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We present an explicit realization of the Chen et al. approach to the proton spin decomposition in
terms of Wilson lines, generalizing the light-front gauge-invariant extensions discussed recently by Hatta.
Particular attention is drawn to the residual gauge freedom by further separating the pure-gauge term
into contour and residual terms. We show that the kinetic orbital angular momentum operator can be
expressed in terms of the Wigner operator only when the momentum variable is integrated over. Finally,
we confirm from twist-2 arguments that the advanced, retarded and antisymmetric light-front canonical
orbital angular momenta are the same.
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1. Introduction

In the last few years, the debates about which decomposition of
the proton spin is physically acceptable were revived by the pos-
sibility of rendering the Jaffe–Manohar or canonical decomposition
gauge invariant. Moreover, it has been shown that one can access
the canonical orbital angular momentum provided that one is able
to extract experimentally either the Wigner distributions or partic-
ular twist-3 distributions. For a recent review of the discussions,
see Ref. [1].

This work addresses the issues of explicit definition, uniqueness
and measurability of the canonical decomposition from a geometri-
cal perspective. In Section 2, we first recall the suggestion made by
Chen et al. to separate the gauge field into pure-gauge and phys-
ical terms. Although gauge invariant, this approach is not unique
owing to the Stueckelberg symmetry which reflects the freedom in
defining what is exactly meant by pure-gauge and physical contri-
butions. In Section 3, we present a generic realization of the Chen
et al. approach based on the idea of parallel transport from a ref-
erence point. We show in particular that a change of reference
point and/or path amounts to a Stueckelberg transformation. We
discuss with special care in Section 4 the partial gauge fixing and
the residual gauge freedom which motivate a further decomposi-
tion of the pure-gauge term into contour and residual terms. In
Section 5, we show that the Wigner operator is naturally related
to the canonical momentum operator. It can also be related to
the kinetic momentum operator provided that one integrates over
the momentum variable. Choosing Wilson lines running along the
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light-front direction, we recover in Section 6 the light-front gauge-
invariant extensions of the canonical angular momentum discussed
in the literature, albeit with a more transparent treatment of the
residual gauge freedom. Then we show from twist-2 arguments
that the advanced, retarded and antisymmetric light-front canoni-
cal orbital angular momenta are the same, confirming a previous
approach based on the twist-3 level. Finally, we gather our conclu-
sions in Section 7.

2. Chen et al. decomposition

In order to unambiguously define what is meant by gluon spin
and orbital angular momentum, Chen et al. proposed to split the
gauge field into a pure-gauge term and a physical term [2–5]

Aμ(x) = Apure
μ (x) + Aphys

μ (x) (1)

satisfying specific gauge transformation laws

Apure
μ (x) �→ Ãpure

μ (x)

= U (x)

[
Apure

μ (x) + i

g
∂μ

]
U−1(x), (2)

Aphys
μ (x) �→ Ãphys

μ (x) = U (x)Aphys
μ (x)U−1(x). (3)

Since Apure
μ (x) is a pure gauge, it can be written as

Apure
μ (x) = i

g
Upure(x)∂μU−1

pure(x), (4)

where Upure(x) is some unitary gauge matrix with the gauge trans-
formation law

Upure(x) �→ Ũpure(x) = U (x)Upure(x). (5)
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Clearly, in the gauge U (x) = U−1
pure(x) the pure-gauge term vanishes.

By construction, the decomposition (1) is gauge invariant. How-
ever, it is not unique since we still have some freedom in defining
exactly what we mean by ‘pure-gauge’ and ‘physical’. The rea-
son is that the pure-gauge and physical terms remain respectively
pure-gauge and physical under the following transformation which
leaves Aμ(x) invariant

Apure
μ (x) �→ Apure,g

μ (x)

= Apure
μ (x) + i

g
Upure(x)U−1

0 (x)
[
∂μU0(x)

]
U−1

pure(x), (6)

Aphys
μ (x) �→ Aphys,g

μ (x)

= Aphys
μ (x) − i

g
Upure(x)U−1

0 (x)
[
∂μU0(x)

]
U−1

pure(x), (7)

where U0(x) is a gauge-invariant unitary matrix. At the level of
Upure(x), this transformation reads

Upure(x) �→ U g
pure(x) = Upure(x)U−1

0 (x). (8)

While the ordinary gauge transformation acts on the left of
Upure(x) as in Eq. (5), this new transformation acts on the right.
It is therefore important to distinguish them. Because of the sim-
ilarity between the Chen et al. approach and the Stueckelberg
mechanism [1], we refer to this transformation as the Stueckel-
berg (gauge) transformation.

3. Explicit construction using Wilson lines

In this section, we present an explicit construction of the Chen
et al. decomposition based on the idea of parallel transport. In gen-
eral relativity the fiber, i.e. the vector space attached to each point
x, is the tangent space which inherits automatically a natural ba-
sis. Indeed, once a system of coordinates xμ is chosen in a region
of space–time, the natural basis in the tangent space is given by
the derivatives with respect to the coordinates ∂μ . So the same
index μ can refer either to a coordinate in space–time or to a
component of an object living in the tangent space like e.g. a di-
rectional derivative. Fixing some point and some tangent vector at
that point, the parallel transport equation can then be used to de-
fine a unique curve in space–time called the geodesic.

In gauge theories, the fiber is an internal space. Fixing a ba-
sis in this internal space, one can work with the components in
internal space. For example, the quark field ψa(x) at space–time
point x has one internal index a. A gauge transformation is nothing
but a change of basis in internal space, which can be different for
each space–time point ψa(x) �→ ψ̃a(x) = U a

b(x)ψb(x). The gauge
symmetry simply means that the physics does not depend on the
arbitrary choice of basis in internal space. Consequently, contrary
to general relativity, there is a priori no natural (internal) basis in
gauge theories.

Our aim is to define, for each space–time point, a natural basis
in internal space. The idea is to fix a natural basis at some refer-
ence point, and then use the parallel transport equation to single
out the natural basis associated to any other point. Since the paral-
lel transport depends on the path followed to connect two points,
we have also to define (arbitrarily) the “shape” of the contour. Such
contours are called in the following standard contours. The most
important constraints in the choice of the standard contours are
the absence of self-intersection and the existence of a standard
contour connecting the reference point to any other point [6,7].

Consider some reference point xr . At that point, we can (arbi-
trarily) define in internal space both a natural basis and the actual
basis for the calculation. The elements of the matrix Upure(xr) sim-
ply give the components of the actual basis vectors in the natural
basis. Then, we can parallel transport Upure(xr) to any other point
x along a standard contour C parametrized by the path s(λ), and
therefore define a unique Upure(x). As usual, the parallel transport
equation expresses the fact that the covariant derivative along the
path has to vanish

∂sμ

∂λ
DμUpure

(
s(λ)

) = 0, (9)

where Dμ = ∂μ − ig Aμ(s(λ)) is the covariant derivative. The solu-
tion to this equation involves the well-known Wilson line

Upure(x) = WC(x, xr)Upure(xr), (10)

WC(x, xr) = P
[
eig

∫ x
xr

Aμ(s) dsμ]
≡ 1 + ig

x∫
xr

Aμ(s)dsμ

+ (ig)2

x∫
xr

s1∫
xr

Aμ(s1)Aν(s2)dsμ1 dsν2 + · · · . (11)

Using now the formula for the derivative of the Wilson line

∂

∂zμ
WC(x, y) = igWC(x, s)Aα(s)

∂sα

∂zμ
WC(s, y)

∣∣∣∣s=x

s=y

+ ig

x∫
y

WC(x, s)Fαβ(s)WC(s, y)
∂sα

∂zμ
dsβ, (12)

where Fαβ = ∂α Aβ −∂β Aα − ig[Aα, Aβ ] is the field-strength tensor,
and the fact that the inverse of the Wilson line is simply obtained
by an interchange of the end points W−1

C (x, y) =WC(y, x), we ar-
rive at the following explicit expressions for the pure-gauge and
physical parts of the gauge field

Apure
μ (x) = WC(x, xr)

[
∂xα

r

∂xμ
Apure

α (xr) + i

g

∂

∂xμ

]
WC(xr, x), (13)

Aphys
μ (x) = WC(x, xr)

∂xα
r

∂xμ
Aphys

α (xr)WC(xr, x)

−
x∫

xr

WC(x, s)Fαβ(s)WC(s, x)
∂sα

∂xμ
dsβ . (14)

Eqs. (13) and (14) are nothing but the parallel transport of
Apure

μ (xr) and Aphys
μ (xr) to the point x. Using the gauge transfor-

mation law of the Wilson line

WC(x, y) �→ W̃C(x, y) = U (x)WC(x, y)U−1(y), (15)

it is straightforward to check that the pure-gauge and physical
terms in Eqs. (13) and (14) transform according to Eqs. (2) and (3),
respectively.

Since all the points belonging to a standard contour have the
same reference point ∂xα

r
∂λ

= 0, the physical part of the gauge po-
tential is orthogonal to the contour

∂sμ

∂λ
Aphys

μ

(
s(λ)

) = 0. (16)

In other words, the component of the gauge field tangent to the
path is considered to be a pure gauge. This clearly shows how
the choice of a standard contour affects the separation of the
gauge field into pure-gauge and physical terms. By simply chang-
ing the contour and possibly the reference point, we change what
we mean by pure-gauge and physical terms, i.e. such a change
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amounts to performing a Stueckelberg transformation. It is easy to
relate different choices of contour and reference point. Indeed, de-
noting the fields obtained with a different contour C′ and possibly
different reference point x′

r with a superscript g , we can write

U g
pure(x) = Upure(x)U−1

0 (x), (17)

where U0(x) = U g,−1
pure (x′

r)WC′ (x′
r, x)WC(x, xr)Upure(xr) is obviously

unitary and gauge invariant. Eq. (17) is then nothing but the
Stueckelberg transformation (8).

4. Contour, residual and natural gauges

The contour gauge corresponds to the gauge where the Wilson
line reduces to the identity matrix for any x. This amounts to tak-
ing U (x) = WC(xr, x). Contour gauges are particularly interesting
because they were shown to be ghost-free [6]. Denoting the fields
in the contour gauge with a superscript C , we have

Apure,C
μ (x) = ∂xα

r

∂xμ
Apure

α (xr), (18)

Aphys,C
μ (x) = ∂xα

r

∂xμ
Aphys

α (xr) −
x∫

xr

FC
αβ(s)

∂sα

∂xμ
dsβ . (19)

Note in particular that AC
μ(xr) = Aμ(xr). The reason for this is sim-

ply that we used the point xr as a reference, and so the original
field and the field in the contour gauge should coincide at that
point.

In general, the reference point xr depends on x. Gauge transfor-
mations depending only implicitly on x through xr will then leave
the Wilson line in the contour gauge WC

C (x, xr) = 1 invariant. This
remaining arbitrariness is nothing but the residual gauge symme-
try

Apure,C
μ (x) �→ Ãpure,C

μ (x) = U (xr)

[
Apure,C

μ (x) + i

g

∂

∂xμ

]
U−1(xr),

(20)

Aphys,C
μ (x) �→ Ãphys,C

μ (x) = U (xr)Aphys,C
μ (x)U−1(xr). (21)

It seems therefore natural to split further the pure-gauge term as
follows

Apure
μ (x) = Acon

μ (x) + Ares
μ (x), (22)

where the contour and residual terms are defined as

Acon
μ (x) = i

g
WC(x, xr)

∂

∂xμ
WC(xr, x), (23)

Ares
μ (x) = WC(x, xr)

∂xα
r

∂xμ
Apure

α (xr)WC(xr, x). (24)

Their gauge transformation laws can easily be derived from
Eq. (15)

Acon
μ (x) �→ Ãcon

μ (x)

= U (x)

[
Acon

μ (x) + i

g
∂μ

]
U−1(x)

+ i

g
UC(x, xr)U−1(xr)

[
∂

∂xμ
U (xr)

]
U−1
C (x, xr), (25)

Ares
μ (x) �→ Ãres

μ (x)

= U (x)Ares
μ (x)U−1(x)

− i
UC(x, xr)U−1(xr)

[
∂

μ
U (xr)

]
U−1
C (x, xr), (26)
g ∂x
where UC(x, xr) ≡ U (x)WC(x, xr). Clearly, in the contour gauge,
the contour term vanishes Acon,C

μ (x) = 0 and is invariant under
residual gauge transformations, so that the pure-gauge term sim-
ply reduces to the residual term Apure,C

μ (x) = Ares,C
μ (x). Note also

that in order to define the physical part of the gauge potential at
a point x, we need to know what is the physical part at the refer-
ence point xr . It is therefore more natural to consider the sum of
physical and residual parts, as its definition involves solely the full
gauge field Aμ(x)

Ares
μ (x) + Aphys

μ (x)

= WC(x, xr)
∂xα

r

∂xμ
Aμ(xr)WC(xr, x)

−
x∫

xr

WC(x, s)Fαβ(s)WC(s, x)
∂sα

∂xμ
dsβ . (27)

In the literature, see e.g. Ref. [8], this sum is sometimes also re-
ferred to as Aphys

μ (x), introducing some confusion in what is meant
by physical. Strictly speaking, even though the sum Ares

μ (x) +
Aphys

μ (x) is orthogonal to the contour, it does not transform co-
variantly under gauge transformations (3), and should not be con-
sidered as a genuine physical part.

As discussed in Ref. [1], the natural gauge is the gauge where
the pure-gauge term vanishes, and corresponds to taking U (x) =
U−1

pure(x). Equivalently, we can start with the fields in the contour
gauge and perform a residual gauge transformation with U (xr) =
U−1

pure(xr). Denoting the fields in the natural gauge with a hat, we
obtain

Âpure
μ (x) = Âcon

μ (x) = Âres
μ (x) = 0, (28)

Âphys
μ (x) = ∂xα

r

∂xμ
Âα(xr) −

x∫
xr

F̂αβ(s)
∂sα

∂xμ
dsβ . (29)

In practice, one would often assume that all the standard contours
start at the same fixed point x0. Choosing this fixed point as the
reference point xr = x0, one avoids dealing with the residual gauge
symmetry

Upure(x) = WC(x, x0)Upure(x0), (30)

Apure
μ (x) = i

g
WC(x, x0)

∂

∂xμ
WC(x0, x), (31)

Aphys
μ (x) = −

x∫
x0

WC(x, s)Fαβ(s)WC(s, x)
∂sα

∂xμ
dsβ, (32)

and so the contour gauge simply coincides with the natural gauge
up to a global (i.e. x-independent) gauge transformation. Note
also from Eq. (32) that the physical part of the gauge field van-
ishes when x = x0, which implies the pointwise equality Aμ(x0) =
Apure

μ (x0). However, one cannot conclude that Fμν(x0) = 0 since
the field-strength tensor involves also the derivatives of the gauge
field.

Consider now that the reference point is some intermediate
point on the path from x0 to x. We can decompose the parallel
transport from x0 to x as a parallel transport from x0 to xr , fol-
lowed by a parallel transport from xr to x

WC(x, x0) = WC(x, xr)WC(xr, x0). (33)

The parallel transport from x0 to xr defines what is the pure-
gauge term at xr . Choosing xr as the reference point leads to the
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identification of the pure-gauge term at xr with the residual term
Apure

μ (xr) = Ares
μ (xr). The parallel transport from xr to x then de-

fines what is the contour term. In short, the parallel transport from
x0 defines what is the pure-gauge term, while the parallel trans-
port from xr determines the separation of the pure-gauge term
into contour and residual terms.

5. Orbital angular momentum in phase space

Since the orbital angular momentum (OAM) corresponds to a
correlation between position and momentum, it is most easily dis-
cussed from a phase-space perspective. In this section, we restrict
ourselves to the quark sector, but the discussion can easily be
transposed to the gluon sector. We first remind the two main kinds
of OAM and the definition of the gauge-invariant Wigner or phase-
space operator. We then show how this Wigner operator is related
to the OAM.

5.1. Kinetic and canonical orbital angular momentum

There exist essentially two kinds of gauge-invariant orbital an-
gular momentum. One is the kinetic OAM [9]

Mμνρ
q,OAM(x) = i

2
ψ(x)γ μx[ν↔

Dρ](x)ψ(x) (34)

and the other one is the canonical OAM [2,3]

M
μνρ
q,OAM(x) = i

2
ψ(x)γ μx[ν↔

D
ρ]
pure(x)ψ(x), (35)

where the covariant derivatives at the point x are defined as
Dμ(x) = ∂μ − ig Aμ(x) and Dμ

pure(x) = ∂μ − ig Aμ
pure(x). We used for

convenience the notations a[μbν] = aμbν − aνbμ and
↔
∂ =→

∂ − ←
∂ .

These two OAMs differ by a so-called potential term [4,5]

M
μνρ
pot (x) = −gψ(x)γ μx[ν Aρ]

phys(x)ψ(x), (36)

which is usually non-vanishing. In the natural gauge, the canonical
OAM reduces to the same expression as in the definition of the
Jaffe–Manohar OAM [10]

M̂
μνρ
q,spin(x) = i

2
ψ̂(x)γ μx[ν ↔

∂
ρ]ψ̂(x), (37)

and can then be thought of as a gauge-invariant extension (GIE) of
the latter [11,12].

Contrarily to the kinetic OAM, the canonical OAM is not Stueck-
elberg invariant,1 i.e. it depends on how one explicitly separates
the gauge field into pure-gauge and physical terms. There is con-
sequently an infinite number of possible different definitions of
canonical OAM, all sharing the same formal structure (35). The
reduction to the Jaffe–Manohar OAM occurs in different gauges,
implying that the different canonical OAMs are not equivalent.

5.2. Wigner operator

The gauge-invariant quark Wigner operator is defined as [13,14]

Ŵ [γ μ]q(x,k)

≡
∫

d4z

(2π)4
eik·zψ

(
x − z

2

)
γ μWC

(
x − z

2
, x + z

2

)
ψ

(
x + z

2

)
.

(38)

1 In the gluon sector, only the total (i.e. spin + OAM) kinetic angular momentum
is Stueckelberg invariant.
It can be interpreted as a phase-space density operator. For ex-
ample, the first and second k-moments of the Wigner operator
respectively give the density and canonical momentum density op-
erators in coordinate space∫

d4k Ŵ [γ μ]q(x,k) = ψ(x)γ μψ(x), (39)∫
d4k kρ Ŵ [γ μ]q(x,k) = i

2
ψ(x)γ μ

↔
D

ρ
pure(x)ψ(x). (40)

The first moment is trivially obtained, while the second requires
some care. We sketch here its derivation. We first assume that the
Wilson line appearing in the definition of the Wigner operator is
composed of standard paths, and that there exists a fixed reference
point x0. Integrating by parts and using the fact that x and z are
independent variables, we can write∫

d4k kρ Ŵ [γ μ]q(x,k)

= i

∫
d4k d4z

(2π)4
eik·z∂ρ

z

×
[
ψ

(
x − z

2

)
γ μWC

(
x − z

2
, x + z

2

)
ψ

(
x + z

2

)]

= i

2

∫
d4k d4z

(2π)4
eik·zψC

(
x − z

2
, x0

)
γ μ

↔
∂

ρ
x ψC

(
x0, x + z

2

)
,

(41)

where ψC(x, y) ≡ WC(x, y)ψ(y) and ψC(x, y) ≡ ψ(x)WC(x, y).
From the definition (31) for Aμ

pure(x), we obtain

WC

(
x − z

2
, x0

)↔
∂

ρ
x WC

(
x0, x + z

2

)

= WC

(
x − z

2
, x

)↔
D

ρ
pure(x)WC

(
x, x + z

2

)
. (42)

Inserting now this expression in Eq. (41) and performing the in-
tegrations, we arrive at the result (40). It is therefore natural to
interpret the variable kμ appearing in the definition of the Wigner
operator as the (average) canonical momentum.

Is it possible to define a Wigner operator where the variable k
would be interpreted as the (average) kinetic momentum? The an-
swer is negative. Indeed, consider any generic differential operator
↔
D ρ(x) defined at some point x. There exist two natural non-local
generalizations of such an operator

↔
Dρ

m

(
x − z

2
, x + z

2

)
≡ WC

(
x − z

2
, x

)↔
Dρ(x)WC

(
x, x + z

2

)
,

(43)
↔
Dρ

e

(
x − z

2
, x + z

2

)

≡ WC

(
x − z

2
, x + z

2

)→
Dρ

(
x + z

2

)

− ←
Dρ

(
x − z

2

)
WC

(
x − z

2
, x + z

2

)
, (44)

referred to as the mid- and endpoint non-local differential opera-
tors, respectively. Using once again Eq. (31), it is easy to see that
the mid- and endpoint non-local pure-gauge covariant derivatives

are equivalent
↔
D

ρ
pure,m(x − z

2 , x + z
2 ) = ↔

D
ρ
pure,e(x − z

2 , x + z
2 ). It is

therefore possible to unambiguously define a canonical momentum
associated with a non-local operator. On the contrary, the mid- and
endpoint non-local ordinary covariant derivatives differ
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↔
D

ρ
m

(
x − z

2
, x + z

2

)
− ↔

D
ρ
e

(
x − z

2
, x + z

2

)

= −ig
∑
η=±

x+η z
2∫

x

WC

(
x − z

2
, s

)
Fαβ(s)WC

(
s, x + z

2

)
∂sα

∂xρ
dsβ

because of the field-strength tensor, i.e. the curvature. No unique
kinetic momentum can be associated with a non-local operator.
This is particularly obvious when one considers higher k-moments.
Following the same lines as above, it is easy to show that we can
write in general∫

d4k kρkσ · · ·kτ Ŵ [γ μ]q(x,k)

= i

2
ψ(x)γ μ

↔
D

ρ
pure(x)

↔
Dσ

pure(x) · · ·↔
Dτ

pure(x)ψ(x). (45)

This equation does not suffer from any ambiguity since the pure-
gauge covariant derivatives commute, contrarily to the ordinary
ones. We therefore conclude that there exists no Wigner operator
where the variable k can be interpreted as the (average) kinetic
momentum.

5.3. Orbital angular momentum

Having at our disposal the Wigner operator, we can simply de-
fine the OAM density in phase space as [15,16]

Mμνρ
q,OAM(x,k) = x[νkρ]W [γ μ]q(x,k). (46)

Integrating this phase-space density over the momentum simply
leads to the OAM density in coordinate space

Mμνρ
q,OAM(x) =

∫
d4k x[νkρ]W [γ μ]q(x,k). (47)

The (longitudinal) OAM is then defined as usual by the following
matrix element

Lq = 1

2
ε i j

〈P ,Λ| ∫ d4x δ(x+)M+i j
q,OAM(x)|P ,Λ〉

〈P ,Λ|P ,Λ〉 , (48)

where a± = (a0 ± a3)/
√

2 and ai = a1,2 are the light-front and
transverse components, respectively, and ε i j is the two-dimensio-
nal antisymmetric Levi-Cività tensor with ε12 = +1. The proton
state with momentum P and light-front helicity Λ is normalized
as 〈P ,Λ|P ,Λ〉 = 2P+(2π)3δ(0+)δ(2)(�0⊥).

As we have shown in the previous section, the variable k
appearing in the Wigner operator can only be interpreted as a
canonical momentum. It seems therefore natural to consider that
Eq. (46), and consequently Eqs. (47) and (48) refer to the canoni-
cal OAM. In Refs. [11,12], the authors claim that the kinetic OAM
can be obtained from Eqs. (47) and (48) when the Wilson line con-
sists in a direct straight line between the endpoints. We show in
the following that, as long as one integrates over the momentum
variable k, there is actually no contradiction.

Let us consider the case of the direct straight Wilson line run-
ning from the point x to the point x+ z, and parametrized as usual
by the path s(λ) = x+λz with 0 � λ� 1. According to Eq. (12), the
derivative of this Wilson line with respect to z gives

∂

∂zμ
WC(x + z, x) = ig Apure,x-FS

μ (x + z)WC(x + z, x), (49)

where Apure,x-FS
μ (x + z) is the pure-gauge field appearing in

the x-based Fock–Schwinger GIE defined by the condition
z · Aphys,x-FS(x + z) = 0. Once again, we see that it is only for the
component along the path that the ordinary and pure-gauge co-
variant derivatives do coincide z · D(x + z) = z · Dpure,x-FS(x + z).

Now, when the momentum variable k is integrated over, one
needs only the expressions in the limit z → 0. In that case, we
have

Aμ(x) = Apure,x-FS
μ (x), (50)

and consequently Dμ(x) = Dpure,x-FS
μ (x). Note that when one

changes the point x, one also changes the GIE. In other words,
we can write in general

Aμ(x) = i

g
U (x, y)

∂

∂ yμ
U−1(x, y)

∣∣∣∣
y=x

. (51)

It is important not to confuse this expression with Aμ(x) =
i
g U (x) ∂

∂xμ U−1(x) which would imply that Fμν(x) = 0. Eq. (51) just
tells us that, at any given point x, one can find a gauge transfor-
mation such that Ãμ(x) = 0 [17]. This is the analogue of the well-
known result in general relativity that one can always find, at any
given point x, a set of coordinates such that the Christoffel symbols
vanish, even if the curvature is nonzero. In some sense, working in
the x-based Fock–Schwinger gauge corresponds to choosing at the
point x the free-fall coordinates in internal space.

In conclusion, even though one cannot interpret the variable k
in the Wigner operator as a kinetic momentum, the kinetic OAM
can be obtained from the operator (47) when the Wilson line con-
sists in a direct straight path. This boils down to that fact that one
can always find a gauge transformation such that the gauge field
vanishes at a given point.

6. Light-front gauge-invariant extensions

Since the proton spin structure is best probed in high-energy
experiments where a parton model is very useful and convenient,
it appears that the light-front GIEs, characterized by the contour
gauge A+ = 0, are the most relevant ones. The light-front gauge
does not completely fix the gauge freedom, and so in order to
define a unique GIE one has to specify also how to fix the resid-
ual gauge freedom, typically by imposing boundary conditions. The
most popular ones are the advanced (+), retarded (−) and anti-
symmetric (as) boundary conditions. The canonical OAMs defined
in the corresponding light-front GIEs are a priori different. It ap-
pears however that, because of the time-reversal invariance, they
actually coincide. These light-front GIEs have been developed and
discussed by Hatta in Refs. [8,18]. In the light-front gauge, they
simply reduce to the Bashinsky–Jaffe decomposition [19]. The gen-
eral formalism developed in this Letter completes these discussions
by treating with greater care the residual gauge freedom and by
clarifying some of the arguments.

The advanced and retarded light-front GIEs are typical exam-
ples of the contour approach. They are obtained by considering
Wilson lines running along the light-front direction to +∞− and
−∞− , respectively, where the field is assumed to be a pure gauge.
The light-front and transverse components of the different contri-
butions to the gauge field are then given by

A+
con,±(x) = A+(x), (52)

A+
res,±(x) = A+

phys,±(x) = 0, (53)

Ai
con,±(x) = i

g
WL F

(
x−,±∞−)

∂ iWL F
(±∞−, x−)

, (54)

Ai
res,±(x) = WL F

(
x−,±∞−)

Ai(±∞−, x
)
WL F

(±∞−, x−)
, (55)
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Ai
phys,±(x) =

x−∫
±∞−

WL F
(
x−, y−)

F +i(y−, x
)
WL F

(
y−, x−)

dy−,

(56)

where we used the notation x = (x+, x1, x2) and the light-front
Wilson line

WL F
(
x−, y−) ≡ P

[
eig

∫ x−
y− A+(y−,x) dy−]

. (57)

On the contrary, the antisymmetric light-front GIE cannot be con-
structed from a single contour, but can be expressed as an average
of the advanced and retarded light-front GIEs

Aμ
···,as(x) = Aμ

···,+(x) + Aμ
···,−(x)

2
, (58)

where the dots stand for ‘con’, ‘res’ and ‘phys’.
Since the quark kinetic OAM Lq = Lq − Lpot is Stueckelberg in-

variant, it is sufficient to show that either the quark canonical OAM
Lq or the potential OAM Lpot is the same in the advanced and re-
tarded light-front GIEs. While Refs. [8,12,20] considered the second
option, we prefer the first option because it does not require to go
beyond leading twist. As shown in Ref. [15], the matrix elements
of the Wigner operator are related by Fourier transform to the fol-
lowing generalized parton correlator

W [Γ ]q(x, ξ, �k⊥, ��⊥;η)

= 1

2

∫
dz− d2z⊥

(2π)3
ei(xP+z−−�k⊥·�z⊥)

× 〈
p′,Λ′∣∣ψ(

− z

2

)
ΓWL F

(
− z

2
,

z

2

)
ψ

(
z

2

)
|p,Λ〉

∣∣∣∣
z+=0

, (59)

where � = p′ − p is the momentum transfer, k+ = xP+ and
�+ = −2ξ P+ with P = (p′ + p)/2 the average nucleon momen-
tum, and Γ is a Dirac matrix. The Wilson lines simply run along
the light-front direction to η∞− with η = ±. This general corre-
lator has been parametrized in Ref. [21] in terms of the so-called
generalized transverse-momentum dependent parton distributions
(GTMDs). In the vector sector restricted to the leading twist Γ =
γ + , it is parametrized as

W [γ +]q = 1

2M
u
(

p′,Λ′)[F1,1 + iσ i+ki⊥
P+ F1,2

+ iσ i+�i⊥
P+ F1,3 + iσ i jki⊥�

j
⊥

M2
F1,4

]
u(p,Λ), (60)

where the GTMDs are complex-valued functions of the variables
(x, ξ, �k2⊥, �k⊥ · ��⊥, ��2⊥;η).

The functions F1,1−3 reduce to the usual generalized parton
distributions (GPDs) and transverse-momentum dependent parton
distributions (TMDs) in the appropriate limits. On the contrary,
F1,4 appears only at the level of the GTMDs. As shown in Refs. [15,
20], it is precisely this leading-twist function which is directly re-
lated to the canonical OAM

Lq(η) = −
∫

dx d2k⊥
�k2⊥
M2

F q
1,4

(
x,0, �k2⊥,0,0;η)

. (61)

Now, time-reversal invariance implies that the real part of the GT-
MDs is η-even (i.e. independent of η), while the imaginary part
is η-odd. The hermiticity constraint then imposes that the real
part of F q

1,4 is �-even, while the imaginary part is �-odd. Since

in Eq. (61) the GTMD F q
1,4 is evaluated at � = 0, only its real

part contributes. This ensures that the canonical OAM is real (as it
should be) but also that it does not depend on η. In other words,
the canonical OAM Lq defined from the advanced, retarded and
antisymmetric light-front GIEs are the same. Similar arguments ap-
plied to twist-3 parton correlators show that the potential OAM
Lpot is the same in the three light-front GIEs [8,12,20]. For an in-
tuitive interpretation, see Ref. [22]. Note also some recent related
discussions [23,24] treating the path dependence in transverse-
momentum dependent correlators.

7. Conclusion

We presented an explicit realization of the Chen et al. decom-
position of the gauge field into pure-gauge and physical terms.
The construction involves Wilson lines and is based on the idea
of parallel transport from a reference point. We showed in par-
ticular that a change of reference point and/or geodesic induces a
change in the explicit separation which can be seen as a Stueck-
elberg transformation. Paying particular attention to the residual
gauge freedom, we proposed a further decomposition of the pure-
gauge term into contour and residual terms.

Then we showed that the momentum variable in the Wigner
operator refers to the canonical momentum and not the kinetic
momentum. Nevertheless, the kinetic orbital angular momentum
can be expressed in terms of the Wigner operator defined with
direct straight Wilson lines as long as one integrates over the mo-
mentum. Choosing the Wilson lines to run along the light-front
direction, our explicit construction simply reduces to the light-
front gauge-invariant extensions of the canonical angular momen-
tum discussed in the literature, albeit with a more transparent
treatment of the residual gauge freedom. Finally, we showed from
twist-2 arguments that the advanced, retarded and antisymmet-
ric light-front canonical orbital angular momenta are the same,
confirming the conclusions obtained previously from a twist-3 ap-
proach.
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