
CODES CORRECTEURS

MICHEL RIGO

Ce texte sert de compagnon succinct à la présentation “PowerPoint”portant sur
les codes correcteurs (Printemps des Sciences 2009).

Qu’on le veuille ou non, nous vivons dans un monde où les informations et les
moyens de communication sont omniprésents. Les exemples où se mêlent infor-
matique et télécommunications sont nombreux. Que ce soit l’Internet, la musique
achetée en ligne ou gravée sur CD1, les baladeurs de type iPod et autres appa-
reils portables, les supports mémoire de tout type, la photographie numérique, la
présence d’ordinateurs de bord sophistiqués dans nos voitures, etc. Sans code cor-
recteur, le CD (implémentant un code correcteur de type Reed-Solomon) et de
nombreux autres produits n’auraient probablement jamais connu le succès !

Sans nécessiter de pré-requis particulier, ce texte et l’exposé qui s’y rapporte
développent quelques exemples montrant que des mathématiques parfois abstraites
et ne présentant pas d’intérêt pratique immédiat — comme certains résultats d’algè-
bre linéaire ou générale — ont de réelles applications dans la vie de tout un chacun.
Voir aussi [5, 6] pour d’autres exemples ayant le même leitmotiv.

Notons que les développements rencontrés ici peuvent fournir à l’enseignant une
illustration de la notion de vecteur et du “calcul en composantes” (certains codes
correcteurs sont en fait des sous-espaces vectoriels) ainsi que quelques applications
de l’analyse combinatoire et du calcul élémentaire des probabilités. Ces derniers
aspects ne seront abordés, dans l’exposé oral, que pour les élèves ayant vu ces
notions en classe.

Modestement, cet exposé donne un embryon de réponse à la question si souvent
posée : “Les Maths ça sert à quoi ? ”. Les applications se nourrissent de la recherche
fondamentale et réciproquement. Cependant la recherche peut et doit vivre pour
elle-même, sans avoir en ligne de mire une quelconque application. Certains codes
correcteurs évolués reposent par exemple sur des résultats non triviaux de géométrie
algébrique développés de manière indépendante [3]. Ces codes n’auraient jamais vu
le jour sans des développements en mathématiques pures. Quelques chiffres pour
conclure cette introduction : près de 2400 articles scientifiques en théorie des codes2

parus entre 1990 et 2000 et déjà plus de 2500 depuis 2000.

1. La base 2

Pour représenter et manipuler les nombres, nous utilisons depuis notre plus
tendre enfance le système décimal. Un nombre entier est représenté par une suite
ck · · · c1c0 de chiffres compris entre 0 et 9 (ne commençant pas par zéro) et la
convention veut que le nombre ainsi représenté soit

ck × 10k + · · · + c1 × 10 + c0 × 100

︸︷︷︸

1

.

On parle de numération de position car chaque chiffre de la représentation est
multiplié par une puissance convenable de dix en fonction de la position qu’il occupe

1Bien que le bon usage voudrait qu’on écriv̂ıt cédé, je m’autoriserai le CD.
2AMS Classification 94B : Theory of error-correcting codes and error-detecting codes.

1



2 MICHEL RIGO

au sein de cette représentation. On trouve ainsi de droite à gauche, le chiffre des
unités, puis celui des dizaines, des centaines, des milliers, etc. Par exemple, 2762 =
2 × 103 + 7 × 102 + 6 × 10 + 2.

Que se passe-t-il si on remplace la base de numération, en l’occurrence 10, par un
autre entier, disons b ≥ 2 ? Dans ce cas, les chiffres utilisés pour écrire un nombre
en base b sont pris dans {0, . . . , b−1} et chaque chiffre est multiplié par la puissance
de b correspondant à sa position dans l’écriture considérée. Ainsi, avec des chiffres
dans {0, . . . , b − 1}, ck · · · c1c0 représente

[ck · · · c1c0]b = ck × bk + · · · + c1 × b + c0.

En particulier, en base 2, on obtient le système binaire et les premiers entiers stric-
tement positifs se représentent dans l’ordre par

1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, . . . .

La notation [·]b permet de rappeler la base utilisée. Par exemple, on a [1001]2 = 9
mais [1001]3 = 28. Calculer dans une autre base que la base 10 requiert un peu
d’entrâınement, mais les règles de calcul de l’école primaire (comme les “calculs
écrits”) fonctionnent toujours très bien. Pour une addition faite par écrit en base 2,
lorsqu’on se trouve face à deux 1 alignés dans une même colonne, pour effectuer ce
“1 + 1”, on aura la règle orale : “j’écris 0 et je reporte 1” car 1 + 1 = [10]2.

1

1 0 1 0 0 1
+ 1 0 1 0

1 1 0 0 1 1

Voici quelques petites questions sur le système binaire :

– Que vaut le nombre [111111]2 + 1? Quelle en est la représentation en base 2
correspondante? Pour l’obtenir, réalisez le calcul écrit suivant et observez les
reports.

1 1 1 1 1 1
+ 1

?

– Quels entiers ont une écriture en base 2 de la forme 1, 10, 100, . . . , 1

i
︷ ︸︸ ︷

0 · · ·0,
avec i ≥ 0 ?

– Même question pour ceux de la forme 1, 11,

i
︷ ︸︸ ︷

1 · · · 1 ?
– Que se passe-t-il sur l’écriture d’un entier n en base 2, lorsqu’on multiplie celui-

ci par 2 ou encore, par 4 ? Même question lorsqu’on remplace n par 2n + 1?
– Comment décider si un nombre est pair ou impair, lorsqu’on connâıt sa repré-

sentation en base 2 ?

2. Coder des données

Avec des règles bien précises, des informations de types variés peuvent être repré-
sentées par une suite de 0 et de 1. La manière dont est représenté l’objet d’intérêt ne
relève alors que de conventions connues de tous les intervenants ayant à manipuler
l’information. Par exemple, on peut convenir de coder les lettres de l’alphabet par
des successions de cinq éléments pris dans {0, 1} comme suit :

a=00001, b=00010, c=00011, d=00100, e=00101, . . . , z=10110.



CODES CORRECTEURS 3

Cela correspond simplement à représenter chaque lettre (minuscule) par sa position
en base 2 au sein de l’alphabet. De plus, on ajoute, si nécessaire, des zéros de tête
pour que chaque mot soit de longueur 5. Avec de telles conventions, la suite

00010 01111 01110 01010 01111 10101 10011

représente le mot “bonjour”. Les espaces ne sont présents ici que pour faciliter
la lecture. Le code transmis est 00010011110111001010011111010110011. Que se
passerait-il sans la convention d’ajouter des zéros de tête ? Le code

1011111110101011111010110011

est-il encore intelligible ? Comment savoir où s’arrête le code d’une lettre et où
commence le code de la lettre suivante ?

Sans nous attarder sur de lourds détails techniques, nous voulons convaincre le
lecteur qu’il est aisé de coder des textes, du son ou des images. Plusieurs stan-
dards utilisés internationalement permettent de coder des textes. A la manière
de l’exemple décrit ci-dessus, les standards ASCII ou unicode attribuent à chaque
caractère (majuscule, minuscule, signe de ponctuation) un code, i.e., un entier. Un
texte est dès lors formé d’une suite de tels codes représentés en base 2. Un fichier
.doc ou .rtf contient non seulement un texte mais aussi de nombreuses informa-
tions de mise en page (police de caractère, couleur, taille, etc) codées de manière
appropriée.

Une image dont les dimensions sont connues, n’est en fin de compte qu’une
succession de pixels (ou points lumineux) alignés. Pour une image en noir et blanc,
chaque pixel est soit éteint soit allumé ce qui, par convention, peut une fois encore
être codé par deux nombres : 0 et 1.

1 0 0 0 1

0 1 1 0 0

0 0 0 1 1

1 1 1 0 1

1 0 0 0 1

Pour une image en dégradés de gris (par exemple, 16 dégradés allant du noir
au blanc), on peut convenir de coder chaque teinte par les nombres 0 = 0/15,
1/15, 2/15,. . . , 14/15, 1 = 15/15, ces fractions correspondant au niveau d’intensité
lumineuse du pixel considéré. Les numérateurs compris entre 0 et 15 peuvent être
codés en base 2 par 4 chiffres. Avec [0000]2 = 0 représentant le noir et [1111]2 = 15
représentant le blanc. Un peu comme dans l’exemple précédent où chaque lettre
était codée par 5 chiffres, chaque nombre est codé par un nombre constant de
chiffres.

Les systèmes plus évolués utilisent jusqu’à 28 = 256 teintes de gris. On utilise
alors des intensités variant par pas de 1/255. Celles-ci vont du noir codé par huit
zéros, au blanc représenté par [1111111]2 = 255. Pour obtenir des images en cou-
leurs, il faut savoir que chaque couleur peut être obtenue par addition des couleurs
primaires : rouge, vert et bleu. Imaginer une feuille blanche éclairée par un spot
bleu, la feuille parâıt bleu. Eclairée par deux spots, un bleu et un vert, la page parâıt
turquoise. Enfin éclairée par trois spots, un rouge, un vert et un bleu, les couleurs
s’additionnent pour retrouver une page blanche. Ainsi, en superposant trois images



4 MICHEL RIGO

distinctes (une pour chaque couleur primaire), on obtient l’image en couleurs dé-
sirée. Chacune de ces trois images peut être codée comme une image formée de
dégradés d’une teinte de base semblable aux images en dégradés de gris. Avec ce
modèle, il est aisé de définir jusqu’à 23×8 = 16.777.216 couleurs.

Un son n’est autre qu’une onde produite par la vibration mécanique d’un sup-
port (par exemple, les cordes vocales) et propagée grâce à l’élasticité du milieu (en
l’occurrence l’air) sous forme d’onde longitudinale. L’air étant un milieu compres-
sible, le son se propage sous forme de variations de pression. Ces vibrations sont
captées par la membrane d’un micro qui les transforme en impulsions électriques. Le
signal électrique est alors échantillonné3. On transforme un signal continu (penser
au graphe d’une fonction continue) en un signal discret (penser à une approxima-
tion polygonale du graphe en question), en enregistrant des valeurs prises par ce
signal à intervalles de temps réguliers. Ces valeurs qui ne sont que des nombres,
sont alors codées de façon ad hoc par une suite de 0 et de 1.

Signalons encore que l’ADN renferme les informations nécessaires au dévelop-
pement et au fonctionnement d’un organisme. Il est aussi le support de l’hérédité.
Ainsi, nous portons également le codage de nombreuses informations. Les zéros
et les uns sont simplement remplacés par des paires Adenine-Thymine, Guanine-
Cytosine.

3. Pourquoi avoir des codes correcteurs

On pourrait penser vivre dans un monde parfait dans lequel aucune erreur n’est
jamais commise. Il n’en est hélas rien. Pour de nombreuses raisons, des erreurs
peuvent se produire. Reprenons l’exemple où a=00001, . . . , z=10110. Ainsi, si le
message

00010 01111 01110 01010 01111 10101 10011

a été mal retranscrit (par exemple, il a été dicté et la personne recevant les infor-
mations ne les a pas bien comprises), on peut avoir gardé uniquement trace d’un
message comme

00011 01111 01010 01010 01111 10101 10100

qui, avec nos conventions, sera décodé par “cojjous” devenu incompréhensible ! Par
exemple, une communication peut être altérée par des interférences, un orage, la
proximité d’une ligne à haute tension, un CD ou un DVD peut présenter des grattes
mêmes microscopiques, des empreintes de doigts ou des poussières en surface. On
peut aussi, sur un support magnétique, imaginer des erreurs de lecture ou d’écriture
(dans un disque dur, les têtes de lecture et d’écriture se déplacent à la surface d’une
fine couche magnétique utilisée pour sauvegarder les informations).

Pour pallier à ces désagréments, les chercheurs et les ingénieurs ont développé
de nombreux codes permettant de détecter ou même de corriger certaines erreurs.
Dans une conversation normale entre deux personnes, lorsqu’un des interlocuteurs
ne comprend pas un message, il demande en général qu’on lui répète une phrase ou
un mot. Ainsi, pour être compris par un plus grand nombre, un discours est souvent
plus long que nécessaire. Les idées principales sont reprises et répétées. On ajoute
donc une certaine redondance par rapport au message initial.

3Voir l’un des théorèmes de C. E. Shannon (1916–2001), père fondateur de la théorie de l’in-
formation [7].



CODES CORRECTEURS 5

3.1. Doubler chaque chiffre. On pourrait décider dans un premier temps de
répéter chaque chiffre. Ainsi, à la place des premiers éléments de notre exemple :
0001001111, on pourrait stocker ou transmettre le message

00 00 00 11 00 00 11 11 11 11.

Si une erreur se produit et que l’on reçoit le message ci-dessous

00 00 00 11 0100 11 11 11 11,

on peut facilement voir qu’une erreur s’est produite. En effet, si on découpe le
message en blocs consécutifs de longueur deux, un des blocs n’est pas de la forme
00 ou 11. Par contre, le bloc 01 peut provenir, avec la même probabilité, aussi bien
d’un bloc 00 que d’un bloc 11. Il n’y a donc pas moyen de corriger l’erreur qui
a été détectée. Si cela est possible, on pourra demander de réexpédier le message
une seconde fois (cela n’est pas toujours possible, pensez à une gratte sur un CD
définitivement présente ou aux images envoyées par une sonde spatiale passant une
seule fois à proximité d’une comète). Pire, si les deux chiffres d’un bloc ont été mal
transmis, alors on recevra par exemple 11 à la place du bloc 00 sans détecter la
présence d’une erreur. Pour pouvoir estimer efficacement le pourcentage d’erreurs
détectées par un code donné, nous sommes amenés à formaliser notre modèle de
communication (canal symétrique de communication) représenté schématiquement
ci-dessous. Ce modèle convient pour des erreurs survenant de manière aléatoire.
Cependant, dans certains cas pratiques, les erreurs arrivent plutôt par paquets.

0

1

0

1

q

p

q
p

Soit p la probabilité qu’un chiffre 0 ou 1 transmis sur le canal bruité soit correc-
tement transmis. Posons q = 1 − p. Ainsi, on a

P(0 reçu|0 transmis) = P(1 reçu|1 transmis) = p,

P(0 reçu|1 transmis) = P(1 reçu|0 transmis) = 1 − p = q.

Avec ce modèle, imaginons disposer de l’information représentée par 01. D’abord,
celle-ci est codée en 0011 avec notre convention de doubler chaque chiffre. Ensuite,
ce message de longueur 4 est envoyé sur le canal. La probabilité qu’un message
de longueur 4 soit transmis sans erreur est de p4 et celle qu’il soit transmis avec
i ∈ {1, . . . , 4} erreurs est de qip4−i.

3.2. Tripler chaque chiffre. Imaginons à présent répéter chaque chiffre non pas
deux mais trois fois. Bien sûr, la taille du message augmente en conséquence, mais
au point de vue des erreurs détectées et corrigées, cela change-t-il quelque chose ?
Les chiffres 0 et 1 sont à présent codés respectivement par 000 et 111. Lorsque le
triplet 000 est transmis sur le canal de communication, on peut recevoir

triplet reçu probabilité d’apparition si p = 0, 9
000 p3 0, 729

001, 010, 100 3p2q 0, 243
011, 101, 110 3pq2 0, 027

111 q3 0, 001



6 MICHEL RIGO

Lorsqu’on reçoit un triplet comme 000 ou 001, le plus vraisemblable (au sens des
probabilités calculées ci-dessus4) est que le triplet réellement émis soit effectivement
000 provenant donc du chiffre 0. Ainsi, on convient de décoder un triplet à la
majorité des chiffres présents. Le code ainsi défini permet de détecter une erreur et
de la corriger. La probabilité qu’un chiffre significatif, codé par un triplet transmis
sur le canal, soit au final bien décodé est donc p3 + 3p2q = p2(3 − 2p) ce qui pour
p = 0, 9 vaut 0, 972. Donc, si sur le canal on enregistre un taux de 10% d’erreurs,
on est à même de transmettre des informations avec moins de 3% d’erreurs. Cela a
un prix : on a triplé la taille du message initial.

Dans les images ci-dessous, on a utilisé une image codée par une suite de 0 et
de 1. Quand elle est transmise sur un canal bruité (p = 0, 9) sans aucun code
correcteur, on obtient l’image centrale. L’image de droite donne le décodage après
avoir transmis sur le canal chaque chiffre significatif trois fois.

Regardons à présent sur un exemple ce que permet ce code lorsque l’on transmet
plus d’un chiffre significatif. Imaginons vouloir envoyer les quatre chiffres significatifs
0110. Ceux-ci sont d’abord remplacés par la suite de 12 chiffres

000 111 111 000.

Ce message est transmis sur un canal bruité. Nous savons déjà qu’il est possible
de détecter et corriger correctement une erreur. Imaginons maintenant avoir deux
erreurs. Si celles-ci se trouvent dans des triplets distincts, elles seront bien corrigées

000 110111 010 −→ 0110.

Par contre, si elles se présentent dans un même triplet, on procédera à un décodage
erroné

000 111 111 011−→ 0111.

La probabilité que les 4 chiffres codés par une suite de longueur 12 soient correcte-
ment décodés après transmission sur le canal bruité peut se calculer directement à
partir du calcul précédent (pour un triplet). On obtient (p3+3p2q)4 = p8(3−2p)4 ex-
primant que chacun des quatre triplets doit être correctement décodé. Pour p = 0, 9,
cette quantité vaut 0, 892617.

On peut aussi raisonner comme suit. Pour avoir un décodage correct, les erreurs
éventuelles doivent apparâıtre dans des triplets différents. Ainsi, l’événement“obser-
ver i ∈ {0, 1, 2, 3, 4} erreur(s) se produisant des triplets distincts” a une probabilité

3i Ci

4 p12−i qi.

En effet, on ne doit pas sélectionner i positions arbitraires parmi 12. On sélectionne
d’abord i triplets parmi les 4 disponibles et dans chacun de ces triplets, l’erreur
qui y survient peut occuper l’une des 3 positions. Si plus de 4 erreurs surviennent,
au moins deux apparaissent dans un même triplet qui sera dès lors mal décodé.

4Principe du maximum de vraisemblance.



CODES CORRECTEURS 7

Au total, la probabilité que les 4 chiffres codés par une suite de longueur 12 soit
correctement décodés après transmission sur le canal bruité est

4∑

i=0

3i Ci

4 p12−i qi.

On pourra vérifier que ce résultat est exactement (p3 + 3p2q)4.
Enfin, on pourrait aussi s’interroger sur la proportion des erreurs que l’on sait

corriger. Si i = 2, 3, 4, le nombre de cas possibles pour avoir exactement i erreurs
sur les 12 chiffres transmis est de Ci

12 et le nombre de cas que l’on sait effectivement
corriger est de 3i Ci

4. Pour i = 2, 3, 4, on obtient 3i Ci
4/Ci

12 qui vaut, pour p = 0, 9,
respectivement 0, 818182 ; 0, 490909 ; 0, 163636.

3.3. Un code de Hamming. Nous avons vu que le codage ci-dessus permettait
de corriger une erreur mais avec un prix certain : les chiffres significatifs contenant
véritablement l’information ne constituent qu’un tiers du message transmis. Pour
limiter la quantité d’informations à stocker ou pour ne pas saturer le réseau de
communication, il serait bien évidemment souhaitable de transmettre un message
moins long tout en conservant des propriétés permettant la correction d’erreurs
éventuelles. Idéalement, on voudrait pouvoir corriger un maximum d’erreurs, en
limitant les redondances, i.e., en n’allongeant pas le message original contenant
l’information plus que nécessaire. C’est là l’un des challenges de la théorie des
codes correcteurs. On peut aussi vouloir obtenir des codes permettant de prendre
en compte des situations particulières (par exemple, si les erreurs n’apparaissent
pas de manière aléatoire, mais plutôt par paquets).

Le code que nous allons présenter maintenant est un code linéaire. On peut
faire le parallèle avec les vecteurs introduits en quatrième année et le calcul en
composantes dans une base fixée. Ce code permet d’avoir à sa disposition une
application autre que le calcul de forces en physique. Dans Z2 = {0, 1}, on a 1 +
1 = 0 (autrement dit, on compte modulo 2, cf. par exemple [5]). On considère
l’ensemble (Z2)

7 des 7-uples d’éléments de Z2 et on y définit une addition qui
s’effectue composante à composante (à la manière de R

2 ou R
7). Par exemple, on a

(1, 0, 0, 0, 1, 1, 1) + (0, 1, 1, 0, 0, 1, 0) = (1, 1, 1, 0, 1, 0, 1).

En fait, (Z2)
7 possède une structure d’espace vectoriel (les scalaires sont ici les

éléments de Z2) et on va en définir un sous-espace vectoriel (sous-ensemble non
vide contenant les combinaisons linéaires de ses éléments).

Pour définir le code de Hamming H [7, 4], on considère les 4 “vecteurs” (on peut
effectivement parler de vecteurs puisqu’il s’agit d’éléments d’un espace vectoriel)
suivants

a = (1, 0, 0, 0, 0, 1, 1)
b = (0, 1, 0, 0, 1, 0, 1)
c = (0, 0, 1, 0, 1, 1, 0)
d = (0, 0, 0, 1, 1, 1, 1).



8 MICHEL RIGO

L’enveloppe linéaire de ces 4 éléments est un sous-espace vectoriel qui contient
toutes les combinaisons possibles de ceux-ci :

a = (1, 0, 0, 0, 0, 1, 1)
b = (0, 1, 0, 0, 1, 0, 1)
c = (0, 0, 1, 0, 1, 1, 0)
d = (0, 0, 0, 1, 1, 1, 1)

a + b = (1, 1, 0, 0, 1, 1, 0)
a + c = (1, 0, 1, 0, 1, 0, 1)
a + d = (1, 0, 0, 1, 1, 0, 0)
b + c = (0, 1, 1, 0, 0, 1, 1)
b + d = (0, 1, 0, 1, 0, 1, 0)
c + d = (0, 0, 1, 1, 0, 0, 1)

a + b + c = (1, 1, 1, 0, 0, 0, 0)
a + b + d = (1, 1, 0, 1, 0, 0, 1)
a + c + d = (1, 0, 1, 1, 0, 1, 0)
b + c + d = (0, 1, 1, 1, 1, 0, 0)

a + b + c + d = (1, 1, 1, 1, 1, 1, 1)
(0, 0, 0, 0, 0, 0, 0)

On remarque que pour les 16 vecteurs ci-dessus, deux quelconques d’entre eux
débutent toujours avec des 4-uples distincts. On peut donc les utiliser pour coder
toute suite de 0 et de 1 de longueur 4 en la remplaçant par le 7-uple ayant le même
début. Par exemple,

1100 −→ 1100110 et 0110 −→ 0110011.

Les justifications ne seront pas abordées dans l’exposé mais ce code permet de
détecter et de corriger une erreur apparaissant en une position quelconque du 7-
uple. De plus, le décodage est aisé. On l’obtient en calculant 3 produits scalaires
(somme des produits composante à composante, le tout calculé dans Z2) entre le
7-uple reçu et les trois vecteurs

x = (0, 0, 0, 1, 1, 1, 1), y = (0, 1, 1, 0, 0, 1, 1) et z = (1, 0, 1, 0, 1, 0, 1).

On procède comme suit. Imaginons que le message à transmettre soit 0110011,
mais que le message reçu soit 0111011 = (0, 1, 1, 1, 0, 1, 1) = s. On calcule dans Z2

〈s, x〉 = 0.0 + 1.0 + 1.0 + 1.1 + 0.1 + 1.1 + 1.1 = 1
〈s, y〉 = 0.0 + 1.1 + 1.1 + 1.0 + 0.0 + 1.1 + 1.1 = 0
〈s, z〉 = 0.1 + 1.0 + 1.1 + 1.0 + 0.1 + 1.0 + 1.1 = 0.

Ensuite, [100]2 étant égal à 4, cela signifie que le 4ième chiffre transmis est erroné.
La probabilité que les 4 chiffres codés par une suite de longueur 7 soit correctement
décodés après transmission sur le canal bruité est p7 + 7p6q et vaut 0, 850306 si
p = 0, 9. En effet, soit aucune erreur ne s’est produite soit une erreur s’est produite.

Pour conclure, on peut comparer les deux codes rencontrés dans cet exposé. Avec
le code R3 (triple répétition), la longueur du message envoyé est multipliée par 3.
Par contre, pour H [7, 4], elle n’est multipliée que par 7/4. Le second code a dès
lors, sur ce point, un avantage certain. Les deux codes peuvent corriger une erreur
(parfois plus pour R3). Pour envoyer un message de 4 chiffres significatifs sur un
canal bruité avec p = 0, 9, avec R3 la probabilité que le message soit correctement
décodé est de l’ordre de 89% et pour H [7, 4], elle est de 85%.

Références

[1] S. Ling, C. Xing, Coding Theory, a first course, Cambridge University Press (2004).



CODES CORRECTEURS 9

[2] B. Martin, Codage, cryptologie et applications, Presses polytechniques et universitaires ro-
mandes (2004).

[3] E. Mart́ınez-Moro, C. Munuera, D. Ruano (Ed.), Advances in Algebraic Geometry Codes,
Series on Coding Theory and Cryptology - Vol. 5, World Scientific.

[4] V. Pless, Introduction to the Theory of Error-Correcting Codes, Wiley-Interscience series in
discrete mathematics and optimization (1998).

[5] M. Rigo, Pirates informatiques et mathématique modulaire, (2007),
http ://www.discmath.ulg.ac.be/mam/.

[6] M. Rigo, La matrice cachée de Google, (2008),
http ://www.discmath.ulg.ac.be/mam/.

[7] C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal,
Vol. 27, pp. 379–423, 623–656, (1948).

M. Rigo, Université de Liège, Institut de Mathématiques, Grande Traverse 12 (B37),
B-4000 Liège. M.Rigo@ulg.ac.be


