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Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany
(Received 4 February 2009; revised manuscript received 15 May 2009; published 24 June 2009)

We revisit the old-standing problem of the electromagnetic interaction for particles of arbitrary spin.

Based on the assumption that light-cone helicity at tree level and Q2 ¼ 0 should be conserved nontrivially

by the electromagnetic interaction, we are able to derive all the natural electromagnetic moments for a

pointlike particle of any spin. We provide here a transparent decomposition of the electromagnetic current

in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form

factors, and show their relation with the electromagnetic moments and covariant vertex functions. The

light-cone helicity conservation argument determines uniquely the values of all electromagnetic moments,

which we refer to as the ‘‘natural’’ ones. These specific values are in accordance with the standard model,

and the prediction of universal g ¼ 2 gyromagnetic factor is naturally recovered. We provide a very

simple and compact formula for these natural moments. As an application of our results, we generalize the

discussion of quark transverse charge densities to particles with arbitrary spin, giving more physical

support to the light-cone helicity conservation argument.
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I. INTRODUCTION

High-energy physics involves high-spin particles for
many reasons. Among those, let us mention that

(i) experimentally, more than 50 baryons with spins
ranging from 3=2 to 15=2 and about the same num-
ber of mesons with spins ranging from 2 to 6 have
been observed [1];

(ii) these resonances enter, e.g. as intermediate states in
the description of the photo- and electro-pion pro-
duction off protons, which are a main focus of ex-
periments at electron facilities such as Jefferson Lab,
ELSA, MAMI [2], or are produced at eþe� collider
facilities such as DA�NE, BELLE, BABAR, and
BES;

(iii) in proposals for physics beyond the standard model
(SM) based on supersymmetry, which will be ex-
plored soon by the LHC, elementary particles with
high spin (e.g. the gravitino) are required.

For further motivations to study high-spin particles, see
e.g. [3] and references therein.

Formalisms to study high-spin particles have been pro-
posed a long time ago. Dirac, Fierz, and Pauli were the first
to develop a general theory of particles with arbitrary spin
[4], but this formalism is quite complicated. Later, Rarita
and Schwinger (RS) proposed a more convenient formal-
ism for arbitrary half-integer spin particles [5], which is
still the most often used to date in the literature. In the case
of integer spin particles, the Klein-Gordon (KG) equation
with subsidiary conditions is more suited. Actually, it has
been shown by Moldauer and Case that both RS and KG
approaches can be derived from the Dirac, Fierz, and Pauli

formalism [6]. There exists another formalism due to
Bargmann and Wigner [7] from which one can also derive
the RS and KG equations together with their subsidiary
conditions [8].
Theories with spin>1 are however plagued by arbitrary

parameters in both their Lagrangian and propagator [6,9].
This is due to the fact that the corresponding fields contain
extra degrees of freedom related to lower spins. To elimi-
nate these extra degrees of freedom, one imposes con-
straints (the subsidiary conditions in RS and KG
formalisms). Unfortunately, interactions usually break
these constraints, generating many problems. Among the
various difficulties [10], let us mention an important result
of Velo and Zwanziger [11] that showed that a massive
c-number spin-3=2 field minimally coupled to an external
electromagnetic field will lead to the existence of tachyons,
and therefore to noncausality. The causality issue has been
discussed, e.g. in [3,12].
The gyromagnetic factor of elementary particles has also

a long history. Based on the minimal substitution p� !
�� � p� � eA�, it was argued that the gyromagnetic
factor at tree level depends on the spin j of the particle
[6,13] as

gj ¼ 1

j
; (1)

i.e. the magnetic moment depends only on the mass and
electric charge of the particle. This result agrees with the
case j ¼ 1=2 but seems to disagree with higher-spin cases.
Many reasons suggest that the gyromagnetic factor at tree
level is in fact independent of the spin [14]

gj ¼ 2; (2)*lorce@kph.uni-mainz.de
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i.e. the magnetic moment is directly proportional to the
spin. Among the various reasons, let us mention that

(i) the only higher-spin and charged elementary particle
observed is theW boson. At tree level, it has gW ¼ 2
[15] and not gW ¼ 1 as suggested by (1) for spin-1
particles;

(ii) the relativistic equation of motion of the polarization
four-vector S� in a homogeneous external electro-

magnetic field is simplified for gj ¼ 2 [16];

(iii) in the supersymmetric sum rules framework, when
all magnetic-moment matrix elements are diagonal,
the gyromagnetic factor of arbitrary-spin supersym-
metric particles must be equal to 2 [17];

(iv) string theory also suggests that gj ¼ 2 [18];
(v) by requiring that forward Compton scattering ampli-

tudes of physical theories possess a good high-
energy behavior, Weinberg showed [19] that this
implies gj � 2 for any nonstrongly interacting

spin-j particle, small deviations being due to loop
corrections.

The way to reconcile Lagrangian theories with gj ¼ 2 is to

allow nonminimal coupling [12,20]. Indeed, using the
minimal substitution is ambiguous for spins j > 1=2 since
one has ½��;��� ¼ �ieF��, while ½p�; p�� ¼ 0. Note
that a nonminimal coupling F��Wþ

�W
�
� is already present

in the standard model [21].
In order to completely characterize the electromagnetic

interaction of an elementary particle with spin j > 1=2, the
electric charge and the magnetic dipole moment are not
sufficient. In general, a spin-j particle has 2jþ 1 electro-
magnetic multipoles if Lorentz, parity and time-reversal
symmetries are respected. The knowledge of these ‘‘natu-
ral’’ electromagnetic moments is obviously very important
since they

(i) constrain the construction of a consistent higher-spin
electromagnetic interaction theory;

(ii) allow one to refute the elementary nature of a parti-
cle when the observed electromagnetic moments are
significantly different from the expected value (loop
corrections included), e.g. proton anomalous mag-
netic moment �p � 1:79 � 0;

(iii) allow one to determine the actual shape of composite
particles.

In this work, we present our results concerning the
electromagnetic interaction for particles with arbitrary
spin. Based on the simple assumption that QED conserves
nontrivially the light-cone helicity of any elementary par-
ticle at tree level and real photon point Q2 ¼ 0, we were
able to derive all natural electromagnetic moments for
particles of any spin.

The outline of this paper is as follows: In Sec. II, we give
the general form of the electromagnetic current in terms of
covariant vertex functions. An explicit multipole decom-
position is then performed in Sec. III together with a
transparent relation to electromagnetic moments. In

Sec. IV, we use the Breit frame to obtain a general relation
between multipole form factors and covariant vertex func-
tions. In Sec. V, we study the light-cone helicity amplitudes
for the electromagnetic vertex of a particle of any spin.
Using the assumption that light-cone helicity is conserved
nontrivially at tree level and at the real photon point (Q2 ¼
0) by the electromagnetic interaction for elementary parti-
cles, we obtain the natural values of covariant vertex
functions, multipole form factors and therefore electro-
magnetic moments. As an application of our results, we
generalize in Sec. VI to arbitrary-spin particles the study of
quark transverse charge densities, recently discussed in the
literature for spin 1=2 [22], spin 1 [23], and spin 3=2 [24].
Finally, we summarize our conclusions. A number of
technical derivations are given in three appendices.

II. ELECTROMAGNETIC CURRENT FOR
ARBITRARY SPIN

The interaction of a particle with the electromagnetic
field can be described in terms of matrix elements, also
known as on-shell vertex functions, of the following form:

J� � hp0; �0jJ�EMð0Þjp; �i; (3)

where p (resp. p0) is the initial (resp. final) four-
momentum of the particle, and jp; �i is the spin-j single-
particle state with four-momentum p and polarization �.
For further convenience, we define the scalar quantity
Q2 � �q2 as minus the square of the four-momentum
transfer q ¼ p0 � p due to the photon.
If the particle respects parity and time-reversal symme-

tries, its matrix elements can in principle be conveniently
written in terms of 2jþ 1 independent covariant vertex
functions FkðQ2Þ [25], also often called form factors. Note
however that the decomposition is not unique. One can
choose different sets of covariant vertex functions. All the
sets are equivalent and are related through on-shell rela-
tions.1 In this sense, matrix elements are more fundamental

1To illustrate this point, consider the case of a spin-1=2 particle
where the current is usually written in the form

J�ð1=2Þ ¼ �uðp0; �0Þ
�
��F1ðQ2Þ þ i���q�

2M
F2ðQ2Þ

�
uðp; �Þ:

It is however also legitimate to write this current as

J
�
ð1=2Þ ¼

1

2M
�uðp0; �0Þ½P�G1ðQ2Þ þ i���q�G2ðQ2Þ�uðp; �Þ;

where P ¼ p0 þ p is twice the averaged four-momentum of the
particle. Clearly G1 ¼ F1 and G2 ¼ F1 þ F2 because of
Gordon’s identity

�uðp0; �0Þ��uðp; �Þ ¼ 1

2M
�uðp0; �0Þ½P� þ i���q��uðp; �Þ:

Nevertheless, the set fF1; F2g is the preferred one because it is in
direct connection with Dirac theory, where the current of an
elementary spin-1=2 particle is given by uðp0; �0Þ��uðp; �Þ.
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than covariant vertex functions. Some decompositions
have been proposed long ago. Unfortunately, they are
usually either not applicable to any spin or very obscure
and thus not suited for direct use. We therefore propose
here a complete and transparent decomposition of any on-
shell electromagnetic current.

Since any spin representation can be constructed from
spin-1=2 and spin-1 representations, it is rather straightfor-
ward to obtain a decomposition of matrix elements satisfy-
ing Lorentz covariance, explicit gauge invariance, together
with parity and time-reversal symmetries. For a particle
with spin j and mass M we propose to use

J�ðjÞ ¼ ð�1Þj"��0
1
����0

j
ðp0;�0Þ

�
P�

X
ðk;jÞ

F2kþ1ðQ2Þ

þðg��jq�
0
j �g�

0
j�q�jÞ X

ðk;j�1Þ
F2kþ2ðQ2Þ

�
"�1����j

ðp;�Þ;

(4)

when j is integer and

J�ðjÞ ¼ ð�1Þn �u�0
1
����0

n
ðp0; �0ÞX

ðk;nÞ

�
��F2kþ1ðQ2Þ

þ i���q�
2M

F2kþ2ðQ2Þ
�
u�1����n

ðp; �Þ; (5)

when j ¼ nþ 1=2 is half integer. An explicit expression
for the standard polarization tensors "�1����j

and u�1����n
is

given in Appendix A and the strange sum stands actually
for

X
ðk;jÞ

� Xj
k¼0

�Yk
i¼1

�
� q�

0
iq�i

2M2

� Yj
i¼kþ1

g�
0
i�i

�
: (6)

The decompositions (4) and (5) coincide with the standard
spin-1=2 and spin-1 [26] currents. For spin-3=2 particles,
we get

J�ð3=2Þ ¼ � �u�0 ðp0; �0Þ
�
g�

0�
�
��F1ðQ2Þ þ i���q�

2M
F2ðQ2Þ

�

� q�
0
q�

2M2

�
��F3ðQ2Þ

þ i���q�
2M

F4ðQ2Þ
��
u�ðp; �Þ;

which is equivalent to the standard decompositions [27]
provided that

F1ðQ2Þ ¼ F�
1ðQ2Þ ¼ a1ðq2Þ þ a2ðq2Þ;

F2ðQ2Þ ¼ F�
2ðQ2Þ ¼ �a2ðq2Þ;

F3ðQ2Þ ¼ �1
2F

�
3ðQ2Þ ¼ �1

2½c1ðq2Þ þ c2ðq2Þ�;
F4ðQ2Þ ¼ �1

2F
�
4ðQ2Þ ¼ 1

2c2ðq2Þ:

Our decompositions (4) and (5) have the advantage of
avoiding spurious (� 1=2) factors in subsequent results.

III. MULTIPOLE FORM FACTORS

Our aim is to obtain the natural values for the electro-
magnetic moments of a particle of arbitrary spin. These
moments are related to the so-called multipole form factors
GElðQ2Þ and GMlðQ2Þ at real photon point Q2 ¼ 0, which
are obtained by means of a standard multipole decompo-
sition of a four-current j�. In the literature clear definitions
are often absent and multipoles differ by a given factor
from one paper to another. For this reason, and also for
further convenience, we propose here an explicit decom-
position with clear definitions.
The zero component � ¼ 0 of a four-current j� corre-

sponds to the charge density, while the spatial components
� ¼ i are related to some kind of ‘‘magnetic density’’ [28].
Let us refer, for the moment, to these densities by means of
the generic density

	ð ~qÞ ¼
Z

d3rei ~q� ~r	ð~rÞ: (7)

The multipole decomposition of this density can be written
in the following form (Q � j ~qj)

	ð ~qÞ ¼ Xþ1

l¼0

Xl
m¼�l

QlFlmðQ2ÞYlmð�qÞ; (8)

where Ylmð�qÞ are the usual spherical harmonics,�q is the

solid angle giving the direction of ~q. Thanks to the identity
[29]

ei ~q�~r ¼ 4�
Xþ1

l¼0

Xl
m¼�l

iljlðQrÞYlmð�qÞY�
lmð�rÞ;

where jlðxÞ are the spherical Bessel functions, and using
orthonormal relations among the spherical harmonics, one
gets

FlmðQ2Þ ¼ 4�il

Ql

Z
d3rjlðQrÞY�

lmð�rÞ	ð~rÞ:

Remembering that we are interested in the electromagnetic
properties of particles, one can naturally consider that the
electric and magnetic densities exhibit an azimuthal (or
cylindrical) symmetry with respect to the quantization
axis. Let us identify the spin quantization axis with the z
axis. Because of this symmetry, the multipole decomposi-
tion (8) reduces to m ¼ 0 components only

	ð ~qÞ ¼ Xþ1

l¼0

QlFl0ðQ2ÞYl0ð�qÞ: (9)
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Cartesian moments Ml are defined by

Ml �
Z

d3rClð ~rÞ	ð ~rÞ;

Clð ~rÞ ¼ l!rl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

2lþ 1

s
Yl0ð�rÞ ¼ l!rlPl0ðcos
rÞ:

(10)

These moments are therefore associated with the structures
1; z; ð3z2 � r2Þ; ð15z3 � 9r2zÞ; � � � They are clearly just
proportional to Fl0ð0Þ and the proportionality factor can
be obtained using the expansion of spherical Bessel func-
tions jlðQrÞ for small Q

jlðQrÞ ¼ ðQrÞl
ð2lþ 1Þ!!þOðQlþ2Þ;

leading then to

Ml ¼ ð�iÞll!ð2l� 1Þ!!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s
Fl0ð0Þ:

The multipole form factors used in the literature are iden-
tified toFl0ðQ2Þ up to factors depending on l. Note also that
a spin-j particle respecting parity symmetry has only even
electric multipoles and odd magnetic multipoles [25].
Moreover, the total number of multipole form factors is
equal to the total number of covariant vertex functions,
namely, 2jþ 1.

A. Electric multipoles

Electric multipoles2 are obtained from the charge den-
sity 	ð~rÞ :¼ j0ð ~rÞ. We define the electric multipole form
factors GElðQ2Þ as follows:

GElðQ2Þ � ð�iÞl ð2l� 1Þ!!
l!

ð2MÞl
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s
Fl0ðQ2Þ; (11)

where e is minus the electric charge of an electron. The lth
electric moment Ql [28] in (natural) unit of e=Ml is there-
fore given by

Ql �
Z

d3rClð ~rÞj0ð ~rÞ ¼ ðl!Þ2
2l

GElð0Þ: (12)

The expansion (9) of the charge density of a spin-j
particle in terms of multipole form factors (11) takes the
form

j0ð ~qÞ ¼ e
X2j
l¼0
l even

il�l=2
1

~Cl�1
2l�1

GElðQ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

2lþ 1

s
Yl0ð�qÞ; (13)

where � � Q2

4M2 and with the definition3

~C k
n �

� n!!
k!!ðn�kÞ!! ; n � k � �1

0; otherwise
: (14)

More explicitly, this amounts to the following expansion:

j0ð ~qÞ ¼ e

�
GE0ðQ2Þ ffiffiffiffiffiffiffi

4�
p

Y00ð�qÞ � 2

3
�GE2ðQ2Þ

	
ffiffiffiffiffiffiffi
4�

5

s
Y20ð�qÞ þ � � �

�
:

B. Magnetic multipoles

Magnetic multipoles are obtained from the magnetic

density 	ð ~rÞ :¼ ~r � ð ~jð~rÞ 	 ~rÞ. We define the magnetic
multipole form factors GMlðQ2Þ as follows:

GMlðQ2Þ � ð�iÞl ð2l� 1Þ!!
ðlþ 1Þ!

ð2MÞl
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s
Fl0ðQ2Þ: (15)

The lth magnetic moment �l [28] in (natural) unit of
e=2Ml is therefore given by

�l �
Z

d3rClð~rÞ
~r � ð ~jð ~rÞ 	 ~rÞ

lþ 1
¼ ðl!Þ2

2l�1
GMlð0Þ: (16)

The expansion (9) of the magnetic density of a spin-j
particle in terms of the multipole form factors (15) takes
the form

~r � ð ~jð ~qÞ 	 ~qÞ ¼ e
X2j
l¼0
l odd

il�l=2
ðlþ 1Þ
~Cl�1
2l�1

GMlðQ2Þ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

2lþ 1

s
Yl0ð�qÞ; (17)

i.e. more explicitly

~r � ð ~jð ~qÞ 	 ~qÞ ¼ e2i
ffiffiffi
�

p �
GM1ðQ2Þ

ffiffiffiffiffiffiffi
4�

3

s
Y10ð�qÞ

� 4

5
�GM3ðQ2Þ

ffiffiffiffiffiffiffi
4�

7

s
Y30ð�qÞ þ � � �

�
:

As a closing remark for this section, we would like to
emphasize that only GE0ð0Þ, GM1ð0Þ, and GE2ð0Þ can di-
rectly be interpreted as electromagnetic moments. For l >
2, the factor between (Cartesian) electromagnetic moments
and multipole form factors at Q2 ¼ 0 differs from unity, as
one can see from Eqs. (12) and (16).

IV. BREIT FRAME

The set of covariant vertex functions fFkðQ2Þg and the
set of multipole form factors fGE;MlðQ2Þg are not indepen-
dent. Following the common usage, they can be connected
in the so-called Breit frame by identifying the classical
electromagnetic current j� of Sec. III with the quantum-

2If we follow more rigorously the literature terminology, they
should be called Coulomb multipoles.

3We remind that by definition ð�1Þ!! ¼ 1.
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mechanical one J� of Sec. II

j�ð ~qÞ � e

2M
hp0; jjJ�EMð0Þjp; jijBreit ¼

e

2M
J�B : (18)

The derivation of this connection is straightforward but a
bit technical, so details have been relegated to Appendix B.

A. Bosonic case

For an integer spin particle, we found that the multipole
form factors are related to our covariant vertex functions at
any Q2 according to (see Appendix B 2):

Xj
m¼t

ð�1Þmþt �
m�tðCt

mÞ2
~C2mþ2t�1
4m�1

GE2mðQ2Þ

¼ Xt
k¼0

ð1þ �Þkþð1=2ÞCj�t
j�k

	
�
F2kþ1ðQ2Þ � 1� �k;0

1þ �
F2kðQ2Þ

�
;

Xj�1

m¼t

ð�1Þmþtðmþ 1Þ �
m�tðCt

mÞ2
~C2mþ2tþ1
4mþ1

GM2mþ1ðQ2Þ

¼ ðtþ 1ÞXt
k¼0

ð1þ �Þkþð1=2ÞCj�t�1
j�k�1F2kþ2ðQ2Þ; (19)

where

Ck
n ¼ n

k

� �

is the standard binomial function. Let us, for example,
consider the case j ¼ 1

GE0ðQ2Þ � 2
3�GE2ðQ2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
p

F1ðQ2Þ;
GM1ðQ2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
p

F2ðQ2Þ;
GE2ðQ2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
p ½F1ðQ2Þ � F2ðQ2Þ
þ ð1þ �ÞF3ðQ2Þ�;

which coincides with the well-known expression for the
electromagnetic interaction of vector particles [26], pro-
vided that

GE0ðQ2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
GCðq2Þ;

GM1ðQ2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
GMðq2Þ;

GE2ðQ2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
GQðq2Þ:

The factor
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
is present for any integer spin. One is

free to define new multipole form factors without this
inelegant factor, at the cost of having different multipole
decompositions for fermions and bosons. Nevertheless, at
Q2 ¼ 0 there is no difference between both definitions.

At real photon point Q2 ¼ 0, the connections (19) re-
duce to

GE2mð0Þ ¼
Xm
k¼0

Cj�m
j�k ½F2kþ1ð0Þ � ð1� �k;0ÞF2kð0Þ�;

GM2mþ1ð0Þ ¼
Xm
k¼0

Cj�m�1
j�k�1 F2kþ2ð0Þ; (20)

which can be inverted

F2kþ1ð0Þ ¼
Xk
l¼0

Cj�k
j�l ð�1Þk�l½GE2lð0Þ þ ð1� �l;0Þ

	GM2l�1ð0Þ�;

F2kþ2ð0Þ ¼
Xk
l¼0

Cj�k�l
j�l�1ð�1Þk�lGM2lþ1ð0Þ; (21)

thanks to the following identity

Xk
l¼m

Cj�k
j�l C

j�l
j�mð�1Þk�l ¼ �k;m; 8 j � k: (22)

B. Fermionic case

We proceed with half-integer spin particles. In this case,
we found that the multipole form factors are related to our
covariant vertex functions at any Q2 according to (see
Appendix B 3)

Xn
m¼t

ð�1Þmþt �
m�tðCt

mÞ2
~C2mþ2t�1
4m�1

GE2tðQ2Þ

¼ Xt
k¼0

ð1þ �ÞkCn�t
n�k½F2kþ1ðQ2Þ � �F2kþ2ðQ2Þ�;

Xn
m¼t

ð�1Þmþtðmþ 1Þ �
m�tðCt

mÞ2
~C2mþ2tþ1
4mþ1

GM2tþ1ðQ2Þ

¼ ðtþ 1ÞXt
k¼0

ð1þ �ÞkCn�t
n�k½F2kþ1ðQ2Þ þ F2kþ2ðQ2Þ�:

(23)

Let us consider two examples. For j ¼ 1=2, we get

GE0ðQ2Þ ¼ F1ðQ2Þ � �F2ðQ2Þ;
GM1ðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ;

which coincides with the well-known expression for the
electromagnetic interaction of spin-1=2 particles. The mul-
tipole form factors GE0ðQ2Þ and GM1ðQ2Þ are nothing else
than the Sachs electric and magnetic form factors GEðQ2Þ
and GMðQ2Þ. For j ¼ 3=2, we get
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GE0ðQ2Þ � 2

3
�GE2ðQ2Þ ¼ F1ðQ2Þ � �F2ðQ2Þ;

GM1ðQ2Þ � 4

5
�GM3ðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ;
GE2ðQ2Þ ¼ F1ðQ2Þ � �F2ðQ2Þ

þ ð1þ �Þ½F3ðQ2Þ � �F4ðQ2Þ�;
GM3ðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ

þ ð1þ �Þ½F3ðQ2Þ þ F4ðQ2Þ�;
which also coincides with the well-known expression for
the electromagnetic interaction of spin-3=2 particles [27],
excepted that the spurious (� 1=2) factors are absent.
Clearly, our decomposition of the current in terms of
covariant vertex function is more economical. We would
like also to remind that GM3ð0Þ does not correspond to the
value of the (Cartesian) magnetic octupole, but represents
one-ninth of its value.

At real photon point Q2 ¼ 0, the connections (23) re-
duce to

GE2mð0Þ ¼
Xm
k¼0

Cn�m
n�k F2kþ1ð0Þ;

GM2mþ1ð0Þ ¼
Xm
k¼0

Cn�m
n�k ½F2kþ1ð0Þ þ F2kþ2ð0Þ�;

(24)

which can also be inverted thanks to (22)

F2kþ1ð0Þ ¼
Xk
l¼0

Cn�k
n�l ð�1Þk�lGE2lð0Þ;

F2kþ2ð0Þ ¼
Xk
l¼0

Cn�k
n�l ð�1Þk�l½GM2lþ1ð0Þ �GE2lð0Þ�:

(25)

V. LIGHT-CONE HELICITYAMPLITUDES AND
NATURAL MOMENTS

We discuss in this section the light-cone helicity ampli-
tudes of the þ component of the current JþEM ¼ J0EM þ
J3EM. We will work in the usual Drell-Yan-West (DYW)
frame qþ ¼ 0 [30], and one can furthermore choose a
frame where the transverse momenta of the initial and final
particles are opposite. We will write such light-cone helic-
ity amplitude in the form

A�0;�ðQ2Þ � eið�0��Þq

2pþ

�
pþ;

~q?
2
; �0

								JþEMð0Þ
								pþ;� ~q?

2
; �



;

(26)

where Q2 � �q2 ¼ ~q2?, with ~q? ¼ Qðcosqêx þ
sinqêyÞ, and �, �0 are the light-cone helicities of the

initial and final particles, respectively.
A spin-j particle has 2jþ 1 possible polarization states.

This means that there are in principle ð2jþ 1Þ2 helicity

amplitudes. However, there are only 2jþ 1 covariant ver-
tex functions. This means that out of the ð2jþ 1Þ2 helicity
amplitudes, only 2jþ 1 are in fact independent. One needs
therefore 2jð2jþ 1Þ constraints. These constraints arise
due to, on the one hand, discrete space-time symmetries,
and on the other hand, angular momentum conservation.

A. Light-cone discrete symmetries

Obviously, parity and time-reversal discrete symmetries
are not compatible with the DYW frame qþ ¼ 0. However,
relevant light-cone parity and time-reversal operators can
be defined by compounding the usual parity and time-
reversal operators with � rotation about the y axis, choos-
ing the x axis so that all momenta lie in the x-z plane [31].
This results in the parity relation for light-cone helicity
amplitudes and identical particles, given by

A��0;��ðQ2Þ ¼ ð�1Þ�0��A�0;�ðQ2Þ; (27)

while the time-reversal relation reads

A�;�0 ðQ2Þ ¼ ð�1Þ�0��A�0;�ðQ2Þ: (28)

From these relations, one easily deduces that the number of
pertinent amplitudes is reduced to (jþ 1=2) (jþ 3=2) and
ðjþ 1Þ2 for half-integer and integer spin, respectively.

B. Light-cone angular conditions

We know that at the end there should only be 2jþ 1
independent light-cone amplitudes. The remaining con-
straints to be imposed are provided by considerations of
angular momentum conservation. Such relations are
known in the literature as angular conditions. The link
between these relations and angular momentum conserva-
tion can be made transparent in the Breit frame. This has
been discussed in [32,33]. The number of angular condi-
tions must obviously be j2 � 1=4 for half-integer spin, and
j2 for integer spin.
Since we will work with explicit expressions for helicity

amplitudes in terms of covariant vertex functions, we
automatically satisfy angular momentum conservation.
There are therefore two ways of obtaining the angular
conditions. One is to directly impose angular momentum
conservation at the level of amplitudes, referring to a
specific frame where this condition is simple (Breit frame)
and then performing a transformation to the light-cone
frame. The other possibility is to directly work with the
explicit decomposition in terms of covariant vertex func-
tions. Light-cone helicity amplitudes then appear as linear
combinations of these covariant vertex functions, and only
a subset of them constitutes linearly independent combi-
nations. It turns out that we can choose, for example, the set
fAj;j�mjm ¼ 0; � � � ; 2jg as the independent amplitudes.

The explicit expression we obtained for these amplitudes
in terms of covariant vertex functions is
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Aj;j�mðQ2Þ ¼ ð4�Þm=2ffiffiffiffiffiffiffi
Cm
2j

q X½j�
k¼0

Xminfk;m=2g

t¼0

ð�1Þt
22t

Ct
k�

k�t

	
�
Cm�2t
½j��t F2kþ1ðQ2Þ

� 1� �k;j

2
Cm�2t�1
½j�ð1=2Þ��tF2kþ2ðQ2Þ

�
; (29)

where ½x� means the largest integer i such that i 
 x.
Details of the derivation can be found in Appendix C.
Any other light-cone helicity amplitude can be written as
a linear combination of the elements of this set, arising
either from a discrete light-cone symmetry relation (only
one element of the set of independent amplitudes is
needed) or from an angular condition (many elements of
the set of independent amplitudes are needed).

C. Natural electromagnetic moments

Since we are interested in electromagnetic moments, let

us consider the limitQ2 ! 0. Because of the factor �m=2 in
(29), a light-cone amplitude involving m units of helicity
flip behaves at least as Qm in this limit and so the only
nonvanishing amplitude is

Aj;jð0Þ ¼ F1ð0Þ � Z; (30)

where Z stands for the particle charge in units of e. In other
words, the helicity-conserving amplitude at Q2 ¼ 0 just
gives the electric charge of the particle. We define new
light-cone helicity amplitudes where this trivial Q2 depen-
dence is removed

Gj;j�mðQ2Þ � Q�mAj;j�mðQ2Þ: (31)

At Q2 ¼ 0, these amplitudes simply read

Gj;j�mð0Þ ¼ 1

Mm
ffiffiffiffiffiffiffi
Cm
2j

q Xm
k¼0

ð�1Þ½ððkþ1Þ=2Þ�

2k
Cm�k
½j�k=2�Fkþ1ð0Þ:

(32)

Since the highest possible covariant vertex function in-
volved in Gj;j�mð0Þ is Fmþ1ð0Þ, these amplitudes are nec-

essarily independent, which in turn implies that the
Aj;j�mðQ2Þ are also independent. Moreover, thanks to the

relations (C4)–(C7) of Appendix C, one can see that we
have in fact

Gj�k;j�k�mð0Þ ¼ Gj;j�mð0Þ; 8 k 2 ½0; 2j�m�: (33)

In order to derive the natural electromagnetic moments
of any particle, we need an assumption concerning the
electromagnetic interaction. We propose to assume that,
at tree level and Q2 ¼ 0, the light-cone helicity of any
elementary particle is nontrivially conserved. In other
words, we assume that

Gj;j�mð0Þ ¼ �m;0Z: (34)

Any violation of this condition will be due to internal
structure. The elementary constituents of a composite par-
ticle will naturally conserve their helicity, but they are
allowed to jump from one orbital to another, leading thus
to a nonconservation of the composite particle’s helicity.
Using (32) and the following identity

Xm
k¼0

ð�1ÞkCm�k
½j�k=2�C

k
½jþðk�1Þ=2� ¼ �m;0; (35)

the condition (34) imposes specific values to the covariant
vertex functions

Fkþ1ð0Þ ¼ ð�1Þ½k=2�2kCk
½jþðk�1Þ=2�Z;

which are not of great interest since they depend on the
chosen decomposition of the current in terms of covariant
vertex functions. Nevertheless, using finally (20) and (24)
allows us to obtain the natural values of multipole form
factors and (Cartesian) electromagnetic moments

GElð0Þ þ iGMlð0Þ ¼ ilCl
2jZ;

Qlð0Þ þ i

2
�lð0Þ ¼ il

ðl!Þ2
2l

Cl
2jZ;

(36)

which have a direct physical meaning. This particularly
simple and elegant formula constitutes the master result of
this paper. It is quite surprising to see that the natural values
of the multipole form factors turned out to be just given, up
to a sign, by a binomial function. These values depend only
on the spin j of the particle, the order l of the multipole,
and are proportional to the particle electric charge Z. Our
result also shows explicitly that the highest nonvanishing
moment is of order l ¼ 2j.
Let us develop the expression (36) for a particle with

unit electric charge Z ¼ þ1

Q0 ¼ GE0ð0Þ ¼ 1;

�1 ¼ GM1
ð0Þ ¼ 2j;

Q2 ¼ GE2ð0Þ ¼ �jð2j� 1Þ;
�3 ¼ 9GM3ð0Þ ¼ �3jð2j� 1Þð2j� 2Þ;

..

.

From the second line, one can see that our assumption
about helicity conservation agrees with a universal gyro-
magnetic factor g ¼ 2 for any elementary particle [14–19].
Our derivation of this universal factor is interesting in the
sense that it explains naturally why g ¼ 2 and not any
other number. The value 2 has the same origin as the fact
that spins can be half integer, i.e. the spin group SUð2Þ
covers twice the group of rotations in 3-dimensional
Euclidean space SOð3Þ. Note also that the general form
of the quadrupole (third line) is also in accordance with a
good high-energy behavior [34].
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The standard model (SM) contains only elementary
particles up to spin 1. It requires that at tree level, the
elementary weak bosons W and Z have GM1ð0Þ ¼ 2 and
GE2ð0Þ ¼ �1, in order to satisfy the Gerasimov-Drell-
Hearn sum rule to lowest order in perturbation theory
[35]. The only known consistent theory for spin-3=2 par-
ticles is the extended supergravity [36]. The gravitino is
described as a spin-3=2 particle, which couples consis-
tently to electromagnetism, in the framework of N ¼ 2
supergravity. One can therefore consider that the multi-
poles arising from this theory are the natural ones, namely,
GE0ð0Þ ¼ 1, GM1ð0Þ ¼ 3, GE2ð0Þ ¼ �3, and GM3ð0Þ ¼
�1 [24]. In Table I, we give the natural values of multi-
poles we obtain for a particle with unit electric charge Z ¼
þ1, up to spin j ¼ 4. As one can see, we are in complete
agreement with both SM and supergravity. The table ob-
tained is just a (pseudo) Pascal triangle because of the
binomial function.

The same suggestion as (36) has been obtained in a
complementary way by the authors of Ref. [37], which
derived model-independent, nonperturbative supersym-
metric sum rules for the electromagnetic moments of any
theory with N ¼ 1 supersymmetry. They find that in any
irreducible N ¼ 1 supermultiplet, the diagonal matrix
elements of the lth moments are completely fixed in terms
of their off-diagonal matrix elements and the diagonal (l�
1)th moments. Setting the off-diagonal matrix elements to
zero, any given moment has the same structure for all
members of the supermultiplet. This specific case is then
considered as leading to the ‘‘preferred’’ value of the
electromagnetic moments

T ðlÞðe;mÞ
j ¼ � 1

M
T ðl�1Þðm;eÞ

j ; (37)

where the T ðlÞðe;mÞ
j are the generalization4 to higher multi-

poles of the gyromagnetic factor T ð1ÞðmÞ
j � gj

Ze
2M . One can

easily see that the value of T ðlÞðe;mÞ
j is at the end uniquely

fixed by the electric charge T ð0ÞðeÞ
j � Ze. The expression

for the lth moment MðlÞðe;mÞ
j is given in absolute value by

MðlÞðe;mÞ
j ¼ 2jð2j� 1Þ � � � ð2j� lþ 1Þ

Cl
2l

T ðlÞðe;mÞ
j : (38)

To see actually that (36) and (38) do coincide, one has to
remember that our moments are given in natural units and
to take into account that our definition of multipoles has an
additional factor of ð2l� 1Þ!! compared to [37].
Before closing this section, we would like to comment

on a previous study concerning light-cone helicity conser-
vation [32]. The conclusion was that one cannot satisfy at
the same time both angular momentum conservation and
light-cone helicity conservation. This result is not in con-
tradiction with the present study. In [32], the author im-
poses helicity conservation for any Q2

A�0;�ðQ2Þ / ��0;�: (39)

This assumption is simply different from ours (34). Up to
spin 1, the conclusions are the same. The discrepancies
appear when we consider spins higher than 1. This can be
easily understood as follows. Let us consider the light-cone
helicity-flip amplitudes (29) for spin 1=2

Að1=2Þ;�ð1=2ÞðQ2Þ ¼ � ffiffiffi
�

p
F2ðQ2Þ;

and spin 1

A1;0ðQ2Þ ¼ ffiffiffiffiffiffi
2�

p �
F1ðQ2Þ � 1

2
F2ðQ2Þ þ �F3ðQ3Þ

�
;

A1;�1ðQ2Þ ¼ ��F3ðQ2Þ:
All the other helicity-flip amplitudes are related to these
ones by discrete space-time symmetries (27) and (28). At
Q2 ¼ 0, both assumptions (34) and (39) about helicity
conservation lead to the same result, namely, F2ð0Þ ¼ 0
for spin 1=2, and F2ð0Þ ¼ 2F1ð0Þ and F3ð0Þ ¼ 0 for spin 1.

TABLE I. The natural multipoles of a spin-j particle with electric charge Z ¼ þ1 are
organized according to a pseudo Pascal triangle, when expressed in terms of natural units of
e=Ml and e=2Ml for GElð0Þ and GMlð0Þ, respectively.
j GE0ð0Þ GM1ð0Þ GE2ð0Þ GM3ð0Þ GE4ð0Þ GM5ð0Þ GE6ð0Þ GM7ð0Þ GE8ð0Þ
0 1 0 0 0 0 0 0 0 0

1=2 1 1 0 0 0 0 0 0 0

1 1 2 �1 0 0 0 0 0 0

3=2 1 3 �3 �1 0 0 0 0 0

2 1 4 �6 �4 1 0 0 0 0

5=2 1 5 �10 �10 5 1 0 0 0

3 1 6 �15 �20 15 6 �1 0 0

7=2 1 7 �21 �35 35 21 �7 �1 0

4 1 8 �28 �56 70 56 �28 �8 1

4Rotational invariance allows one to characterize completely
each lth moment by means of a single quantity. This quantity

T ðlÞðe;mÞ
j is essentially a reduced matrix element according to the

Wigner-Eckart theorem.
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Our assumption (34) is less restrictive since only the value
atQ2 ¼ 0 is fixed. The other one (39) imposes the stronger
condition F2ðQ2Þ ¼ 2F1ðQ2Þ. Now, for spin 3=2, let us
consider the light-cone helicity-flip amplitudes (29)

Að3=2Þ;ð1=2ÞðQ2Þ ¼ 2
ffiffiffi
�

pffiffiffi
3

p
�
F1ðQ2Þ � 1

2
F2ðQ2Þ þ �F3ðQ3Þ

� �

2
F4ðQ2Þ

�
;

Að3=2Þ;�ð1=2ÞðQ2Þ ¼ � 2�ffiffiffi
3

p
�
F2ðQ2Þ þ 1

2
F3ðQ3Þ þ �F4ðQ2Þ

�
;

Að3=2Þ;�ð3=2ÞðQ2Þ ¼ �3=2F4ðQ3Þ;
and the nonindependent one [24]

Að1=2Þ;�ð1=2ÞðQ2Þ ¼
ffiffiffi
�

p
3

½4F1ðQ2Þ � 2ð1� 2�ÞF2ðQ2Þ
þ 4�F3ðQ3Þ � �ð1� 4�ÞF4ðQ2Þ�:

Here also, all the other helicity-flip amplitudes are related
to these ones by discrete space-time symmetries (27) and
(28). This set of amplitudes with the requirement of helic-
ity conservation for any Q2 only accepts as a solution the
trivial case FkðQ2Þ ¼ 0 for all k. Equivalently, one can
obtain the same conclusion by considering angular con-
ditions. While for spin 1, the unique angular condition [33]

ð1þ 2�ÞA1;1ðQ2Þ � 2
ffiffiffiffiffiffi
2�

p
A1;0ðQ2Þ

þ A1;�1ðQ2Þ � A0;0ðQ2Þ ¼ 0

is compatible with the requirement of helicity conservation
for any Q2, leading to A0;0ðQ2Þ ¼ ð1þ 2�ÞA1;1ðQ2Þ, the
second of the two angular conditions for spin 3=2 [24,33]

ð1þ 4�Þ ffiffiffi
3

p
Að3=2Þ;ð3=2ÞðQ2Þ � 8

ffiffiffi
�

p
Að3=2Þ;ð1=2ÞðQ2Þ

þ 2Að3=2Þ;�ð1=2ÞðQ2Þ � ffiffiffi
3

p
Að1=2Þ;ð1=2ÞðQ2Þ ¼ 0;

8�3=2Að3=2Þ;ð3=2ÞðQ2Þ þ 2
ffiffiffi
3

p ð1� 2�ÞAð3=2Þ;ð1=2ÞðQ2Þ
þ Að3=2Þ;�ð3=2ÞðQ2Þ � 3Að1=2Þ;�ð1=2ÞðQ2Þ ¼ 0

would imply that Að3=2Þ;ð3=2ÞðQ2Þ ¼ 0, i.e. no electric

charge. So, in general, starting from spin 3=2 there is at
least one angular condition that allows one to write a
helicity-conserving amplitude in terms of helicity-flip am-
plitudes only [32], leading to a vanishing electric charge
under the assumption (39). Since with our assumption (34)
we found a nontrivial solution for the covariant vertex
functions, we are automatically consistent with the angular
conditions.

VI. TRANSVERSE SPIN

In this section, we discuss a first application of our
helicity conservation assumption (34). We will consider
the electromagnetic h ! h transition (Fig. 1) from the
viewpoint of a light front moving toward the hadron h.

This is equivalent to the infinite momentum frame picture
where the hadron has a large momentum along the z axis
chosen along the direction of (p0 þ p), where p and p0 are
as before the initial and final four-momenta of the particle.
In the symmetric light-cone frame, the virtual photon
couples only to forward-moving partons and the compo-
nent JþEMð0Þ of the electromagnetic current has the inter-
pretation of quark charge density operator. If one considers
only the two light quarks u and d, this operator is given by

JþEMð0Þ ¼ 2
3
�uð0Þ�þuð0Þ � 1

3
�dð0Þ�þdð0Þ:

Each term in this expression is a positive operator since
�c�þc / j�þc j2. One can define a transverse quark
charge density in a hadron with definite light-cone helicity
� by the Fourier transform

	h
�ð ~bÞ �

Z d2 ~q?
ð2�Þ2 e

�i ~q?� ~b 1

2pþ

	
�
pþ;

~q?
2

; �0
								JþEMð0Þ

								pþ;� ~q?
2

; �




¼
Z þ1

0

dQ

2�
QJ0ðQbÞA�;�ðQ2Þ; (40)

which is obviously circularly symmetric. For a spin-j
hadron h, there will be [jþ 1] independent quark charge

densities 	h
�ð ~bÞ for � ¼ j; j� 1; � � � ; j� ½j�. Quark

charge densities provide us therefore with [jþ 1] indepen-
dent combinations of covariant vertex functions. To get
information for the other covariant vertex functions, we
consider also charge densities in a hadron state with the
spin transversely polarized.

A. Transversely polarized quark charge densities

First, we want to write the transverse spin eigenstates
jj; s?i in terms of the helicity eigenstates jj; �i. The direc-
tion of the transverse polarization is denoted by ~S? ¼
cosSêx þ sinSêy. Transverse spin states can be obtained

from a rotation of the helicity states

FIG. 1. Electromagnetic vertex function (blob). The initial
(resp. final) hadron has four-momentum p (resp. p0) and helicity
� (resp. �0). The photon has four-momentum q ¼ p0 � p, and
we work with the light-cone component � ¼ þ.
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jj; s?i ¼ RðS;�=2; 0Þjj; m ¼ s?i; (41)

where Rð�;�; �Þ ¼ e�i�Jze�i�Jye�i�Jz is the rotation op-
erator with �, �, � the Euler angles. Using the Wigner

(small) d matrix dj
mm0 ð
Þ ¼ hj; mje�i
Jy jj;m0i, we can

write (41) as

jj; s?i ¼
Xj

�¼�j

e�i�Sdj�s?ð�=2Þjj; �i: (42)

The explicit expression for the Wigner (small) d matrix at

 ¼ �=2 is

dj
mm0 ð�=2Þ

¼X
k

ð�1Þj�m0þk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþmÞ!ðj�mÞ!ðjþm0Þ!ðj�m0Þ!p

2jk!ðj�m� kÞ!ðj�m0 � kÞ!ðmþm0 þ kÞ! ;

(43)

where the sum is over the integer values of k such that the
factorial arguments are non-negative. Note that for the
maximal-spin projection m0 ¼ j, the expression becomes

very simple djmjð�=2Þ ¼ 2�j
ffiffiffiffiffiffiffiffiffiffiffi
Cj�m
2j

q
.

Next, we want to write the transverse quark charge
densities in terms of light-cone helicity amplitudes. The
transverse quark charge densities with definite transverse
polarization are defined as

	h
Ts?ð ~bÞ ¼

Z d2 ~q?
ð2�Þ2 e

�i ~q?� ~b	h
Ts?ð ~q?Þ; (44)

with

	h
Ts?ð ~q?Þ �

1

2pþ

�
pþ;

~q?
2

; s?
								Jþð0Þ

								pþ;� ~q?
2

; s?


:

(45)

Using the change of basis (42), we can write

	h
Ts?ð ~q?Þ ¼

Xj
�;�0¼�j

dj
�0s?

ð�=2Þdj�s?ð�=2Þeið�
0��ÞA�0;�ðQ2Þ;

with  � S �q. Then, thanks to both parity (27) and

time-reversal (28) relations, this can be reduced to

	h
Ts?ð ~q?Þ ¼

X2j
m¼0

QmCtrigðm;ÞBs?mðQ2Þ; (46)

where we have defined the function

Ctrig ðn; �Þ � 1þ ð�1Þn
2

cosðn�Þ þ i
1þ ð�1Þnþ1

2

	 sinðn�Þ;
and used the compact notation

Bs?mðQ2Þ ¼ ð2� �m;0Þ
Xj

�0¼m=2

ð2� ��0;m=2Þdj�0s?
ð�=2Þ

	 djð�0�mÞs?ð�=2ÞG�0;�0�mðQ2Þ: (47)

Finally, using the Bessel function JnðxÞ ¼ ð�iÞn
2� 	R

2�
0 d cosðnÞeix cos in the Fourier transform of (44)

and inserting (46), we find that we can write the trans-
versely polarized quark charge densities as

	h
Ts?ð ~bÞ ¼

X2j
m¼0

imCtrigðm;b �SÞ

	
Z dQ

2�
Qmþ1JmðQbÞBs?mðQ2Þ: (48)

B. Transverse electric moments

The trigonometric functions appearing in (48) show that
the transversely polarized quark charge densities are not
circularly symmetric. Let us therefore consider a bidimen-
sional multipole decomposition by means of circular har-
monics. Namely, any function fðr; 
Þ with r � 0 and
period 2� in 
 can be decomposed as

fðr; 
Þ ¼ Xþ1

m¼�1
fmðrÞeim
:

Note however that not all circular harmonics are present in
(48). For a spin-j particle, there are in fact 2jþ 1 multi-
poles. In general, we found that the lth electric multipole is
associated to light-cone amplitudes with j�0 � �j ¼ l units
of helicity flip. Consequently, it is in principle sufficient to
know, e.g. the transversely polarized quark charge density

	h
Tjð ~bÞ only, in order to have an information about all the

2jþ 1 covariant vertex functions.
Choosing the x axis to be parallel to the transverse spin,

i.e. S ¼ 0, we can define the transverse electric moments
QTl as follows:

QTl � e
Z

d2 ~bClð ~bÞ	h
Ts?ð ~bÞ; Clð ~bÞ � blRtrigðl; bÞ;

(49)

with the circular harmonics

Rtrig ðn;�Þ � 1þ ð�1Þn
2

cosðn�Þ þ 1þ ð�1Þnþ1

2

	 sinðn�Þ:
Working out the Fourier transform leads to

QTl ¼ e
Z

d2 ~q?�ð2Þð ~q?ÞClð�i ~rqÞ	h
Ts?ð ~q?Þ:

Inserting now (46) in this equation gives

QTl ¼ ð�1Þ½ððlþ1Þ=2Þ�2l�1l!ð1þ �l;0ÞeBs?lð0Þ: (50)
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Let us discuss first the transverse electric charge QT0. A
charge monopole is spherically symmetric and should
therefore not depend on the orientation of spin. We there-
fore expect thatQT0 ¼ Q0. From (50) with l ¼ 0 and (47),
we get

QT0 ¼ e
Xj

�0¼�j

½dj
�0s?

ð�=2Þ�2G�0;�0 ð0Þ:

Thanks to (33), the expression can be simplified, leading to
the expected relation QT0 ¼ eZ ¼ Q0.

The other transverse moments are directly proportional
to helicity-flip amplitudes. Assuming that helicity at tree
level and Q2 ¼ 0 is nontrivially conserved (34) and using
once more Eq. (33), we conclude that for an elementary
particle, the higher transverse electric moments are vanish-
ing. This has as immediate consequence that higher trans-
verse electric moments are just functions of the anomalous
moments. Such an observation has already been reported
for spin up to 3=2 [22–24]. Our assumption allows us to
generalize this observation to any value of the spin.

We would like to emphasize that these higher transverse
electric moments are not intrinsic, but are in fact induced
moments due to a light-cone point of view.We do not claim
that particles have, e.g. an intrinsic dipole electric moment,
which would violate parity and time-reversal invariance.
This effect is purely induced and is consonant with the
observation [38] that an object with a magnetic dipole
moment at rest, will exhibit an electric dipole moment
when moving, orthogonal to both magnetic moment and
momentum directions. The magnetic moment of a particle
is the source of a magnetic dipole field, which is accom-
panied by an electric field when the particle is moving in a
direction different from the magnetic dipole one. Such an
electric field will induce electric polarizations in the parti-
cle, and thus electric moments, only if the particle has
constituents that can migrate. From this point of view, it
is clear that the induced polarizations can only be functions
of the anomalous moments. We can actually use the argu-
ment the other way around. Since, on the light-cone, the
particle is subject to induced fields that tend to polarize it
electrically, its constituents with electric charge (if any)
would migrate leading to the appearance of induced elec-
tric moments. An elementary particle, i.e. structureless or
pointlike particle, does not have such constituents and
cannot therefore, at tree level, present induced electric
moments. As we have shown in this work explicitly, this
is equivalent to say that, for an elementary particle, the
light-cone helicity-flip amplitudes have to vanish nontri-
vially at Q2 ¼ 0 and tree level. The particular values for
the usual electromagnetic moments we were able to derive
from this condition can therefore be called natural.

VII. CONCLUSION

In this paper, we addressed the problem of electromag-
netic interaction for arbitrary-spin particles. This problem
is an old and a very important one, and requires new
constraints in order to be solved. The knowledge of natural
electromagnetic moments is rightly one kind of constraints
that will help in the construction of a physical Lagrangian
theory of electromagnetic interaction with high-spin parti-
cles, even though this would not be sufficient to solve the
causality problem plaguing higher-spin field theories.
Firstly, we proposed a transparent expression for the

arbitrary-spin electromagnetic current in terms of cova-
riant vertex functions. Performing an explicit multipole
decomposition, we have defined generally the multipole
form factors and worked out their relation with the elec-
tromagnetic moments. In the Breit frame, we were able to
derive the general relation between the covariant vertex
functions and multipole form factors. We naturally recover
the low-spin cases studied so far.
Besides the fact that the steps explained in this paper are

necessary for our aim of obtaining the natural electromag-
netic moments, the results presented here will be relevant
for other studies. For example, based on our decomposition
in terms of covariant vertex functions, it should be in
principle possible to determine within lattice QCD the
structure of high-spin resonances. Moreover, we draw the
attention that multipole form factors at Q2 ¼ 0 are in
general not equal to the (Cartesian) electromagnetic mo-
ments. The identification is valid only up to quadrupoles.
Subsequently, we have derived the explicit expression of

light-cone helicity amplitudes in terms of covariant vertex
functions. Under the assumption that light-cone helicity is
nontrivially conserved by electromagnetism atQ2 ¼ 0 and
tree level, we have derived the natural value of all electro-
magnetic moments for any particle. The result turns out to
be surprisingly simple. The natural values of multipole
form factors at Q2 ¼ 0 are just given (up to a sign) by a
binomial function times the electric charge of the particle.
The result agrees with the values from the standard

model for elementary spin-1=2 (e.g. electrons) and spin-1
(e.g. W� gauge bosons) particles. It is also in accordance
with the prediction from N ¼ 2 supergravity for graviti-
nos. Moreover, we also reproduce in a simple way the
universality of the gyromagnetic factor g ¼ 2 and its
counterpart for electric quadrupole, as derived from con-
siderations of tree unitarity. Finally, it has also been real-
ized that this result is in fact exactly the same as one
obtains from N ¼ 1 supersymmetric sum rules, when
one considers that electromagnetic properties do not mix
the members of the supermultiplet. All these agreements
can hardly be seen as a pure coincidence. Naturally, one
still has to completely understand the deep field theoretic
implications of nontrivial light-cone helicity conservation.
It seems highly probable that this condition can be related
to the tree-unitarity argument. This relation is beyond the
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scope of the present study but will be the subject of further
investigations.

As an application of our results, we have generalized the
discussion on quark transverse charge densities to particles
of arbitrary spin. Our assumption concerning helicity con-
servation directly leads to the conclusion that the trans-
verse higher electric moments can only be functions of the
anomalous electromagnetic moments. Using the argument
the other way around, an elementary particle cannot
present induced electric moments in a light-cone frame-
work. This requirement is equivalent to saying that light-
cone helicity is conserved at tree level andQ2 ¼ 0, justify-
ing our assumption a posteriori.

As a final comment, let us add that knowing the natural
moments allows one to distinguish in a certain limit be-
tween composite and elementary particle already at lowQ2

without any reference to a specific field theory and to
determine in a fully consistent way the actual shape of
hadrons. The natural moments of a pointlike particle being
nonzero, any statement concerning the shape of a hadron
based on the values of multipole form factors should
compare the actual values not with zero but with the
natural moments. That is why, even though its electric
quadrupole moment is negative according to lattice QCD
calculations, the �þ baryon has a prolate shape when
viewed from a light front [24].
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APPENDIX A: POLARIZATION TENSORS

In this appendix we remind the explicit construction of
polarization tensors in RS and KG formalisms.

A particle with spin j and mass M can be described in
terms of a polarization tensor "�1����j

ðp; �Þ when j is

integer or a polarization spin tensor u�1����n
ðp; �Þwhen j ¼

nþ 1=2 is half-integer. These polarization tensors are
completely symmetric and satisfy the following subsidiary
conditions5

p�"��2����j
ðp; �Þ ¼ 0; "���3����j

ðp; �Þ ¼ 0; (A1)

ðp6 �MÞu�1����n
ðp; �Þ ¼ 0; ��u��2����n

ðp; �Þ ¼ 0;

(A2)

in order to ensure that the number of degrees of freedom is
2jþ 1.

An explicit construction of these polarization tensors has
been proposed a long time ago by Auvil and Brehm [8,39].
By always coupling the maximum possible spin of two

lower-order polarization tensors, the product will satisfy
KG or RS equations together with the subsidiary condi-
tions. For a polarization spin tensor, it is convenient to
consider the product of a spin-1=2 spinor with a polariza-
tion tensor

u�1����n
ðp; �Þ ¼ X

m;m0

�
1

2

m

2
; nm0jj�



uðp;mÞ"�1����n

ðp;m0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jþ �

2j

s
uðp;þÞ"�1����n

�
p; �� 1

2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
j� �

2j

s
uðp;�Þ"�1����n

�
p; �þ 1

2

�
;

(A3)

where hj1m1; j2m2jjmi represents the Clebsch-Gordan co-
efficient in the Condon-Shortley phase convention. With
such a construction, one can focus on integer spin polar-
ization tensors only. The latter are obtained from the
following recursion formula

"�1����j
ðp; �Þ ¼ X

m;m0
h1m; ðj

� 1Þm0jj�i"�1
ðp;mÞ"�2����j

ðp;m0Þ;
(A4)

where "�i
ðp; �Þ is just the standard polarization four-

vector. Iterating this formula, one obtains

"�1����j
ðp; �Þ ¼ X

ml¼0;�1

�Yj�1

l¼1

h1mllm
0
ljðlþ 1Þm0

lþ1i

	 "�l
ðp;mlÞ

�
"�j

ðp;mjÞ;

where the sum is implicitly restricted to configurations

such that
Pj

l¼1 ml ¼ �, and where m0
l ¼ mj þ

P
l�1
k¼1 mk.

Since Clebsch-Gordan coefficients can be written as [29]

h1mllm
0
ljðlþ 1Þðmlþm0

lÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1þml

2 C
lþm0

l

2l

C
lþmlþm0

l
þ1

2lþ2

vuuut ;

Ck
n ¼

n

k

 !
�
� n!
k!ðn�kÞ! ; n� k� 0

0; otherwise
;

(A5)

one obtains the expression

"�1����j
ðp; �Þ ¼ X

ml¼0;�1

Qj
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C1þml

2

q
"�l

ðp;mlÞffiffiffiffiffiffiffiffiffiffiffi
Cjþ�
2j

q ;

which can be rewritten more conveniently as [40]

5Note that multiplying (A2) on the left by ��2 implies that
(A1) with "�1����j

replaced by u�1����n
is also satisfied.
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"�1����j
ðp; j�mÞ ¼ Xm=2

k¼0

P
P
½Qk

l¼1 "�P ðlÞ ðp;�Þ�½Qm�k
l¼kþ1 "�P ðlÞ ðp; 0Þ�½

Qj
l¼m�kþ1 "�P ðlÞ ðp;þÞ�

2k�m=2k!ðm� 2kÞ!ðj�mþ kÞ!
ffiffiffiffiffiffiffi
Cm
2j

q ; (A6)

where P stands for a permutation of f1; � � � ; jg. The pres-
ence of factorials in the denominator is due to the fact that
permuting the indices of two polarization four-vectors with
the same polarization does not give a new contribution.

APPENDIX B: LINKING COVARIANT VERTEX
FUNCTIONS WITH MULTIPOLE FORM FACTORS

In this appendix, we report details of the derivation in
the Breit frame, which led us to the connections (19) and
(23) between covariant vertex functions and multipole
form factors.

1. Breit frame kinematics and expansion of spherical
harmonics

The Breit frame (or brick-wall frame) is the frame where
no energy is transferred to the system by the photon6

q� ¼ ð0; ~qÞ; p� ¼
�
p0;� ~q

2

�
; p0� ¼

�
p0;

~q

2

�
;

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ j ~qj2

4

s
¼ M

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
: (B1)

In this particular frame, the current J
�
B has a nonrelativistic

appearance once explicitly expressed in terms of rest-
frame polarization vectors ~"� and rest-frame spinors ��

[26]. Since we identify the spin quantization axis with the z
axis, the rest-frame polarization vectors and spinors are
given by

~"� ¼ 1ffiffiffi
2

p ð�1;�i; 0Þ; ~"0 ¼ ð0; 0; 1Þ;

�þ ¼ 1
0

� �
; �� ¼ 0

1

� �
:

(B2)

In the following, we will use standard polarization four-
vectors and spinors in Dirac representation

"�ðp; �Þ ¼
�
~"� � ~p
M

; ~"� þ ~pð ~"� � ~pÞ
Mðp0 þMÞ

�
;

uðp; �Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þM

p 1
~p� ~�

p0þM

 !
��:

(B3)

The connection between covariant vertex functions and
multipole form factors can conveniently be achieved once
the spherical harmonics7 Yl0ð�Þ involved in (13) and (17)
are expressed in terms of sin
 and cos
 [29]

Yl0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s Xl
s¼0
s even

ð�1Þs=2

	
� ~Cs

l
~Cl�1
lþs�1sin

s
; for l even;

~Cl�s�1
l�1

~Cs
lþssin

s
 cos
; for l odd;
(B4)

leading, after a few algebraic manipulations, to

j0ð ~qÞ ¼ e
Xn
t¼0

Xn
m¼t

ð�1Þmþt�m
ðCt

mÞ2
~C2mþ2t�1
4m�1

ðsin2
Þt

	GE2mðQ2Þ;
~r � ð ~jð ~qÞ 	 ~qÞ ¼ e2i

ffiffiffi
�

p
cos


Xn
t¼0

Xn
m¼t

ð�1Þmþtð1� �j;mÞ

	 �mðmþ 1Þ ðCt
mÞ2

~C2mþ2tþ1
4mþ1

ðsin2
Þt

	GM2mþ1ðQ2Þ; (B5)

where j ¼ n for integer spin and j ¼ nþ 1=2 for half-
integer spin.

2. Integer spin case

Considering � ¼ �0 ¼ j, the polarization tensor (A6) of
the particle takes a very simple form

"�1����j
ðp; jÞ ¼ Yj

l¼1

"�l
ðp;þÞ:

Concerning the charge density of integer spin particles,
we find that all the complexity reduces to three structures

6The reader might be worried by the fact that the definition of
momentum Q is different in Sec. II compared to Sec. III.
Covariant vertex functions and multipole form factors are how-
ever related in the Breit frame, where both definitions do actually
match Q2 � �q2 ¼ ~q2.

7For the sake of clarity, we omit the index q attached to the
angles, since we will not refer anymore to configuration space.
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"�ðp0;þÞ � "ðp;þÞ ¼ �1� �sin2
;

½"�ðp0;þÞ � q�½"ðp;þÞ � q�
2M2

¼ ð1þ �Þ�sin2
;
"0ðp;þÞ½"�ðp0;þÞ � q� � "0�ðp0;þÞ½"ðp;þÞ � q� ¼ 2p0�sin

2
; (B6)

allowing us to write the quantum-mechanical electric den-
sity in terms of sin


J0B ¼ 2M
Xj
t¼0

Xt
k¼0

ð1þ �Þkþð1=2ÞCj�t
j�kð�sin2
Þt

	
�
F2kþ1ðQ2Þ � 1� �k;0

1þ �
F2kðQ2Þ

�
: (B7)

Concerning the magnetic density of integer spin parti-

cles, the first simplification is ~P	 ~q ¼ 0, so that only
covariant vertex functions with even value of k will con-
tribute. Moreover, since in the Breit frame

~r � ½ ~"ðp; �Þ 	 ~q� ¼ 0;

½ ~"ðp; �Þ 	 ~q� � ~r½"ðp; �Þ � q� ¼ 0;

½ ~"ðp; �Þ 	 ~q� � ~r½"�ðp0; �0Þ � q� ¼ �p0

M
ð ~"��0 	 ~"�Þ � ~q;

(B8)

we obtain

~r �
�
f ~"ðp;þÞ½"�ðp0;þÞ � q� � ~"�ðp0;þÞ½"ðp;þÞ � q�g

	 ~q

�½"�ðp0;þÞ � q�½"ðp;þÞ � q�
2M2

�
k
fðQ2Þ

�
¼ �2p0ðkþ 1Þ2i ffiffiffi

�
p

cos
ð�sin2
ÞkfðQ2Þ;
so that we can write the quantum-mechanical magnetic
density in terms of sin
 and cos


~r � ð ~JB 	 ~qÞ ¼ 4iM
ffiffiffi
�

p
cos


Xj�1

t¼0

Xt
k¼0

ð1þ �Þkþð1=2ÞCj�t�1
j�k�1

	 ð�sin2
Þtðtþ 1ÞF2kþ2ðQ2Þ: (B9)

Now comparing (B5) with (B7) and (B9), we obtain (19).

3. Half-integer spin case

Considering � ¼ �0 ¼ j ¼ nþ 1=2, the polarization
spin-tensor (A3) of the particle takes a very simple form

u�1����n
ðp; jÞ ¼ uðp;þÞYn

l¼1

"�l
ðp;þÞ:

Concerning the charge density of half-integer spin par-
ticles, we find that all the complexity reduces to the three
structures of the bosonic case (B6) plus two new ones

�uðp0;þÞ�0uðp;þÞ ¼ 2M;

�uðp0;þÞ i�
0�q�
2M

uðp;þÞ ¼ �2M�;
(B10)

allowing us to write the quantum-mechanical electric den-
sity in terms of sin


J0B ¼ 2M
Xn
t¼0

Xt
k¼0

ð1þ �ÞkCn�t
n�kð�sin2
Þt

	 ½F2kþ1ðQ2Þ � �F2kþ2ðQ2Þ�: (B11)

Concerning the magnetic density of half-integer spin
particles, we have in addition

�uðp0;þÞ�kuðp;þÞ ¼ �uðp0;þÞ i�
k�q�
2M

uðp;þÞ
¼ �y

þið ~�	 ~qÞk�þ; (B12)

from which we obtain

~r �
�
�y
þ½ið ~�	 ~qÞ

	 ~q��þ
�ð"0�ðþ1Þ � qÞð"ðþ1Þ � qÞ

2M2

�
k
fðQ2Þ

�
¼ 4Mðkþ 1Þi ffiffiffi

�
p

cos
ð�sin2
ÞkfðQ2Þ;
allowing us to write the quantum-mechanical magnetic
density in terms of sin
 and cos


~r � ð ~JB 	 ~qÞ ¼ 4Mi
ffiffiffi
�

p
cos


Xn
t¼0

Xt
k¼0

ð1þ �ÞkCn�t
n�kð�sin2
Þt

	 ðtþ 1Þ½F2kþ1ðQ2Þ þ F2kþ2ðQ2Þ�: (B13)
Now comparing (B5) with (B11) and (B13), we obtain
(23).

APPENDIX C: HELICITYAMPLITUDES AND
COVARIANT VERTEX FUNCTIONS

In this appendix, we report details of the derivation of
the expression of light-cone helicity amplitudes in terms of
covariant vertex functions (29).

1. Light-cone kinematics

Light-cone helicity amplitudes are obtained by consid-
ering the þ component of the current Jþ ¼ J0 þ J3 and
the proper expressions for the light-cone spinors (pR;L �
px � ipy)
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uðp;þÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2pþp

pþ þM
pR

pþ �M
pR

0
BBB@

1
CCCA;

uðp;�Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2pþp

�pL

pþ þM
pL

�pþ þM

0
BBB@

1
CCCA;

(C1)

and the light-cone polarization four-vectors (êR;L � êx �
iêy)

"�ðp;þÞ ¼ � 1ffiffiffi
2

p
�
0;
2pR

pþ ; êR

�
;

"�ðp; 0Þ ¼ 1

M

�
pþ;

pRpL �M2

pþ ;
pRêL þ pLêR

2

�
;

"�ðp;�Þ ¼ 1ffiffiffi
2

p
�
0;
2pL

pþ ; êL

�
:

(C2)

It is particularly convenient to work in the symmetric
light-cone frame, which is the DYW frame qþ ¼ 0 where
the light-cone energy p� ¼ p0 � p3 is conserved

q� ¼ ð0; 0; ~q?Þ; p� ¼
�
pþ;

M2ð1þ �Þ
pþ ;� ~q?

2

�
;

p0� ¼
�
pþ;

M2ð1þ �Þ
pþ ;

~q?
2

�
; (C3)

with p and p0 the four-momenta of the incoming and
outgoing particle, respectively. Let us now consider only
the set of amplitudes fAj;j�mjm ¼ 0; � � � ; 2jg, separately
for integer and half-integer spin particles.

2. Integer spin case

In the DYW frame and for spin-j bosons, thanks to the
following relations

"�ðp0;þÞ � "ðp; 0Þ ¼ ffiffiffiffiffiffi
2�

p
e�iq½"�ðp0;þÞ � "ðp;þÞ�;

"�ðp0;þÞ � "ðp;�Þ ¼ 0;

"ðp; 0Þ � q ¼ ffiffiffiffiffiffi
2�

p
e�iq½"ðp;þÞ � q�;

"ðp;�Þ � q ¼ �e�2iq½"ðp;þÞ � q�; (C4)

it is straightforward to see that we can rewrite all the
contractions of Lorentz indices in terms of "�ðp0;þÞ �

"ðp;þÞ and ½"�ðp0;þÞ � q�½"ðp;þÞ � q� only. Moreover,
since we have

"�ðp0;þÞ � "ðp;þÞ ¼ �1;

�½"�ðp0;þÞ � q�½"ðp;þÞ � q�
2M2

¼ ��; (C5)

and using the expression for the polarization tensor (A6)
with our current decomposition (4), we finally obtain

Aj;j�mðQ2Þ ¼ ð4�Þm=2ffiffiffiffiffiffiffi
Cm
2j

q Xj
k¼0

Xminfk;m=2g

t¼0

ð�1Þt
22t

Ct
k�

k�t

	
�
Cm�2t
j�t F2kþ1ðQ2Þ

� 1� �k;j

2
Cm�2t�1
j�t�1 F2kþ2ðQ2Þ

�
: (C6)

3. Half-integer spin case

For fermions with spin j ¼ nþ 1=2, thanks to (C4) and
(C5) and the following relations:

�uðp0;þÞ�þuðp;þÞ ¼ 2pþ;

�uðp0;þÞ�þuðp;�Þ ¼ 0;

�uðp0;þÞ i�
þ�q�
2M

uðp;þÞ ¼ 0;

�uðp0;þÞ i�
þ�q�
2M

uðp;�Þ ¼ � ffiffiffi
�

p
e�iq2pþ; (C7)

we can easily obtain the light-cone helicity amplitudes in
terms of covariant vertex functions Fkðq2Þ, using the ex-
pression for the polarization tensor (A6) with our current
decomposition (5),

Aj;j�mðQ2Þ ¼ ð4�Þm=2ffiffiffiffiffiffiffi
Cm
2j

q Xn
k¼0

Xminfk;m=2g

t¼0

ð�1Þt
22t

Ct
k�

k�t

	
�
Cm�2t
n�t F2kþ1ðQ2Þ

� 1

2
Cm�2t�1
n�t F2kþ2ðQ2Þ

�
: (C8)

Now, it is straightforward to see that (C6) and (C8) can in
fact be written in a single formula (29).

[1] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1
(2008).

[2] V. D. Burkert, AIP Conf. Proc. 1056, 348 (2008).
[3] M. Napsuciale, M. Kirchbach, and S. Rodriguez, Eur.

Phys. J. A 29, 289 (2006).

[4] P. A.M. Dirac, Proc. R. Soc. A 155, 447 (1936); M. Fierz,
Helv. Phys. Acta 22, 3 (1939); M. Fierz and W. Pauli,
Proc. R. Soc. A 173, 211 (1939).

[5] W. Rarita and J. S. Schwinger, Phys. Rev. 60, 61 (1941).
[6] P. A. Moldauer and K.M. Case, Phys. Rev. 102, 279

ELECTROMAGNETIC PROPERTIES FOR ARBITRARY SPIN . . . PHYSICAL REVIEW D 79, 113011 (2009)

113011-15



(1956).
[7] V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci.

U.S.A. 34, 211 (1948).
[8] S. Z. Huang, T. N. Ruan, N. Wu, and Z. P. Zheng, Eur.

Phys. J. C 26, 609 (2003).
[9] L.M. Nath, Nucl. Phys. 68, 660 (1965); S. C. Bhargava

and H. Watanabe, Nucl. Phys. 87, 273 (1966); A.
Kawakami and S. Kamefuchi, Nuovo Cimento A 48,
239 (1967); A. Kawakami, Nucl. Phys. B2, 33 (1967);
L.M. Nath, B. Etemadi, and J. D. Kimel, Phys. Rev. D 3,
2153 (1971).

[10] K. Johnson and E. C.G. Sudarshan, Ann. Phys. (N.Y.) 13,
126 (1961); A. Z. Capri and R. L. Kobes, Phys. Rev. D 22,
1967 (1980); M. Kobayashi and Y. Takahashi, J. Phys. A
20, 6581 (1987); M. Benmerrouche, R.M. Davidson, and
N. C. Mukhopadhyay, Phys. Rev. C 39, 2339 (1989); M.
Napsuciale and J. L. Lucio, Nucl. Phys. B494, 260 (1997);
V. Pascalutsa and R. Timmermans, Phys. Rev. C 60,
042201 (1999); M. Kirchbach and D.V. Ahluwalia,
arXiv:hep-th/0108030; V. Pascalutsa, Phys. Lett. B 503,
85 (2001).

[11] G. Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969).
[12] S. Deser, V. Pascalutsa, and A. Waldron, Phys. Rev. D 62,

105031 (2000).
[13] F. J. Belifante, Phys. Rev. 92, 997 (1953); C. Fronsdal,

Nuovo Cimento Suppl. 9, 416 (1958); J. Schwinger,
Particles, Sources, and Fields (Addison-Wesley,
Reading, MA, 1970); L. P. S. Singh and C. R. Hagen,
Phys. Rev. D 9, 898 (1974); 9, 910 (1974).

[14] S. Ferrara, M. Porrati, and V. L. Telegdi, Phys. Rev. D 46,
3529 (1992); B. R. Holstein, Am. J. Phys. 74, 1002 (2006);
Phys. Rev. D 74, 085002 (2006).

[15] V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 653,
378 (2007); Phys. Rev. Lett. 100, 241805 (2008).

[16] V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev.
Lett. 2, 435 (1959).

[17] S. Ferrara and M. Porrati, Phys. Lett. B 288, 85 (1992).
[18] M.B. Green, J. H. Schwarz, and E. Witten, Superstring

Theory (Cambridge University Press, Cambridge,
England, 1987); P. C. Argyres and C. R. Nappi, Phys.
Lett. B 224, 89 (1989).

[19] S. Weinberg, in Lectures on Elementary Particles and
Quantum Field Theory, edited by S. Deser, M. Grisaru,
and H. Pendleton, Brandeis University Summer Institute,
1970 (M. I. T. Press, Cambridge, MA, 1970), Vol. 1.D.
Djukanovic, M. R. Schindler, J. Gegelia, and S. Scherer,
Phys. Rev. Lett. 95, 012001 (2005).

[20] V. Pascalutsa, Nucl. Phys. A 680, 76 (2001); I. Ots, R.
Saar, R.K. Loide, and H. Liivat, Europhys. Lett. 56, 367

(2001).
[21] R. Finkelstein, Rev. Mod. Phys. 36, 632 (1964).
[22] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. Lett.

100, 032004 (2008).
[23] C. E. Carlson and M. Vanderhaeghen, arXiv:0807.4537.
[24] C. Alexandrou et al., Phys. Rev. D 79, 014507 (2009);

Nucl. Phys. A 825, 115 (2009).
[25] L. Durand, P. C. DeCelles, and R. B. Marr, Phys. Rev. 126,

1882 (1962); M.D. Scadron, Phys. Rev. 165, 1640 (1968);
H.W. Fearing, G. R. Goldstein, and M. J. Moravcsik, Phys.
Rev. D 29, 2612 (1984).

[26] R. G. Arnold, C. E. Carlson, and F. Gross, Phys. Rev. C 21,
1426 (1980).

[27] S. Nozawa and D. B. Leinweber, Phys. Rev. D 42, 3567
(1990); V. Pascalutsa, M. Vanderhaeghen, and S. N. Yang,
Phys. Rep. 437, 125 (2007).

[28] C. Schwartz, Phys. Rev. 97, 380 (1955); S. A. Williams,
Phys. Rev. 125, 340 (1962); F. Kleefeld, arXiv:nucl-th/
0012076.

[29] D. A. Varshalovich, A. N. Moskalev, and V.K.
Khersonskii, Quantum Theory of Angular Momentum
(World Scientific Publishing Co. Pte. Ltd., Singapore,
1988).

[30] S. D. Drell and T.M. Yan, Phys. Rev. Lett. 24, 181 (1970);
G. B. West, Phys. Rev. Lett. 24, 1206 (1970).

[31] D. E. Soper, Phys. Rev. D 5, 1956 (1972).
[32] K. J. Kim, Phys. Rev. D 8, 555 (1973).
[33] S. Capstick and B.D. Keister, Phys. Rev. D 51, 3598

(1995); C. E. Carlson and C. R. Ji, Phys. Rev. D 67,
116002 (2003).

[34] A. A. Pomeransky and R.A. Sen’kov, Phys. Lett. B 468,
251 (1999).

[35] K. J. Kim and Y. S. Tsai, Phys. Rev. D 7, 3710 (1973); S. J.
Brodsky and J. R. Hiller, Phys. Rev. D 46, 2141 (1992).

[36] S. Ferrara and P. van Nieuwenhuizen, Phys. Rev. Lett. 37,
1669 (1976); P. Van Nieuwenhuizen, Phys. Rep. 68, 189
(1981).

[37] I. Giannakis, J. T. Liu, and M. Porrati, Phys. Rev. D 58,
045016 (1998); Phys. Lett. B 469, 129 (1999).

[38] A. Einstein and J. Laub, Ann. Phys. (Leipzig) 331, 532
(1908); R.V. Krotkov, G.N. Pellegrini, N. C. Ford, and
A. R. Swift, Am. J. Phys. 67, 493 (1999).

[39] P. R. Auvil and J. J. Brehm, Phys. Rev. 145, 1152 (1966);
P. Carruthers, Phys. Rev. 152, 1345 (1966); C. E. Lee,
Phys. Rev. D 3, 2296 (1971); S. U. Chung, CERN Yellow
Report No. CERN 71-8, Geneva, Switzerland, 1971; C. E.
Lee, Chin. J. Phys. (Taipei) 12, 48 (1974).

[40] S. U. Chung, Phys. Rev. D 57, 431 (1998).
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