = [y°T4°] for quarks and
by (uv; po)u = (po; pv)* for gluons. For later convenience, we will use the notation a® to
indicate that the sign of A has been changed in the function a.

For the discrete symmetries, it is convenient to use the ones adapted to the light-front
coordinates [43-45]. The light-front parity changes the sign of the a' component of any
four-vector a and flips the light-front helicities

WPk, A N; ) =W, (P kA, N;ny), (3.25)
where @ = [a*,a™, —a',a?], i.e. Gp(1) = —ap(r), and Op is given by [[]p = [(v!95)T(7175)]
for quarks and by (uv; po)p = i; po for gluons.

Finally, under light-front time-reversal any four-momentum transforms as ¢ — ¢, while
any position four-vector transforms as x — —Z. As a result, invariance under light-front
time-reversal implies

WAk, A, Nim) = [WOL (PR, A N; =), (3.26)

where Ot is given by [[']1 = [(—iy!y?)T*(—iy14?)] for quarks and by (uv; po)t = (iir; po)*

for gluons. In the symmetric frame one has naturally P = P.

The momentum arguments of the Lorentz scalar functions X (z, &, E%, ET . ﬁT, ﬁ%, ;)
are invariant under light-front parity and time-reversal transformations. For later conve-



nience, we then introduce the following notations:

M2 b
- kr(r) A (r)
R(L) =~ 3] P, — U Py,
k? A?
- L(R) L(R)
Druy =4 Pat — 5 Db
_ k2 A3
(R L(R)
FR(L):—M?, Fa— IVE Fa
. N i(kr x Ar), .
58 (8) = s3(-a) + TR g n)
k A
A LR) i/ L(R) )
PR(L)(A) M Pa( A) M Pb( A)?
2 2
D*A (A) _ kL(R) D*(—A) + AL(R) D*(—A)
R(L) M2 a M2 b )
k3 A3
Finy(8) = 55 Di(=4) = 5 Dy(=A)

(3.27)

(3.28)
(3.29)
(3.30)

(3.31)

(3.32)
(3.33)

(3.34)

To each partonic operator in egs. (3.4)-(3.16), we associate cy, cp and ¢t coefficients de-

termining their properties under hermiticity, light-front parity and light-front time-reversal

transformation, respectively

On = ¢ O‘R(L)
Op =cp O‘R(

—L(R)’
L)——L(—R)’

Or =cr O‘R(L)H—R(—L)’

(3.35)
(3.36)
(3.37)

where the replacement rule affects only the uncontracted transverse indices. An explicit

pair of indices OF¥ has to be considered as contracted since it can be rewritten in terms of
6204 and —ie? O%. We chose the factors of i in the partonic operators (3.4)-(3.16) such

that ¢t = +1. For the quark operators, we have

cy=-+1,cp=+1 S, Vi, VR(L),

cn=+1, cp=-—1 A ARL) = pRIE
cy=-—1,cp=+1 %TLR,

CH = —1, cp = —1 P,

and for the gluon operators, we have

guptits pt—t- gup{+i—s} 1 pLRLR
cy=+1,cp=+1 r T 4

ey=+1,cp=—1 _ ieé‘ifﬂ;ij, _ieiTjr[Jri;fﬂ, %FH*;LR]7 %F[LR;iR(L)]

eh=—1,cp=+1  gUTIHi—) PR pHRLI-AL)

en=-1,cp=-1 — Z'eiTjI‘{H;—j}’ %F{-F—;LR}’ %F{LR%iR(L)}.

P—R(D} PERLSER(L) | p{+RL):=R(L)}

(3.42)

(3.43)
(3.44)
(3.45)



3.3 Quark and gluon GTMDs

For a given partonic operator O, the amplitude WAO, A can conveniently be represented as
a 2 X 2 matrix in the proton light-front helicity basis. The amplitudes with AS, = 0 and
parity cp = £1 have the following generic structure

S cpP,
Aber = S E (3.46)
PR CPS
where the row entries correspond to A’ = %, —% and the column entries are likewise A =
%, —%. Furthermore, the hermiticity constraint imposes the following relations
S = CHS*A7 PR = CHCPPEA. (3.47)
Similarly, we have the following generic structure for AS, = +1
Pr+P, S _ Pr—P, D
AX/]-ACP = f R 5 AA/]-ACP = —Cp R - R - RN y (348)
Dr  Pp—Pp S Pr+ Ph
where the hermiticity constraint imposes
S = —CHCPS'*A, Pr = —CHCPp}*zA, PII% = CHCPPSA, Dr = —CHCPE}}A. (3.49)
Finally, we have the following generic structure for AS, = £2
/ - r/ n
Atz _ (PR PR Pr A g PR PR R (3.50)
NN T , ) AN T CP ~ . y ) .
Fr Dr — Dy Pr Dgr+ D},
where the hermiticity constraint imposes
PR = CHCPP;%A, DR = CHCPDEA, D}% = —CHCPEIEA, FR = CHCPFN’;%A. (351)

The 2 x 2 matrices in eqgs. (3.46), (3.48) and (3.50) can be expressed in the more
conventional bilinear form
(o . N MASZ,CP A
Aﬁ/‘%’CP — u(p? ) u(p7 )7 (3‘52)

2P+,/1— ¢2

where M 25 is a Dirac matrix. The general structure of these matrices can be written in

the following form:

M\ 0 iekrAr (K o AL
M‘”—() v (St,;i:ﬂs 2 Sew | +io | 57 P + 37 P

9

P+ M2 M M
(3.53)
B M t—1 [ o iekTAT 0. L kj 0.— Aj 0.—
M= <P+> s <St,’m T % S | +io" s MT Pria + WT P )|
- (3.54)



Table 1. Quark operators entering the definition of the quark GTMDs (2.1), classified according to the
twist order, the spin-flip AS., and the value of the cp coefficient defining the properties under light-front
parity transformations given in eq. (3.36). The integer ¢ in the second column corresponds to the label
of the functions in egs. (3.53)-(3.57) and distinguishes functions associated to different operators with the
same twist and the same values of AS, and cp.

, . AS, =0 AS, = +1(-1)
Twist | ¢
cp=4+1|cp=—1|cp=4+1|cp=-1
2 |1 vt AT — TR+
3 1 S T+ VR ARD)
3 2| iTiR P — —
4 1 V- A~ — THRIL)-

M t,ia + M tib M bia M b

. R+ jekTAT oLt [ k2 A2
o <Sl,‘+_,y5 Er Sl,+> n Lo < R D1’++RD1’+>

t—1 j j
MLt — <M> [,er (kR pLt Ar P1,+> + s ’ie?j (ij pLt 4 AQ.FP/L+>

M2 t,ib 9 W t,ia M2 T tab ’ (3'55)

M\ (K A k A
1,— _ . R T pl,— T pl,— R /1,— R p11,—
M= <P+> [VJF ieg’ (M Pria + Mpt,ib> +77 (M Pria + 37 Prib )

. R+ . kpAr - L4 k2 A2
+za Y5 (Sl’._ _ L€ 51,_> n 10 Ty ( R D1,—+RD1,—>] :

) t,ia 5 M2 t,ib 9 W t,ia M2 T tib
(3.56)
M\ k2 A2 KLk AL A
2,4+ _ R 2+ R 12+ - R TVR ~2,+ TR 2,4+
M2 = (P+> [’Y+ (]\/[2 Dt,m + WDt,z'b> +7" s ZETJ WE Dt,ia + Ve Dt,z’b
. R+ L+ 3 3
10 k’R 2,4+ AR 2,4+ 10 kR 2,4+ AR 2,4+
s (M PRS- SRR )+ (TR R+ SR ER) | (3.57)

where t + 1 is the twist of the partonic operator, and we used the notations e%b = egaibj
and eg(L)j = e;j + ze2Tj In egs. (3.53)-(3.57), the Lorentz scalar functions are labeled
with an additional index ¢ to distinguish functions appearing at the same twist order and
with the same value of AS, and cp. The matrices with AS, < 0 are simply obtained
from eqs. (3.55)-(3.57) via the substitution R(L) — L(R) and leaving the scalar functions
unchanged.

The general parametrization of the GTMD correlators (2.5) and (2.6) is given by
egs. (3.52)-(3.57) and is determined by the twist ¢ + 1, the spin-flip AS, and the parity
coefficient cp of the partonic operator summarized in tables 1 and 2. The relations between
the quark GTMDs in egs. (3.53)-(3.56) and the nomenclature introduced in ref. [20] are
given in appendix A.

~10 -



Table 2. Same as table 1 but for the gluon operators.

Twist | i AS, =0 AS, = +1(-1) AS, = +2(-2)
cp =+1 cp=—1 cp =+1 cp = —1 cp=+1
9 1 5¥F+i;+j _iefﬁpﬂ'ﬂrj _ _ T HRL)+R(L)
3 1 - — r{t—+R(L)} % TILR;+R(L)] —
3 2 _ — [+—+R(L)] 1 r{LR+R(L)} —
4 1 5¥F{+i;fj} _iegeri;fj] - . {+R(L);—R(L)}
4 2 | odTkE—I | jedp{tiii} - - rH+RL);=R(L)]
4 3| Pt 1 +—LR] — — —
4 4| LPLRLR Lp{t—iLR) _ _ .
5 1 - - ri+—-RIL} | I plLR-RD) -
5 9 - - ri—=RO) | Ip{ER-RL)} —
6 1 5§jp—z‘;—j —z’e;zl“_i?_j _— — —R(L);—R(L)

Each GTMD X in this parametrization (3.53)-(3.57) is a complex-valued function.
Light-front time-reversal and hermiticity constraints determine the behavior of these func-
tions under a sign change of A or 1;. The light-front time-reversal constraint (3.26) implies
that

X*(x,& k3, by - Ap, Aim) = X (2, €, k3, kr - A, AF; —n,).

It follows that the real part of the GTMDs is T-even, i.e. feX(—n;) = ReX (7;), while the
imaginary part is T-odd, i.e. SmX (—n;) = —SmX (7;). Finally, the hermiticity constraint
(3.24) implies that

(3.58)

X*(«T,E, E’%a ET : &Ta 5%7771) = iX(CE? _57 E%a _ET . AT; &%7772)7 (359)

where the sign depends on the particular values of cy, cp and AS, according to egs. (3.47),
(3.49) and (3.51). The GTMDs can be sorted into two classes X and X_ depending on
the sign in eq. (3.59). The complex-valued GTMDs can then be written as

Xy =X +iXP, (3.60)
X_ = X% 4+iX*, (3.61)

where X¢¢ = ReX |, X = SmX,, X = ReX_ and X = ImX_ are real-valued
functions with definite symmetry under sign change of A (first superscript) and 7; (second
superscript). An even (or symmetric) function is labeled by e and an odd (or antisymmet-
ric) function is labeled by o. In the quark sector, the functions which belong to the class X
are 811, S Sy, Sy B Pad™ Pia s Pay® 521 St Pata s Py .
Pt{’l;;q, P;ﬁ’;;q, D;’l_a;q, D;’l_b;q, where t = 1,2,3. In the gluon sector, the functions which
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0,+;9 o049 0,459 ¢0,+9 @O0+i9 o049 ¢0,—59 g0,—9 0,—ig
belong to the class Xy are S, 5.1, 937347 33" O340+ I3 » Ot1a > Or1s" » 933d >

0,—;9 0,+;9 0,+;9 0,+;9 0,+;9 0,—39 0,—:g 0,—;g 0,—;g 1,439 1,+;9 1,—9
53,3b ) Pt,lb ) P3,2a ) P3,3b ) P3,4b ) Pt,la ) P3,2b ) P3,3a ) P3,4b ) St',lb ) St',Qa ) St',la )
1,—9 pl+g pl+tg p/l+ig pl+ig pli—g pli—g p/li—g p/l,—ig 1,+;9 1,439 1,—9
St’,2b ) Pt’,la ) Pt',Qb ) Pt',lb ) Pt',2a ) Pt',lb ) Pt’,2a ) Pt’,la ) Pt’,2b ) Dt',Qa ) Dt’,?b ) Dt’,la )
1,—9 2,+;9 2,439 2,+39 2,439 12,439 12,439 2,+;9 2,439 _
Dt’,lb ) Pt,lb ) P3,2a ) Dt,la ) Dt,lb ) D3,2a ) D3,2b ) Ft,lb ) F3,2a ; where t = 1,3,5 and
t' = 2,4. All the other functions belong to the class X _.

3.4 Quark and gluon light-front helicity amplitudes

For the two-parton correlators at leading twist, it is also convenient to represent them in
terms of helicity amplitudes. We will restrict ourselves to the region x > £ where the
GTMDs describe the emission of a parton with momentum k; and helicity A from the
nucleon, and its reabsorption with momentum k; and helicity \'. Any parton operator O
occurring in the definition of the parton correlators (2.5) can be decomposed in the parton
light-front helicity basis as follows O = > A\ OV AOxa. The light-front helicity amplitudes
are then defined as the matrix elements of Oy in the states of definite hadron light-front
helicities [46]

Hprx ax(Pk, A, Nm) = (0, N[Oy (k, Nimi)[p, A), (3.62)

and depend in general on all the four-vectors at our disposal.

At leading twist, the spin-flip AS, associated with the partonic operator can be iden-
tified with the difference of light-front helicities of the parton between the final and initial
states, i.e. AS, = X' —\. Then, by conservation of the total angular momentum, the orbital
angular momentum transfer to the parton is simply given by Al, = (A—X) — (A’ = X). As
a result, to each value of the spin-flip AS, one can associate at leading twist a well-defined
state of polarization for the active parton [6]. In the quark sector, %V* corresponds to
the unpolarized quark operator, %A* corresponds to the longitudinally polarized quark
operator, and %TR(LH correspond to the transversely polarized quark operators

;/w P i 7y () oi%+% + O‘i%_% =Y, (3.63)
;/W plw Pt 2" —ikr-Zr At(2) = Oi%+% — O‘i%_% =01, (3.64)
;/W pirP T2 —iky Zr TR (2) = 2(91%7% =07, (3.65)
2/ dgf)szP"“ T =200, ) = OF, (3.66)

Similarly, in the gluon sector, 5;2 I'*+%+J corresponds to the unpolarized gluon operator,

—iegfﬂ';ﬂ' corresponds to the longitudinally polarized gluon operator, and —I+(L)i+E(L)
correspond to the transversely polarized gluon operators
dz= A%z . Pt o i it
/(27r)3 giwPtz" —ikp Zr 5;21"-*‘17—&-] (,z) = O-g&-l—i—l + (’)31_1 = (’)%7 (3.67)
dz= d?%zr I
/ T)?)T esz+z —ikp-Zp z’eljjwl"ﬂ,]-l-(z) = O—g&-l—l-l — 031_1 = (9%7 (3.68)
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/ Memm “hr I pERRY () =209, =08 (3.69)

(2m)3
dz"d RT ixPtz——ikp-Z L;L —
/(271_)6 T TF+ +( ) *20314_1 :O%L’ (370)

where for the gluon polarization vectors we used

1 1
€1 =———(1,3,0), €-1 = —(1,—4,0). 3.71
n=-7 (1,,0) =7 ( ) (3.71)
Denoting the matrix elements of these leading-twist operators as follows
¥, N0 Ip, A) = U™, (3.72)
', N0} |p, A) = L9, (3.73)
', N|OFp, A) = T (3.74)
¥, NOF p, A) = T,—fg : (3.75)
we obtain the following matrix representation for the light-front helicity amplitudes
1 1 4,9
Liyae 4 19 L
o - (2L 20T 79

1 g, 1
3 Tf 9 ‘i(Uq,g — L%9)

where the row entries are \' = +.J, —J and the column entries are likewise A\ = +.J, —J
with J = % for quarks and J = 1 for gluons. Each inner block in eq. (3.76) is a 2 x 2 matrix
in the space of nucleon light-front helicity, as specified in eqs. (3.46), (3.48) and (3.50).

Using the discrete symmetry and hermiticity constraints discussed in section 3.2, one
obtains the following properties for the helicity amplitudes:

Hermiticity HA/)\/7A)\(P,]€,A7N; 77,') = HX}\7A/>\/(P,]€, —A,N; 771'), (377)
LF Parity  Hayvan(Pok, A N3n) = H nry_a A(Pk, A, Niny), (3.78)
LF Time-reversal — Hyn ax(Pk, A, Nini) = (—1)2% Hyo an(P k. A, N;—n;). (3.79)

Explicit calculation gives for the quark light-front helicity amplitudes at twist 2:

1 . i(kp x Ar) .
q _ = SO+ a4 S01 7‘1> + WA A AT )z (SO 39 + 507 7‘1) 3.80
il 2 ( Lla Lla M2 1,1 1,1b ’ (3.80)
1 [ . Z(ET X &T) 0 0.—:
Hq = — <SO+ 4 SO’ ’q> A ShE S (S 1349 S 7‘1) , 3.81
. L,la Lla M2 1,1b 1,1b (3.81)
L[ kL POt , ; A pots 0,—;
HYy oy o=y |oap (P = AY) = 57 (P - Pwt) | 6
1 [kr [ 50+ AR ( po+
H? — - |28 (p ia . po, ,q> ( ia | pO; ,q) 3.83
Aida4deg 2| M\ D T (VESERUNMRERTAYA (3.83)
1 -kR L /17 ’ AR [ /17 )
Hi%%ﬁ%*% T2 |M (Pl 10"+ P q) M ( Vi Py q) ’ (3.84)
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1 —kR 17_7 /17_; AR 17_y /17_;
Hi;g 1L 175\ (Pl,laq - P, ‘1) +—r (Pl,lbq - Py, q) , (3.85)
2722 2 L
]. I 1.—: Z(ET X &T)Z 1.—:
Hq — S s + S » 34 , 3.86
+%+§7_%_% 2 1,1a M2 1,16 ( )
1 [ k2 o A2 .
H? = |-& pb=ay TR pl=a) 3.87
IR U VR R VR BT (3.87)

Similarly, for the gluon helicity amplitudes at twist 2, we have

il 0,+; 0,—; Z(ET X &T) 0,+; 0,—;
2 th+3
1| 0,4 0,—; i(kr x Ar) 0,4 0,—;
1 [ KL (50,45 0,—; AL (504 0,—;
Hy 1,57 (Pl,lag - Pl,lag) 3 <P1,1bg - P1,1b9> » (3.90)
2th=3 L
Hg — } kﬁ <P07+;g + P07_;g> + ﬁ (P07+;9 + P07_§9> (3 91)
_§+1é+1 2| M \"Lla Lla M O\ L1 1,1b ’ :
HY _ 1 [ k?% (D2,+;g + D/27+;g> 4 A%% (D2,+;g +D/2,+;g) (3.92)
+%+17+%,1_ 92 | M2 1la Lla M2 1,16 1,1b ) :
HY _ 17 k?% D2,+;g D/27+;g A%% D2,+;g D/2,+;g
11,77 M2< Lla ~ “lLla )+M2( L~ P ) , (3.93)
2th=3 L
Hg — _ 7P’ e 7P7 ) 3'94
Pl T T (e T e | (3.94)
L[ Kk ety Dk o
Hi%-&-lﬁ-%—l =5 |ap g A (3.95)

4 Projections of GTMDs onto TMDs and GPDs

4.1 TMD limit
The forward limit A = 0 of the correlators W, denoted as &,

o) (P z, kp, Nyn) = WA (P2, kr, 0, Nin)
1 dz— d2ZT e Pt 77-ET i —
_ 2 [ @ AR Pt —ikirEr (p A (—2)\T EPA‘ 41
2/ (271')3 € < 3 W}( 2) Ww(Q)’ y >z+:O7 ( )

YR (P ko, Nimg) = W (P Er, 0, Noy)

bl
2t=0

(4.2)

1 dz— d%zp ixPT 2= —ikm-2 / vz oz /
- xp+/ 2n)3 ¢ TE(P N 2T [GM(—=5) WGP (5) W] [P, A)

gives the quark-quark and gluon-gluon correlators which are parametrized in terms of
quark and gluon TMDs, respectively. These TMDs can be seen as the forward limit of the
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GTMDs. For A = 0, the imaginary part of the GTMDs belonging to the class X and the
real part of the GTMDs belonging to the class X_ vanish because they are odd under a
sign change of A, see egs. (3.60) and (3.61). In addition, the functions in egs. (3.53)-(3.57)
which are multiplied by a coefficient proportional to A, i.e. those labeled by b, do not
appear in the correlator ® any longer.

In the quark sector, we find that in the TMD limit up to twist 4 only 32 distributions
survive, in agreement with the results of refs. [20, 47]. We provide here the relations of
these TMDs with the GTMDs:

£ = Re [S‘fjf(a:, 0, k2.0, 0)] , L9 _gm [Pﬁ’f;;q(:p, 0,%2.,0,0; 77)] . (4.3)
g1, =Re {S’?ﬁq(:ﬂ, 0, k2,0, 0)] , gl = Re [Pﬁ’l_a;q(x, 0, E%,0,0)} , (4.4)
h = 1Re [Sl’la’q(a:, 0, k2,0, 0)} , hi? = —Sm [Pf;lg‘Y(x, 0,%2.,0,0; 77)] . (45)
hid = Re [Pfl’a_;q(x, 0, /2%,0,0)} : Bt = %e[ L (2,0, K2, 0, 0)] , (4.6)
el = Re [ngf(a:, 0, k2,0, 0)] , k! = —Qm [ng;;q<x, 0, k2.,0,0; n)] 4
el = —Qm [Sg”ga;q(x, 0, k2,0, O;n)} , et = —Qm [Pg’ga;q(x, 0,k2,0,0; 77)] , (4.8)
fh ==L om Sy, 0,8,0,00)] , f41 = Re[ P} (5, 0,8,0,0)] (4.9)
11— _qm [Pglg?q(x,o,i%%,o,o; 77)] . ff9=3%m [D”q(z 0,%2,0,0; 77)] (4.10)
gh=1Re [S%’la (z,0, k2, 0, 0)} gt = —\sm[PQ’la’q(x 0,k%,0,0; 77)] (4.11)
= Re 'Pgli;;q(x,o,ﬁ%,o,())} , gE1 = Re D%’l_a’q(x,O, i2.,0,0] (4.12)

BT = —Sm | S980(w, 0,8, 0,0m)] Byt = Re| P (w,0,,0,0)] | (4.13)
B = Re| S91.(2,0,1%,0,0)] | B = Re| P (2,0,7,0,0)| (4.14)
£ =Re ngf (z,0,%2,0,0) ] fhl = —3m [Pg?;q(x,o,l%'%,o,o; 77)] . (4.15)
g, = Re| S5, (2,0,1,0,0)] , gy = Re| PYT9(2,0,k2.,0,0)] (4.16)
B = § e 831,72, 0,5%,0,0)| Byt = ~Sm| Py (@,0,,0,0;m)] , (4.17)
bt = Re| P} (2,0,73,0,0)] hitl = Re| D7(2,0,82.,0,0)] . (4.18)

The 12 TMDs given by the imaginary part of the GTMDs are T-odd, while the other 20
given by the real part of the GTMDs are T-even. Using the definitions [48]

—»

W = hip+ oy i (4.19)
/ E%“ 1
q __ q q
97 =97 + 33 97 (4.21)
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k% hiq
2M2 37

hi = hi, + (4.22)
together with the results in appendix A relating the quark GTMDs introduced in this work
to the ones of ref. [20], we reproduce the TMD limit of the quark GTMDs given by the
eqs. (4.3)-(4.34) of ref. [20].

In the gluon sector, we find 8 TMDs at twist 2, 16 TMDs at twist 3, 24 TMDs at
twist 4. The correlators at twist 5 and twist 6 are copies of the correlators at twist 3 and
2, respectively. At each twist, half of the TMDs are T-odd functions and half are T-even
functions. We will discuss explicitly the parametrizations for the gluon correlators at twist
2 and at twist 3, comparing with the results derived in refs. [47, 49].

We introduce the covariant light-front spin vector S* = [S”P—]\;, —SH%,S}], which
leads to the linear combination [18]

| ) 148 =S o
QHPI (P, kr, Nin;i|S) = Tuq)iip (P, z,kr, N5n;) + TH QM (P a, kp, Nin;)

St

3

: o S . -
QT (P,x, kr, N3ymi) + 7}% PEPO(P a, kp, N3 1;).
(4.23)
Using the conventions of ref. [18], the twist-2 gluon TMDs parametrize the gluon correlators
as

(ET X §T)z

(5iTj<I>+i§+j(P,m, ET,N;7]¢\S) = f{(z, l;:?p;n/,;) — i #’(m,l_f'%;n/,;), (4.24)

o - . kr- S -
—ied O (P, kr, N;ni|S) = S) g7 (x, k2 m;) + TM T gl (z, k,m), (4.25)

+RAR(p o T KR Lo, 72 krep” o g0
TP, @, kr, NymilS) = o7t b (@ ks i) — 5 Sy oy (@ ks i)
kg RST . kp Rkr (ET . Sf'T) L R
- 2]\2 h?T(l‘vk%;ni) - = M3 hl’lg(ka’%anl)
(4.26)
The relations between the leading-twist gluon TMDs and GTMDs read

7= Re [S?;ltjg(x, 0,k2.,0,0; m)] , 19— _gm [Pﬂfa?g(a:, 0,k2.,0,0; m)] (427
gl = Re[S)1, 7@, 0.3, 0,0m) | glp = Re[ PV 0@, 0K, 0,00m) | (428)
hY = Sm [Pﬁ’f;g(x,o, k2.0, o;n,,;)} . R =2%e [Df;ltjg(x,o, k2.,0,0; m)} o (4.29)
hif = 29m[DEE(@,0.83,0,0im)] ,  hif = 29m | F{ @, 0,85, 0,0:m)] . (4.30)

2
where h{ = h{, + % htﬁ . The twist-2 gluon TMDs are related to those introduced in
ref. [49] through
fi=aG, o =—Gr, (4.31)
gy, = —AG, g7 = —AGT, (4.32)
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h{ = —AHry, hi? = H*, (4.33)
1 il
hf = —-AHE, hif=—AHz. (4.34)
For the gluon correlators at twist 3, we follow the conventions of the corresponding

quark correlators [48] at the same twist order and with the same values of AS, and cp (see
tables 1 and 2). As a result we have

{+—:+R} M VKR 19, 72 i L9 k2
o1 (P o by, Nyl S) = o7 | g £ @ ki) (@, k73 m:)
(krk) — & k2. 617) 5T i,
+ eTSTfT(x kT, i) + Mg A f%g(a:, k%;m) ,
(4.35)
=R g kp, Nyii| ) = kfRng(x k3 m:) + i S Fi¥ (ks i)
9 7 P+ M y vy Th M H L s vy e
(kpk). — L k2. 617) )57 4
+ T Fl(w, k) + M§ o Frl(x, ks |
(4.36)
LR4R > P kr lg,.
LQLRAR(P g fop, N3y1pi| S) =57 T g g(:Eva;ni)+MS||ng(l‘akT§77i)
, (krk), — L k2617 S) ,
+Sg g (z, ki) + e L gz, k3m) |
(4.37)
1 g {LR;+R} iM | T g/ 2. kr o 19, 7o
5 P (P, a, kr, N3] S) = T M 7 (kaTani)"i'MSHgL (z, k;mi)
L (krky — LK2.000) S5 |, -
+SR9%(957 k%ﬂ%) + MQ L ng(l', k%»m) .
(4.38)
The relations between the twist-3 gluon TMDs and GTMDs read
= —5 51N 1 x77477;7]7: ’ = Jie s x77477;7]i ; .
4 = —19m| S8y (2,0,k%,0,0 9 = Re | Py1 (2,0, k,0,0 4.39
19— _Gm [Pg}ijg(x,o, E%,o,o;m)] . f9=9%m [Dl F9(z,0, 82,0, 0; m)} , (4.40)
P = 5 Re[S35:0(@,0,8,0,00m)] . PO = Sm R (@,0,73,0,00m)], (441)
Flo — Re [pgg;;g(x,o, k2.0, o;m)] : FL9 = —Re [D;;;a;g(x, 0,20, 0; m)} o (4.42)
ggF = Le [52’15;‘7(9@, 0, k2.,0,0; m)} , gig — —Sm [Pg’;;g(x,o, k2.0,0; m)} . (4.43)
éRe[sz vg(x,o,l%’%,o,o;m)], %e[DQv 79(33,0,/5%,0,0;7,1)], (4.44)
ggp —13m [sg;;f(m, 0,%2,0,0; m)} : gig — Re [Pg,bgg(x,o, k2.,0,0; m)} . (4.45)
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gr? = Sm| Pyl (2, 0,k2,0,0; m)} . g = %m[D%’ 9(x,0, k2, 0,0; m)} . (4.46)

The twist-3 gluon TMDs are related to those introduced in ref. [49] through

9 — 1 3m[AGs], 1 =3 e|G3 ], (4.47)
0=~} om[ac|, 70 = 19m|AGH| | (4.48)
f4 = =3 Re[AGs7], fH9=—5Sm [G3L ; (4.49)

Jrf = =4 me|AGH |, 0 = 1 Re[AGH |, (4.50)
g9 = L Re[AHss], g =} Sm|H3|, (4.51)
917 = § Re| A | 97" = § e | MMz | (4.52)
% = L Sm[AHy] | g9 = —1 e [Hﬂ , (4.53)
917 = S om|Am |, 97° = § Sm|AHy | (4.54)

4.2 GPD limit

Integrating the correlator W over ET, one obtains the parton correlators denoted as F
(] _ 2 ] i )
Fy\(Pox,A,N) = [ d®kr Wy, (P, x,kr,A,N;n)

1 [dz™ . p+ , o -
:2/22;6“1: AN (5T WY () Ip, A), (4.55)

FY3P (P, A,N) = /koTWK}XpU(P,:E,ET,A,N;m)

1 T - - -
— v [ o T N [G (- ) WO ) W D)

z Pt
(4.56)

The integration over ET removes the dependence on 7;, and we are left with a Wilson
line connecting directly the points —% and %- by a straight line. As a consequence,
all the T-odd contributions given by the 1mag1nary part of the GTMDs disappear, and
the generic structures parametrizing the correlators (4.55)-(4.56) can be obtained from
egs. (3.20)-(3.23) as

/ d*kr S = / Aky Re Syiq = Sz, &, AZ), (4.57)
A kr - A
/deTPR(L):M/d2kT T T%eptza"_%eptlb
M A2
_A .
R(L) Ptz( a‘ga A%‘)v (4'58)

o UANSN2 2
2(kr Azl) K A7 Re Dy iq + Re Dy iy
(A%)?

AL
R(L
/d2kT Dy = Mg)/d%T
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_ Ak

M3

ft,i(xa g? &%)

(4.59)

T)
Re F 10 + RNe F

(4.60)

We refer to [20] for the complete list of quark GPDs up to twist 4, where the results

at twist 3 in the chiral-odd sector and at twist 4 have been derived for the first time, the

results at twist 2 follow the common definitions [6], and the definitions at twist 3 in the

chiral-even sector can easily be related to the set of GPDs introduced in ref. [50].
relations between the standard GPDs and the GPD limit of our GTMDs read:

- at twist 2, in the chiral-even sector

1 :
= e (St 426 P0T] . Bt =2/ T @R,
~ 1 _ . 24/1—€2 .
Hq — |:S(1J:1 3q + 2&' 7317 7qi| , Eq — f P:(l)»l )q;
V1—¢ § ’
- at twist 2, in the chiral-odd sector
1 A2
Hq — 817_7q 4 /1 _aq 7T 'D17_’q
2 _ _ _.
E% — [7)1171 oy 57)/17 vy 21)%71 #1} ’
V1—¢&2 ;
74 = —20/1- €Dy,
~ 2 _ _.
E;{ = ° [5 731 T oy Pll, 4 o¢ Dih 7(1} :

i@

- at twist 3, in the chiral-even sector

Ha = \/11_ = S+ 26 P
iy = g [sh v Pl
HY = 11_ = :Sg:;r;q 4262 773;;”’} ?
7 = 11_ &2 :ng’l_;q & ngl_;q] ’

- at twist 3, in the chiral-odd sector

1
HYp = ———— | Sy — 4Py
2y T2 21 4Py

~19 —

A2
q T nl+iq
+ =L D,

Eq _ 2\/@7)0 —hq7
Ef = —-2\/1-€Py, 7,
Bl = 2\/@?0 i
By = —2\/1- 2P

)

The

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)
(4.68)
(4.69)

(4.70)

(4.71)



2

EgT _ 4 |:7)1 ,+3q + gpél Hiq +92D 7+7Q} , (472)
Vi-¢
HY, = —2/1- Dy, (4.73)
~ 2 1 1, 1,4;
EgT:\/ﬁ [ePy 4+ Pyl 4 26 DY) (4.74)
H = L sy Poq 1+ =L =, LDy, (4.75)
2/1—¢ | > M2
2 .
E/q - |:731,—,(1 +€73/1,—,q + 2D17—7Q:| (476)
27 21 ]
Vi-¢
Y = —2/1 - Dy, (4.77)
- 2 1 - 1,— 1,—;
By = \/17_7§2 {5 o1+ 7), 1426 Dy q} ; (4.78)

- at twist 4, in the chiral-even sector

1 . . )
H3 = = & B St P> B VIEEY: (4.79)
- 1 0,—; 0,—; =g 21 -8 o
= [Sor0 + 2P By =2 P (480)
- at twist 4, in the chiral-odd sector
1 A2
q __ 17_7q 1 >34 7T 17_7q
i = 5= [S — 4P+ L D; ] , (4.81)
2 1,— 1,—, 1,—;
Bl = = [PaT + P+ 2Dy (4.82)
Ay = —2/1- 2Dy, (4.83)
- 2 . _ _.
Bl = s € Py + PR+ 26Dy (4.84)

Using the results in appendix A to relate the quark GTMDs introduced in this work and
the ones of ref. [20], we reproduce the GPD limit of the quark GTMDs given in eqs. (4.47)-
(4.78) of ref. [20]. Using the hermiticity constraint (3.59) for the GTMDs, one derives the
symmetry behavior of the GPDs under the transformation £ — —&. In the quark sector,
the 10 GPDs Ef, HY, Hy, By, By, Hyy, BEdyp, HYp, Eyy. and El,. are odd functions in €,
while all the 22 other ones are even in &.

At twist 2, the gluon generalized correlators in the GPD limit are parametrized as [18]
iocTHA

2z TH g
+ g B 60 [ ulp.A),

SAE I (Pyz, A N) =

zpﬁ H(p/, A/) 'Y+ Hg(‘T’ 57 t)

(4.85)

o + 7 Aty = ]
T(p, ) |75 B9 (0,6, 0) + 502 B, 6,0) | ul, ),
' ' (4.86)

—iep Fyi P (P, A, N) = 5Pt
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1 A+Pgr— PtAp
9P+ 2MP+

FEHR(P o AL N) =
yFTAR — A+7R

xa(p, A) o™ H (€, 1) + —— 1 Bj(@,6,1)
TAR— AT vt Pr — Ptyg -
P RMz r gy Hi(x,8,t) + WE%@,{J) u(p, A). (4.87)

The relations between these twist-2 gluon GPDs and the GPD limit of our GTMDs read:

- in the chiral-even sector

1 )
H = gy [Stro 2P, BT =2/T- P, (4.88)
- 1 _ - 2¢/1—¢&2 _,_.
HI — [S =9 4 25730 9} ’ E9 — 7€ ’P?’l 9. (4.89)
V1-¢2 3 ’
- in the chiral-odd sector
HS — — 1 7327-1‘79 45 D/2 +;9 + AT JT_~2 +;9 (4 90)
Y M2 ’ ‘
4
g _ - 79 /2 +’g 2 s 3q
B = \/@[D +EDHT L2 F ] (4.91)
Y =4y/1- & Ff, (4.92)
4 9 .
g +ig /2 +,g 2,439
roJice [61? + Dy 2 Ty ] : (4.93)

The gluon GPDs at twist 3 are introduced here for the first time. For the gluon correlators
at twist 3, we follow the conventions of the corresponding quark correlators at the same
twist order and with the same values of AS, and cp (see tables 1 and 2). Explicitly, the
gluon GPDs at twist 3 can be defined according to

M +Ap — A*
F/it\ ,+R} (P+) (p A/) |: +R Hg ( ’é’t) + W EgT(337£,t)
PtAR — ATPy - + Py Pty -
+ RM2 I HQQT(‘T7§)t> + W EgT(xvga t):| ’U,(p, A)a (494)
M +Ap - AT B
F/[\TA ,+R] (P+) (p A,) |: R Hg (ZL‘,f,t) + W EgT(xagat)
P+AR - A+PR +PR PJD)/R
e Hp (2, 6,1) + TEST(:E 3 t)] u(p,A),  (4.95)
M ytAR — AT
3 FI[X€/]\? +R} (P+) (p A,) |: o H/g ( 7£7t) RQ—MW ( 5 t)
P+AR - A7 Pr g TP — Pt " £
2 (@, &,1) + — 7 B (€, t)] u(p, A), (4.96)
M . . yFAR — AT
3 F/‘E’I;XR +R} (PJ,-) ﬁ(p/ A/) |:ZU+R H;%‘(x7§7t> B;Tfm ( € t)
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L PTAR - AP 5

9 (2 v Pp — P+’YR
M2

M

&0+ (2,6, t)] u(p.A). (4.97)

All the gluon GPDs at twist 3 are chiral-odd functions. The relations between these GPDs
and the GPD limit of our GTMDs read:

1 1 A2 1,
Hip = N [s — 4Py + 5 Dy +g] , (4.98)
9 .
g _ _ = ,+7g /1 +,g 1,49
A, — _2@731,%5,’ (4.100)
~ 2 .
2T 2 271 ?
V1=¢§
A [5 — 4Pyt + =L A LDy *’9] (4.102)
P N ] 2722 | ’
2./1 — 52 M
_ 2 .
oy . — [P 59+ EPystI 4 2D1’+’9} (4.103)
2T 2,2 2,2 )
V1-¢2
HgT =-2/1—¢2 D%:;‘ZQ’ (4.104)
~ 2 .
B = s [Py + Pyl + 2D (4.105)
H/g _ 1 8 7 —9g 457)/17 ) + AT‘ D 9 -9 (4 106)
2T o /1 = ‘52 2,1 M2 ’ '
2
g - 1 —3g 11 -9 1 —
B = Py + €T 25 (4.107)
HY, = _2\/@@17—;97 (4.108)
- 2 .
g o_ 2 { 731’_’9 +7;/1,—,g + ot Dl,—,g} (4.109)
2T 21 o ’
V1—§€2
7' 1 , -9 _ /1 —,g A% 1,—,g
El9 — L |:7)272 94 é-,Pll, 94 2D;72_;9:| , (4]_1]_)
2T /1 — 52 s
HY = —2/1- €Dy, (4.112)
R 2 YTy 1777 1777
S = e [57322 94 Py Y+ 26Dy g} : (4.113)

From the hermiticity constramt (3.59), one finds that the 9 gluon GPDs EY, Hy., EY,,
oy, EgT, EY., HY., Ef. and H o are odd functions in &, while all the 15 other ones are

even in &.
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5 Conclusions

We discussed the parametrization of the generalized off-diagonal two-parton correlators in
terms of generalized transverse-momentum dependent parton distributions. Such distri-
butions contain the most general information on the two-parton structure of hadrons and
reduce in specific limits or projections to the GPDs, TMDs and PDFs, and form factors
accessible in various inclusive, semi-inclusive, exclusive, and elastic scattering processes.

The structure of the generalized two-parton correlator has been analyzed by proposing
a new method which can be applied in general to any matrix element of partonic operators
and allows one to unravel the underlying spin and orbital angular momentum content.
Such a method is based on the light-front formalism which provides the most natural and
practical tools when dealing with distribution of partons in a fast moving hadron. We first
give the classification of the parton operators in terms of i) the spin-flip number, defined
in terms of the change of the light-front helicity and orbital angular momentum of the
partons between the initial and final states, ii) the properties under transformation by
discrete symmetries, such as light-front parity and time-reversal, and iii) the constraints
from hermiticity. When calculating the off-diagonal matrix element of the parton operators
between hadron states with given values of the light-front helicities and four-momentum,
we can associate to each correlation function a unique multipole structure, related to the
orbital angular momentum transferred to the hadrons. Such multipoles are then expressed
in terms of powers of the average transverse momentum of the partons and the transverse
momentum transferred to the hadrons, multiplied by Lorentz scalar functions representing
the GTMDs.

The method is applied simultaneously to the quark-quark and gluon-gluon correlation
functions. In the quark sector, we obtain an alternative, but equivalent, parametrization
to the one proposed in ref. [20] in terms of Lorentz covariant structures. The results for the
gluon sector are presented here for the first time. We also discussed the GPD and TMD
limit of the GTMDs, providing the relations with other existing parametrizations up to
twist 3. The main advantage of the new nomenclature we propose is to have a transparent
and direct interpretation in terms of the spin and orbital angular momentum correlations
encoded in each functions. This becomes particularly evident at leading twist, where the
spin-flip number of the partonic operator can be identified with the difference of light-front
helicities of the parton between the final and initial states, and therefore can be directly
associated with a well-defined state of polarization of the parton. As outlined before, the
proposed framework can be systematically used for any matrix element of partonic operator
and therefore provides a useful framework for the definition of new correlation functions
that can be relevant for future phenomenological applications.
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A Relations between different definitions of quark GTMDs

In this appendix, we list the relations between the quark GTMDs introduced in ref. [20]
and the nomenclature adopted in this work.

We start with the parametrization of the quark correlator (2.1) involving operators
with AS, =0 and ¢p = +1 (third column of table 1):

- at twist 2, for V', we have

. 1
SO»+;q — Fl 1 Al
1,1a m ) ( )
. 1
07+1 pr—
Sl,lbq - m F1,47 (A2)
PO 1@ p ¢ AL A3
1,la — § 1,2 + m IM?2 1,45 ( . )
. 1 kr- A
P = ——— P +V1-F3— S _fbrborp ., (A.4)

Wi-e Jiog 2\

- at twist 3, for S, we have the same relations (A.1)-(A.4) with the replacement
(S0, SPe, POy, PRy v {89709, S99, P9, Py i) on the left-hand side
and {F171, FLQ, F173, F1,4} — {EQJ, E272, E273, E274} on the right-hand side;

- at twist 3, for 3 TX%, we have the same relations (A.1)-(A.4) with the substitution
07+7 07+7 07+7 07+7 07+7 07+7 07+7 07+7 1
{Sl,laq7 Sleq, P1,1aqa Pl,lb A {Smaq, 5’2’2bq, Pmaq, P2’2b 71 on the left-hand side
and {Fl,h FLQ, Fl’g, F1?4} — {H2,17 HQ’Q, H273, H2’4} on the right—hand side;

- at twist 4, for V~, we have the same relations (A.1)-(A.4) with the replacement

0,439 Q0,+59 pO0,+;¢ pO0,+;g 0,+;9 <0,+q 0,+;q 0,+;9 :
{814 St s Prigs Priy = {830, Sz s P3ig™s Paly } on the left-hand side

and {F1,17 FLQ, F173, F1’4} — {F371, F372, F373, F374} on the right—hand side;

In the case of quark correlators involving operators with AS, = 0 and c¢p = —1 (fourth
column of table 1):

- at twist 2, for AT, we have

1

St = e G4, (A.5)

Sty = —\/17_752 G1,1, (A.6)
_ 1 A2

Pt = LG+ V1 -G, (A.7)

V1 — e 2M?
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. 1 kr-A —s

§
/1—¢2 2M? 1-¢&2
- at twist 3, for P, we have the same relations (A.5)-(A.8) with the replacement
{SV12%, P50 PU?, PP o {89207, So'ap Y, Pysa?, Pyyy®} on the left-hand side
and {Gl,la GLQ, Gl,g, G174} — {E275, E276, E277, E278} on the right-hand side;

G174; (A8)

- at twist 3, for 7", we have the same relations (A.5)-(A.8) with the replacement
{5070 ST, PR, PLyiy = {9707, So1, ., Poil, Pyyy®} on the left-hand side
and {G171, GLQ, G173, G174} — {H275, H276, H277, H278} on the right—hand side;

- at twist 4, for A=, we have the same relations (A.5)-(A.8) with the replacement

07—7‘] 07—74 07—74 07_7q 07—41 07—7(] 07—7(] 07—7(] M
{Sl,la , Sle Pt Py } = {5’3,1& , 5’3,1b Pyt Py } on the left-hand side

and {Gl,h GLQ, G173, G1,4} = {G3,1, G3’2, G373, G3,4} on the right—hand side.

The quark correlator at twist-3 with VE(X) is the only one with AS, = +1 and ¢p = +1
(fifth column of table 1). The relations between the two sets of GTMDs read

1 kp-Ap

1+
Sota’ = Jiog 2 [Foq —2(1 — &%) Fo5 + £ Faq|
1 Az

[Fop —2(1 = &) Fas + & Fag]

+ /1 — €2 2M?
02
— 21— Fp3— WVTQ Foa, (A.9)

S%:E;q = _m [Foq +2(1 =€) Fos + ¢ Fagl, (A.10)
Pyt = 11_52 Fy, (A.11)
Pglffzr,;q = \/11_752 Fy o, (A.12)
Pyt = _11—62 Fyr, (A.13)
A s
2ia’ = \/11_—52 1 Ef%& [P +2(1 — ) Py +EFor] +V1 -2 Foy,  (A15)
D;:Eq = \/11_752 4E:%5T [—Fo1 +2(1— &%) Fos + £ Fag]
+ = 11_ = [—Foo+2(1 = &) Fog+ £ Fog] . (A.16)
In the case of quark correlators involving operators with AS, = £1 and ¢p = —1 (last

column of table 1):
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- at twist 2, for TEE)+ | we have

. 1 kp-A
17_,(] — T T _ 2 _
1,la — m M2 [HLl + 2(1 § )H1,5 §H1,7]
1 Az

[His+2(1— &) Hyg— £ Hyg)

+ V1 — €2 2M?
];2
+2\/1—§2HL3+\/1—§2VT2H174, (A.17)

1

11:1_b;q WG & [—Hi1+2(1 - €) Hy 5+ §Hiz|, (A.18)
Pyt = N Hya, (A.19)
EERVAESS
Py, = N Hy g, (A.20)
Toovi-e
Pl = S Hy 7, (A.21)
N
P, = N Hyg, (A.22)
voovi-e
DL—;q _ 1 &%F H 2 5
Lla = —— = [~ 1,1+2(1—5)H1,5—§H1,7]+HH174,
’ V1I—& dkr - Ar
(A.23)
Dyt = ! qz%a [—Hyg+2(1— &) Hy5— EHiyg)
’ V1= dkp - Ap
1
o= = [—Hip+2(1— &) Hig— EHig). (A.24)

- at twist 3, for AR we have the same relations (A.17)-(A.24) with the replacement
1,—q ol,i—¢ pli—a pli—q p/l—q p/l,—q pl,—q¢ pl,—iq
{Sl,la ST Prid s P Prias Piiy s Dig s Do
1—q oli—¢ pli—a pli—qg p/l—q p/l,—q pl—q pl—q ;
> {5’271(1 S Pt Byl Poia s Poiy s Dolta s Doty } on the left-hand side
and {H11, Hi2, Hi13, Hi4, Hi 5, Hi6, Hi7, Hi 8}

— {G271, Gz,g, G273, G274, G2,5, G276, G277, G278} on the right-hand side;

- at twist 4, for TR~ we have the same relations (A.17)-(A.24) with the replacement
1= ol,—5q¢ pl,—qa pl,—q p/l,—q p/l,—q 1,—q 1,—q
{Sl,la ) Sl,lb ) Pl,la ) P1,1b ) Pl,la ) Pl,lb ) Dl,la ) D1,1b
1,—q¢ ol.—9 pli—9 pli—q9 p/'l,—q pl/l,—q 1,—q 1,—5q :
— {5’371(1 , S3,1b Pyt P3,1b Pyt P371b , D31ats D3’1b } on the left-hand side
and {H11, Hi2, Hi13, Hi4, Hi 5, Hi6, Hi7, Hi 8}

— {H371, H372, H373, H374, H375, H376, H377, H378} on the right-hand side.
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