

Modeling post-combustion CO₂ capture with assessment of solvent degradation

Modélisation du captage post-combustion de CO₂ avec évaluation de la dégradation des solvants

G. Léonard, S. Belletante, B. Cabeza Mogador, D. Toye, G. Heyen

Global context

Environnemental issues

><

Growing energy demand (esp. electricity)

Large contribution of fossil fuels for electricity generation

Figure 75. World net electricity generation by fuel, 2008-2035 (trillion kilowatthours)

International Energy Outlook 2011

Global context

\Rightarrow 3 possible answers : TRIAS ENERGICA

Outline

- 1. Introduction: CO₂ capture and solvent degradation
- 2. Experimental study of solvent degradation
- 3. Simulation of the CO₂ capture process with assessment of solvent degradation
- 4. Conclusion and perspectives

Post-combustion CO₂ capture

Most studies on CO₂ capture: the energy penalty

- => New solvents
- => Process intensification

However, solvent degradation is not considered!

- => Solvent replacement cost
- => Effect of degradation products (emissions, solvent properties, ...)

Volatile a	mines
NH ₃	∠NH ₂
Ammonia	Methylamine

The goal of this work is to develop a model assessing both energy consumption and solvent degradation.

Two steps:

- Experimental study of solvent degradation
- Process modeling with assessment of solvent degradation

Methodology based on 30 wt% MEA (Monoethanolamine)

2. Experimental study of solvent dégradation

Degradation is a slow phenomenon (4% in 45 days^[1]).

- ⇒ Accelerated conditions:
- 300 g of 30 wt% MEA
- Loaded with CO₂ (~0,40 mol CO₂/mol MEA)
- 120°C, 4 barg, 600 rpm
- 7 days
- 160 Nml/min, 5% O₂ / 15% CO₂ / 80% N₂

^[1] Lepaumier H., 2008. Etude des mécanismes de dégradation des amines utilisées pour le captage du CO₂ dans les ¹¹ fumées. PhD thesis, Université de Savoie.

Identification of degradation products:

- HPLC-RID
 - => MEA
- GC-FID
 - => degradation products
- FTIR
 - => Volatile products (NH₃)

Comparison of the base case with degraded samples from industrial pilot plants:

Similar degradation products (GC spectra)!

- => 20% degradation after 7 days!
- => Nitrogen mass balance can be closed within 10%
- => Repetition experiments lead to similar results (<5% deviation)

Study of the influence of operating variables:

- => Feed gas composition (O₂, CO₂)
- => Temperature
- => Agitation rate
- => Presence of dissolved metals and degradation inhibitors

Leads to a kinetic model of solvent degradation:

- => 2 main degradation mechanisms
- => Equations balanced based on the observed proportion of degradation products

Oxidative degradation

$$\label{eq:mea} \text{MEA} + 1,3 \text{ O}_2 \\ \downarrow \\ 0,6 \text{ NH}_3 + 0,1 \text{ HEI} + 0,1 \text{ HEPO} + 0,1 \text{ HCOOH} + 0,8 \text{ CO}_2 + 1,5 \text{ H}_2\text{O}$$

Thermal degradation with CO₂

MEA +
$$0.5 \text{ CO}_2 \rightarrow 0.5 \text{ HEIA} + \text{H}_2\text{O}$$

Arrhenius kinetics (kmol/m³.s):

Parameters are identified by minimizing the difference between calculated and observed degradation rates.

• Oxidative degradation:

$$r = 535\ 209.e^{-\frac{41\ 730}{8,314.T}}.[O_2]^{1,46}$$

Thermal degradation with CO₂:

$$r = 6,27.1011.e^{-\frac{143106}{8,314.T}}.[CO_2]^{0,9}$$

3. Simulation of the CO₂ capture process with assessment of solvent degradation

Degradation model has been included into a global process model built in Aspen Plus^[1]

=> Additional equations in the column rate-based models

Base case degradation:

Parameter	Unit	Absorber	Stripper	Total
MEA degradation	kg/ton CO ₂	8.1e-2	1.4e-5	8.1e-2
NH ₃ formation	kg/ton CO ₂	1.4e-2	8.4e-7	1.4e-2
HEIA formation	kg/ton CO ₂	1.1e-5	1.1e-5	2.2e-5
MEA emission	kg/ton CO ₂	8.7e-4	9.4e-9	8.7e-4
NH₃ emission	kg/ton CO ₂	9.5e-3	3.0e-3	1.3e-2
HCOOH emission	kg/ton CO₂	1.1e-4	1.4e-5	1.2e-4

=> Degradation mainly takes place in the absorber:

Base case degradation:

Parameter	Unit	Absorber	Stripper	Total
MEA degradation	kg/ton CO₂	8.1e-2	1.4e-5	8.1e-2
NH ₃ formation	kg/ton CO ₂	1.4e-2	8.4e-7	1.4e-2
HEIA formation	kg/ton CO₂	1.1e-5	1.1e-5	2.2e-5
MEA emission	kg/ton CO ₂	8.7e-4	9.4e-9	8.7e-4
NH ₃ emission	kg/ton CO₂	9.5e-3	3.0e-3	1.3e-2
HCOOH emission	kg/ton CO ₂	1.1e-4	1.4e-5	1.2e-4

=> Oxidative degradation is more important than thermal degradation with CO₂

Base case degradation:

Unit	Absorber	Stripper	Total
kg/ton CO ₂	8.1e-2	1.4e-5	8.1e-2
kg/ton CO ₂	1.4e-2	8.4e-7	1.4e-2
kg/ton CO ₂	1.1e-5	1.1e-5	2.2e-5
kg/ton CO ₂	8.7e-4	9.4e-9	8.7e-4
kg/ton CO ₂	9.5e-3	3.0e-3	1.3e-2
kg/ton CO ₂	1.1e-4	1.4e-5	1.2e-4
	kg/ton CO ₂ kg/ton CO ₂ kg/ton CO ₂ kg/ton CO ₂	kg/ton CO_2 8.1e-2 kg/ton CO_2 1.4e-2 kg/ton CO_2 1.1e-5 kg/ton CO_2 8.7e-4 kg/ton CO_2 9.5e-3	kg/ton CO_2 8.1e-21.4e-5kg/ton CO_2 1.4e-28.4e-7kg/ton CO_2 1.1e-51.1e-5kg/ton CO_2 8.7e-49.4e-9kg/ton CO_2 9.5e-33.0e-3

=> Ammonia is the main emitted degradation product after washing, coming from both absorber and stripper

Comparison with industrial CO₂ capture plants:

81 g MEA/ton CO_2 < 284 g MEA/ton $CO_2^{[1]}$

- => Degradation under-estimated (although 324kg MEA/day at large-scale!)
- => Maybe due to simplifying assumptions:
- Modeling assumptions for the degradation kinetics
- Presence of SO_x et NO_x neglected
- Influence of metal ions neglected

Influence of process variables on solvent degradation:

- => Solvent flow rate
- => Regeneration pressure
- => Oxygen concentration in the gas feed
- => MEA concentration
- => ...

4. Conclusion and perspectives

4. Conclusion

Two of the main CO₂ capture drawbacks are considered:

- Solvent degradation is experimentally studied and a kinetic model is proposed
- This model is included into a global process model to study the influence of process variables

- => Both energy and environmental impacts of the CO₂ capture are considered!
- => This kind of model could and should be used for the design of large-scale CO₂ capture plants.

4. Conclusion

Many challenges are still up to come for the CO₂ capture process!

Demonstration plants are the next step to evidence largescale feasibility!

=> ~ 1 Mton CO₂ has been emitted during this presentation

Thank you for your attention!

Lyon, 14th SFGP congres, 2013