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Transverse-momentum dependent parton distributions (TMDs) are studied in the framework of quark

models. In particular, quark-model relations among TMDs are reviewed, elucidating their physical origin

in terms of the quark-spin structure in the nucleon. The formal aspects of the derivation of these relations

are complemented with explicit examples, emphasizing how and to which extent the conditions which

lead to relations among TMDs are implemented in different classes of quark models.
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I. INTRODUCTION

Transverse-momentum dependent parton distributions
(TMDs) have received a great attention in the last years as
they represent key objects to map out the three-dimensional
partonic structure of hadrons in momentum space. The
dependence on the transverse momentum of the quark
allows for a full account of the orbital motion of the quarks
and introduces nontrivial correlations between the orbital
angular momentum and the spin of the quark inside nucle-
ons with different polarization states. TMDs typically give
rise to spin and azimuthal asymmetries in, for instance,
semi-inclusive deep inelastic scattering and Drell-Yan pro-
cesses, and significant efforts have already been devoted to
measure these observables (see, e.g., Ref. [1] for a recent
review). However, the extraction of TMDs from experimen-
tal data is a quite difficult task and needs educated Ansätze
for fits of TMD parametrizations. To this aim, model calcu-
lations of TMDs play a crucial role and are essential towards
an understanding of the nonperturbative aspects of TMDs.
At leading twist there are eight TMDs, three of them surviv-
ing when integrated over the transverse momentum and
giving rise to the familiar parton density, helicity and trans-
versity distributions. Among the eight distributions, six of
them are even under naive time reversal (T even), whereas
the remaining two are odd (T odd). Studies of the TMDs
have been mainly focused on the quark contribution, and
predictions have been obtained within a variety of models
[2–33]. Despite the specific assumptions for modeling the
quark dynamics, most of these models predicted relations
among the leading-twist T-even TMDs. Since in QCD the
eight TMDs are all independent, it is clear that such rela-
tions should be traced back to some common simplifying
assumptions in the models. First of all, it was noticed that
they break down in models with gauge-field degrees of
freedom. Furthermore, most quark models are valid at
some very low scale and these relations are expected to
break under QCD evolution to higher scales. Despite these

limitations, such relations are intriguing because they can
provide guidelines for building parametrizations of TMDs
to be tested with experimental data and can also give useful
insights for the understanding of the origin of the different
spin-orbit correlations of quarks in the nucleon.
The aim of this paper is to review these model relations

and, in particular, to explain their physical origin. In Sec. II
we give the formalism for the definition of the leading-
twist TMDs, and introduce a convenient representation of
the quark-quark correlator in terms of the net-polarization
states of the quark and the hadron. The model relations
among T-even TMDs are introduced and explained in de-
tails in Sec. III. In particular, there are two linear relations
and a quadratic relation which are flavor independent and
involve polarized TMDs, while a further linear relation is
flavor dependent and involves both polarized and unpolar-
ized TMDs.
The relations among polarized TMDs connect the dis-

tributions of quarks inside the nucleon for different con-
figurations of the polarization states of the hadron and the
parton. As a consequence, it is natural to expect that they
can originate from rotational invariance of the polarization
states of the system. Rotations are more easily discussed in
the basis of canonical spin. Therefore, instead of working
in the standard basis of light-cone helicity, we introduce in
Secs. IVA and IVB the tensor correlator defining the
TMDs in the canonical-spin basis. Such a representation
is used in Sec. IVC to discuss the consequences of rota-
tional symmetries of the system. In such a way we will be
able to identify the key ingredients for the existence of
relations among polarized TMDs in quark models.
In order to complete the discussion, including the flavor-

dependent relation among polarized and unpolarized
TMDs, we need to introduce specific assumptions about
the spin-isospin structure of the nucleon state. Therefore,
in Sec. V we discuss the consequences of rotational invari-
ance using the explicit representation of the TMDs in
terms of three-quark (3Q) wave functions. In particular,
in Sec. VA we derive the overlap representation of the
TMDs in terms of light-cone wave functions, while the
corresponding representation in terms of wave function in
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the canonical-spin basis is given in Sec. VB. In Sec. VC
we discuss the constraints of rotational symmetry on the
nucleon wave function and, as a result, we give an alter-
native derivation of the flavor-independent relations among
TMDs. Finally, in Sec. VD we discuss the constraint due to
SUð6Þ symmetry of the spin-flavor dependent part of the
nucleon wave function. This additional ingredient allows
us to explain the origin of the flavor-dependent relation.

The formal derivation of the relations among TMDs is
made explicit within different quark models in the final
Sec. VI. There we review different quark models which
have been used in the literature for the calculation of
TMDs. In particular, we discuss the key ingredients of
the models, showing how and to which extent the condi-
tions which lead to relations among TMDs are realized. A
summary of our findings is given in the final section.
Technical details and further explanations about the repre-
sentation in terms of nucleon wave functions are collected
in three appendices.

II. TRANSVERSE-MOMENTUM DEPENDENT
PARTON DISTRIBUTIONS

A. Definitions

In this section, we review the formalism for the defini-
tion of TMDs, following the conventions of Refs. [34–36].

Introducing two lightlike four-vectors n� satisfying
nþ � n� ¼ 1, we write the light-cone components of a
generic four-vector a as ½aþ; a�;a?� with a� ¼ a � n�.
The density of quarks can be defined from the following
quark-quark correlator

�abðx;k?;SÞ

¼
Z d��d2�?

ð2�Þ3 eiðkþ���k?��?Þ

�hP;Sj �c bð0ÞUn�
ð0;þ1ÞU

n�
ðþ1;�Þc að�ÞjP;Sij�þ¼0; (1)

where kþ ¼ xPþ, c is the quark field operator with a, b
indices in the Dirac space, and U is the Wilson line which
ensures color gauge invariance [37]. The target state is
characterized by its four-momentum P and covariant
spin four-vector S satisfying P2 ¼ M2, S2 ¼ �1, and
P � S ¼ 0. We choose a frame where the hadron momentum

has no transverse components P ¼ ½Pþ; M2

2Pþ ; 0?�, and so

S ¼ ½Sz Pþ
M ;�Sz

M
2Pþ ;S?� with S2 ¼ 1. From now on, we

replace the dependence on the covariant spin four-vector S
by the dependence on the unit three-vector S ¼ ðS?; SzÞ.
TMDs enter the general Lorentz-covariant decomposi-

tion of the correlator �abðx; k?;SÞ which, at twist-two
level and for a spin-1=2 target, reads

�ðx; k?;SÞ ¼ 1

2

8<
:f1nþ � �ijT k

i
?S

j
?

M
f?1Tnþ þ Szg1L�5nþ þ k?S?

M
g1T�5nþ þ h1T

½S?; nþ�
2

�5 þ Szh
?
1L

½k?; nþ�
2M

�5

þ k? � S?
M

h?1T
½k?; nþ�
2M

�5 þ ih?1
½k?; nþ�
2M

9=
;; (2)

where �12T ¼ ��21T ¼ 1, and the transverse four-vectors are
defined as a? ¼ ½0; 0;a?�. The nomenclature of the dis-
tribution functions follows closely that of Ref. [34], some-
times referred to as ‘‘Amsterdam notation’’: f refers to
unpolarized target; g and h to longitudinally and trans-
versely polarized target, respectively; a subscript 1 is given
to the twist-two functions; subscripts L or T refer to the
connection with the hadron spin being longitudinal or
transverse; and a symbol ? signals the explicit presence
of transverse momenta with an uncontracted index. Among
these eight distributions, the so-called Boer-Mulders func-
tion h?1 [35] and Sivers function f?1T [38] are T odd, i.e.
they change sign under ‘‘naive time-reversal’’, which is
defined as usual time-reversal but without interchange of
initial and final states. All the TMDs depend on x and k2?.
These functions can be individually isolated by performing
traces of the correlator with suitable Dirac matrices. Using
the abbreviation �½�� � Tr½���=2, we have

�½�þ�ðx; k?;SÞ ¼ f1 �
�ijT k

i
?S

j
?

M
f?1T; (3)

�½�þ�5�ðx; k?;SÞ ¼ Szg1L þ k? � S?
M

g1T; (4)

�½i�jþ�5�ðx;k?;SÞ

¼Sj?h1þSz
kj?
M

h?1LþSi?
2ki?k

j
?�k2?�

ij

2M2
h?1Tþ

�jiT k
i
?

M
h?1 ;

(5)

where j ¼ 1, 2 is a transverse index, and

h1 ¼ h1T þ k2?
2M2

h?1T: (6)

The correlation function �½�þ�ðx; k?;SÞ is just the un-
polarized quark distribution, which integrated over k?
gives the familiar light-cone momentum distribution
f1ðxÞ. All the other TMDs characterize the strength of
different spin-spin and spin-orbit correlations. The precise
form of this correlation is given by the prefactors of the
TMDs in Eqs. (3)–(5). In particular, the TMDs g1L and h1
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describe the strength of a correlation between a longitudi-
nal/transverse target polarization and a longitudinal/
transverse parton polarization. After integration over k?,
they reduce to the helicity and transversity distributions,
respectively. By definition, the spin-orbit correlations de-
scribed by f?1T , g1T , h?1 , h?1L and h?1T involve the transverse
parton momentum and the polarization of both the parton
and the target, and vanish upon integration over k?.

In the following we will focus on the quark contribution
to TMDs, ignoring the contribution from gauge fields and
therefore reducing the gauge links in Eq. (1) to the identity.
As a consequence, we will not be able to discuss the
consequences of rotational symmetries for the T-odd
TMDs, which vanish identically in absence of gauge-field
degrees of freedom.

B. Helicity and four-component bases

The physical meaning of the correlations encoded in
TMDs becomes especially transparent when using for the
quark fields the expansion in terms of light-cone Fock
operators. We consider in this study only the positive-
frequency part of the quark field. The negative frequency,
corresponding to antiquark degrees of freedom, can be
treated in a similar way. Moreover, we decompose the
correlator into the different quark flavor contributions

� ¼ X
q

�q: (7)

Following the lines of Refs. [20,39,40], we obtain at twist-
two level

�½��
q ðxk?;SÞ ¼ 1

N
hP;SjX

�0�
qy
�0 ð~kÞq�ð~kÞM½���0�jP;Si; (8)

where N ¼ ½2xð2�Þ3�2�ð3Þð0Þ and M½���0� ¼
�uLCðk; �0Þ�uLCðk; �Þ=2kþ with uLCðk; �Þ the free Dirac

light-cone spinor (see Appendix A). The operators qy�ð~kÞ
and q�ð~kÞ respectively create and annihilate a quark with
flavor q, light-cone helicity �, and light-cone momentum
~k ¼ ðxPþ; k?Þ.
We find very convenient to associate a four-component

vector1 to every quantity with superscript �

a½�� � a� ¼ ða0; a1; a2; a3Þ
� ða½�þ�; a½i�1þ�5�; a½i�2þ�5�; a½�þ�5�Þ: (9)

Using this notation, we obtain

M��0� ¼ ð ���Þ�0� (10)

with ��� ¼ ð1;�Þ and � the three Pauli matrices. Since ��0

and ��3 are diagonal, the correlators �½�þ�
q ðx; k?;SÞ and

�
½�þ�5�
q ðx; k?;SÞ have a simple probabilistic interpretation

in momentum space. The former gives the density of
quarks with flavor q irrespective of their polarization,
while the latter gives the net density of longitudinally
polarized quarks with flavor q, i.e. the density of quarks
with positive light-cone helicity minus the density of
quarks with negative light-cone helicity. On the contrary,

the correlators �½i�jþ�5�
q ðx; k?;SÞ do not have a simple

interpretation in the quark light-cone helicity basis. One
can however choose to work in another basis of light-cone
polarization. The quark creation operators with light-cone
polarization parallel or opposite to the generic direction
s ¼ ðsin	s cos
s; sin	s sin
s; cos	sÞ can be written in
terms of quark creation operators with light-cone helicity
� as follows:

qyþs; qy�s

� �
¼ qyþ; qy�
� �

uð	s; 
sÞ; (11)

where the SUð2Þ rotation matrix uð	;
Þ is given by

uð	;
Þ ¼ cos	2 e
�i
=2 � sin	2 e

�i
=2

sin	2 e
i
=2 cos	2 e

i
=2

 !
: (12)

In this way, we see that the correlators �½i�1þ�5�
q ðx; k?;SÞ

and �
½i�2þ�5�
q ðx; k?;SÞ give the net density of quarks with

flavor q and light-cone polarization in the direction ex and
ey, respectively. Clearly, the net density of quarks with

generic light-cone polarization s is given by the correlator
s ��qðx; k?;SÞ.
In the literature, one often represents correlators in terms

of helicity amplitudes which treat in a symmetric way both
quark and target polarizations

�q
�0�0;��

ðx; k?Þ ¼ 1

N
hP;�0jqy

�0 ð~kÞq�ð~kÞjP;�i: (13)

Decomposing the target states jP;�Si with light-cone
polarization parallel or opposite to the generic direction
S ¼ ðsin	S cos
S; sin	S sin
S; cos	SÞ in terms of the tar-
get light-cone helicity states jP;�i

ðjP;þSi; jP;�SiÞ ¼ ðjP;þi; jP;�iÞuð	S;
SÞ; (14)

one obtains that the helicity amplitudes are given by the
following combinations of TMDs

1Note this is not a Lorentz four-vector but Einstein’s summa-
tion convention still applies.
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�q
�0�0;��

¼

1
2 ðfq1 þ gq1LÞ � kR

2M ðih?q
1 � h?q

1L Þ kL
2M ðif?q

1T þ gq1TÞ hq1
kL
2M ðih?q

1 þ h?q
1L Þ 1

2 ðfq1 � gq1LÞ k2L
2M2 h

?q
1T

kL
2M ðif?q

1T � gq1TÞ
� kR

2M ðif?q
1T � gq1TÞ k2R

2M2 h
?q
1T

1
2 ðfq1 � gq1LÞ � kR

2M ðih?q
1 þ h?q

1L Þ
hq1 � kR

2M ðif?q
1T þ gq1TÞ kL

2M ðih?q
1 � h?q

1L Þ 1
2 ðfq1 þ gq1LÞ

0
BBBBB@

1
CCCCCA; (15)

where kR;L ¼ kx � iky. The rows entries are ð�0�0Þ ¼
ðþþÞ; ðþ�Þ; ð�þÞ; ð��Þ and the columns entries are
likewise ð��Þ ¼ ðþþÞ; ðþ�Þ; ð�þÞ; ð��Þ.

We find actually more convenient to represent the cor-
relator (7) in the four-component basis by the tensor
���

q ðx; k?Þ. This tensor is related to helicity amplitudes
as follows:

�
��
q ¼ 1

2

X
�0��0�

ð ���Þ��0 ð ���Þ�0��q
�0�0;��

;

�q
�0�0;��

¼ 1

2
�

��
q ð��Þ�0�ð��Þ��0 ; (16)

where �� ¼ g���
� with �� ¼ ð1;��Þ. The symbols ���

and �� satisfy the relations

1

2
ð ���Þ�0�ð��Þ��0 ¼ ��0

�0�
�
� ;

1

2
Tr½ ������ ¼ 1

2

X
�0�

ð ���Þ�0�ð��Þ��0 ¼ ��
� : (17)

The tensor correlator is then given by the following com-
binations of TMDs

���
q ¼

fq1
ky
Mh

?q
1 �kx

Mh
?q
1 0

ky
Mf

?q
1T hq1þk2x�k2y

2M2 h
?q
1T

kxky
M2 h

?q
1T

kx
Mg

q
1T

�kx
Mf

?q
1T

kxky
M2 h

?q
1T hq1�k2x�k2y

2M2 h
?q
1T

ky
Mg

q
1T

0 kx
Mh

?q
1L

ky
Mh

?q
1L gq1L

0
BBBBBBBB@

1
CCCCCCCCA

¼

fq1
ky
Mh

?q
1 �kx

Mh
?q
1 0

ky
Mf

?q
1T hþq

1T k̂
2
xþh�q

1T k̂
2
y ðhþq

1T �h�q
1T Þk̂xk̂y kx

Mg
q
1T

�kx
Mf

?q
1T ðhþq

1T �h�q
1T Þk̂xk̂y h�q

1T k̂
2
xþhþq

1T k̂
2
y

ky
Mg

q
1T

0 kx
Mh

?q
1L

ky
Mh

?q
1L gq1L

0
BBBBBBB@

1
CCCCCCCA;

(18)

where we introduced the notations h�q
1T ¼ hq1 � k 2

?
2M2 h

?q
1T

and k̂i ¼ ki=k? with k? ¼ jk?j. The component�00
q gives

the density of quarks in the target irrespective of any
polarization, i.e. the density of unpolarized quarks in the

unpolarized target. The components �0j
q give the net den-

sity of quarks with light-cone polarization in the direction
ej in the unpolarized target, while the components �i0

q

give the net density of unpolarized quarks in the target
with light-cone polarization in the direction ei. Finally,

the components �ij
q give the net density of quarks with

light-cone polarization in the direction ej in the target with

light-cone polarization in the direction ei. The density of
quarks with definite light-cone polarization in the direction
s inside the target with definite light-cone polarization
in the direction S is then obviously given by
�qðx; k?;S; sÞ ¼ 1

2
�S��

��
q �s�, where we have introduced

the four-component vectors �S� ¼ ð1;SÞ and �s� ¼ ð1; sÞ.
III. MODEL RELATIONS

In QCD, the eight TMDs are all independent. It appeared
however in a large panel of low-energy models that rela-
tions among some TMDs exist. At twist-two level, there
are three flavor-independent relations,2 two are linear and
one is quadratic in the TMDs

gq1L �
�
hq1 þ

k2?
2M2

h?q
1T

�
¼ 0; (19)

gq1T þ h?q
1L ¼ 0; (20)

ðgq1TÞ2 þ 2hq1h
?q
1T ¼ 0: (21)

A further flavor-dependent relation involves both polarized
and unpolarized TMDs

D qfq1 þ gq1L ¼ 2hq1 ; (22)

where, for a proton target, the flavor factors with q ¼ u, d
are given by Du ¼ 2

3 and Dd ¼ � 1
3 . As discussed in

Ref. [27], at variance with the relations (19)–(21), the
flavor dependence in the relation (22) requires specific
assumptions for the spin-isospin structure of the nucleon
state, like SUð6Þ spin-flavor symmetry.
A discussion on how general these relations are can be

found in Ref. [27]. Let us just mention that they were
observed in the bag model [27,28], light-cone constituent
quark models [20], some quark-diquark models [2,12,13],
the covariant parton model [11] and more recently in the
light-cone version of the chiral quark-soliton model [23].
Note however that there also exist models where the rela-
tions are not satisfied, like in some versions of the spectator
model [26] and the quark-target model [30].
As already emphasized, the model relations (19)–(22) are

not expected to hold identically in QCD, since the TMDs in
these relations follow different evolution patterns. This im-
plies that even if the relations are satisfied at some (low)

2Other expressions can be found in the literature, but are just
combinations of the relations (19)–(21).
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scale, they would not hold anymore for other (higher) scales.
The interest in these relations is therefore purely phenome-
nological. Experiments provide more and more data on ob-
servables related to TMDs, but need inputs from educated
models and parametrizations for the extraction of these dis-
tributions. It is therefore particularly interesting to see to
what extent the relations (19)–(22) can be useful as approxi-
mate relations,which provide simplified and intuitive notions
for the interpretation of the data. Note that some preliminary
calculations in lattice QCD give indications that the relation
(20) may indeed be approximately satisfied [41,42].

Using two different approaches, we show in the next
sections that the flavor-independent relations (19)–(21) can
easily be derived, once the following assumptions are made:

(1) the probed quark behaves as if it does not interact
directly with the other partons (i.e. one works within the
standard impulse approximation) and there are no explicit
gluons;

(2) the quark light-cone and canonical polarizations are
related by a rotation with axis orthogonal to both light-cone

and k̂? directions;
(3) the target has spherical symmetry in the canonical-

spin basis.

From these assumptions, one realizes that the flavor-
independent relations have essentially a geometrical ori-
gin, as was already suspected in the context of the bag
model almost a decade ago [43]. We note however that the
spherical symmetry is a sufficient but not necessary con-
dition for the validity of the individual flavor-independent
relations. As discussed in the following section, a subset of
relations can be derived using less restrictive conditions,
like axial symmetry about a specific direction.For the
flavor-dependent relation (22), we need a further condition
for the spin-flavor dependent part of the nucleon wave func-
tion. Specifically, we require

(4) SUð6Þ spin-flavor symmetry of the wave function.

As shown in Sec. VI, it is found that all the models
satisfying the relations also satisfy the above conditions.
We are not aware of any model calculation which satisfies
some or all the three flavor-independent relations and at
the same time breaks at least one of the conditions 1–3.
However, this is not a priori excluded.

IV. AMPLITUDE APPROACH

The first derivation of the TMD relations stays at the
level of the amplitudes. As we have seen, the TMDs can be
expressed in simple terms using light-cone polarization.
On the other hand, rotational symmetry is easier to handle
in terms of canonical polarization, which is the natural one
in the instant form. We therefore write the TMDs in the
canonical-spin basis, and then impose spherical symmetry.
But before that, we need to know how to connect light-cone
helicity to canonical spin.

A. Connection between light-cone helicity
and canonical spin

Relating in general light-cone helicity with canonical
spin is usually quite complicated, as the dynamics is in-
volved. Fortunately, the common approach in quark mod-
els is to assume that the target can be described by quarks
without mutual interactions. In this case the connection
simply reduces to a rotation in polarization space with axis

orthogonal to both k̂? and ez directions. The quark creation
operators with canonical spin � can then be written in
terms of quark creation operators with light-cone helicity
� as follows

qy� ¼ X
�

Dð1=2Þ�
�� qy� with

Dð1=2Þ�
�� ¼ cos	2 �k̂R sin

	
2

k̂L sin
	
2 cos	2

0
@

1
A: (23)

Note that the rotation does not depend on the quark flavor.
The angle 	 between light-cone and canonical polariza-
tions is usually a complicated function of the quark mo-
mentum k and is specific to each model. It contains part
of the model dynamics. The only general property is that
	 ! 0 as k? ! 0. Because of our choice of reference
frame where the target has no transverse momentum, the
light-cone helicity and canonical spin of the target can be
identified, at variance with the quark polarizations.

B. TMDs in canonical-spin basis

The four-component notation introduced in Sec. II B is
very convenient for discussing the rotation between ca-
nonical spin and light-cone helicity at the amplitude level.
Since the light-cone helicity and canonical spin of the
target can be identified in our choice of reference frame,
we expect the canonical tensor correlator�

��
Cq to be related

to the light-cone one in Eq. (18) as follows

���
Cq ¼ ��

q O
�; (24)

withO some orthogonal matrix OTO ¼ 1 representing the
rotation at the amplitude level. From Eqs. (13), (16), (17),
and (23) we find that the orthogonal matrix is given by

O
�¼1

2
Tr½Dð1=2Þ�D

ð1=2Þy ����

¼1

2

X
�0��0�

Dð1=2Þ
�� ð�Þ��0Dð1=2Þ�

�0�0 ð ���Þ�0�

¼
1 0 0 0
0 k̂2yþ k̂2x cos	 �k̂xk̂yð1�cos	Þ �k̂x sin	

0 �k̂xk̂yð1�cos	Þ k̂2xþ k̂2y cos	 �k̂y sin	

0 k̂x sin	 k̂y sin	 cos	

0
BBB@

1
CCCA:

(25)

The canonical tensor correlator then takes the form
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�
��
Cq ¼

fq1
ky
M h?q

1 � kx
M h?q

1 0
ky
M f?q

1T h
þq
1T k̂

2
x þ h�q

1T k̂
2
y ðhþq

1T � h�q
1T Þk̂xk̂y kx

M g
q
1T

� kx
M f?q

1T ðhþq
1T � h�q

1T Þk̂xk̂y h�q
1T k̂

2
x þ h

þq
1T k̂

2
y

ky
M g

q
1T

0 kx
M h

?q
1L

ky
M h

?q
1L g

q
1L

0
BBBBB@

1
CCCCCA; (26)

where we introduced the notations

g
q
1L

k?
M h

?q
1L

 !
¼ cos	 � sin	

sin	 cos	

� �
gq1L

k?
M h?q

1L

 !
; (27)

k?
M g

q
1T

h
þq
1T

 !
¼ cos	 � sin	

sin	 cos	

� � k?
M gq1T
hþq
1T

 !
: (28)

Comparing Eq. (26) with Eq. (18), we observe that the
multipole structure is conserved under the rotation (24).
The rotation from light-cone to canonical polarizations
affects only some of the multipole magnitudes, see
Eqs. (27) and (28).

Note that the orientation of the axes in the transverse
plane has been fixed arbitrarily. There is however a privi-
leged direction given by the active quark transverse mo-
mentum k?. Choosing the orientation of transverse axes
so that either k? ¼ k?ex or k? ¼ k?ey simplifies the

transformation, as it eliminates the cumbersome factors

k̂x and k̂y in Eqs. (25) and (26). Choosing e.g the second

option, the orthogonal matrix of Eq. (25) reduces to

O
� ¼

1 0 0 0
0 1 0 0
0 0 cos	 � sin	
0 0 sin	 cos	

0
BBB@

1
CCCA; (29)

and the light-cone and canonical tensor correlators take the
following simpler forms

���
q ¼

fq1
k?
M h?q

1 0 0
k?
M f?q

1T h�q
1T 0 0

0 0 hþq
1T

k?
M gq1T

0 0 k?
M h?q

1L gq1L

0
BBBBB@

1
CCCCCA; (30)

���
Cq ¼

fq1
k?
M h?q

1 0 0
k?
M f?q

1T h�q
1T 0 0

0 0 h
þq
1T

k?
M g

q
1T

0 0 k?
M h

?q
1L g

q
1L

0
BBBBB@

1
CCCCCA: (31)

Figure 1 shows graphically the connection between the
TMDs and the matrix elements in the four-component (or
net-polarization) basis.
Playing a little bit with Eqs. (27) and (28), we find

k?
M ðgq1T þ h?q

1L Þ
gq1L � hþq

1T

 !
¼ cos	 � sin	

sin	 cos	

� �

�
k?
M ðgq1T þ h

?q
1L Þ

g
q
1L � h

þq
1T

 !
; (32)

and three expressions invariant under the rotation (24)

FIG. 1 (color online). Connection between the TMDs and the amplitudes in the net-polarization basis. The z axis corresponds to the
light-cone direction. The y axis in the transverse plane has been chosen parallel to the active quark transverse momentum k?. The
arrows attached to the inner and outer spheres represent the net polarizations of the active quark and target, respectively, and absence of
arrows represents the unpolarized case. Since we work in a frame where the target has no transverse momentum, there is no difference
between target light-cone and canonical polarizations (purple outer arrows). TMDs in the light-cone basis are related to matrix
elements where the quark net polarization is along the axes (blue inner arrows), while in the canonical-spin basis the component of
quark net polarization in the ðy; zÞ plane is tilted with respect to the axes (red inner arrows), see text.
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�
k?
M

gq1T

�
2 þ ðhþq

1T Þ2 ¼
�
k?
M

g
q
1T

�
2 þ ðhþq

1T Þ2; (33)

ðgq1LÞ2 þ
�
k?
M

h?q
1L

�
2 ¼ ðgq1LÞ2 þ

�
k?
M

h
?q
1L

�
2
; (34)

gq1Lg
q
1T þ h?q

1L h
þq
1T ¼ g

q
1Lg

q
1T þ h

?q
1L h

þq
1T : (35)

These three invariant expressions have a simple geometric

interpretation. The three-component vector
P

iS
i�ij

q �
�qj

S represents the net light-cone polarization of a quark

with three-momentum ðxPþ; k?Þ and flavor q in a target
with net polarization in the S direction. From Eq. (24), we
see that the vector �q

CS representing the net canonical

polarization of the quark is obtained by a rotation of �q
S

�qj
CS ¼ X

k

�qk
S Okj: (36)

It follows automatically that �q
S � �q

S0 is invariant under the

rotation (24)

� q
S � � q

S0 ¼ � q
CS � � q

CS0 : (37)

Expressions (33) and (34) are obtained from (37) for the
cases S ¼ S0 ¼ e? and S ¼ S0 ¼ ez, respectively. They
just express the fact that the magnitude of quark net
polarization is the same in the light-cone helicity and
canonical-spin bases. Expression (35) is obtained for the
case S ¼ e? and S0 ¼ ez. All the remaining cases do not
lead to new independent expressions.

C. Spherical symmetry

We are now ready to discuss the implications of spheri-
cal symmetry in the canonical-spin basis. Spherical sym-
metry means that the canonical tensor correlator has to be
invariant OT

R�CqOR ¼ �Cq under any spatial rotation

OR ¼ 1 0
0 R

� �
with R the ordinary 3� 3 rotation matrix.

It is equivalent to the statement that the tensor correlator
has to commute with all the elements of the rotation group
�CqOR ¼ OR�Cq. As a result of Schur’s lemma, the ca-

nonical tensor correlator must have the following structure

�
��
Cq ¼

Aq 0 0 0
0 Bq 0 0
0 0 Bq 0
0 0 0 Bq

0
BBB@

1
CCCA: (38)

Comparing this with Eqs. (26) or (31), we conclude that
spherical symmetry implies

fq1 ¼ Aq; (39)

g
q
1L ¼ h

þq
1T ¼ h�q

1T ¼ Bq; (40)

g
q
1T ¼ h

?q
1L ¼ f?q

1T ¼ h?q
1 ¼ 0: (41)

Clearly, only the monopole structures in the canonical-spin
basis are allowed to survive. Furthermore, the Sivers and

Boer-Mulders functions f?q
1T and h?q

1 vanish identically, as
expected from the fact that we are neglecting gauge-field
degrees of freedom.
Note however that, as one can see from Figs. 2 and 3, the

monopole structures in the canonical-spin basis generate
higher multipole structures in the light-cone helicity basis.
It follows that spherical symmetry imposes some relations
among the multipole structures in the light-cone helicity
basis, and therefore among the TMDs. Inserting the con-
straints (40) and (41) into Eq. (32), we automatically obtain
the linear relations3 (19) and (20)

k?
M ðgq1T þ h?q

1L Þ
gq1L � hþq

1T

 !
¼ 0

0

� �
: (42)

Using now the constraints from spherical symmetry in
Eq. (33), we obtain the quadratic relation (21)

FIG. 2 (color online). Net light-cone polarization (thick blue arrows) associated to a quark with net longitudinal canonical
polarization (thin red arrows), and its vector decomposition along the three axes, for fixed x and k? but arbitrary direction k̂?.
The x and y components are pure dipoles, while the z component is a pure monopole.

3One can also easily understand why spherical symmetry
implies g1L ¼ þhþ1T and g1T ¼ �h?1L directly from Fig. 1. If
one performs a �

2 rotation about the x-axis on the quark and target
polarizations in the representation of g1L, one gets the represen-
tation of hþ1T . If one performs the same transformation on the
representation of k?

M g1T , one gets the representation of k?
M h?1L but

with one of the net light-cone polarizations in the opposite
direction, explaining the minus sign.
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0 ¼
�
k?
M

gq1T

�
2 þ ðhþq

1T Þ2 � ðh�q
1T Þ2

¼ k 2
?

M2
½ðgq1TÞ2 þ 2hq1h

?q
1T �: (43)

The linear relations (19) and (20) being satisfied, the
Eqs. (34) and (35) do not lead to independent quadratic
relations.

We have seen that spherical symmetry is a sufficient
condition4 to obtain all three flavor-independent relations.
Restricting ourselves to axial symmetries, we find that
some of the relations can already be obtained. For example,
axial symmetry about ez alone implies the quadratic rela-
tion (21) and

gq1Lg
q
1T þ h?q

1L h
þq
1T ¼ 0: (44)

Axial symmetry about k̂? � ez implies the two linear
relations (19) and (20). The relation (44) is naturally also
satisfied but is not independent.

V. WAVE-FUNCTION APPROACH

Many quark models are based on a wave-function ap-
proach. We therefore translate here the derivation of the

previous section in the language of 3Q wave functions.
The advantage is that we can then also discuss the addi-
tional SUð6Þ spin-flavor symmetry needed for the flavor-
dependent relation (22). For convenience, we omit all the
color indices in the following expressions.

A. Overlap representation of the TMDs
on the light cone

Restricting ourselves to the 3Q Fock sector, the target

state with definite four-momentum P ¼ ½Pþ; M2

2Pþ ; 0?� and
light-cone helicity � can be written as follows:

jP;�i ¼ X
�1�2�3

X
q1q2q3

Z
½dx�3½d2k?�3

� c �;q1q2q3
�1�2�3

ð~k1; ~k2; ~k3Þjf�i; qi; ~kigi; (45)

where c �;q1q2q3
�1�2�3

ð~k1; ~k2; ~k3Þ is the three-quark light-cone

wave function (3Q LCWF) with �i, qi and ~ki referring to
the light-cone helicity, flavor and light-cone momentum of
quark i, respectively. The total orbital angular momentum
of a given component c �

�1�2�3
is given by the expression

‘z ¼ �� �1 � �2 � �3 with �; �i ¼ � 1
2 . The integra-

tion measures in Eq. (45) are defined as

½dx�3 �
�Y3
i¼1

dxi

�
�

�
1�X3

i¼1

xi

�
;

½d2k?�3 �
�Y3
i¼1

d2ki?
2ð2�Þ3

�
2ð2�Þ3�ð2Þ

�X3
i¼1

ki?
�
: (46)

FIG. 3 (color online). In the first line is shown the net light-cone polarization (thick blue arrows) associated to a quark with net
canonical polarization in the x direction (thin red arrows), and its vector decomposition along the three axes, for fixed x and k? but
arbitrary direction k̂?. The y component is a pure quadrupole, and the z component is a pure dipole. The x component is the sum of a
monopole and a quadrupole, as illustrated in the second line.

4From Eqs. (32) and (33), one can see that the minimal
conditions are actually

g
q
1L � h

þq
1T ¼ 0; g

q
1T þ h

?q
1L ¼ 0;�

k?
M

g
q
1T

�
2 þ ðhþq

1T Þ2 � ðh�q
1T Þ2 ¼ 0:

They are indeed fulfilled by spherical symmetry, see Eqs. (40)
and (41).
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Choosing to label the active quark with i ¼ 1, the TMDs
can be obtained by the following overlaps5 of 3Q LCWFs

fq1 ¼
Z

d½23�X
�2�3

X
q2q3

½jcþ;qq2q3
þ�2�3

j2 þ jcþ;qq2q3
��2�3

j2�;

(47a)

gq1L ¼
Z

d½23�X
�2�3

X
q2q3

½jcþ;qq2q3
þ�2�3

j2 � jcþ;qq2q3
��2�3

j2�;

(47b)

hq1 ¼
Z

d½23�X
�2�3

X
q2q3

ðcþ;qq2q3
þ�2�3

Þ�c�;qq2q3
��2�3

; (47c)

k?
M

f?q
1T ¼

Z
d½23�X

�2�3

X
q2q3

2=m½k̂Rðcþ;qq2q3
þ�2�3

Þ�c�;qq2q3
þ�2�3

�;

(47d)

k?
M

gq1T ¼
Z

d½23�X
�2�3

X
q2q3

2<e½k̂Rðcþ;qq2q3
þ�2�3

Þ�c�;qq2q3
þ�2�3

�;

(47e)

k?
M

h?q
1 ¼

Z
d½23�X

�2�3

X
q2q3

2=m½k̂Rðcþ;qq2q3
��2�3

Þ�cþ;qq2q3
þ�2�3

�;

(47f)

k?
M

h?q
1L ¼

Z
d½23�X

�2�3

X
q2q3

2<e½k̂Rðcþ;qq2q3
��2�3

Þ�cþ;qq2q3
þ�2�3

�;

(47g)

k 2
?

2M2
h?q
1T ¼

Z
d½23�X

�2�3

X
q2q3

k̂2Rðcþ;qq2q3
��2�3

Þ�c�;qq2q3
þ�2�3

; (47h)

where we used the notation

d½23� ¼ ½dx�3½d2k?�33�ðx� x1Þ�ð2Þðk? � k1?Þ: (48)

Clearly, the TMDs associated to the monopole structures
(fq1 ; g

q
1L; h

q
1) are represented by overlaps with no global

change of orbital angular momentum �‘z ¼ 0, the ones

associated to the dipole structures (f?q
1T ; g

q
1T; h

?q
1 ; h?q

1L ) in-
volve a change by one unit of orbital angular momentum
j�‘zj ¼ 1 and the one associated to the quadrupole struc-

ture (h?q
1T ) involves a change by two units of orbital angular

momentum j�‘zj ¼ 2. If one neglects gauge-field degrees
of freedom, the brackets in Eqs. (47d)–(47g) are real, and
one obtains vanishing T-odd TMDs.

B. Overlap representation of the TMDs
in the canonical-spin basis

Most of the quark models being originally formulated in
the instant form, it is more natural to work in the canonical-
spin basis instead of the light-cone helicity basis. Since we
considered a frame where the target has no transverse
momentum, there is no difference between target light-
cone and canonical polarizations. Assuming that the quark
light-cone helicity and canonical spin are connected by
the rotation in Eq. (23), the components of the LCWF in
the canonical-spin basis c �

�1�2�3
(with �i ¼"; # ) and in the

light-cone helicity basis c �
�1�2�3

(with �i ¼ �) are related

as follows:6

c �
�1�2�3

¼ X
�1�2�3

c �
�1�2�3

Dð1=2Þ�
�1�1

Dð1=2Þ�
�2�2

Dð1=2Þ�
�3�3

: (49)

The correspondence between the components in the two
polarization bases is given in a more explicit form in

Appendix B. Since Dð1=2ÞyDð1=2Þ ¼ 1 for the spectator
quarks, we find the explicit overlap representations in
canonical-spin basis

fq1 ¼
Z

d½23�X
�2�3

X
q2q3

½jc ";qq2q3
"�2�3

j2 þ jc ";qq2q3
#�2�3

j2�;

(50a)

g
q
1L ¼

Z
d½23�X

�2�3

X
q2q3

½jc ";qq2q3
"�2�3

j2 � jc ";qq2q3
#�2�3

j2�;

(50b)

h
q
1 ¼

Z
d½23�X

�2�3

X
q2q3

ðc ";qq2q3
"�2�3

Þ�c #;qq2q3
#�2�3

; (50c)

k?
M

f?q
1T ¼

Z
d½23�X

�2�3

X
q2q3

2=m½k̂Rðc ";qq2q3
"�2�3

Þ�c #;qq2q3
"�2�3

�;

(50d)

k?
M

g
q
1T ¼

Z
d½23�X

�2�3

X
q2q3

2<e½k̂Rðc ";qq2q3
"�2�3

Þ�c #;qq2q3
"�2�3

�;

(50e)

k?
M

h?1 ¼
Z

d½23�X
�2�3

X
q2q3

2=m½k̂Rðc ";qq2q3
#�2�3

Þ�c ";qq2q3
"�2�3

�;

(50f)

k?
M

h
?q
1L ¼

Z
d½23�X

�2�3

X
q2q3

2<e½k̂Rðc ";qq2q3
#�2�3

Þ�c ";qq2q3
"�2�3

�;

(50g)

k 2
?

2M2
h
?q
1T ¼

Z
d½23�X

�2�3

X
q2q3

k̂2Rðc ";qq2q3
#�2�3

Þ�c #;qq2q3
"�2�3

; (50h)

5In the 3Q approach, the spectator system consists of two
quarks. It is straightforward to generalize the expression for
helicity amplitudes to any kind of spectator system, as the latter
is integrated out.

6Note that c �
�1�2�3

cannot be identified in general with the
usual rest-frame wave function ��

�1�2�3
. They have the same

spin structure, but not the same momentum dependence.
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with h
þq
1T ¼ h

q
1 þ k 2

?
2M2 h

?q
1T and h�q

1T ¼ h
q
1 � k 2

?
2M2 h

?q
1T . The

functions g
q
1L;g

q
1T; h

?q
1L ; h

þq
1T are again related to the

TMDs gq1L; g
q
1T; h

?q
1L ; h

þq
1T according to Eqs. (27) and (28).

C. Spherical symmetry

We now discuss how spherical symmetry restricts the
form of the wave function in the canonical-spin basis.
Spherical symmetry requires the wave function to be in-
variant under any rotation, i.e.X
�0�0

1
�0
2
�0
3

½uð	;
Þ��1�
0
1
½uð	;
Þ��2�

0
2
½uð	;
Þ��3�

0
3

� ½uð	;
Þ����0c �0
�0
1
�0
2
�0
3
¼ c �

�1�2�3
; (51)

with the SUð2Þ rotation matrix uð	;
Þ given by Eq. (12).
In particular, invariance under a ð�; 0Þ rotation leads to

c����1��2��3
¼ ð�1Þ�þ�1þ�2þ�3c �

�1�2�3
; (52)

while invariance under ð0; 
Þ rotations implies that all
components with ‘z � 0 have to vanish

c "
""" ¼ c "

##" ¼ c "
#"# ¼ c "

"## ¼ c "
### ¼ 0: (53)

Taking into account the constraints (52) and (53) in an
arbitrary ð	;
Þ rotation, one finally gets7

c "
""# þ c "

"#" þ c "
#"" ¼ 0: (54)

Again, spherical symmetry implies that the TMDs are
either identically zero or proportional to the unpolarized
and polarized amplitudes Aq and Bq,

fq1 ¼ Aq; (55a)

gq1L ¼ cos	Bq; (55b)

hq1 ¼ cos	þ 1

2
Bq; (55c)

k?
M

f?q
1T ¼ 0; (55d)

k?
M

gq1T ¼ sin	Bq; (55e)

k?
M

h?q
1 ¼ 0; (55f)

k?
M

h?q
1L ¼ � sin	Bq; (55g)

k2?
2M2

h?q
1T ¼ cos	� 1

2
Bq; (55h)

with Aq and Bq given by the following overlaps

Aq ¼
Z

d½23�X
q2q3

½jc ";qq2q3
""# j2 þ jc ";qq2q3

"#" j2 þ jc ";qq2q3
#"" j2�;

(56)

Bq ¼
Z

d½23�X
q2q3

½jc ";qq2q3
""# j2 þ jc ";qq2q3

"#" j2 � jc ";qq2q3
#"" j2�

¼
Z

d½23�X
q2q3

½ðc ";qq2q3
""# Þ�c #;qq2q3

#"# þ ðc ";qq2q3
"#" Þ�c #;qq2q3

##" �:

(57)

The TMD relations (19)–(21) then follow trivially.

D. SUð6Þ spin-flavor symmetry

Many quark models, in addition of being spherically
symmetric, assume also the SUð6Þ spin-flavor symmetry.
This symmetry restricts further the components of the
wave function in the canonical-spin basis in the following
way:

with 
 ¼ 
ðf~kigÞ some symmetric momentum wave func-
tion normalized as

R½dx�3½d2k?�3j
j2 ¼ 1=18. This im-
plies that the unpolarized and polarized amplitudes Aq and
Bq are simply proportional

Au ¼ 2Ad ¼ 3

2
Bu ¼ �6Bd ¼ 12

Z
d½23�j
j2; (59)

and so the flavor-dependent relation (22) follows trivially
with Dq ¼ Bq=Aq.

VI. QUARK MODELS

In this section we review different quark models which
have been used for the calculation of TMDs. In particular,
we summarize the main ingredients of the models and
discuss whether they satisfy the conditions of Sec. III. In
order to facilitate the discussion, we sort the quark models
in classes defined as follows:
(i) The light-cone constituent quark model (LCCQM)

of Ref. [20] and the light-cone quark-diquark model
(LCQDM) of Refs. [12,13,44] constitute the class of
light-cone models;

(ii) The covariant parton model of Ref. [11] constitutes
its own class;

(iii) The bag model of Refs. [27,28] and the light-cone
version of the chiral quark-soliton model (�QSM)
of Refs. [23,45,46] constitute the class of mean-
field models;

(iv) The quark-diquark models of Refs. [2,3,5,9,26]
constitute the class of spectator models.

7Note that spherical symmetry neither restricts the number of
nonzero components of the wave function in the light-cone
helicity basis nor relates them in a simple way, see Table I in
Appendix B.
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We will not discuss the quark-target model of Ref. [30]
as it deals with gluons and therefore does already not
satisfy the first condition of Sec. III.

A. Light-cone models

The class of light-cone models is characterized by the
fact that the target state is expanded in the basis of free
parton (Fock) states. One usually truncates the expansion

and considers only the state with the lowest number of
partons. In the LCCQM, this lowest state consists of three
valence quarks, while in the LCQDM it consists of a
valence quark and a spectator diquark.
It is well known that light-cone helicity and canonical

spin of free partons are simply related by the so-called
Melosh rotation [47]. Its j ¼ 1=2 and j ¼ 1 representa-
tions [48] are given by (see Appendix A for the definition
of the spinors and polarization four-vectors)

Dð1=2Þ�
�� ð~kÞ ¼ �uLCðk; �Þuðk; �Þ

2m
¼ 1ffiffiffiffi

N
p

ffiffiffi
2

p
kþ þm �kR
kL

ffiffiffi
2

p
kþ þm

 !
; (60)

Dð1Þ�
�� ð~kÞ ¼ �"�LCðk; �Þ � "ðk; �Þ ¼

1

N

ð ffiffiffi
2

p
kþ þmÞ2 � ffiffiffi

2
p ð ffiffiffi

2
p

kþ þmÞkR k2Rffiffiffi
2

p ð ffiffiffi
2

p
kþ þmÞkL ð ffiffiffi

2
p

kþ þmÞ2 � k 2
? � ffiffiffi

2
p ð ffiffiffi

2
p

kþ þmÞkR
k2L

ffiffiffi
2

p ð ffiffiffi
2

p
kþ þmÞkL ð ffiffiffi

2
p

kþ þmÞ2

0
B@

1
CA; (61)

where m is the parton mass and N ¼ ð ffiffiffi
2

p
kþ þmÞ2 þ k2?.

The LCWF in the canonical-spin basis being identified in
these models with the instant-form wave function, it fol-
lows that

ffiffiffi
2

p
kþ ¼ xM0 withM0 ¼

P
i!i the mass of the

Fock state and !i the free energy of parton i. Comparing
now Eqs. (60) and (61) with Eqs. (23) and (C9), we obtain

cos
	

2
¼ mþ xM0ffiffiffiffi

N
p and sin

	

2
¼ k?ffiffiffiffi

N
p : (62)

Finally, both the LCCQM and LCQDM consider wave
functions with spherical symmetry and SUð6Þ spin-flavor
symmetry. In other words, all the conditions of Sec. III are
satisfied in these models, and so are the TMD relations8

(19)–(22).

B. Covariant parton model

The standard quark-parton model (QPM) refers to the
infinite momentum frame (IMF), where the parton mass
can be neglected. The covariant parton model is an alter-
native to the QPM that is not confined to a preferred
reference frame. Following the standard assumptions of
the QPM, the covariant parton model describes the target
system as a gas of quasifree partons, i.e. the partons bound
inside the target behave at the interaction with the external
probe (at sufficiently high Q2) as free particles having

four-momenta on the mass shell. However, since the co-
variant parton model does not refer specifically to the IMF,
the parton mass9 m is not neglected. One also assumes
explicitly that the parton distributions are spherically
symmetric.
The covariant parton model does not refer explicitly to

quark canonical spin or light-cone helicity. Instead, it deals
with the covariant quark polarization vector. Identifying in
the Bjorken limit the Lorentz structures of the hadronic
tensor with those of the TMD correlator, the authors of
Ref. [11] found that the TMDs are given in the covariant
parton model by

fq1 ¼ 1

2
½ðmþ xMÞ2 þ k2?�

Z
fd~k1g; (63a)

gq1L ¼ 1

2
½ðmþ xMÞ2 � k2?�

Z
fdk1g; (63b)

k?
M

f?q
1T ¼ 0; (63c)

k?
M

gq1T ¼ ðmþ xMÞk?
Z
fdk1g; (63d)

k?
M

h?q
1 ¼ 0; (63e)

k?
M

h?q
1L ¼ �ðmþ xMÞk?

Z
fdk1g; (63f)

k2?
2M2

h?q
1T ¼ � 1

2
k2?

Z
fdk1g; (63g)

where M is the target mass, fd~k1g and fdk1g are the mea-
sures associated to the distributions of unpolarized and

8In the derivations of Secs. IV and V, we tacitly assumed that
the rotation connecting light-cone and canonical polarizations
depends only on the momentum of the parton under considera-
tion. The Melosh rotation involves the free invariant mass M0
and therefore the momenta of all partons in the state. We are in
fact not allowed to pull the factor due to the rotation of the active
quark out of the integral like in Eq. (55). Nevertheless, this
technical detail does not affect the conclusion about the validity
of the relations (19)–(22). Our tacit assumption, which does not
apply to this specific case, has been introduced to keep the
presentation as simple as possible.

9Note that the parton mass appearing in the model has to be
regarded as an effective mass, in the sense that it corresponds to
the mass of the free parton behaving at the interaction like the
actual bound parton.
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polarized quarks, respectively. Comparing with Eq. (55),
we find that

cos
	

2
¼ mþ xMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmþ xMÞ2 þ k2?
q and

sin
	

2
¼ k?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmþ xMÞ2 þ k2?
q ; (64)

which is nothing else than the Melosh rotation. This is
consistent with the fact that the active quark is quasifree in
this model. The difference with light-cone models is that
the physical mass of the target M is used in the Melosh
rotation instead of the free invariant mass10 M0. The
conditions 1–3 of Sec. III are therefore satisfied in the
covariant parton model, and so are the TMD relations
(19)–(21). Since this model does not use the language of
wave functions, the implementation of SUð6Þ spin-flavor
symmetry is more delicate and one has to assume that the
unpolarized and polarized distributions become simply
proportional in order to recover the TMD relation (22).

C. Mean-field models

In mean-field models, the target is considered as made
of quarks bound by a classical mean field representing
the nonperturbative (long-range) contribution of the gluon
field. Accordingly, the positive-frequency part of the quark
field appearing in the definition of the correlator (1) is
expanded in the basis of the bound-state solutions
e�iEnt’nðk; �Þ instead of the free Dirac light-cone spinors
e�ip�xuLCðk; �Þ. Moreover, one truncates the expansion to
the lowest mode ’ � ’1 with energy Elev � E1.

In these models, the bound-state solution ’ðk; �Þ is
called the quark wave function. This object is clearly
different from the LCWF introduced in Sec. V. In particu-
lar, the former is a spinor while the latter is an ordinary
scalar function. It is however possible to relate them.
Since we consider twist-2 Dirac operators �, only the
good components of the spinors are involved in the

quark bilinear �’ðk; �0Þ�’ðk; �Þ. Using uGð�Þ ¼
PþuLCðk; �Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=2kþ

p
(see Appendix A), we find that

�’ðk; �0Þ�’ðk; �Þ ¼ ’yðk; �0ÞPþ�0�Pþ’ðk; �Þ
¼ X

��0
F�
�0�0 ðk0ÞF��ðkÞ

� �uLCðk; �0Þ�uLCðk; �Þffiffiffi
2

p
kþ

; (65)

where we have defined F��ðkÞ ¼ uyGð�Þ’ðk; �Þ. In agree-

ment with [49,50] where one boosts explicitly the system

in the mean-field approximation to the IMF, F��ðkÞ can be
interpreted as the quark LCWF with kz ¼ xM� Elev. The
mass M is identified with the nucleon mass MN in the bag
model and with the soliton mass MN in the �QSM.
The mean field is assumed spherically symmetric in the

target rest frame. It follows that the lowest quark-state
solution in momentum space takes the form

’ðk; �Þ ¼ fðjkjÞ
k��
jkj gðjkjÞ

 !
��; (66)

with �� the Pauli spinor. The functions f and g in Eq. (66)
represent the s (‘ ¼ 0) and p (‘ ¼ 1) waves of the bound-
state solution. On the other hand, the general 3Q LCWF for
a spin-1=2 target involves usually s-, p- and d waves.
There is no contradiction between these two statements
since f and g describe a single quark in the target and
therefore do not represent partial waves of total angular
momentum. Note also that in the language of 3Q LCWF,
the s-, p- and d waves refer to components with ‘z ¼ 0,
�1 and �2, respectively. This is an abuse of language as
partial waves should refer to ‘ and not ‘z.
The quark LCWF corresponding to (66) is then given

by11

F��ðkÞ ¼ 1ffiffiffi
2

p fðjkjÞ þ kz
jkjgðjkjÞ � kR

jkjgðjkjÞ
kL
jkj gðjkjÞ fðjkjÞ þ kz

jkj gðjkjÞ

0
@

1
A

��

:

(67)

It describes, in particular, how canonical spin � and light-
cone helicity � are related.12 Comparing with Eq. (23), we
find that

cos
	

2
¼ fðjkjÞ þ kz

jkjgðjkjÞffiffiffiffi
N

p and sin
	

2
¼

k?
jkj gðjkjÞffiffiffiffi

N
p ;

(68)

with N ¼ f2ðjkjÞ þ 2 kz
jkj fðjkjÞgðjkjÞ þ g2ðjkjÞ. The 3Q

LCWF written as
Q

3
i¼1 F�i�i

ðkiÞ times the standard

SUð6Þ spin-flavor wave function with target polarization
� ¼ P

i�i, is then consistent with spherical symmetry in
the canonical-spin basis. All the conditions of Sec. III
being satisfied in mean-field models, the TMD relations
(19)–(22) follow automatically.

D. Spectator models

The basic idea of spectator models is to evaluate the
quark-quark correlator� of Eq. (1) by inserting a complete

10In the covariant parton model, only the active parton is
considered on-shell. In light-cone models, all the partons are
on-shell so that the Fock state itself is off-shell M0 � M.

11Replacing ’ðk; �Þ by the free Dirac spinor uðk; �Þ, one

recovers the Melosh rotation given by Eq. (60) uyGð�Þuðk; �Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=2kþ

p
Dð1=2Þ�

�� ð~kÞ.
12Defining the quark rest-frame wave function as in
Refs. [49,50] Frest

�0�ðkÞ ¼ uyðk; �0Þ’ðk; �Þ, one finds that

Frest
�0�ðkÞ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþm
p

fðjkjÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�m

p
gðjkjÞ���0� which is con-

sistent with � being identified with canonical spin.
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set of intermediate states and then truncating this set at tree
level to a single on-shell spectator diquark state, i.e. a state
with the quantum numbers of two quarks. The diquark can
be either an isospin singlet with spin 0 (scalar diquark) or
an isospin triplet with spin 1 (axial-vector diquark). The
target is then seen as made of an off-shell quark and an
on-shell diquark. Spectator models differ by their specific
choice of target-quark-diquark vertices, polarization four-
vectors associated with the axial-vector diquark, and form
factors which take into account in an effective way the
composite nature of the target and the spectator diquark.

As advocated in Ref. [51], the parton distributions can
conveniently be computed using the language of LCWFs.
The scalar quark-diquark LCWF is defined as

c �
� ð~kÞ / �uLCðk; �ÞYsuLCðP;�Þ (69)

with target momentum P ¼ ½Pþ; M2

2Pþ ; 0?�. We do not need

to specify all the factors in the definition as we are only
interested in the structure of the wave function in the light-
cone helicity basis. The scalar vertex is of the Yukawa type
Ys ¼ gsðk2Þ1 with gsðk2Þ some form factor. Writing down
explicitly the components, one finds

c �
� ð~kÞ /

gsðk2Þffiffiffi
x

p mþ xM �kR
kL mþ xM

� �
��

: (70)

Note the striking resemblance with the Melosh rotation
matrix of Eq. (60). One can similarly define a rest-frame
scalar quark-diquark wave function as

��
� / �uðk; �ÞYsuðPrest;�Þ ¼ gsðk2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðEþmÞp

���

(71)

with target momentum Prest ¼ ðM; 0Þ. This wave function
is obviously spherically symmetric.13 Furthermore,
Eq. (70) suggests that the quark light-cone helicity and
canonical spin are simply related by a Melosh rotation,
as if the quark was free [52]. In other words, the conditions
1–3 of Sec. III are satisfied in scalar diquark models
with Yukawa-like vertex, and so are the TMD relations
(19)–(21).

The axial-vector quark-diquark LCWF is defined as

c �
��D

ð~kÞ / �uLCðk; �Þ"�LC�ðK; �DÞY�
a uLCðP;�Þ: (72)

The spectator model of Jakob et al. [2] assumes the

following structure for the axial-vector vertex Y�
a ¼

gaðk2Þffiffi
3

p �5ð�� þ P�

M Þ and the following momentum argument

for the polarization four-vector K ¼ P. The motivation for
such a choice is to ensure that, in the target rest frame,
the diquark spin-1 states are purely spatial. Indeed, the rest-
frame axial-vector quark-diquark wave function reads in
this model

��
��D

/ �uðk; �Þ"��ðK;�DÞY�
a uðPrest;�Þ

¼ gaðk2Þffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðEþmÞ

p
ð��D

� �Þ��: (73)

It satisfies the constraints (C13) and is therefore spherically
symmetric. Writing down explicitly the components of the
corresponding LCWF, one finds

cþ
þ0 /

gaðk2Þffiffiffiffiffi
3x

p ðmþ xMÞ; cþ
�0 / � gaðk2Þffiffiffiffiffi

3x
p kR;

cþ�þ ¼ � ffiffiffi
2

p
cþþ0; c��� ¼ ffiffiffi

2
p

cþ�0;

cþþ� ¼ cþ�� ¼ 0;

(74)

the other components being given by c��
����D

¼
ð�1Þ�þ�þ�Dðc �

��D
Þ�, with �; � ¼ � 1

2 and �D ¼
þ1; 0;�1. Again, one recognizes the characteristic factors
of the Melosh rotation [52]. Comparing the structure of the
components of the LCWF in Eq. (74) with the structure of
the components of the LCWF given in Table III of
Appendix C 2 after applying the constraints of spherical
symmetry in the canonical-spin basis (C13), one concludes
that only the quark polarization is rotated. This is in
agreement with the fact that the momentum argument of
the polarization four-vector "� does not have any trans-

verse momentum, and so there is no rotation of the diquark
polarization. All the conditions 1–3 of Sec. III being sat-
isfied in the axial-vector diquark model of Ref. [2], the
TMD relations (19)–(21) follow automatically. The flavor-
dependent relation (22) can be obtained by further impos-
ing SUð6Þ spin-flavor symmetry to the wave function.14

On the contrary, some versions of the spectator model
presented by Bacchetta et al. in Ref. [26] do not support
any TMD relation. We therefore expect that at least one
of the conditions 1–3 of Sec. III is not satisfied. These

versions are based on the axial-vector vertex Y�
a ¼

gaðk2Þffiffi
2

p ���5 and involve the diquark momentum K ¼
P� k in the polarization four-vector. With these choices,
it is found that the condition 3 of Sec. III is not fulfilled
since the corresponding rest-frame wave function does not
satisfy the requirements of spherical symmetry

13The rest-frame wave function in Eq. (71) is expressed in
terms of canonical spin and therefore has the same spin structure
as the LCWF expressed in the canonical-spin basis. It follows
that the constraints due to spherical symmetry discussed in
Appendix C 1 apply also here. Furthermore, the momentum-
dependent part of the wave function in the rest frame does not
depend on a specific direction.

14The scalar and axial-vector diquarks represent in principle
more than just two quarks. For this reason, they have a priori
different masses, cutoffs, form factors, . . .When we impose
SUð6Þ symmetry, we implicitly consider that the quark-diquark
picture originates from a 3Q picture. The scalar and axial-vector
diquarks then just differ by their spin and flavor structures which
are uniquely determined by the SUð6Þ symmetry.
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��
��D

/ð��D
� �Þ��; (75)

in accordance with the discussions of Refs. [53–55] and the
comment in Ref. [26] that in this approach the partons do
not necessarily occupy the lowest-energy available orbital
(with quantum numbers JP ¼ 1

2
þ and Lz ¼ 0.)

VII. CONCLUSIONS

In this work we presented a study of the transverse-
momentum dependent parton distributions in the frame-
work of quark models. We focused the discussion on model
relations which appeared in a large panel of quark models,
elucidating their physical origin and implications. In par-
ticular, there are in total four independent relations among
the leading-twist T-even TMDs: three of them are flavor
independent and connect polarized TMDs, while a fourth
flavor-dependent relation involves both polarized and un-
polarized TMDs.

We have shown that these model relations have essen-
tially a geometrical origin, and can be traced back to
properties of rotational invariance of the system. In par-
ticular, we identified the conditions which are sufficient for
the existence of the flavor-independent relations. They are:

(1) the probed quark behaves as if it does not interact
directly with the other partons (i.e. one works within the
standard impulse approximation) and there are no explicit
gluons;

(2) the quark light-cone and canonical polarizations
are related by a rotation with axis orthogonal to both the
light-cone and quark transverse-momentum directions;

(3) the target has spherical symmetry in the canonical-
spin basis.

For the flavor-dependent relation, one needs a further
condition for the spin-flavor dependent part of the nucleon
wave function. Specifically, it is required

(4) SUð6Þ spin-flavor symmetry of the wave function.
On the basis of the above assumptions, we were able to

derive the model relations among TMDs within two differ-
ent approaches.

The first approach is based on the representation of the
quark correlator entering the definition of TMDs in terms
of the polarization amplitudes of the quarks and nucleon.
Such amplitudes are usually expressed in the basis of light-
cone helicity. However, in order to discuss in a simple way
the rotational properties of the system, we introduced the
representation in the basis of canonical spin. In this frame-
work, we showed that the conditions 1–3 are sufficient for
the existence of all three flavor-independent relations. We
also showed that a subset of these three relations can be
derived relaxing the assumption of spherical symmetry and
using the less restrictive condition of axial symmetry under
a rotation around a specific direction.

The second approach is based on the representation of
TMDs in terms of quark wave functions. In particular, we

expressed the TMDs as overlap of light-cone wave func-
tions, and we derived the relation with the corresponding
representation in terms of overlap of wave functions in the
canonical-spin basis. After discussing the consequence of
spherical symmetry on the spin structure of the wave
function, we were able to obtain an alternative derivation
of the relations among polarized T-even TMDs. Finally,
for the remaining relation among polarized and unpolar-
ized T-even TMDs, we used the SUð6Þ symmetry for the
spin-isospin dependence of the nucleon wave function.
The previous formal discussion has been made more

concrete with examples from quark models which have
been used in literature. Besides the specific assumptions
for modeling the quark dynamics, these models can be
sorted in different classes corresponding to light-cone
models, the covariant parton models, mean-field models
and spectator models. We have shown how and to which
extent the conditions 1–4 are realized in these different
models. In particular we verified that all the models sat-
isfying the TMD relations also satisfy the above condi-
tions, while models where the TMD relations do not hold
fail with at least one of the above conditions.
Finally, we remark that these relations are not expected

to hold identically in QCD where TMDs are all indepen-
dent. However, they provide simplified and intuitive
notions for the interpretation of the spin and orbital angular
momentum structure of the nucleon. As such, they can
be useful for phenomenological studies to build up sim-
plified parametrizations of TMDs to be fitted to data.
Furthermore, the comparison with the experimental data
will tell us the degree of accuracy of such relations, giving
insights for further studies towards more refined quark
models.
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APPENDIX A: SPINORS AND POLARIZATION
FOUR-VECTORS

We collect in this Appendix the different types of free
spinors and polarization vectors. The free canonical Dirac
spinor uðk; �Þ and polarization four-vector "�ðk; �Þ are
given by
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uðk; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�m
p

k��
jkj

 !
��; (A1)

"�ðk; �Þ ¼
�
�� � k
m

;�� þ kð�� � kÞ
mðEþmÞ

�
; (A2)

where

�" ¼ 1
0

� �
; �# ¼ 0

1

� �
;

and the polarization three-vectors are �*;+ ¼ 1ffiffi
2

p ð�1;�i; 0Þ
for sz ¼ �1, and �	 ¼ ð0; 0; 1Þ for sz ¼ 0. The free light-
cone Dirac spinor uLCðk; �Þ and polarization four-vector
"
�
LCðk; �Þ are given by

uLCðk;þÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23=2kþ

p

ffiffiffi
2

p
kþ þm
kRffiffiffi

2
p

kþ �m
kR

0
BBB@

1
CCCA;

uLCðk;�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23=2kþ

p
�kLffiffiffi

2
p

kþ þm
kL

� ffiffiffi
2

p
kþ þm

0
BBB@

1
CCCA;

(A3)

"
�
LCðk;�Þ ¼

�
0;
�?� � k?

kþ
; �?�

�
;

"�LCðk; 0Þ ¼
1

m

�
kþ;

k2? �m2

2kþ
; k?

�
; (A4)

with �?� ¼ 1ffiffi
2

p ð�1;�iÞ. Both types of spinors and

polarization four-vectors coincide in the rest frame
krest ¼ ðm; 0Þ

uðkrest; �Þ ¼ uLCðkrest; �Þ ¼
ffiffiffiffiffiffiffi
2m

p ��

0

� �
; (A5)

"�ðkrest; �Þ ¼ "�LCðkrest; �Þ ¼ ð0; ��Þ: (A6)

The ‘‘good’’ light-cone spinors are the simultaneous
eigenstates of the operator �5 and the projector
Pþ ¼ 1

2�
��þ

PþuGð�Þ ¼ uGð�Þ; �5uGð�Þ ¼ �uGð�Þ;

uGð�Þ � 1ffiffiffi
2

p 1
�3

� �
��;

(A7)

and one can write

Pþ ¼ X
�

uGð�ÞuyGð�Þ: (A8)

APPENDIX B: COMPONENTS OF THE 3Q LCWF
IN THE LIGHT-CONE AND CANONICAL

POLARIZATION BASES

Based on Eq. (49), Table I shows explicitly how the
components of the 3Q LCWF in light-cone polarization
basis are decomposed in the canonical-spin basis. We used

for convenience the notations zi ¼ cos	i2 , li ¼ k̂iL sin
	i
2 and

ri ¼ k̂iR sin
	i
2 for the components of the rotation matrix

Dð1=2Þ�
�i�i

of Eq. (23). For example, from the first row of

Table I, we have

cþþþþ ¼ z1z2z3c
"
""" þ z1z2l3c

"
""# þ z1l2z3c

"
"#"

þ l1z2z3c
"
#"" þ l1l2z3c

"
##" þ l1z2l3c

"
#"#

þ z1l2l3c
"
"## þ l1l2l3c

"
###: (B1)

It is interesting to note that any single component of the 3Q
LCWF in the canonical-spin basis contributes to all com-
ponents in the light-cone helicity basis, and vice versa. So
even if one considers that the wave function has only
components with ‘z ¼ 0 in the canonical-spin basis, the
components of the wave function in the light-cone helicity
basis present all the values ‘z ¼ �1; 0;þ1;þ2, the orbital

TABLE I. Decomposition in the canonical-spin basis c "
�1�2�3

of the components of the 3Q LCWF in the light-cone helicity basis
cþ

�1�2�3
. The components are grouped according to the values of total orbital angular momentum ‘z.

‘z ¼ �1 ‘z ¼ 0 ‘z ¼ þ1 ‘z ¼ þ2
c "

""" c "
""# c "

"#" c "
#"" c "

##" c "
#"# c "

"## c "
###

‘z ¼ �1 cþþþþ z1z2z3 z1z2l3 z1l2z3 l1z2z3 l1l2z3 l1z2l3 z1l2l3 l1l2l3

‘z ¼ 0
cþþþ� �z1z2r3 z1z2z3 �z1l2r3 �l1z2r3 �l1l2r3 l1z2z3 z1l2z3 l1l2z3
cþþ�þ �z1r2z3 �z1r2l3 z1z2z3 �l1r2z3 l1z2z3 �l1r2l3 z1z2l3 l1z2l3
cþ�þþ �r1z2z3 �r1z2l3 �r1l2z3 z1z2z3 z1l2z3 z1z2l3 �r1l2l3 z1l2l3

‘z ¼ þ1
cþ��þ r1r2z3 r1r2l3 �r1z2z3 �z1r2z3 z1z2z3 �z1r2l3 �r1z2l3 z1z2l3
cþ�þ� r1z2r3 �r1z2z3 r1l2r3 �z1z2r3 �z1l2r3 z1z2z3 �r1l2z3 z1l2z3
cþþ�� z1r2r3 �z1r2z3 �z1z2r3 l1r2r3 �l1z2r3 �l1r2z3 z1z2z3 l1z2z3

‘z ¼ þ2 cþ��� �r1r2r3 r1r2z3 r1z2r3 z1r2r3 �z1z2r3 �z1r2z3 �r1z2z3 z1z2z3
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angular momentum being generated by the rotation

matrices Dð1=2Þ�
�i�i

.

APPENDIX C: CONNECTION TO A
QUARK-DIQUARK PICTURE

We show in this Appendix how the 3Q picture can be
connected to a quark-diquark picture. In the latter, one
considers the whole spectator system as an object with
the quantum numbers of two quarks, namely, a diquark.
One may also assume that this diquark does not contain any
internal orbital angular momentum. From a 3Q picture, this

amounts to set ~k2 ¼ ~k3 ¼ ~kD=2 andmD ¼ 2m with ~kD and
mD the light-cone momentum and mass of the diquark, and
m the mass of a valence quark.

1. Scalar diquark

The scalar diquark is obtained by coupling the two
spectator quarks so to form a system with total angular
momentum j ¼ 0. The LCWF of the scalar quark-diquark
system can be written in terms of the 3Q LCWF as follows:

c �
� ð~k; ~kDÞ ¼

1ffiffiffi
2

p
�
c �

�þ�
�
~k;
~kD
2
;
~kD
2

�
� c �

��þ
�
~k;
~kD
2
;
~kD
2

��
:

(C1)

The total orbital angular momentum of a given component
c �

� is given by the expression ‘z ¼ �� � with
�; � ¼ � 1

2 .

The corresponding LCWF in the canonical-spin basis is
defined through

c �
� ¼ X

�

c �
�D

ð1=2Þ�
�� ; (C2)

and can consistently be written as

c �
�ð~k; ~kDÞ ¼ 1ffiffiffi

2
p

�
c �

�"#

�
~k;
~kD
2
;
~kD
2

�
� c �

�#"

�
~k;
~kD
2
;
~kD
2

��
:

(C3)

The explicit decomposition of Eq. (C2) is displayed in
Table II.

Spherical symmetry in the canonical-spin basis reads

X
�0�0

½uð	;
Þ���0 ½uð	;
Þ����0c �0
�0 ¼ c �

� (C4)

and, in particular, implies

c���� ¼ ð�1Þ���c �
�; (C5a)

c "
# ¼ 0; (C5b)

in agreement with Eqs. (52), (53), and (C3).

2. Axial-vector diquark

The axial-vector diquark is obtained by coupling the two
spectator quarks so to form a system with total angular
momentum j ¼ 1. The LCWF of the axial-vector quark-
diquark system can be written in terms of the 3Q LCWF as
follows

c �
�þð~k; ~kDÞ ¼ c �

�þþ
�
~k;
~kD
2
;
~kD
2

�
;

c �
�0ð~k; ~kDÞ ¼

1ffiffiffi
2

p
�
c �

�þ�
�
~k;
~kD
2
;
~kD
2

�
þ c �

��þ
�
~k;
~kD
2
;
~kD
2

��
;

c �
��ð~k; ~kDÞ ¼ c �

���
�
~k;
~kD
2
;
~kD
2

�
: (C6)

The total orbital angular momentum of a given component
c �

��D
is given by the expression ‘z ¼ �� �� �D with

�; � ¼ � 1
2 and �D ¼ þ1; 0;�1.

The corresponding LCWF in the canonical-spin basis is
defined through

c �
��D

¼ X
��D

c �
��D

Dð1=2Þ�
�� Dð1Þ�

�D�D
; (C7)

with the rotation for the axial-vector diquark given by

Dð1Þ�
�D�D

ð~kDÞ ¼

1þcos	D
2 � k̂Rffiffi

2
p sin	D k̂2R

1�cos	D
2

k̂Lffiffi
2

p sin	D cos	D � k̂Rffiffi
2

p sin	D

k̂2L
1�cos	D

2
k̂Lffiffi
2

p sin	D
1þcos	D

2

0
BBBBB@

1
CCCCCA;

(C8)

or equivalently

TABLE II. Decomposition in the canonical-spin basis c "
� of

the components of the scalar quark-diquark LCWF in the light-
cone helicity basis cþ

� . The components are grouped according

to the values of total orbital angular momentum ‘z.

‘z ¼ 0
c "

"
‘z ¼ þ1

c "
#

‘z ¼ 0 cþþ z l

‘z ¼ þ1 cþ� �r z
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Dð1Þ�
�D�D

ð~kDÞ ¼
cos2 	D

2 � ffiffiffi
2

p
k̂R sin

	D
2 cos	D2 k̂2Rsin

2 	D
2ffiffiffi

2
p

k̂L sin
	D
2 cos	D2 cos2 	D

2 � sin2 	D
2 � ffiffiffi

2
p

k̂R sin
	D
2 cos	D2

k̂2Lsin
2 	D

2

ffiffiffi
2

p
k̂L sin

	D
2 cos	D2 cos2 	D

2

0
BBB@

1
CCCA: (C9)

Provided that 	Dð~kDÞ ¼ 	ð~kD=2Þ, we can consistently
write the axial-vector quark-diquark LCWF in the
canonical-spin basis as

c �
�*ð~k; ~kDÞ ¼ c �

�""

�
~k;
~kD
2
;
~kD
2

�
;

c �
�	ð~k; ~kDÞ ¼ 1ffiffiffi

2
p

�
c �

�"#

�
~k;
~kD
2
;
~kD
2

�
þ c �

�#"

�
~k;
~kD
2
;
~kD
2

��
;

c �
�+ð~k; ~kDÞ ¼ c �

�##

�
~k;
~kD
2
;
~kD
2

�
: (C10)

The explicit decomposition of Eq. (C7) is displayed in
Table III.

Spherical symmetry in the canonical-spin basis readsX
�0�0�0

D

½uð	;
Þ���0 ½Uð	;
Þ��D�
0
D
½uð	;
Þ����0c �0

�0�0
D
¼c �

��D
;

(C11)

where

Uð	;
Þ ¼

1þcos	
2 e�i
 � 1ffiffi

2
p sin	e�i
 1�cos	

2 e�i


1ffiffi
2

p sin	 cos	 � 1ffiffi
2

p sin	

1�cos	
2 ei
 1ffiffi

2
p sin	ei
 1þcos	

2 ei


0
BBBB@

1
CCCCA;

(C12)

and, in particular, implies

c������D
¼ ð�1Þ�þ�þ�Dc �

��D
; (C13a)

c "
"* ¼ c "

#	 ¼ c "
"+ ¼ c "

#+ ¼ 0; (C13b)

c "
#* ¼ � ffiffiffi

2
p

c "
"	; (C13c)

in agreement with Eqs. (52)–(54) and (C10).
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C. LORCÉ AND B. PASQUINI PHYSICAL REVIEW D 84, 034039 (2011)

034039-18

http://dx.doi.org/10.1103/PhysRevD.79.074001
http://dx.doi.org/10.1103/PhysRevD.79.074001
http://dx.doi.org/10.1103/PhysRevD.80.074032
http://dx.doi.org/10.1103/PhysRevD.80.074032
http://dx.doi.org/10.1103/PhysRevD.78.034002
http://dx.doi.org/10.1103/PhysRevD.78.034002
http://dx.doi.org/10.1103/PhysRevD.79.074027
http://dx.doi.org/10.1103/PhysRevD.78.034025
http://dx.doi.org/10.1103/PhysRevD.78.034025
http://dx.doi.org/10.1103/PhysRevD.79.094012
http://arXiv.org/abs/1008.0945
http://dx.doi.org/10.1007/JHEP05(2011)041
http://dx.doi.org/10.1007/JHEP05(2011)041
http://dx.doi.org/10.1103/PhysRevD.81.114013
http://dx.doi.org/10.1016/j.physletb.2010.03.049
http://dx.doi.org/10.1016/j.physletb.2010.03.049
http://dx.doi.org/10.1103/PhysRevD.78.074010
http://dx.doi.org/10.1103/PhysRevD.78.074010
http://dx.doi.org/10.1103/PhysRevD.81.074035
http://dx.doi.org/10.1103/PhysRevD.78.114024
http://dx.doi.org/10.1103/PhysRevD.83.054025
http://dx.doi.org/10.1103/PhysRevD.76.034002
http://dx.doi.org/10.1103/PhysRevD.76.034002
http://dx.doi.org/10.1103/PhysRevD.79.094028
http://dx.doi.org/10.1103/PhysRevD.64.034013
http://dx.doi.org/10.1103/PhysRevD.64.034013
http://dx.doi.org/10.1103/PhysRevD.83.074008
http://dx.doi.org/10.1103/PhysRevD.83.074008
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1016/S0550-3213(96)00648-7
http://dx.doi.org/10.1103/PhysRevD.57.5780
http://dx.doi.org/10.1016/j.physletb.2005.05.037
http://dx.doi.org/10.1016/j.physletb.2005.05.037
http://dx.doi.org/10.1016/j.physletb.2004.06.100
http://dx.doi.org/10.1016/j.physletb.2004.06.100
http://dx.doi.org/10.1103/PhysRevD.41.83
http://dx.doi.org/10.1016/S0550-3213(00)00684-2
http://dx.doi.org/10.1016/S0550-3213(00)00684-2
http://dx.doi.org/10.1016/S0550-3213(01)00183-3
http://dx.doi.org/10.1016/S0550-3213(00)00695-7
http://dx.doi.org/10.1016/S0550-3213(00)00695-7
http://dx.doi.org/10.1209/0295-5075/88/61001
http://dx.doi.org/10.1103/PhysRevD.83.094507
http://dx.doi.org/10.1088/1126-6708/2003/08/006
http://dx.doi.org/10.1088/1126-6708/2003/08/006
http://dx.doi.org/10.1088/0954-3899/17/5/001
http://dx.doi.org/10.1103/PhysRevD.74.054019
http://dx.doi.org/10.1103/PhysRevD.78.034001
http://dx.doi.org/10.1103/PhysRevD.9.1095
http://dx.doi.org/10.1103/PhysRevD.47.5161
http://dx.doi.org/10.1103/PhysRevD.47.5161
http://arXiv.org/abs/hep-ph/0307077
http://dx.doi.org/10.1103/PhysRevD.72.074009
http://dx.doi.org/10.1103/PhysRevD.72.074009
http://dx.doi.org/10.1016/S0550-3213(00)00626-X
http://dx.doi.org/10.1103/PhysRevD.80.074033
http://dx.doi.org/10.1103/PhysRevD.80.074033
http://dx.doi.org/10.1103/PhysRevC.77.015202
http://dx.doi.org/10.1103/PhysRevC.77.015202
http://dx.doi.org/10.1140/epja/i2008-10599-0
http://dx.doi.org/10.1140/epja/i2008-10599-0
http://dx.doi.org/10.1103/PhysRevC.77.035203
http://dx.doi.org/10.1103/PhysRevC.77.035203

