CODES CORRECTEURS

MICHEL RIGO

Ce texte sert de compagnon succinct a la présentation “PowerPoint” portant sur
les codes correcteurs (Printemps des Sciences 2009).

Qu’on le veuille ou non, nous vivons dans un monde ou les informations et les
moyens de communication sont omniprésents. Les exemples ou se mélent infor-
matique et télécommunications sont nombreux. Que ce soit I'Internet, la musique
achetée en ligne ou gravée sur CD*, les baladeurs de type iPod et autres appa-
reils portables, les supports mémoire de tout type, la photographie numérique, la
présence d’ordinateurs de bord sophistiqués dans nos voitures, etc. Sans code cor-
recteur, le CD (implémentant un code correcteur de type Reed-Solomon) et de
nombreux autres produits n’auraient probablement jamais connu le succes !

Sans nécessiter de pré-requis particulier, ce texte et 'exposé qui s’y rapporte
développent quelques exemples montrant que des mathématiques parfois abstraites
et ne présentant pas d’intérét pratique immédiat — comme certains résultats d’alge-
bre linéaire ou générale — ont de réelles applications dans la vie de tout un chacun.
Voir aussi [5, 6] pour d’autres exemples ayant le méme leitmotiv.

Notons que les développements rencontrés ici peuvent fournir a ’enseignant une
illustration de la notion de vecteur et du “calcul en composantes’ (certains codes
correcteurs sont en fait des sous-espaces vectoriels) ainsi que quelques applications
de l'analyse combinatoire et du calcul élémentaire des probabilités. Ces derniers
aspects ne seront abordés, dans ’exposé oral, que pour les éleves ayant vu ces
notions en classe.

Modestement, cet exposé donne un embryon de réponse a la question si souvent
posée : “Les Maths ca sert a quoi ¢ 7. Les applications se nourrissent de la recherche
fondamentale et réciproquement. Cependant la recherche peut et doit vivre pour
elle-méme, sans avoir en ligne de mire une quelconque application. Certains codes
correcteurs évolués reposent par exemple sur des résultats non triviaux de géométrie
algébrique développés de maniére indépendante [3]. Ces codes n’auraient jamais vu
le jour sans des développements en mathématiques pures. Quelques chiffres pour
conclure cette introduction : prés de 2400 articles scientifiques en théorie des codes®
parus entre 1990 et 2000 et déja plus de 2500 depuis 2000.

1. LA BASE 2

Pour représenter et manipuler les nombres, nous utilisons depuis notre plus
tendre enfance le systeme décimal. Un nombre entier est représenté par une suite
¢k -+ -c1cp de chiffres compris entre 0 et 9 (ne commengant pas par zéro) et la
convention veut que le nombre ainsi représenté soit

108 + - - 1 10° .
cp X 10° + +c1 X 10+ ¢y x 10
1

On parle de numération de position car chaque chiffre de la représentation est
multiplié par une puissance convenable de dix en fonction de la position qu’il occupe

IBien que le bon usage voudrait qu’on écrivit cédé, je m’autoriserai le CD.
2AMS Classification 94B : Theory of error-correcting codes and error-detecting codes.
1
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au sein de cette représentation. On trouve ainsi de droite a gauche, le chiffre des
unités, puis celui des dizaines, des centaines, des milliers, etc. Par exemple, 2762 =
2x 10347 x 107+ 6 x 10 + 2.

Que se passe-t-il si on remplace la base de numération, en I’occurrence 10, par un
autre entier, disons b > 27 Dans ce cas, les chiffres utilisés pour écrire un nombre
en base b sont pris dans {0,...,b—1} et chaque chiffre est multiplié par la puissance
de b correspondant a sa position dans I’écriture considérée. Ainsi, avec des chiffres
dans {0,...,b— 1}, ¢k - - - c1¢o représente

[eh - crcolp = e X b¥ + -+ ¢1 X b+ cp.

En particulier, en base 2, on obtient le systeme binaire et les premiers entiers stric-
tement positifs se représentent dans ’ordre par

1,10,11, 100,101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, . . ..

La notation [-], permet de rappeler la base utilisée. Par exemple, on a [1001]s = 9
mais [1001]3 = 28. Calculer dans une autre base que la base 10 requiert un peu
d’entrainement, mais les régles de calcul de 1’école primaire (comme les “calculs
écrits”) fonctionnent toujours treés bien. Pour une addition faite par écrit en base 2,
lorsqu’on se trouve face a deux 1 alignés dans une méme colonne, pour effectuer ce
“l14 17, on aura la regle orale : “j’écris O et je reporte 1”7 car 1+ 1 = [10]5.

1

1 0
+

O = =
oo o©
== O
= =

11
Voici quelques petites questions sur le systéme binaire :

— Que vaut le nombre [111111]2 + 1?7 Quelle en est la représentation en base 2
correspondante ? Pour ’obtenir, réalisez le calcul écrit suivant et observez les

reports.
1 11 1 1 1
+ 1
?
i
. 7 . /_/H
— Quels entiers ont une écriture en base 2 de la forme 1, 10, 100, ..., 10---0,

aveci > 07
—
— Méme question pour ceux de la forme 1, 11, 1---17
— Que se passe-t-il sur I’écriture d’un entier n en base 2, lorsqu’on multiplie celui-
ci par 2 ou encore, par 47 Méme question lorsqu’on remplace n par 2n + 17
— Comment décider si un nombre est pair ou impair, lorsqu’on connait sa repré-
sentation en base 27

2. CODER DES DONNEES

Avec des regles bien précises, des informations de types variés peuvent étre repré-
sentées par une suite de 0 et de 1. La maniére dont est représenté I’objet d’intérét ne
releve alors que de conventions connues de tous les intervenants ayant a manipuler
I'information. Par exemple, on peut convenir de coder les lettres de 'alphabet par
des successions de cing éléments pris dans {0, 1} comme suit :

a=00001, b=00010, ¢=00011, d=00100, e=00101, ..., z=10110.
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Cela correspond simplement & représenter chaque lettre (minuscule) par sa position
en base 2 au sein de I'alphabet. De plus, on ajoute, si nécessaire, des zéros de téte
pour que chaque mot soit de longueur 5. Avec de telles conventions, la suite

00010 01111 01110 01010 01111 10101 10011

représente le mot “bonjour”. Les espaces ne sont présents ici que pour faciliter
la lecture. Le code transmis est 00010011110111001010011111010110011. Que se
passerait-il sans la convention d’ajouter des zéros de téte ? Le code

1011111110101011111010110011

est-il encore intelligible? Comment savoir ou s’arréte le code d’une lettre et ou
commence le code de la lettre suivante ?

Sans nous attarder sur de lourds détails techniques, nous voulons convaincre le
lecteur qu’il est aisé de coder des textes, du son ou des images. Plusieurs stan-
dards utilisés internationalement permettent de coder des textes. A la maniere
de I'exemple décrit ci-dessus, les standards ASCII ou unicode attribuent a chaque
caractére (majuscule, minuscule, signe de ponctuation) un code, i.e., un entier. Un
texte est des lors formé d’une suite de tels codes représentés en base 2. Un fichier
.doc ou .rtf contient non seulement un texte mais aussi de nombreuses informa-
tions de mise en page (police de caractere, couleur, taille, etc) codées de maniere
appropriée.

Une image dont les dimensions sont connues, n’est en fin de compte qu’une
succession de pixels (ou points lumineux) alignés. Pour une image en noir et blanc,
chaque pixel est soit éteint soit allumé ce qui, par convention, peut une fois encore
étre codé par deux nombres : 0 et 1.

1 0 0 0 1
011 0 O
0 0 0 1 1
11 1 0 1
1 0 0 0 1

Pour une image en dégradés de gris (par exemple, 16 dégradés allant du noir
au blanc), on peut convenir de coder chaque teinte par les nombres 0 = 0/15,
1/15,2/15,...,14/15, 1 = 15/15, ces fractions correspondant au niveau d’intensité
lumineuse du pixel considéré. Les numérateurs compris entre 0 et 15 peuvent étre
codés en base 2 par 4 chiffres. Avec [0000]z = 0 représentant le noir et [1111]; = 15
représentant le blanc. Un peu comme dans I'exemple précédent ou chaque lettre
était codée par 5 chiffres, chaque nombre est codé par un nombre constant de
chiffres.

Les systemes plus évolués utilisent jusqu’a 28 = 256 teintes de gris. On utilise
alors des intensités variant par pas de 1/255. Celles-ci vont du noir codé par huit
zéros, au blanc représenté par [1111111]y = 255. Pour obtenir des images en cou-
leurs, il faut savoir que chaque couleur peut étre obtenue par addition des couleurs
primaires : rouge, vert et bleu. Imaginer une feuille blanche éclairée par un spot
bleu, la feuille parait bleu. Eclairée par deux spots, un bleu et un vert, la page parait
turquoise. Enfin éclairée par trois spots, un rouge, un vert et un bleu, les couleurs
s’additionnent pour retrouver une page blanche. Ainsi, en superposant trois images
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distinctes (une pour chaque couleur primaire), on obtient l'image en couleurs dé-
sirée. Chacune de ces trois images peut étre codée comme une image formée de
dégradés d’'une teinte de base semblable aux images en dégradés de gris. Avec ce
modele, il est aisé de définir jusqu’a 23%® = 16.777.216 couleurs.

Un son n’est autre qu'une onde produite par la vibration mécanique d’un sup-
port (par exemple, les cordes vocales) et propagée grace a I’élasticité du milieu (en
loccurrence air) sous forme d’onde longitudinale. L’air étant un milieu compres-
sible, le son se propage sous forme de variations de pression. Ces vibrations sont
captées par la membrane d’un micro qui les transforme en impulsions électriques. Le
signal électrique est alors échantillonné®. On transforme un signal continu (penser
au graphe d’une fonction continue) en un signal discret (penser & une approxima-
tion polygonale du graphe en question), en enregistrant des valeurs prises par ce
signal & intervalles de temps réguliers. Ces valeurs qui ne sont que des nombres,
sont alors codées de facon ad hoc par une suite de 0 et de 1.

Signalons encore que ’ADN renferme les informations nécessaires au dévelop-
pement et au fonctionnement d’un organisme. Il est aussi le support de I’hérédité.
Ainsi, nous portons également le codage de nombreuses informations. Les zéros
et les uns sont simplement remplacés par des paires Adenine-Thymine, Guanine-
Cytosine.

3. POURQUOI AVOIR DES CODES correcteurs

On pourrait penser vivre dans un monde parfait dans lequel aucune erreur n’est
jamais commise. Il n’en est hélas rien. Pour de nombreuses raisons, des erreurs
peuvent se produire. Reprenons I'exemple ou a=00001, ..., z=10110. Ainsi, si le
message

00010 01111 01110 01010 01111 10101 10011

a été mal retranscrit (par exemple, il a été dicté et la personne recevant les infor-
mations ne les a pas bien comprises), on peut avoir gardé uniquement trace d’un
message comme

00011 01111 01010 01010 01111 10101 10100

qui, avec nos conventions, sera décodé par “cojjous” devenu incompréhensible! Par
exemple, une communication peut étre altérée par des interférences, un orage, la
proximité d’une ligne a haute tension, un CD ou un DVD peut présenter des grattes
mémes microscopiques, des empreintes de doigts ou des poussiéres en surface. On
peut aussi, sur un support magnétique, imaginer des erreurs de lecture ou d’écriture
(dans un disque dur, les tétes de lecture et d’écriture se déplacent & la surface d’une
fine couche magnétique utilisée pour sauvegarder les informations).

Pour pallier & ces désagréments, les chercheurs et les ingénieurs ont développé
de nombreux codes permettant de détecter ou méme de corriger certaines erreurs.
Dans une conversation normale entre deux personnes, lorsqu’un des interlocuteurs
ne comprend pas un message, il demande en général qu’on lui répete une phrase ou
un mot. Ainsi, pour étre compris par un plus grand nombre, un discours est souvent
plus long que nécessaire. Les idées principales sont reprises et répétées. On ajoute
donc une certaine redondance par rapport au message initial.

3Voir I'un des théorémes de C. E. Shannon (1916-2001), pere fondateur de la théorie de I'in-
formation [7].
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3.1. Doubler chaque chiffre. On pourrait décider dans un premier temps de
répéter chaque chiffre. Ainsi, a la place des premiers éléments de notre exemple :
0001001111, on pourrait stocker ou transmettre le message

00000011000011111111.
Si une erreur se produit et que 'on regoit le message ci-dessous
00000011010011111111,

on peut facilement voir qu'une erreur s’est produite. En effet, si on découpe le
message en blocs consécutifs de longueur deux, un des blocs n’est pas de la forme
00 ou 11. Par contre, le bloc 01 peut provenir, avec la méme probabilité, aussi bien
d’un bloc 00 que d’un bloc 11. Il n’y a donc pas moyen de corriger I'erreur qui
a été détectée. Si cela est possible, on pourra demander de réexpédier le message
une seconde fois (cela n’est pas toujours possible, pensez & une gratte sur un CD
définitivement présente ou aux images envoyées par une sonde spatiale passant une
seule fois & proximité d’une comete). Pire, si les deux chiffres d’un bloc ont été mal
transmis, alors on recevra par exemple 11 a la place du bloc 00 sans détecter la
présence d’'une erreur. Pour pouvoir estimer efficacement le pourcentage d’erreurs
détectées par un code donné, nous sommes amenés a formaliser notre modele de
communication (canal symétrique de communication) représenté schématiquement
ci-dessous. Ce modele convient pour des erreurs survenant de maniere aléatoire.
Cependant, dans certains cas pratiques, les erreurs arrivent plutot par paquets.

0 P 0
- -l
1 P 1

Soit p la probabilité qu’'un chiffre 0 ou 1 transmis sur le canal bruité soit correc-
tement transmis. Posons ¢ = 1 — p. Ainsi, on a

P(0 recu|0 transmis) = P(1 regu|l transmis) = p,

P(0 regu|l transmis) = P(1 regu|0 transmis) =1 — p = gq.

Avec ce modele, imaginons disposer de I'information représentée par 01. D’abord,
celle-ci est codée en 0011 avec notre convention de doubler chaque chiffre. Ensuite,
ce message de longueur 4 est envoyé sur le canal. La probabilité qu’'un message
de longueur 4 soit transmis sans erreur est de p* et celle qu’il soit transmis avec
i €{1,...,4} erreurs est de ¢'p*~".

3.2. Tripler chaque chiffre. Imaginons a présent répéter chaque chiffre non pas
deux mais trois fois. Bien siir, la taille du message augmente en conséquence, mais
au point de vue des erreurs détectées et corrigées, cela change-t-il quelque chose?
Les chiffres 0 et 1 sont & présent codés respectivement par 000 et 111. Lorsque le
triplet 000 est transmis sur le canal de communication, on peut recevoir

triplet requ | probabilité d’apparition | si p = 0,9

000 P> 0,729
001,010, 100 3p?q 0,243
011,101,110 3pq? 0,027

3

111 q 0,001
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Lorsqu’on regoit un triplet comme 000 ou 001, le plus vraisemblable (au sens des
probabilités calculées ci-dessus?) est que le triplet réellement émis soit effectivement
000 provenant donc du chiffre 0. Ainsi, on convient de décoder un triplet a la
majorité des chiffres présents. Le code ainsi défini permet de détecter une erreur et
de la corriger. La probabilité qu’un chiffre significatif, codé par un triplet transmis
sur le canal, soit au final bien décodé est donc p* + 3p?q = p?(3 — 2p) ce qui pour
p = 0,9 vaut 0,972. Donc, si sur le canal on enregistre un taux de 10% d’erreurs,
on est & méme de transmettre des informations avec moins de 3% d’erreurs. Cela a
un prix : on a triplé la taille du message initial.

Dans les images ci-dessous, on a utilisé une image codée par une suite de O et
de 1. Quand elle est transmise sur un canal bruité (p = 0,9) sans aucun code
correcteur, on obtient 'image centrale. L’image de droite donne le décodage apres
avoir transmis sur le canal chaque chiffre significatif trois fois.

Regardons & présent sur un exemple ce que permet ce code lorsque 'on transmet
plus d’un chiffre significatif. Imaginons vouloir envoyer les quatre chiffres significatifs
0110. Ceux-ci sont d’abord remplacés par la suite de 12 chiffres

000111111 000.

Ce message est transmis sur un canal bruité. Nous savons déja qu’il est possible
de détecter et corriger correctement une erreur. Imaginons maintenant avoir deux
erreurs. Si celles-ci se trouvent dans des triplets distincts, elles seront bien corrigées

000110111010 — 0110.

Par contre, si elles se présentent dans un méme triplet, on procédera & un décodage
erroné

000111111011 — 0111.

La probabilité que les 4 chiffres codés par une suite de longueur 12 soient correcte-
ment décodés apres transmission sur le canal bruité peut se calculer directement a
partir du calcul précédent (pour un triplet). On obtient (p3+3p?q)* = p®(3—2p)* ex-
primant que chacun des quatre triplets doit étre correctement décodé. Pour p = 0, 9,
cette quantité vaut 0,892617.

On peut aussi raisonner comme suit. Pour avoir un décodage correct, les erreurs
éventuelles doivent apparaitre dans des triplets différents. Ainsi, I’événement “obser-
veri € {0,1,2,3,4} erreur(s) se produisant des triplets distincts” a une probabilité

31 Qi pl2—i g,
En effet, on ne doit pas sélectionner ¢ positions arbitraires parmi 12. On sélectionne
d’abord ¢ triplets parmi les 4 disponibles et dans chacun de ces triplets, I'erreur

qui y survient peut occuper l'une des 3 positions. Si plus de 4 erreurs surviennent,
au moins deux apparaissent dans un méme triplet qui sera des lors mal décodé.

4Principe du maximum de vraisemblance.
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Au total, la probabilité que les 4 chiffres codés par une suite de longueur 12 soit
correctement décodés apres transmission sur le canal bruité est

4
231 CZ p127i qi.
=0

On pourra vérifier que ce résultat est exactement (p® + 3p?q)?.

Enfin, on pourrait aussi s’interroger sur la proportion des erreurs que l'on sait
corriger. Si ¢ = 2,3,4, le nombre de cas possibles pour avoir exactement ¢ erreurs
sur les 12 chiffres transmis est de C¢, et le nombre de cas que I'on sait effectivement
corriger est de 3¢ C%. Pour i = 2, 3,4, on obtient 3° C}/C%, qui vaut, pour p = 0,9,
respectivement 0, 818182 ; 0,490909; 0, 163636.

3.3. Un code de Hamming. Nous avons vu que le codage ci-dessus permettait
de corriger une erreur mais avec un prix certain : les chiffres significatifs contenant
véritablement l'information ne constituent qu’un tiers du message transmis. Pour
limiter la quantité d’informations a stocker ou pour ne pas saturer le réseau de
communication, il serait bien évidemment souhaitable de transmettre un message
moins long tout en conservant des propriétés permettant la correction d’erreurs
éventuelles. Idéalement, on voudrait pouvoir corriger un maximum d’erreurs, en
limitant les redondances, i.e., en n’allongeant pas le message original contenant
Iinformation plus que nécessaire. C’est la I'un des challenges de la théorie des
codes correcteurs. On peut aussi vouloir obtenir des codes permettant de prendre
en compte des situations particulieres (par exemple, si les erreurs n’apparaissent
pas de maniére aléatoire, mais plutdt par paquets).

Le code que nous allons présenter maintenant est un code linéaire. On peut
faire le parallele avec les vecteurs introduits en quatrieme année et le calcul en
composantes dans une base fixée. Ce code permet d’avoir & sa disposition une
application autre que le calcul de forces en physique. Dans Zo = {0,1}, on a 1 +
1 = 0 (autrement dit, on compte modulo 2, ¢f. par exemple [5]). On considere
I'ensemble (Zo)7 des 7-uples d’éléments de Zs et on y définit une addition qui
s’effectue composante & composante (3 la maniere de R? ou R7). Par exemple, on a

(1,0,0,0,1,1,1) 4+ (0,1,1,0,0,1,0) = (1,1,1,0,1,0,1).

En fait, (Z)7 posséde une structure d’espace vectoriel (les scalaires sont ici les
éléments de Zz) et on va en définir un sous-espace vectoriel (sous-ensemble non
vide contenant les combinaisons linéaires de ses éléments).

Pour définir le code de Hamming H|[7,4], on considére les 4 “vecteurs” (on peut
effectivement parler de vecteurs puisqu’il s’agit d’éléments d’un espace vectoriel)
suivants

oo o=
cor~ o

O»—l:OO
HOJOO
== o
_ o

QL O o
I \
—~ e~~~

— O = =
S N N N
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L’enveloppe linéaire de ces 4 éléments est un sous-espace vectoriel qui contient
toutes les combinaisons possibles de ceux-ci :

a = (1,0,0,0,0,1,1)

b = (0,1,0,0,1,0,1)

¢ = (0,0,1,0,1,1,0)

d = (0,0,0,1,1,1,1)

a+b = (1,1,0,0,1,1,0)
a+c = (1,0,1,0,1,0,1)
a+d = (1,0,0,1,1,0,0)
b+c = (0,1,1,0,0,1,1)
b+d = (0,1,0,1,0,1,0)
c+d = (0,0,1,1,0,0,1)
a+b+c = (1,1,1,0,0,0,0)
a+b+d = (1,1,0,1,0,0,1)
at+c+d = (1,0,1,1,0,1,0)
b+c+d = (0,1,1,1,1,0,0)
a+b+c+d = (1,1,1,1,1,1,1)
(0,0,0,0,0,0,0)

On remarque que pour les 16 vecteurs ci-dessus, deux quelconques d’entre eux
débutent toujours avec des 4-uples distincts. On peut donc les utiliser pour coder
toute suite de 0 et de 1 de longueur 4 en la remplacant par le 7-uple ayant le méme
début. Par exemple,

1100 — 1100110 et 0110 — 0110011.

Les justifications ne seront pas abordées dans ’exposé mais ce code permet de
détecter et de corriger une erreur apparaissant en une position quelconque du 7-
uple. De plus, le décodage est aisé. On l’obtient en calculant 3 produits scalaires
(somme des produits composante & composante, le tout calculé dans Z») entre le
7-uple recu et les trois vecteurs

¢=(0,0,0,1,1,1,1), y=(0,1,1,0,0,1,1) et =z=(1,0,1,0,1,0,1).

On procede comme suit. Imaginons que le message a transmettre soit 0110011,
mais que le message regu soit 0111011 = (0,1,1,1,0,1,1) = s. On calcule dans Zs

(s,z) = 00410+10+11401+11+11=1
(s,9) = 0.0+114+1.1+1.04+00+1.1+1.1=0
(s,2) = 014+1.0+11+1.0+014+1.0+1.1=0.

Ensuite, [100]2 étant égal & 4, cela signifie que le 4iéme chiffre transmis est erroné.
La probabilité que les 4 chiffres codés par une suite de longueur 7 soit correctement
décodés apres transmission sur le canal bruité est p” + 7pS¢ et vaut 0,850306 si
p = 0,9. En effet, soit aucune erreur ne s’est produite soit une erreur s’est produite.

Pour conclure, on peut comparer les deux codes rencontrés dans cet exposé. Avec
le code R3 (triple répétition), la longueur du message envoyé est multipliée par 3.
Par contre, pour H|[7,4], elle n’est multipliée que par 7/4. Le second code a dés
lors, sur ce point, un avantage certain. Les deux codes peuvent corriger une erreur
(parfois plus pour R3). Pour envoyer un message de 4 chiffres significatifs sur un
canal bruité avec p = 0,9, avec R3 la probabilité que le message soit correctement
décodé est de lordre de 89% et pour H|[7,4], elle est de 85%.
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