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Using recent lattice QCD results on the ∆(1232) electromagnetic form factors we map out
the quark transverse charge density in the ∆ as viewed from a light front moving towards the
baryon. The charge densities for a transversely polarized ∆ are characterized by monopole, dipole,
quadrupole, and octupole patterns. We discuss the “natural” values for the magnetic dipole, charge
quadrupole and magnetic octupole moments which a point spin-3/2 particle, such as a gravitino of
N = 2 supergravity, displays. The moments of the transverse charge densities in a transversely po-
larized spin-3/2 particle are shown to be sensitive only to the anomalous parts, i.e. deviations from
their “natural” values, of the magnetic dipole, charge quadrupole, and magnetic octupole moments,
and vanish for a particle without internal structure. The lattice calculations show that the quark
charge density in a ∆+ of maximal transverse spin projection is elongated along the axis of the spin.

PACS numbers: 13.40.Gp, 13.40.Em, 14.20.Gk

I. INTRODUCTION

...a lot of information exists on the nucleon electromagnetic form factors, see Refs. [1–3] for some recent reviews.

...transition of the nucleon to its first excited state, ∆(1232), see Ref. [4] for a recent review.

II. THE γ∗∆∆ VERTEX AND FORM FACTORS
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FIG. 1: The γ∗∆∆ vertex. The four-momenta of the initial (final) ∆ and of the photon are given by p (p′) and q respectively.
The four-vector indices of the initial (final) spin-3/2 fields are given by β (α), and µ is the four-vector index of the photon field.

Consider the coupling of a photon to a ∆, Fig. 1. The matrix element of the electromagnetic current operator
Jµ between spin-3/2 states can be decomposed into four multipole transitions: a Coulomb monopole (E0), a mag-
netic dipole (M1), a Coulomb quadrupole (E2) and a magnetic octupole (M3). We firstly write a Lorentz-covariant
decomposition for the on-shell γ∗∆∆ vertex which exhibits manifest electromagnetic gauge-invariance [4, 5]:

〈∆(p′, λ′) | Jµ(0) |∆(p, λ)〉 = −ūα(p′, λ′)

{[

F ∗
1 (Q2)gαβ + F ∗

3 (Q2)
qαqβ

(2M∆)2

]

γµ

+

[

F ∗
2 (Q2)gαβ + F ∗

4 (Q2)
qαqβ

(2M∆)2

]

iσµνqν
2M∆

}

uβ(p, λ), (1)
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where M∆ = 1.232 GeV is the ∆ mass, uα is the Rarita-Schwinger spinor for a spin-3/2 state, and λ (λ′) are the
initial (final) ∆ helicities. Furthermore, F ∗

1,2,3,4 are the γ∗∆∆ form factors, and F ∗
1 (0) = e∆ is the ∆ electric charge

in units of e (e.g., e∆+ = +1). For further use we also define the quantity τ ≡ Q2/(4M2
∆).

A physical interpretation of the four electromagnetic ∆ → ∆ transitions can be obtained by performing a mul-
tipole decomposition [5, 6]. For this purpose it is convenient to consider the Breit frame, where ~p = −~p ′ = −~q/2.
Furthermore, we choose ~q along the z-axis and denote the initial (final) ∆ spin projections along the z-axis by s (s′)
respectively. In this frame, the matrix elements of the charge operator define the Coulomb monopole (charge) and
Coulomb quadrupole form factors as :

〈~q
2
, s′ | J0(0) | − ~q

2
, s〉 ≡ (2M∆) δs′ s

{

(

δs± 3
2

+ δs± 1
2

)

GE0(Q
2) − 2

3
τ

(

δs± 3
2
− δs± 1

2

)

GE2(Q
2)

}

. (2)

Using Eq. (1), we can express the Coulomb monopole and quadrupole form factors in terms of F ∗
1,2,3,4 as :

GE0 = (F ∗
1 − τF ∗

2 ) +
2

3
τGE2, (3)

GE2 = (F ∗
1 − τF ∗

2 ) − 1

2
(1 + τ) (F ∗

3 − τF ∗
4 ) . (4)

In an analogous way, the matrix elements of the current operator define the magnetic dipole and magnetic octupole
form factors. E.g. for the transverse spherical component J+1 ≡ − 1√

2
(J1 + iJ2) this reads :

〈~q
2
, s′ | J+1(0) | − ~q

2
, s〉 ≡ (−

√
2)(2M∆)

√
τ√
3

{(

δs′ + 3
2
δs + 1

2
+ δs′ − 1

2
δs− 3

2
+

2√
3
δs′ + 1

2
δs− 1

2

)

GM1(Q
2)

−4

5
τ

(

δs′ + 3
2
δs + 1

2
+ δs′ − 1

2
δs− 3

2
−
√

3δs′ + 1
2
δs− 1

2

)

GM3(Q
2)

}

. (5)

Using Eq. (1), we can express the magnetic dipole and octupole form factors in terms of F ∗
1,2,3,4 as :

GM1 = (F ∗
1 + F ∗

2 ) +
4

5
τGM3, (6)

GM3 = (F ∗
1 + F ∗

2 ) − 1

2
(1 + τ) (F ∗

3 + F ∗
4 ) . (7)

At Q2 = 0, the multipole form factors define the charge (e∆), the magnetic dipole moment (µ∆), the electric
quadrupole moment (Q∆), and the magnetic octupole moment (O∆) as :

e∆ = GE0(0) = F ∗
1 (0), (8a)

µ∆ =
e

2M∆
GM1(0) =

e

2M∆
[e∆ + F ∗

2 (0)] , (8b)

Q∆ =
e

M2
∆

GE2(0) =
e

M2
∆

[

e∆ − 1

2
F ∗

3 (0)

]

, (8c)

O∆ =
e

2M3
∆

GM3(0) =
e

2M3
∆

[

e∆ + F ∗
2 (0) − 1

2
(F ∗

3 (0) + F ∗
4 (0))

]

. (8d)

In the following, we will also use the relations which express the form factors F ∗
1,2,3,4 in terms of the multipole form

factors :

F ∗
1 =

1

1 + τ

{

GE0 −
2

3
τGE2 + τ

[

GM1 −
4

5
τGM3

]

}

,

F ∗
2 = − 1

1 + τ

{

GE0 −
2

3
τGE2 −

[

GM1 −
4

5
τGM3

]

}

,

F ∗
3 =

2

(1 + τ)2

{

GE0 −
(

1 +
2

3
τ

)

GE2 + τ
[

GM1 −
(

1 +
4

5
τ

)

GM3

]

}

,

F ∗
4 = − 2

(1 + τ)2

{

GE0 −
(

1 +
2

3
τ

)

GE2 −
[

GM1 −
(

1 +
4

5
τ

)

GM3

]

}

. (9)
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III. THE NATURAL VALUES

As first argued by Weinberg [9], based on the Gerasimov-Drell-Hearn (GDH) sum rule, there is a “natural” value
for the magnetic moment of elementary (pointlike) particle with spin. This value corresponds to gyromagnetic ratio
g equal to 2. It has later been observed that all consistent field theories of charged particles with spin respect this
value, see e.g. [10, 11].

It is conceivable that the higher electromagnetic moments of pointlike particles are also fixed at some “natural”
values. To extend Weinberg’s argument to higher e.m. moments we would need to derive the sum rules for them,
since we are not aware that such sum rules have been derived. Leaving this ambitious exercise for the future, we
confine ourselves here to a more modest task of examining the values of e.m. moments of gravitinos in extended
supergravity [12, 13]. The gravitino, if existed, would be a spin-3/2 particle described by a Rarita-Schwinger field
which, in the framework of N = 2 supergravity, couples consistently to electromagnetism. We therefore expect that
all the e.m. moments arising in this theory have “natural” values.

To find these values we depart from the following Lagrangian density: [25]

L = ψ̄µ γ
µνα(i∂α − eAα)ψν −mψ̄µγ

µνψν

+ em−1 ψ̄µ ( iκ1F
µν − κ2γ5F̃

µν )ψν . (10)

It describes the spin-3/2 Rarita-Schwinger field (ψµ) with mass m coupled to the electromagnetic field (Aµ) via the
minimal coupling (with positive charge e) and two non-minimal couplings κ1 and κ2. As is shown in [14], this is the
most general such Lagrangian that gives the right number of spin degrees of freedom for a spin-3/2 particle. This
theory, however, would still lead to rather subtle pathologies — non-causal wave propagation and such [15, 16], at
least if no other fields are present. Adding gravity in a supersymmetric way, makes a fully consistent, from this
viewpoint, theory, but also constrains the non-minimal couplings as follows:

κ1 = κ2 = 1. (11)

We shall refer to these values as the ‘SUGRA choice’.
The e.m. vertex stemming from Eq. (10) is

Γαβµ(p′, p) = eγαβµ − κ1(q
αgβµ − qβgαµ) + iκ2γ5ε

αβµ̺q̺ , (12)

where q = p′ − p. It is easy to verify that this coupling conserves the e.m. current:

qµ ūα(p′) Γαβµ(p′, p)uβ(p) = 0 , (13)

as well as, for the SUGRA choice, the supersymmetric current:

(p′α − 1

2
mγα) Γαβµ(p′, p)uβ(p) ǫµ(q) = 0 , (14a)

ūα(p′) Γαβµ(p′, p) (pβ − 1

2
mγβ) ǫµ(q) = 0 , (14b)

where ǫµ(q) is the photon polarization vector, and q · ǫ = 0 = q2 in Eqs. (14).
The matrix elements of this vertex can be compared with the general decomposition of the spin-3/2 e.m. current

Eq. (1), and in doing so we obtain the following result:

F ∗
1 = 1 + 2(κ1 + κ2) τ

sugra
= 1 + 4τ , (15a)

F ∗
2 = 2κ1

sugra
= 2 , (15b)

F ∗
3 = 4(κ1 + κ2)

sugra
= 8 , (15c)

F ∗
4 = 0 , (15d)

with τ = Q2/(2m)2. Thus, the values of gravitino’s e.m. moments in N = 2 supergravity are:

GE0(0) = 1, GM1(0) = 3, GE2(0) = −3, GM3(0) = −1. (16)

IV. THE γ∗∆∆ LIGHT-FRONT HELICITY AMPLITUDES

In the following we consider the electromagnetic (e.m.) ∆ → ∆ transition when viewed from a light front moving
towards the ∆. Equivalently, this corresponds to a frame where the baryons have a large momentum-component along
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the z-axis chosen along the direction of P = (p+ p′)/2, where p (p′) are the initial (final) baryon four-momenta. We
indicate the baryon light-front + component by P+ (defining a± ≡ a0 ± a3). We can furthermore choose a symmetric
frame where the virtual photon four-momentum q has q+ = 0, and has a transverse component (lying in the xy-plane)
indicated by the transverse vector ~q⊥, satisfying q2 = −~q 2

⊥ ≡ −Q2. In such a symmetric frame, the virtual photon only
couples to forward moving partons and the + component of the electromagnetic current J+ has the interpretation of
the quark charge density operator. It is given by : J+(0) = +2/3 ū(0)γ+u(0)− 1/3 d̄(0)γ+(0)d(0), considering only u
and d quarks. Each term in the expression is a positive operator since q̄γ+q ∝ |γ+q|2.

We start by expressing the matrix elements of the J+(0) operator in the ∆ as :

〈P+,
~q⊥
2
, λ′|J+(0)|P+,−~q⊥

2
, λ〉 = (2P+)ei(λ−λ′)φq Aλ′ λ(Q2), (17)

where λ, λ′ denotes the ∆ light-front helicities, and where ~q⊥ = Q(cosφq êx +sinφq êy). The helicity form factors Aλ′ λ

depend on Q2 only and can equivalently be expressed in terms of F ∗
1,2,3,4 as :

A 3
2

3
2

= A− 3
2
− 3

2
= F ∗

1 − τ

2
F ∗

3 ,

A 3
2

1
2

= −A− 3
2
− 1

2
= A− 1

2
− 3

2
= −A 1

2
3
2

=
τ1/2

√
3

[

2F ∗
1 − F ∗

2 − τ

(

F ∗
3 − 1

2
F ∗

4

)]

,

A 3
2
− 1

2
= A− 3

2
1
2

= A− 1
2

3
2

= A 1
2
− 3

2
=

τ√
3

[

−2F ∗
2 +

1

2
F ∗

3 + τ F ∗
4

]

,

A 3
2
− 3

2
= −A− 3

2
3
2

= −1

2
τ3/2 F ∗

4 ,

A 1
2

1
2

= A− 1
2
− 1

2
=

(

1 − 4

3
τ

)

F ∗
1 +

τ

3

[

4F ∗
2 −

(

1

2
− 2τ

)

F ∗
3 − 2τF ∗

4

]

,

A 1
2
− 1

2
= −A− 1

2
1
2

=
τ1/2

3

[

4F ∗
1 − 2 (1 − 2τ)F ∗

2 − 2τF ∗
3 + τ

(

1

2
− 2τ

)

F ∗
4

]

. (18)

As the ∆ → ∆ electromagnetic transition is described by four independent form factors, one finds two angular
conditions among the helicity form factors of Eq. (18) :

0 = (1 + 4τ)
√

3A 3
2

3
2
− 8τ1/2A 3

2
1
2

+ 2A 3
2
− 1

2
−
√

3A 1
2

1
2
,

0 = 4τ3/2A 3
2

3
2

+
√

3 (1 − 2τ)A 3
2

1
2

+
1

2
A 3

2
− 3

2
− 3

2
A 1

2
− 1

2
. (19)

V. THE TRANSVERSE CHARGE DENSITIES FOR A SPIN-3/2 PARTICLE

We define a quark charge density for a spin-3/2 particle, such as the ∆(1232), in a state of definite light-cone helicity
λ, by the Fourier transform :

ρ∆
λ (b) ≡

∫

d2~q⊥
(2π)2

e−i ~q⊥·~b 1

2P+
〈P+,

~q⊥
2
, λ|J+|P+,

−~q⊥
2

, λ〉

=

∫ ∞

0

dQ

2π
QJ0(bQ)Aλλ(Q2). (20)

The two independent quark charge densities for a spin-3/2 state of definite helicity are given by ρ∆
3
2

(b) and ρ∆
1
2

(b).

The above charge densities provide us with two combinations of the four independent ∆ FFs. To get information
from the other FFs, we consider the charge densities in a spin-3/2 state with transverse spin. We denote this transverse

polarization direction by ~S⊥ = cosφS êx + sinφS êy, and the ∆ spin projection along the direction of ~S⊥ by s⊥. We
first express the transverse spin basis in terms of the helicity basis for spin-3/2. For the states of transverse spin
s⊥ = 3

2 and s⊥ = 1
2 this yields :

|s⊥ = +
3

2
〉 =

1√
8

{

e−iφS |λ = +
3

2
〉 +

√
3 |λ = +

1

2
〉 +

√
3 eiφS |λ = −1

2
〉 + e2iφS |λ = −3

2
〉
}

,

|s⊥ = +
1

2
〉 =

1√
8

{√
3 e−iφS |λ = +

3

2
〉 + |λ = +

1

2
〉 − eiφS |λ = −1

2
〉 −

√
3 e2iφS |λ = −3

2
〉
}

, (21)
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where the states on the rhs are the spin-3/2 helicity eigenstates.
We can then define the charge densities in a spin-3/2 state with transverse spin s⊥ as :

ρ∆
T s⊥

(~b) ≡
∫

d2~q⊥
(2π)2

e−i ~q⊥·~b 1

2P+
〈P+,

~q⊥
2
, s⊥ | J+(0) |P+,−~q⊥

2
, s⊥〉. (22)

By working out the Fourier transform in Eq. (22) for the two cases where s⊥ = 3
2 and s⊥ = 1

2 , using the ∆ helicity
form factors of Eq. (18), one obtains :

ρ∆
T 3

2

(~b) =

∫ +∞

0

dQ

2π
Q

[

J0(Qb)
1

4

(

A 3
2

3
2

+ 3A 1
2

1
2

)

− sin(φb − φS)J1(Qb)
1

4

(

2
√

3A 3
2

1
2

+ 3A 1
2
− 1

2

)

− cos[2(φb − φS)] J2(Qb)

√
3

2
A 3

2
− 1

2

+ sin[3(φb − φS)] J3(Qb)
1

4
A 3

2
− 3

2

]

, (23)

and

ρ∆
T 1

2

(~b) =

∫ +∞

0

dQ

2π
Q

[

J0(Qb)
1

4

(

3A 3
2

3
2

+A 1
2

1
2

)

− sin(φb − φS)J1(Qb)
1

4

(

2
√

3A 3
2

1
2
−A 1

2
− 1

2

)

+ cos[2(φb − φS)] J2(Qb)

√
3

2
A 3

2
− 1

2

− sin[3(φb − φS)] J3(Qb)
3

4
A 3

2
− 3

2

]

, (24)

where we defined the angle φb in the transverse plane as, ~b = b(cosφbêx+sinφbêy). One notices from Eqs. (23,24) that
the transverse charge densities display monopole, dipole, quadrupole, and octupole field patterns, which respectively
are determined by the helicity form factors with zero, one, two, or three units of helicity flip between the initial and
final ∆ states.

It is instructive to evaluate the electric dipole moment (EDM) corresponding with the transverse charge densities
ρ∆

T s⊥
, which is defined as :

~d∆
s⊥

≡ e

∫

d2~b~b ρ∆
T s⊥

(~b). (25)

Eqs. (23,24) yield :

~d∆
3
2

= 3 ~d∆
1
2

= −
(

~S⊥ × êz

)

{GM1(0) − 3e∆}
(

e

2M∆

)

. (26)

Expressing the spin-3/2 magnetic moment in terms of the g-factor, which yields GM1(0) = g 3
2e∆, one sees that the

induced EDM ~d∆
s⊥

is proportional to g − 2. The same result was found before for the case of spin-1/2 particles
in [7] and spin-1 particles in [8]. One thus observes as universal feature that for a particle without internal structure
(corresponding with g = 2 [10, 11]), there is no induced EDM.

We next evaluate the electric quadrupole moment corresponding to the transverse charge densities ρ∆
T s⊥

. Choosing
~S⊥ = êx, the electric quadrupole moment can be defined as :

Q∆
s⊥

≡ e

∫

d2~b (b2x − b2y) ρ∆
T s⊥

(~b). (27)

From Eqs. (23,24) one obtains :

Q∆
3
2

= −Q∆
1
2

=
1

2
{2 [GM1(0) − 3e∆] + [GE2(0) + 3e∆]}

(

e

M2
∆

)

. (28)



6

We may note that for a spin-3/2 particle without internal structure, for which GM1(0) = 3e∆ and GE2(0) = −3e∆
according to Eq. (16), the quadrupole moment of the transverse charge densities vanishes. It is thus interesting to
observe from Eq. (28) that Q∆

s⊥
is only sensitive to the anomalous parts of the spin-3/2 magnetic dipole and electric

quadrupole moments, and vanishes for a particle without internal structure. The same observation was made for the
case of a spin-1 particle in Ref. [8]. Furthermore, the factor 1/2 multiplying the curly brackets on the rhs of Eq. (28)
can be understood by relating the quadrupole moment of a 3-dimensional charge distributions (which we denote by
Q3d) to the quadrupole moment of a 2-dimensional charge distribution (denoted by Q2d) both defined w.r.t. the spin
axis. By taking the spin axis along the x-axis, the quadrupole moment for a 3-dimensional charge distribution ρ3d is
defined as :

Q3d ≡
∫

dxdydz (3x2 − r2) ρ3d(x, y, z),

=

∫

dxdydz
[

(x2 − y2) + (x2 − z2)
]

ρ3d(x, y, z). (29)

For a 3-dimensional charge distribution which is invariant under rotations around the axis of the spin, the two terms
proportional to (x2 − y2) and (x2 − z2) in Eq. (29) give equal contributions yielding :

Q3d = 2

∫

dxdydz (x2 − y2) ρ3d(x, y, z). (30)

Introducing the 2-dimensional charge density in the xy-plane as :

ρ2d(x, y) =

∫

dz ρ3d(x, y, z), (31)

one immediately obtains the relation

Q3d = 2Q2d, (32)

with the quadrupole moment of the 2-dimensional charge density defined as :

Q2d ≡
∫

dxdy (x2 − y2) ρ2d(x, y). (33)

Because Q3d is proportional to GE2(0) in our case, we see that Eq. (32) yields a Q2d which is half the value of GE2(0),
consistent with Eq. (28).

We can also evaluate the electric octupole moment corresponding with the transverse charge densities ρ∆
T s⊥

. Choos-

ing ~S⊥ = êx, the electric octupole moment can be defined as :

O∆
s⊥

≡ e

∫

d2~b b3 sin(3φb) ρ
∆
T s⊥

(~b),

= e

∫

d2~b by (3b2x − b2y) ρ
∆
T s⊥

(~b). (34)

From Eqs. (23,24) one obtains :

O∆
3
2

= −1

3
O∆

1
2

=
3

2

{

−GM1(0) −GE2(0) +GM3(0) + e∆

}

(

e

2M3
∆

)

. (35)

We may note that for a spin-3/2 particle without internal structure, for which GM1(0) = 3e∆, GE2(0) = −3e∆, and
GM3(0) = −e∆ according to Eq. (16), the electric octupole moment of the transverse charge densities vanishes.

VI. RESULTS FOR THE ∆(1232) TRANSVERSE CHARGE DENSITIES

In this section we show results for the ∆+(1232) charge densities. The experimental information on the γ∆∆ vertex
is very scarce. Only some data exist on the ∆ magnetic dipole moment. For instance, the current Particle Data Group
value of the ∆+ magnetic dipole moment [17]:

µ∆+ = 2.7+1.0
−1.3 (stat.) ± 1.5(syst.) ± 3(theor.)µN , (36)
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with µN = e/2MN the nuclear magneton, was obtained from radiative photoproduction (γN → πNγ′) of neutral pions
in the ∆(1232) region by the TAPS Collaboration at MAMI [18]. Using a phenomenological model of the γp→ π0pγ′

reaction [19], the value of Eq. (36) was extracted. Eq. (36) implies for the ∆+ :

GM1(0) = 3.5+1.3
−1.7 (stat.) ± 2.0(syst.) ± 3.9(theor.) , (37)

The size of the error-bar is rather large due to both experimental and theoretical uncertainties. Recently a dedicated
experimental effort is underway at MAMI using the Crystal Ball detector [20], improving on the statistics of the TAPS
data by almost two orders of magnitude.

For the ∆ electric quadrupole moment, no direct measurements exist. However the electric quadrupole moment for
the N → ∆ transition has been measured accurately from the γN → πN reaction at the ∆ resonance energy, and
yields [21] :

Qp→∆+ = − (0.0846± 0.0033) e · fm2. (38)

The large Nc limit of QCD then allows to obtain relations between the ∆ and N → ∆ quadrupole moments [22]:

Q∆+

Qp→∆+

=
2
√

2

5
+ O

(

1

N2
c

)

. (39)

Using the phenomenological value of Eq. (38) forQp→∆+ , the largeNc relation of Eq. (39) yields for the ∆+ quadrupole
moment:

Q∆+ = − (0.048± 0.002) e · fm2, (40)

accurate up to corrections of order 1/N2
c . Eq. (40) corresponds with GE2(0) = −1.87 ± 0.08.

As the ∆(1232) electromagnetic form factors are not known experimentally, apart from the scarce phenomenological
information described above, we will rely on recent lattice QCD calculations [23, 24] for these form factors. We will
compare three recent lattice calculations. In Ref. [23] quenched Wilson lattice QCD calculations have been performed
for a lattice volume of (2.95 fm)3 for three different pion masses down to a lowest value of mπ = 0.411(4) GeV. In
Ref. [24], two full lattice QCD calculations have been presented. The first is a dynamical Nf = 2 Wilson calculation
for a lattice volume of (1.85 fm)3 for three different pion masses down to a lowest value of mπ = 0.384(8) GeV.
The second dynamical calculation is a hybrid lattice calculation using domain-wall valence quarks on a staggered
sea, which was performed for a lattice volume of (3.5 fm)3, and a pion mass mπ = 0.353(2) GeV. In the lattice
calculations, the ∆+(1232) form factors were calculated over range 0 < Q2 < 1.7 GeV2. For GE0, we consider a
dipole parameterization of the lattice results :

GE0(Q
2) =

1

(1 +Q2/Λ2
E0)

2 , (41)

with Λ2
E0 treated as a free parameter. For GM1 and GE2, we consider exponential parameterizations of the lattice

results with two free parameters each :

GM1(Q
2) = GM1(0) e−Q2/Λ2

M1 ,

GE2(Q
2) = GE2(0) e−Q2/Λ2

E2 . (42)

For GM3, the lattice calculation of Ref. [23] has a slight tendancy for a negative value of GM3 albeit with large error
bars. Within its obtained precision, the present lattice results are compatible with GM3(Q

2) ≃ 0. The above choice
of parameterization for the ∆ multipole FFs ensures that the helicity conserving FFs A 3

2
3
2

and A 1
2

1
2

behave as 1/Q4

for large Q2. The values of the parameters entering the dipole fit of Eq. (41) for GE0, and the exponential fits of
Eq. (42) for GM1 and GE2, fitted to the three different lattice calculations described above are listed in Table I.

In Fig. 2, we show the FFs GE0, GM1, and GE2 for the 3 fits to the lattice calculations described above. One
sees that for GE0 all three calculations give similar results. For GM1 and in particular GE2, the fits show a larger
spread. For GE2(0) the hybrid lattice calculation yields a quadrupole moment consistent with the large-Nc value,
Eq. (40), whereas the quenched and dynamical Nf = 2 Wilson calculations yield only about half this value. It should
be noticed however that the present dynamical calculations still have substantial larger error bars than the quenched
calculations. We will use the central values of these fits to evaluate the quark transverse densities in the ∆+(1232).
A systematic error analysis of the lattice fits will be performed in a follow-up study.
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mπ Λ2
E0 GM1(0) Λ2

M1 GE2(0) Λ2
E2

(in GeV) (in GeV2) (in GeV2) (in GeV2)

Quenched Wilson 0.411 (4) 1.101 (10) 2.635 (61) 0.978 (26) -0.810 (291) 0.696 (200)

Dynamical Nf = 2 Wilson 0.384 (8) 1.161 (57) 2.344 (169) 1.022 (73) -0.784 (47) 1.938 (143)

Hybrid 0.353 (2) 1.126 (31) 3.101 (74) 0.895 (26) -1.851 (0.427) 0.542 (122)

TABLE I: Parameters for the ∆+(1232) form factors for three different lattice QCD calculations [23, 24]. For GE0, the dipole
parameterization of Eq. (41) is used. For GM1 and GE2, the exponential parameterization of Eq. (42) is used.

In Fig. 3, we compare the ∆+ transverse densities in helicity states of λ = 3/2 and λ = 1/2 for the quenched lattice
calculations. A comparison reveals that both are very similar, with the density in a λ = 1/2 state slightly more
concentrated.

In Fig. 4, the transverse densities are compared for a ∆+ which has a transverse spin. It is seen that the quark charge
density in a ∆+ in a state of transverse spin projection s⊥ = +3/2 is elongated along the axis of the spin (prolate
deformation) whereas in a state of transverse spin projection s⊥ = +1/2 it is elongated along the axis perpendicular
to the spin.

The corresponding dipole, quadrupole and octupole field patterns in the transverse quark charge density for a
transversely polarized ∆ are shown in Fig. 5.

VII. CONCLUSIONS
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FIG. 2: Comparison of three different QCD lattice calculations for the ∆+(1232) e.m. FFs GE0, GM1, and GE2, according
to the fit of Table I. Solid (red) curves : quenched Wilson result [23]; long dashed (blue) curves : dynamical Nf = 2 Wilson
result [24]; dotted (black) curves : hybrid lattice calculation [24].
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FIG. 3: Quark transverse charge densities in a ∆+(1232) of definite light-cone helicity. Upper left panel : ρ∆
3
2

. Upper right

panel : ρ∆
1
2

. The light (dark) regions correspond with largest (smallest) values of the density. The lower panel compares the

density along the y-axis for ρ∆
3
2

(dashed curve) and ρ∆
1
2

(solid curve). For the ∆ e.m. FFs, we use the lattice quenched QCD

calculations (fit of Table I) of Alexandrou et al. [23].
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FIG. 4: Quark transverse charge densities in a ∆+(1232) which is polarized along the positive x-axis. Upper left panel : ρ∆

T 3
2

.

Upper right panel : ρ∆

T 1
2

. The light (dark) regions correspond with largest (smallest) values of the density. The lower panel

compares the density along the y-axis for ρ∆

T 3
2

(dashed curve) and ρ∆

T 1
2

(solid curve). For the ∆ e.m. FFs, we use the lattice

quenched QCD calculations (fit of Table I) of Alexandrou et al. [23].
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FIG. 5: Different field patterns in the quark transverse charge density ρ∆

T 3
2

in a ∆+(1232) which is polarized along the positive

x-axis. Upper left panel : dipole field pattern; upper right panel : quadrupole field pattern; lower panel : octupole field pattern.
For the ∆ e.m. FFs, we use the lattice quenched QCD calculations (fit of Table I) of Alexandrou et al. [23].
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FIG. 6: Comparison of the densities along the y-axis for ρ∆
3
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(upper panel) and ρ∆

T 3
2

(lower panel), for three different QCD

lattice calculations of the ∆+(1232) e.m. FFs according to the fit of Table I. Solid (red) curves : quenched Wilson result [23];
long dashed (blue) curves : dynamical Nf = 2 Wilson result [24]; dotted (black) curves : hybrid lattice calculation [24].


