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Recently, Diakonov and Petrov have suggested a formalism in the chiral quark soliton model allowing
one to derive the 3-, 5-, 7-, . . .quark wave functions for the octet, decuplet, and antidecuplet. They have
used this formalism and many strong approximations in order to estimate the exotic �� width. The latter
has been estimated to�4 MeV. Besides they obtained that the 5-quark component of the nucleon is about
50% of its 3-quark component meaning that relativistic effects are not small. We have improved the
technique by taking into account some relativistic corrections and considering the previously neglected 5-
quark exchange diagrams. We also have computed all nucleon axial charges. It turns out that exchange
diagrams affect very little Diakonov’s and Petrov’s results while relativistic corrections reduce the ��

width to �2 MeV and the 5- to 3-quark component of the nucleon ratio to 30%.

DOI: 10.1103/PhysRevD.74.054019 PACS numbers: 12.39.Fe, 12.39.Ki, 13.30.-a

I. INTRODUCTION

Diakonov and Petrov have derived an effective low-
energy Lagrangian within their instanton model of the
QCD vacuum [1]. This Lagrangian is presented in
Sec. II. It enjoys all symmetries of chiral QCD, deals
with appropriate degrees of freedom, and is believed to
reproduce fairly well low-energy QCD physics. Even
though this Lagrangian is a strong simplification of the
original QCD Lagrangian, it is still a considerable task to
solve it. In order to have some insights, the authors have
developed a mean field approach to the problem. A mean
field approach is usually justified by the large number of
participants. For example, the Thomas-Fermi model of
atoms is justified at large Z [2]. For baryons, the number
of colors NC has been used as such parameter [3]. Since
NC � 3 in the real world, one can wonder how accurate is
the mean field approach. The chiral field experiences fluc-
tuations about its mean field value of the order of 1=NC.
These are loop corrections which are further suppressed by
factors of 1=2� yielding to corrections typically of the
order of 10%. These are ignored. However, rotations of
the baryon mean field in ordinary and flavor spaces are not
small for NC � 3 and are taken into account exactly.

The view that there is a self-consistent mean chiral field
in baryons which binds three constituent quarks [4] is
adopted in this paper. The binding is rather strong:
bound-state quarks are relativistic and their wave function
has both the upper s-wave Dirac component and the lower
p-wave Dirac component; see Sec. III. At the same time,
the Dirac sea is distorted by this mean chiral field leading
to the presence of an indefinite number of additional q �q
pairs in baryons. Ordinary baryons are then superpositions
of 3-, 5-, 7-, . . .quark Fock components. These additional
nonperturbative quark-antiquark pairs are essential for the
understanding of the spin crisis and the nucleon � term

[5,6]. The former experimental value is 3 times smaller and
the latter one is 4 times larger than the 3-quark theoretical
value [7]. This picture of baryons has been called the chiral
quark soliton model (�QSM). It leads without any fitting
parameters to a reasonable quantitative description of
baryon properties [4,8], including nucleon parton distribu-
tions at low normalization point [9] and other baryon
characteristics [10]. The model supports full relativistic
invariance and all symmetries following from QCD.

As mentioned above, the only 3-quark picture of baryons
is too simplistic since it cannot explain some experimental
values. It is then well accepted that one has to consider the
effect of additive quark-antiquark pairs. The problem is
now quantitative. A simple perturbative amount is not
sufficient indicating that the nonperturbative amount is
important. �QSM allows one to address those questions
since it naturally incorporates all additive quark-antiquark
pairs in its description of baryons. On the top of that, since
those additive quark-antiquark pairs are collective excita-
tions of the mean chiral field, an extra pair costs little
energy. In a recent paper [11] Diakonov and Petrov have
estimated the 5-quark component in the nucleon and found
that it is roughly 50% of the 3-quark component, and thus
not small. The 3-quark picture of the nucleon is then
definitely too simplistic.

The quantization of the rotation of the mean chiral field
in the ordinary and flavor spaces yields to correct quantum
numbers for the lowest baryons [3]. The rotated mean
chiral field can be represented by U�x� � RV�x�Ry where
R is a SU�3� rotation matrix. For simplicity, we deal with
ms � 0. In this limit any rotated field is classically as good
as the unrotated one. At the quantum level, the mean chiral
field experiences rotations which cannot be considered
small since there is no cost of energy (zero modes). These
rotations should be quantized properly. As first pointed out
by Witten [3] and then derived using different techniques
by a number of authors [12], the quantization rule is such
that the lowest baryon multiplets are the octet with spin*Electronic address: C.Lorce@ulg.ac.be
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1=2 and the decuplet with spin 3=2 followed by the exotic
antidecuplet with spin 1=2. All of those multiplets have
same parity. The lowest baryons are just rotational excita-
tions of the same mean chiral field (soliton). They are
distinguished by their specific rotational wave functions
given explicitly in Sec. IV.

In this approach, most of low-energy properties of the
lowest baryons follow from the shape of the mean chiral
field in the classical baryon. The difference and splitting
between baryons are exclusively due to the difference in
their rotational wave functions, difference that can be
translated into the quark wave functions of the individual
baryons, both in the infinite momentum [13,14] and the rest
[15] frames. In Sec. III we recall the compact general
formalism how to find the 3-, 5-, 7-, . . .quark wave func-
tions inside the octet, decuplet, and antidecuplet baryons
and give further details on the ingredients in Secs. IV, V,
and VI. In Sec. VII the 3-quark wave functions of the octet
and decuplet are shown. In the nonrelativistic limit they are
similar to the old SU�6� quark wave functions but with
well-defined relativistic corrections. The 5-quark wave
functions of ordinary and exotic baryons are presented in
Sec. VIII.

We consider baryons in the infinite momentum frame
(IMF) since this is the only frame in which one can
distinguish genuine quark-antiquark pairs of the baryon
wave functions from vacuum fluctuations. Therefore, an
accurate definition of what are the 3-, 5-,7-, . . .quark Fock
components of baryons can be made only in the IMF.
Another advantage of such a frame is that the vector and
axial charges with a finite momentum transfer do not create
or annihilate quarks with infinite momenta. The baryon
matrix elements are thus diagonal in the Fock space.

QCD does not forbid states made of more than 3 quarks
as long as they are colorless. It was first expected that
pentaquarks, i.e. particles whose minimal quark content
is four quarks and one antiquark, have wide widths [16,17]
and were thus difficult to observe experimentally. Later,
some theorists have suggested that particular quark struc-
tures might exist with a narrow width [18,19]. The experi-
mental status on the existence of the exotic �� pentaquark
is still unclear; there are many experiments in favor
(mostly low energy and low statistics) and against (mostly
high energy and high statistics). A review on the experi-
mental status can be found in [20–22]. Concerning the
experiments in favor, they all agree that the �� width is
small but gives only upper values. It turns out that if it
exists, the exotic �� has a width of the order of a few MeV
or maybe even less than 1 MeV—a really curious property
since usual resonance widths are of the order of 100 MeV.
In the paper [19] that actually motivated experimentalists
to search a pentaquark, Diakonov, Petrov, and Polyakov
have estimated the �� width to be less than 15 MeV. More
recently, Diakonov and Petrov used the present technique
based on light-cone baryon wave function to estimate more

accurately the width and found that it turns out to be
�4 MeV [11] and then the view of a narrow pentaquark
resonance within the �QSM is safe and appears naturally
without any parameter fixing. However, many approxima-
tions have been used such as a nonrelativistic limit and
omission of some 5-quark contributions (exchange dia-
grams). The authors expected that these have high proba-
bility to reduce further the width. This is what has
motivated our work. We have improved the technique in
order to include previously neglected diagrams in the 5-
quark sector and some relativistic corrections to the
discrete-level wave function.

Since the exotic �� has no 3-quark component and that
axial transitions are diagonal in the Fock space, one has to
compute the 5-quark component of the nucleon and the
��. We should add in principle the contribution coming
from the 7-, 9-, . . .quark sectors. They are neglected in the
present paper. One way to control the approximation is
through the computation of the nucleon axial charges. The
3-quark values are too crude. The 5-quark contributions
bring the values nearer to experimental ones.

This paper is supposed to be self-consistent. In Secs. IX
and X we remind how to compute the 3- and 5-quark
contributions. We then improve the technique by taking
into account the exchange diagrams and some relativistic
corrections to the discrete-level wave function. In Sec. XI
we collect all old [11] and new formal results on the
strange axial current between the �� and the nucleon and
complete the set of nucleon axial charges. In Sec. XII we
give the numerical evaluation of those observables along
with an estimation of the �� width. It appears that ex-
change diagrams, opposite to what was expected in [11],
have little effect. However, relativistic corrections lead to a
reduction of the �� width to �2 MeV and the 5- to 3-
quark component of the nucleon ratio to 30%.

II. THE EFFECTIVE ACTION OF THE CHIRAL
QUARK SOLITON MODEL

�QSM is assumed to mimic low-energy QCD thanks to
an effective action describing constituent quarks with a
momentum-dependent dynamical mass M�p� interacting
with the scalar � and pseudoscalar � fields. The chiral
circle condition �2 ��2 � 1 is invoked. The momentum
dependence of M�p� serves as a form factor of the con-
stituent quarks and provides also the effective theory with
the UV cutoff. At the same time, it makes the theory
nonlocal as one can see in the action

 Seff �
Z d4pd4p0

�2��8
� �p��p6 �2��4��4��p� p0�

�
������������
M�p�

q
���p� p0� � i��p� p0��5�

�
�������������
M�p0�

q
	 �p0�; (1)

where  and � are quarks fields. This action has been
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originally derived in the instanton model of the QCD
vacuum [1]. Note that opposite to the naı̈ve bag picture,
this Eq. (1) is fully relativistic and supports all general
principles and sum rules for conserved quantities.

The form factors
������������
M�p�

p
cut off momenta at some

characteristic scale which corresponds in the instanton
picture to the inverse average size of instantons 1= �� 

600 MeV. This means that in the range of quark momenta
p� 1= �� one can neglect the nonlocality. We use the
standard approach: the constituent quark mass is replaced
by a constant M � M�0� and we mimic the decreasing
function M�p� by the UV Pauli-Villars cutoff [9]

 Seff �
Z d4p

�2��4
� �p��p6 �MU�5� �p�; (2)

with U�5 a SU�3� matrix

 U�5 �
U0 0
0 1

� �
; U0 � ei�

a�a�5 ; (3)

and �a being usual SU�2� Pauli matrices.
We are now going to remind the reader of the general

technique from [11] that allows one to derive the (light-
cone) baryon wave functions.

III. EXPLICIT BARYON WAVE FUNCTION

In �QSM it is easy to define the baryon wave function in
the rest frame. Indeed, this model represents quarks in the
Hartree approximation in the self-consistent pion field. The
baryon is then described as NC valence quarks� Dirac sea
in that self-consistent external field. It has been shown [13]
that the wave function of the Dirac sea is the coherent
exponential of the quark-antiquark pairs

 j�i � exp
�Z
�dp��dp0�ay�p�W�p;p0�by�p0�

�
j�0i; (4)

where j�0i is the vacuum of quarks and antiquarks
a; bj�0i � 0, h�0jay; by � 0 defined for the quark mass
M 
 345 MeV (known to fit numerous observables within
the instanton mechanism of spontaneous chiral symmetry
breaking [1]), �dp� � d3p=�2��3, andW�p;p0� is the quark
Green function at equal times in the background �, �
fields [13,14] (its explicit expression is given in Sec. V). In
the mean field approximation the chiral field is replaced by
the following spherically symmetric self-consistent field

 ��x� � n � �P�r�; n � x=r; ��x� � ��r�: (5)

We then have on the chiral circle � � n � � sinP�r�,
��r� � cosP�r� with P�r� being the profile function of
the self-consistent field. The latter is fairly approximated
by [4,5] (see Fig. 1)

 P�r� � 2 arctan
�
r2

0

r2

�
; r0 


0:8
M
: (6)

Such a chiral field creates a bound-state level for quarks,
whose wave function  lev satisfies the static Dirac equation
with eigenenergy Elev in the Kp � 0� sector with K �
T � J [4,23,24]

  lev�x� �
�jih�r�

�i�jk�n � ��ikj�r�

� �
;

�
h0 � hM sinP� j�M cosP� Elev� � 0
j0 � 2j=r� jM sinP� h�M cosP� Elev� � 0;

(7)

where i � 1; 2 �"; # and j � 1; 2 � u; d are, respectively,
spin and isospin indices. Solving those equations with the
self-consistent field (5) one finds that ‘‘valence’’ quarks are
tightly bound (Elev � 200 MeV) along with a lower com-
ponent j�r� smaller than the upper one h�r� (see Fig. 2).

For the valence quark part of the baryon wave function it
suffices to write the product of NC quark creation operators
that fill in the discrete level [13]

 

YNC
color�1

Z
�dp�F�p�ay�p�; (8)

1 2 3 4 5

0.5

1

1.5

2

2.5

3

FIG. 1. Profile of the self-consistent chiral field P�r� in light
baryons. The horizontal axis unit is r0 � 0:8=M � 0:46 fm.
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FIG. 2. Upper s-wave component h�r� (solid) and lower
p-wave component j�r� (dashed) of the bound-state quark level
in light baryons. Each of the three valence quarks has energy
Elev � 200 MeV. The horizontal axis has units of 1=M �
0:57 fm.
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where F�p� is obtained by expanding and commuting
 lev�p� with the coherent exponential (4)

 F�p� �
Z
�dp0�

�����
M
�

s
� �u�p��0 lev�p��2��3��3��p� p0�

�W�p;p0� �v�p0��0 lev��p0�	: (9)

One can see from the second term that the distorted Dirac
sea contributes to the one-quark wave function. For the
plane-wave Dirac bispinor u��p� and v��p� we used the
standard basis
 

u��p� �

��������
��M
2M

q
s���������

��M
2M

q
p��
jpj s�

0B@
1CA; v��p� �

��������
��M
2M

q
p��
jpj s���������

��M
2M

q
s�

0B@
1CA;

�uu � 1 � � �vv; (10)

where � � �
�������������������
p2 �M2

p
and s� are two 2-component spin-

ors normalized to unity

 s1 �
1
0

� �
; s2 �

0
1

� �
: (11)

The complete baryon wave function is then given by the
product of the valence part (8) and the coherent exponen-

tial (4)

 

j�Bi �
YNC

color�1

Z
�dp�F�p�ay�p�

� exp
�Z
�dp��dp0�ay�p�W�p;p0�by�p0�

�
j�0i:

(12)

We remind that the saddle point of the self-consistent
pion field is degenerate in global translations and global
SU�3� flavor rotations [the SU�3�-breaking strange mass
can be treated perturbatively later]. These zero modes must
be handled with care. The result is that integrating over
translations leads to momentum conservation which means
that the sum of all quarks and antiquarks momenta have to
be equal to the baryon momentum. Integrating over SU�3�
rotations R leads to the projection of the flavor state of all
quarks and antiquarks onto the spin-flavor state B�R� spe-
cific to any particular baryon from the �8; 1

2
��, �10; 3

2
��,

and �10; 1
2
�� multiplets.

If we restore color (	 � 1, 2, 3), flavor (f � 1, 2, 3),
isospin (j � 1, 2), and spin (� � 1, 2) indices, we obtain
the following quark wave function of a particular baryon B
with spin projection k [13,14]

 

j�k�B�i �
Z

dRBk�R��
	1	2	3

Y3

n�1

Z
�dpn�R

fn
jn
Fjn�n�pn�a

y
	nfn�n

�pn�

� exp
�Z
�dp��dp0�ay	f��p�R

f
jW

j�
j0�0 �p;p

0�Ryj
0

f0 b
y	f0�0

�
j�0i: (13)

Then the three ay create three valence quarks with the
same wave function F while the ay, by create any number
of additional quark-antiquark pairs whose wave function is
W. One can notice that the valence quarks are antisym-
metric in color whereas additional quark-antiquark pairs
are color singlets. One can obtain the spin-flavor structure
of a particular baryon by projecting a general qqq� nq �q
state onto the quantum numbers of the baryon under con-
sideration. This projection is an integration over all spin-
flavor rotations R with the rotational wave function Bk�R�
unique for a given baryon.

Expanding the coherent exponential allows one to get
the 3-, 5-, 7-, . . .quark wave functions of a particular
baryon. We still have to give explicit expressions for the
baryon rotational wave functions B�R�, the q �q pair wave
function in a baryon Wj�

j0�0 �p;p
0�, and the valence wave

function Fj��p�.

IV. BARYON ROTATIONAL WAVE FUNCTIONS

Baryon rotational wave functions are in general given by
the SU�3� Wigner finite-rotation matrices [25] and any

particular projection can be obtained by a SU�3�
Clebsch-Gordan technique. In order to see the symmetries
of the quark wave functions explicitly, we keep the ex-
pressions for B�R� and integrate over the Haar measure in
Eq. (13).

The rotational D functions for the �8; 1
2
��, �10; 3

2
�� and

�10; 1
2
��multiplets are listed below in terms of the product

of the R matrices. Since the projection onto a particular
baryon in Eq. (13) involves the conjugate rotational wave
function, we list the latter one only. The unconjugate ones
are easily obtained by Hermitian conjugation.

A. The octet �8; 1
2
��

From the SU�3� group point of view, the octet transforms
as �p; q� � �1; 1�, i.e. the rotational wave function can be
composed of a quark (transforming as R) and an antiquark
(transforming as Ry). Then the rotational wave function of
an octet baryon having spin index k � 1, 2 is

 �D�8;
1
2�

�R�	gf;k � �klR

yl
f R

g
3 :@ (14)

The flavor part of this octet tensor Pgf represents the
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particles as follows:
 

P3
1 � N�8 ; P3

2 � N0
8 ; P2

1 � ��8 ; P1
2 � ��8 ;

P1
1 �

1���
2
p �0

8 �
1���
6
p �0

8; P2
2 � �

1���
2
p �0

8 �
1���
6
p �0

8;

P3
3 � �

���
2

3

s
�0

8; P2
3 � �0

8; P1
3 � ���8 : (15)

For example, the proton (f � 1, g � 3) and neutron (f �
2; g � 3) rotational wave functions are

 pk�R�
 �

���
8
p
�klR

yl
1 R

3
3; nk�R�

 �
���
8
p
�klR

yl
2 R

3
3: (16)

B. The decuplet �10; 3
2
��

The decuplet transforms as �p; q� � �3; 0�, i.e. the rota-
tional wave function can be composed of three quarks. The
rotational wave functions are then labeled by a triple flavor
index ff1f2f3g symmetrized in flavor and by a triple spin
index fk1k2k3g symmetrized in spin

 �D�10;32��R�	ff1f2f3gfk1k2k3g

� �k01k1
�k02k2

�k03k3
R
yk01
f1
R
yk02
f2
R
yk03
f3
jsym inff1f2f3g

: (17)

The flavor part of this decuplet tensorDf1f2f3
represents the

particles as follows:
 

D111 �
���
6
p

	��10 ; D112 �
���
2
p

	�10; D122 �
���
2
p

	0
10;

D222 �
���
6
p

	�10; D113 �
���
2
p

��10; D123 � ��0
10;

D223 � �
���
2
p

��10; D133 �
���
2
p

�0
10;

D233 �
���
2
p

��10; D333 � �
���
6
p

��10: (18)

For example, the 	�� with spin projection 3=2 (f1 � 1,
f2 � 1, f3 � 1) and 	0 with spin projection 1=2 (f1 � 1,
f2 � 2, f3 � 2) rotational wave functions are
 

	��""" �R�
 �

������
10
p

Ry2
1 R

y2
1 R

y2
1 ;

	0
" �R�

 �
������
10
p

Ry2
2 �2R

y2
1 R

y1
2 � R

y2
2 R

y1
1 �:

(19)

C. The antidecuplet �10; 1
2
��

The antidecuplet transforms as �p; q� � �0; 3�, i.e. the
rotational wave function can be composed of three anti-
quarks. The rotational wave functions are then labeled by a
triple flavor index ff1f2f3g symmetrized in flavor

 �D�10;12��R�	ff1f2f3g
k � Rf1

3 R
f2
3 R

f3
k jsym inff1f2f3g

: (20)

The flavor part of this antidecuplet tensor Tf1f2f3 represents
the particles as follows:

 

T111 �
���
6
p

���
10
; T112 � �

���
2
p

��
10
;

T122 �
���
2
p

�0
10
; T222 � �

���
6
p

��
10
; T113 �

���
2
p

��
10
;

T123 � ��0
10
; T223 � �

���
2
p

��
10
; T133 �

���
2
p
N0

10
;

T233 � �
���
2
p
N�

10
; T333 �

���
6
p

��
10
: (21)

For example, the �� (f1 � 3; f2 � 3; f3 � 3) and neu-
tron* from 10 (f1 � 1; f2 � 3; f3 � 3) rotational wave
functions are
 

��k �R�
 �

������
30
p

R3
3R

3
3R

3
k;

n10
k �R�

 �
������
10
p

R3
3�2R

1
3R

3
k � R

3
3R

1
k�:

(22)

All examples of rotational wave functions above have
been normalized in such a way that for any (but the same)
spin projection we have

 

Z
dRBspin�R�B

spin�R� � 1; (23)

the integral being zero for different spin projections. Note
that rotational wave functions belonging to different bary-
ons are also orthogonal. This can be checked easily using
the group integrals in Appendix A. The particle represen-
tations (15), (18), and (21) were found in [26].

V. q �q PAIR WAVE FUNCTION

In [13,14] it is explained that the pair wave function
Wj�
j0�0 �p;p

0� is expressed by means of the finite-time quark
Green function at equal times in the external static chiral
field (5). The Fourier transforms of this field will be
needed:

 ��q�jj0 �
Z

d3xe�iq�x�n � ��jj0 sinP�r�;

��q�jj0 �
Z

d3xe�iq�x�cosP�r� � 1��jj0

(24)

where ��q� is purely imaginary and odd and ��q� is real
and even.

A simplified interpolating approximation for the pair
wave function W has been derived in [13,14] and becomes
exact in three limiting cases: (i) small pion field P�r�,
(ii) slowly varying P�r�, and (iii) fast varying P�r�. Since
the model is relativistically invariant, this wave function
can be translated to the IMF. In this particular frame, the
result is a function of the fractions of the baryon longitu-
dinal momentum carried by the quark z and antiquark z0 of
the pair and their transverse momenta p?, p0?

 

Wj;�
j0�0 �z;p?; z0;p0?� �

MM

2�Z
f�j

j0 �q��M�z
0 � z��3 �Q? � �?	��0 � i�

j
j0 �q���M�z

0 � z�1� iQ? � �?	��0 g; (25)
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where q � ��p� p0�?; �z� z0�M� is the three-momentum
of the pair as a whole transferred from the background
fields ��q� and ��q�, �1;2;3 are Pauli matrices, M is the
baryon mass, and M is the constituent quark mass. In order
to condense the notations we used
 

Z �M2zz0�z� z0� � z�p02? �M
2� � z0�p2

? �M
2�;

Q? � zp0? � z
0p?: (26)

This pair wave function W is normalized in such a way
that the creation-annihilation operators satisfy the follow-
ing anticommutation relations:

 fa	1f1�1�z1;p1?�; a
y
	2f2�2

�z2;p2?�g

� �	1
	2�

f1
f2
��1
�2��z1 � z2��2��

2��2��p1? � p2?� (27)

and similarly for b, by, the integrals over momenta being
understood as

R
dz
R

d2p?=�2��2.

VI. DISCRETE-LEVEL WAVE FUNCTION

We see from Eq. (9) that the discrete-level wave function
Fj��p� � Fj�lev�p� � F

j�
sea�p� is the sum of two parts: the

one is directly the wave function of the valence level and
the other is related to the change of the number of quarks at
the discrete level due to the presence of the Dirac sea; it is a
relativistic effect and can be ignored in the nonrelativistic
limit (Elev 
 M) together with the small L � 1 lower
component j�r�. Indeed, in the baryon rest frame Fj�lev gives

 Fj�lev � �j�
 �������������������
Elev �M

2Elev

s
h�p� �

�������������������
Elev �M

2Elev

s
j�p�

!
; (28)

where h�p� and j�p� are the Fourier transforms of the
valence wave function

 h�p� �
Z

d3xe�ip�xh�r� � 4�
Z 1

0
drr2 sinpr

pr
h�r�; (29)

 

ja�p� �
Z

d3xe�ip�x��ina�j�r� �
pa

jpj
j�p�;

j�p� �
4�

p2

Z 1
0

dr�pr cospr� sinpr�j�r�:
(30)

In the nonrelativistic limit the second term is double-
suppressed: first due to the kinematical factor and second
due to the smallness of the L � 1 wave j�r� compared to
the L � 0 wave h�r�.

Switching to the IMF one obtains [13,14]
 

Fj�lev�z;p?� �

�������
M

2�

s �
�j�h�p�

� �pz1� ip? � �?���0�
j�0 j�p�
jpj

�
pz�zM�Elev

:

(31)

The ‘‘sea’’ part of the discrete-level wave function gives
in the IMF
 

Fj�sea�z;p?� � �

�������
M

2�

s Z
dz0

d2p0?
�2��2

Wj�
j0�0 �z;p?; z0;p0?�

� �j
0�00
�
��3�

�0
�00h�p

0�

� �p0 � ���
0

�00
j�p0�
jp0j

�
pz�zM�Elev

: (32)

In the work made by Diakonov and Petrov [11], the
relativistic effects in the discrete-level wave function
were neglected. One can then use only the first term in (31)

 Fj��z;p?� 


�������
M

2�

s
�j�h�p�jpz�zM�Elev

: (33)

VII. 3-QUARK COMPONENTS OF BARYONS

It will be shown in this section how to derive systemati-
cally the 3-quark component of the octet and decuplet
baryons (antidecuplet baryons have no such component)
and that they become in the nonrelativistic limit similar to
the well-known SU�6� wave functions of the constituent
quark model.

An expansion of the coherent exponential (4) gives
access to all Fock components of the baryon wave func-
tion. Since we are interested in the present case only in the
3-quark component, this coherent exponential is just
ignored. One can see from Eq. (13) that the three valence
quarks are rotated by the SU�3� matrices Rfj where f �
1; 2; 3 � u; d; s is the flavor and j � 1; 2 � u; d is the
isospin index. The projection onto a specific baryon leads
to the following group integral:

 T�B�f1f2f3
j1j2j3;k

�
Z

dRBk�R�R
f1
j1
Rf2
j2
Rf3
j3
: (34)

The group integrals can be found in Appendix A. This
tensor T must be contracted with the three discrete-level
wave functions

p2

p3

p1
j1,σ 1

j2,σ 2

j3,σ 3

FIG. 3. Schematic representation of the 3-quark component of
baryon wave functions. The dark gray rectangle stands for the
three discrete-level wave functions Fji�i�pi�.
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 Fj1�1�p1�F
j2�2�p2�F

j3�3�p3�: (35)

The wave function is schematically represented on Fig. 3.
For example, one obtains the following nonrelativistic 3-quark wave function for the neutron in the coordinate space

 �jnik�f1f2f3;�1�2�3�r1; r2; r3� �

���
8
p

24
�f1f2��1�2�f3

2 �
�3
k h�r1�h�r2�h�r3� � permutations of 1; 2; 3 (36)

times the antisymmetric tensor �	1	2	3 in color. This equation says that in the 3-quark picture the whole neutron spin is
carried by a d-quark while the ud pair is in the spin- and isopin-zero combination. This is similar to the better known
nonrelativistic SU�6� wave function of the neutron
 

jn "i � 2jd " �r1�ijd " �r2�iju # �r3�i � jd " �r1�iju " �r2�ijd # �r3�i � ju " �r1�ijd " �r2�ijd # �r3�i � permutations of 1; 2; 3:

(37)

There are, of course, many relativistic corrections arising from the exact discrete-level wave function (31) and (32) and the
additional quark-antiquark pairs, both effects being generally not small.

VIII. 5-QUARK COMPONENTS OF BARYONS

The 5-quark component of the baryon wave functions is obtained by expanding the coherent exponential (4) to the linear
order in the q �q pair. The projection involves now along with the three R’s from the discrete level two additional matrices
RRy that rotate the quark-antiquark pair in the SU�3� space

 T�B�f1f2f3f4;j5
j1j2j3j4;f5;k

�
Z

dRBk�R�R
f1
j1
Rf2
j2
Rf3
j3
Rf4
j4
Ryj5
f5
: (38)

One then obtains the following 5-quark component of the neutron wave function in the momentum space:
 

�jnik�
f1f2f3f4;�1�2�3�4
f5;�5

�p1 . . . p5� �

���
8
p

360
Fj1�1�p1�F

j2�2�p2�F
j3�3�p3�W

j4�4
j5�5
�p4;p5�

� �k0kf�
f1f2�j1j2

��f3
2 �

f4
f5
�4�j5

j4
�k
0

j3
� �j5

j3
�k
0

j4
� � �f4

2 �
f3
f5
�4�j5

j3
�k
0

j4
� �j5

j4
�k
0

j3
�	

� �f1f4�j1j4
��f2

2 �
f3
f5
�4�j5

j3
�k
0

j2
� �j5

j2
�k
0

j3
� � �f3

2 �
f2
f5
�4�j5

j2
�k
0

j3
� �j5

j3
�k
0

j2
�	g

� permutations of 1; 2; 3 (39)

The color degrees of freedom are not explicitly written but the three valence quarks (1,2,3) are still antisymmetric in color
while the quark-antiquark pair (4,5) is a color singlet. The wave function is schematically represented on Fig. 4.

Exotic baryons from the �10; 1
2
�� multiplet, despite the inexistence of a 3-quark component, have such a 5-quark

component in their wave function. One has, for example, the following wave function for the ��:

 �j��ik�
f1f2f3f4;�1�2�3�4
f5;�5

�p1 . . . p5� �

������
30
p

180
Fj1�1�p1�Fj2�2�p2�Fj3�3�p3�W

j4�4
j5�5
�p4;p5��f1f2�f3f4�j1j2

�j3j4
�3
f5
�j5
k

� permutations of 1; 2; 3: (40)

The color structure is here very simple: �	1	2	3�	4
	5 . This

wave function says that we have two ud pairs in the spin-
and isospin-zero combination and that the whole �� spin
is carried by the �s quark. One has naturally obtained the
minimal quark content of the �� pentaquark uudd �s.

IX. NORMALIZATIONS, VECTOR, AND AXIAL
CHARGES

The normalization of a Fock component n of a specific
spin- 1

2 baryon B wave function is obtained by

 N �n��B� � 1
2�

k
l h�

�n�l�B�j��n�k �B�i: (41)

One has to drag all annihilation operators in ��n�yl�B� to
the right and the creation operators in ��n�k �B� to the left so
that the vacuum state j�0i is nullified. One then gets a
nonzero result due to the anticommutation relations (27) or
equivalently to the ‘‘contractions’’ of the operators.

A typical physical observable is the matrix element of
some operator (preferably written in terms of quark
annihilation-creation operators a, b, ay, by) sandwiched
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between the initial and final baryon wave functions. As
Diakonov and Petrov did in their paper [11], we shall
consider only the operators of the vector and axial charges
which can be written as
 � Q
Q5

�
�
Z

d3x � eJeh

� �0

�0�5

�
 h

�
Z

dz
d2p?
�2��2

�
aye��z;p?�ah��z;p?�Jeh

� ���

���3�
�
�

�

� byh��z;p?�be��z;p?�Jeh

� ���

���3�
�
�

��
; (42)

where Jeh is the flavor content of the charge and �;� �
1; 2 � L;R are helicity states. Notice that there are neither
ayby nor ab terms in the charges. This is a great advantage
of the IMF where the number of q �q pairs is not changed by
the current. Hence there will only be diagonal transitions in
the Fock space, i.e. the charges can be decomposed into the
sum of the contributions from all Fock components Q �P
nQ
�n�, Q5 �

P
nQ
�n�
5 . Notice that there is also a color

index which is just summed up.
The axial charges of the nucleon are defined as forward

matrix elements of the axial current

 hN�p�j � �
�5�a jN�p�i � g�a�A �u�p��
�5u�p�; (43)

where a � 0, 3, 8 and �3, �8 are Gell-Mann matrices; �0 is
just in this context the 3� 3 unit matrix. These axial
charges are related to the first moment of the polarized
quark distributions

 

g�3�A � 	u� 	d; g�8�A �
1���
3
p �	u�	d� 2	s�;

g�0�A � 	u�	d� 	s; (44)

where 	q �
R

1
0 dz�q"�z� � q#�z� � �q"�z� � �q#�z�	. Be-

cause of isospin symmetry, we expect that g�3�A is the
same as the axial charge obtained by the matrix element
of the transition p! ��n.

A. 3-quark contribution

If one looks to the 3-quark component of a baryon wave
function, one can see that there are 3! possible and equiva-
lent contractions of the annihilation-creation operators.
The contraction in color then gives another factor of 3! �
�	1	2	3�	1	2	3

. From Eq. (34) and (41) on can express the
normalization of the 3-quark component of baryon wave
functions as

 N �3��B� �
6 � 6

2
�kl T�B�

f1f2f3
j1j2j3;k

T�B�l1l2l3;lf1f2f3

Z
dz1;2;3

d2p1;2;3?

�2��6
��z1 � z2 � z3 � 1��2��2��2��p1? � p2? � p3?�

� Fj1�1�p1�F
j2�2�p2�F

j3�3�p3�F
y
l1�1
�p1�F

y
l2�2
�p2�F

y
l3�3
�p3�; (45)

where Fj��p� � Fj��z;p?� are the discrete-level wave
functions (31) and (32). In the nonrelativistic limit, one
can write Fj��p�Fyl��p� 
 �jlh

2�p� [see Eq. (33)]. This 3-
quark normalization is schematically represented in Fig. 5.

In the 3-quark sector, there is no antiquark which means
that the byb part of the current does not play. As in the 3-
quark normalization one gets the factor 6.6 from all con-

tractions. Let the third quark be the one whose charge is
measured. One then obtains an additional factor of 3 from
the three quarks to which the charge operator can be
applied (see Fig. 6). If we denote by

R
�dp1�3� the integrals

over momenta with the conservation � functions as in
Eq. (45), one obtains the following expression for matrix
element of the vector charge:

FIG. 5. Schematic representation of the 3-quark normalization.
All contractions of the annihilation-creation operators are
equivalent to this specific one. Each quark line stands for the
color, flavor, and spin contractions �	i	0i

�fif0i
��i�0i

R
dz0id

2p0i?��zi �

z0i��
�2��pi? � p0i?�.

p2

p3

p1

p4

p5

j1,σ 1

j2,σ 2

j3,σ 3

j4,σ 4

j5,σ 5

FIG. 4. Schematic representation of the 5-quark component of
baryon wave functions. The light gray rectangle stands for the
pair wave function Wji�i

jk�k
�pi;pk� where the reversed arrow rep-

resents the antiquark.
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V�3��1! 2� �
6 � 6 � 3

2
�kl T�1�

f1f2f3
j1j2j3;k

T�2�l1l2l3;lf1f2g3

�
Z
�dp1�3�

� �Fj1�1�p1�F
j2�2�p2�F

j3�3�p3�	

� �Fyl1�1
�p1�F

y
l2�2
�p2�F

y
l3�3
�p3�	��

�3
�3J

g3
f3
	:

(46)

We consider here for simplicity only matrix elements with
zero momentum transfer.

The axial charge is easily obtained from the vector one.
One just has to replace the averaging over baryon spin by
1
2 ���3�

k
l and the axial charge operator involves now

���3�
�3
�3 instead of ��3

�3 . One then has

 

A�3��1! 2� �
6 � 6 � 3

2
���3�

k
l T�1�

f1f2f3
j1j2j3;k

T�2�l1l2l3;lf1f2g3

�
Z
�dp1�3� � �Fj1�1�p1�Fj2�2�p2�

� Fj3�3�p3�	�F
y
l1�1
�p1�F

y
l2�2
�p2�F

y
l3�3
�p3�	

� ����3�
�3
�3J

g3
f3
	: (47)

B. 5-quark contributions

In the 5-quark component of the baryon wave functions
there are already two types of contributions to the normal-
ization: the direct and the exchange ones (see Fig. 7). In the
former, one contracts the ay from the pair wave function
with the a in the conjugate pair and all the valence opera-
tors are contracted with each other. As in the 3-quark
normalization, there are six equivalent possibilities but
the contractions in color give now a factor of 6 � 3 �
�	1	2	3�	1	2	3

�		 because of the sum over color in the
pair, then giving a total factor of 108. In the exchange
contribution, one contracts the ay from the pair with one
of the three a’s from the conjugate discrete level. Vice
versa, the a from the conjugate pair is contracted with one
of the three ay’s from the discrete level. There are in all 18
equivalent possibilities but the contractions in color give
only a factor of 6 � �	1	2	�	1	2	3

�	3
	 and so one gets also

a global factor of 108 for the exchange contribution but
with an additional minus sign because one has to anticom-
mute fermion operators to obtain exchange terms. We thus
obtain the following expression for the 5-quark normaliza-
tion:

 

N �5��B� �
108

2
�kl T�B�

f1f2f3f4;j5
j1j2j3j4;f5;k

T�B�l1l2l3l4;f5;l
f1f2g3g4;l5

Z
�dp1�5�F

j1�1�p1�F
j2�2�p2�F

j3�3�p3�W
j4�4
j5�5
�p4; p5�F

y
l1�1
�p1�F

y
l2�2
�p2�

� �Fyl3�3
�p3�W

l5�5
cl4�4
�p4; p5��

g3
f3
�g4
f4
� Fyl3�4

�p4�W
l5�5
cl4�3
�p3; p5��

g3
f4
�g4
f3
	; (48)

where we have denoted

 

Z
�dp1�5� �

Z
dz1�5��z1 � . . .� z5 � 1�

Z d2p1�5?

�2��10 �2��
2��2��p1? � . . .� p5?�: (49)

FIG. 6. Schematic representation of the 3-quark contribution
to a charge. The black dot stands for the one-quark operator with
flavor content Jeh. Since all three quark lines are equivalent, one
has 3 times this specific contribution.

FIG. 7. Schematic representation of the 5-quark direct (left)
and exchange (right) contributions to the normalization.

FIG. 8. Schematic representation of the three types of 5-quark
direct contributions to the charges.
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These schematic representations or diagrams are really useful when one wishes to determine all the different possible
contractions of annihilation-creation operators—the number of equivalent ones and their relative signs. In Appendix B we
give some general rules that help one that desires to explore any specific Fock component of a baryon.

Concerning the vector and axial charges, we have three types of direct contributions and four types of exchange
contributions. From schematic representations of these contributions (see Figs. 8 and 9), it is easy to write the direct and
exchange transitions. We will write only vector charges since axial ones are obtained in the same way as in the 3-quark
sector (the charge operator is in bold). Direct contributions:

 

V�5�direct�1! 2� �
108

2
�kl T�1�

f1f2f3f4;j5
j1j2j3j4;f5;k

T�2�l1l2l3l4;g5;l
f1f2g3g4;l5

Z
�dp1�5�Fj1�1�p1�Fj2�2�p2�Fj3�3�p3�W

j4�4
j5�5
�p4; p5�F

y
l1�1
�p1�

� Fyl2�2
�p2�F

y
l3�3
�p3�W

l5�5
cl4�4
�p4; p5����

g3
f3
�g4
f4

Jf5
g5�

�3
�3�

�4
�4d

�5
�5 � �

g3
f3

Jg4
f4
�f5
g5
��3
�3d

�4
�4�

�5
�5

� 3Jg3
f3
�g4
f4
�f5
g5
d�3
�3�

�4
�4�

�5
�5 	: (50)

Exchange contributions:

 

V�5�exchange�1! 2� � �
108

2
�kl T�1�

f1f2f3f4;j5
j1j2j3j4;f5;k

T�2�l1l2l3l4;g5;l
f1g2g3g4;l5

Z
�dp1�5�Fj1�1�p1�Fj2�2�p2�Fj3�3�p3�W

j4�4
j5�5
�p4; p5�

� Fyl1�1
�p1�F

y
l2�2
�p2�F

y
l3�3
�p3�W

l5�5
cl4�4
�p3; p5����

g2
f2
�g4
f3
�g3
f4

Jf5
g5�

�2
�2�

�4
�3�

�3
�4�

�5
�5

� �g2
f2
�g4
f3

Jg3
f4
�f5
g5
��2
�2�

�4
�3�

�3
�4�

�5
�5 � �

g2
f2

Jg4
f3
�g3
f4
�f5
g5
��2
�2�

�4
�3�

�3
�4�

�5
�5 � 2Jg2

f2
�g4
f3
�g3
f4
�f5
g5
��2
�2�

�4
�3�

�3
�4�

�5
�5 	: (51)

We apply in the next sections these general formulas to
compute the nucleon axial charges and estimate the ��

width.

X. SCALAR OVERLAP INTEGRALS IN THE IMF

The contractions in Eqs. (48), (50), and (51) are easily
performed by MATHEMATICA over all flavor �f; g�, isospin
�j; l� and spin ��; �� indices. One is then left with scalar
integrals over longitudinal z and transverse p? momenta of
the five quarks. The integrals over relative transverse mo-
menta in the q �q pair are generally UV divergent. This
divergence should be cut by the momentum-dependent
dynamical quark mass M�p� [see Eq. (1)]. Following the
authors of [9] we shall mimic the falloff of M�p� by the
Pauli-Villars cutoff atMPV � 556:8 MeV (this value being
chosen from the requirement that the pion decay constant
F� � 93 MeV is reproduced from M�0� � 345 MeV).

The pair wave function (25) is given in terms of the
Fourier transforms of the mean chiral field ��q� and ��q�
(24). One has

 

��q�jj0 � i
�qa�a�jj0

jqj
��q�;

��q� �
4�

q2

Z 1
0

dr sinP�r��qr cosqr� sinqr�< 0;
(52)

 

��q�jj0 � �jj0��q�;

��q� �
4�
q

Z 1
0

drr�cosP�r� � 1� sinqr < 0:
(53)

We remind that q is the 3-momentum of the q �q pair which
is q � ��p� p0�?; �z� z0�M�.

A. 5-quark direct integrals (old result)

Diakonov and Petrov have derived and computed the 5-
quark direct integrals. There are four of them where the
quark-loop integrands have to be understood as renormal-
ized by the Pauli-Villars prescription G�y;Q;q;M� �
�M ! MPV�:

FIG. 9. Schematic representation of the four types of 5-quark exchange contributions to the charges.
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 K�� �
M2

2�

Z d3q
�2��3



�
qz
M

;q?

�
��qz�qz�

2�q�

�
Z 1

0
dy
Z d2Q?

�2��2
Q2
? �M

2

�Q2
? �M

2 � y�1� y�q2�2
;

(54)

 K�� �
M2

2�

Z d3q
�2��3



�
qz
M

;q?

�
��qz�qz�

2�q�

�
Z 1

0
dy
Z d2Q?

�2��2
Q2
? �M

2�2y� 1�2

�Q2
? �M

2 � y�1� y�q2�2
;

(55)

 K33 �
M2

2�

Z d3q
�2��3



�
qz
M

;q?

�
��qz�

q3
z

q2 �2�q�

�
Z 1

0
dy
Z d2Q?

�2��2
Q2
? �M

2

�Q2
? �M

2 � y�1� y�q2�2
;

(56)

 K3� �
M2

2�

Z d3q
�2��3



�
qz
M

;q?

�
��qz�

q2
z

jqj
��q���q�

�
Z 1

0
dy
Z d2Q?

�2��2
Q2
? �M

2�2y� 1�

�Q2
? �M

2 � y�1� y�q2�2
:

(57)

The authors have used the following variables

 y �
z0

z� z0
; Q? �

zp0? � z
0p?

z� z0
: (58)

This set of variables allows one to first integrate over the
relative momenta inside the q �q pair y, Q? and then over
the 3-momentum q of the pair as a whole. The step
function ��qz� ensures that the longitudinal momentum
carried by the pair is positive in the IMF. 
�z;q?� stands
for the probability that three valence quarks ‘‘leave’’ the
longitudinal fraction z � z4 � z5 � qz=M and the trans-
verse momentum q? � p4? � p5? to the q �q pair. In the
nonrelativistic limit, one has
 


�z;q?� �
Z

dz1;2;3
d2p1;2;3?

�2��6
��z� z1 � z2 � z3 � 1�

� �2��2��2��q? � p1? � p2? � p3?�

� h2�p1�h2�p2�h2�p3�: (59)

Since in the 3-quark component of baryons there is no
additional q �q pair, all nonrelativistic quantities in this
sector are proportional to 
�0; 0�. The normalization of
the discrete-level wave function h�p� being arbitrary, we
choose it such that 
�0; 0� � 1.

B. Relativistic corrections to the discrete-level wave
function (new result)

As quoted in [11], the uncertainty associated with the
nonrelativistic approximation is expected to be large.
Indeed, they have systematically used the first-order per-
turbation theory in 1� � where � � Elev=M� 0:58. They
have thus

(i) ignored the lower component of the valence wave
function j�r�,

(ii) ignored the distortion of the valence wave function
by the sea [see Eq. (32)],

(iii) used the approximate expression for the pair wave
function [see Eq. (25)],

(iv) neglected the 5-quark exchange diagrams when
evaluating the 5-quark normalization and transition
matrix elements,

(v) neglected the 7-, 9-, . . .quark components in
baryons.

There are three hints that this nonrelativistic approximation
is not satisfactory: first, the actual expansion parameter
1� � � 0:42 is poor and second the ratio of the 5- to 3-
quark normalization is 50%. Finally, this can also be seen
from the actual components h�r� and j�r� of the discrete-
level wave function (Fig. 2). Diakonov and Petrov com-
mented that the lower component j�r� is ‘‘substantially’’
smaller than the upper one h�r�. In fact the j�r� contribu-
tion to the normalization of the discrete-level wave func-
tion  lev�x� is still 20% (result in accordance with [27]).
This combined with combinatorics factors in Eq. (60)
shows that considering the lower component j�r� can
have a big impact on the estimations. The nucleon is thus
definitely a relativistic system.

We have improved the technique by considering the full
expression for the discrete-level wave function (31). We
have found that we have to use in the probability distribu-
tion (59) instead of h2�p1�h

2�p2�h
2�p3� the following com-

bination:

 

h2�p1�h2�p2�h2�p3� � 6h2�p1�h2�p2�

�
h�p3�

p3z

jp3j
j�p3�

�
� 3h2�p1�h2�p2�j2�p3� � 12h2�p1�

�
h�p2�

p2z

jp2j
j�p2�

�

�

�
h�p3�

p3z

jp3j
j�p3�

�
� 12h2�p1�

�
h�p2�

p2z

jp2j
j�p2�

�
j2�p3� � 8

�
h�p1�

p1z

jp1j
j�p1�

��
h�p2�

p2z

jp2j
j�p2�

��
h�p3�

p3z

jp3j
j�p3�

�

� 3h2�p1�j
2�p2�j

2�p3� � 12
�
h�p1�

p1z

jp1j
j�p1�

��
h�p2�

p2z

jp2j
j�p2�

�
j2�p3� � 6

�
h�p1�

p1z

jp1j
j�p1�

�
j2�p2�j

2�p3�

� j2�p1�j2�p2�j2�p3�; (60)
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where of course piz � ziM� Elev. When an axial operator acts on the valence quarks it sees a slightly different
probability distribution [this integral will be denoted by ��z;q?�]
 

h2�p1�h2�p2�h2�p3� � 6h2�p1�h2�p2�

�
h�p3�

p3z

jp3j
j�p3�

�
� h2�p1�h2�p2�

2p2
3z � p

2
3

p2
3

j2�p3� � 12h2�p1�

�
h�p2�

p2z

jp2j
j�p2�

�

�

�
h�p3�

p3z

jp3j
j�p3�

�
� 4h2�p1�

�
h�p2�

p2z

jp2j
j�p2�

�
2p2

3z � p
2
3

p2
3

j2�p3� � 8
�
h�p1�

p1z

jp1j
j�p1�

��
h�p2�

p2z

jp2j
j�p2�

�

�

�
h�p3�

p3z

jp3j
j�p3�

�
� h2�p1�j2�p2�

4p2
3z � p

2
3

p2
3

j2�p3� � 4
�
h�p1�

p1z

jp1j
j�p1�

��
h�p2�

p2z

jp2j
j�p2�

�
2p2

3z � p
2
3

p2
3

j2�p3�

� 2
�
h�p1�

p1z

jp1j
j�p1�

�
j2�p2�

4p2
3z � p

2
3

p2
3

j2�p3� � j2�p1�j2�p2�
2p2

3z � p
2
3

p2
3

j2�p3�: (61)

This distribution has been normalized in such a way that
the prefactor of the axial charge is the same as the one of
the vector charge (50).

Then in the 3-quark component of baryons all quantities
are proportional to either 
�0; 0� or ��0; 0�. The normal-
ization of the discrete-level wave functions h�p� and j�p�
being arbitrary, we choose it such that 
�0; 0� � 1.

Note that we still have not taken into account the dis-
tortion of the valence level due to the sea.

C. 5-quark exchange integrals (new result)

Our other improvement of the technique is the consid-
eration of the exchange diagrams which were believed to
have a strong impact on observables because of their sign
opposite to the direct one [11] [see, for example, Eq. (48)].
We have found that for the exchange contributions there
were 13 nonzero scalar integrals. Since the quark from the
sea is exchanged with a valence quark, we cannot disen-
tangle the quark-antiquark pair from the valence quarks. At
best two valence quarks can be factorized out and leave 9-
dimensional integrals

 K �
M2

2�

Z
�dp3;4;5��Z;P?�

�
M2

2�Z0Z
I�z3;4;5;p3;4;5?�h�p3�h�p4�; (62)

where Z � z3 � z4 � z5, P? � �p3 � p4 � p5�?, Z is
given by Eq. (26) with z � z4 and z0 � z5 while Z0 is the
same but with the replacement z4 ! z3. The function
I�z3;4;5;p3;4;5?� stands for the 13 integrands

 I1 � ��q0���q��Q0? �Q? �M2�z5 � z3��z5 � z4��;

(63)

 

I2 � ��q0���q�
q0 � q
q0q

�Q0? �Q? �M2�z5 � z3��z5 � z4��;

(64)

 I3 � ��q0���q�
q0? � q?
q0q

�Q0? �Q?�; (65)

 I4 � ��q0���q�
M�q0?qz � q?q0z�

q0q
� �Q? �Q0?�; (66)

 I5 � ��q0���q�
q0zqz
q0q
�Q0? �Q? �M2�z5 � z3��z5 � z4��;

(67)

 I6 � ��q0���q�
qz
q
�Q0? �Q? �M2�z5 � z3��z5 � z4��;

(68)

 I7 � ��q0���q�
Mq?
q
� �Q0?�z5 � z4� �Q?�z5 � z3��;

(69)

 I8 � ��q0���q��Q0? �Q? �M2�z5 � z3��z5 � z4��;

(70)

 

I9 � ��q0���q�
q0 � q
q0q

�Q0? �Q? �M2�z5 � z3��z5 � z4��;

(71)

 I10 � ��q0���q�
M�q0?qz � q?q0z�

q0q
� �Q? �Q0?�; (72)

 

I11 � ��q0���q�
q0zqz
q0q
�Q0? �Q? �M2�z5 � z3��z5 � z4��;

(73)

 I12 � ��q0���q�
qz
q
�Q0? �Q? �M2�z5 � z3��z5 � z4��;

(74)

 I13 � ��q0���q�
Mq?
q
� �Q0?�z5 � z4� �Q?�z5 � z3��;

(75)

where q � ��p4 � p5�?; �z4 � z5�M� and Q? � z4p5? �
z5p4?. The primed variables stand for the same as the
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unprimed ones but with the replacement z4 ! z3. The
regularization of those integrals is done exactly in the
same way as for the direct contributions.

The function �Z;P?� stands for the probability that
two valence quarks leave the longitudinal fraction Z �
z3 � z4 � z5 and the transverse momentum P? � p3? �
p4? � p5? to the rest of the partons

 �Z;P?� �
Z

dz1;2
d2p1;2?

�2��4
��Z� z1 � z2 � 1�

� �2��2��2��P? � p1? � p2?�h2�p1�h2�p2�:

(76)

We have kept, of course, the same normalization of the
discrete-level wave function h�p� as in the direct contribu-
tions, i.e. such that 
�0; 0� �

R
�dp��z;p?�h2�p� � 1.

Anticipating the results, we have not considered relativistic
corrections to this probability distribution since exchange
contributions appear to be fairly negligible. Exchange
contributions have then been computed only in the non-
relativistic limit.

XI. RESULTS

All normalizations, vector and axial charges are linear
combinations of (54)–(57) for the direct contributions and
of (63)–(75) for the exchange ones.

A. Old results

In their paper [11], Diakonov and Petrov have obtained
the following combinations:
 

Nucleon normalization: N �3��N� � 9
�0; 0�; (77)

 N �5�direct�N� �
18

5
�11K�� � 23K���: (78)

Axial charge of the p! ��n transition:

 A�3��p! ��n� � 15
�0; 0�; (79)

 

A�5�direct�p! ��n� �
6

25
�209K�� � 559K�� � 34K33

� 356K3��: (80)

 �� normalization: N �5�direct��� �
36

5
�K�� � K���:

(81)

Axial charge of the �� ! K�n transition:
 

A�5�direct��� ! K�n� �
6

5

���
3

5

s
��7K�� � 5K�� � 8K33

� 28K3��: (82)

B. New results

We have obtained the exchange combinations relative to
these quantities. On top of that we have computed the
matrix elements of �q�0�5q with q � u, d, s for the nu-
cleon in order to obtain the three nucleon axial charges
(44).
 

Nucleon normalization:

N �5�exchange�N� �
�12

5
�9K1 � 4K3 � 4K4

� 17K6 � 17K7�: (83)

Axial charge of the p! ��n transition:
 

A�5�exchange�p! ��n� �
�2

25
�557K1 � K2 � 221K3

� 192K4 � 2K5 � 908K6

� 978K7 � 98K8 � 50K9

� 62K10 � 124K11 � 48K12

� 100K13�: (84)

Proton first moment of polarized quark distributions:

 	u�3� � 12
�0; 0�; (85)

 	d�3� � �3
�0; 0�; (86)

 	s�3� � 0; (87)

 

	u�5�direct�p� �
18

25
�41K�� � 151K�� � 14K33 � 74K3��;

(88)

 

	d�5�direct�p� �
12

25
��43K�� � 53K�� � 38K33 � 67K3��;

(89)

 	s�5�direct�p� �
12

25
��11K�� � K�� � 16K33 � 14K3��;

(90)

 

	u�5�exchange�p� �
�6

25
�153K1 � K2 � 49K3 � 48K4

� 2K5 � 262K6 � 232K7 � 32K8

� 8K10 � 16K11 � 32K12�; (91)

 	d�5�exchange�p� �
�4

25
��49K1 � 2K2 � 37K3 � 24K4

� 4K5 � 61K6 � 141K7 � K8 � 25K9

� 19K10 � 38K11 � 24K12 � 50K13�;

(92)
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	s�5�exchange�p� �
�2

25
�14K1 � 8K2 � 13K3 � 6K4

� 16K5 � 26K6 � 54K7 � 11K8

� 25K9 � 16K10 � 32K11 � 36K12

� 50K13�: (93)

It is then easy to obtain the three axial charges. As expected
by isospin symmetry the axial charge obtained by the p!
��n transition is the same as g�3�A in any of the 3- or 5-
quark direct or exchange contributions:

 g�3�
A�3�
� A�3��p! ��n�; (94)

 g�8�
A�3�
� 3

���
3
p


�0; 0�; (95)

 g�0�
A�3�
� 9
�0; 0�; (96)

 g�3�
A�5�direct � A�5�direct�p! ��n�; (97)

 g�8�
A�5�direct �

18
���
3
p

25
�9K�� � 39K�� � 6K33 � 16K3��;

(98)

 g�0�
A�5�direct �

18

5
�K�� � 23K�� � 10K33 � 4K3��; (99)

 g�3�
A�5�exchange � A�5�exchange�p! ��n�; (100)

 

g�8�
A�5�exchange �

�6
���
3
p

25
�37K1 � K2 � 11K3 � 12K4 � 2K5

� 68K6 � 58K7 � 8K8 � 2K10 � 4K11

� 8K12�; (101)

 

g�0�
A�5�exchange �

�6

5
�25K1 � K2 � 4K3 � 6K4 � 2K5 � 46K6

� 24K7 � 7K8 � 5K9 � 2K10 � 4K11

� 12K12 � 10K13�: (102)

For the vector charge of the p! ��n transition one gets
exactly the same expression as the normalization of the
contribution under consideration, which means that the
vector charge is conserved in each Fock component sepa-
rately and even in the direct and exchange sectors
separately.

Here are our results for the �� pentaquark:
 

�� normalization:

N �5�exchange��� �
�12

5
�K3 � K4 � 2K6 � 2K7�: (103)

Axial charge of the �� ! K�n transition:
 

A�5�exchange��� ! K�n� �
�2

5

���
3

5

s
��7K1 � K2 � 7K3

� 3K4 � 2K5 � 4K6 � 18K7

� 10K8 � 10K9 � 10K10

� 20K11 � 20K13�: (104)

When relativistic effects are considered, the axial operator
changes the structure of the probability distribution. One
has then to replace K��, K��, and K33 by K0��, K0��, and
K033, i.e. the same integrals but with 
�z;q?� [Eq. (60)]
replaced by ��z;q?� [Eq. (61)]. Note that K3� is not
affected since this integral appears only when the axial
operator acts on the pair.

The numerical value of these matrix elements has to be
properly normalized as in the following example:

 gA��! KN� �
A�5�direct��� ! K�n� � A�5�exchange��� ! K�n������������������������������������������������������������������

N �5�direct��� �N �5�exchange���
q �����������������������������������������������������������������������������������������

N �3��N� �N �5�direct�N� �N �5�exchange�N�
q : (105)

XII. NUMERICAL RESULTS
In the evaluation of the scalar integrals we have used the

quark mass M � 345 MeV, the self-consistent profile
function [4], the Pauli-Villars mass MPV � 556:8 MeV
for the regularization of (54)–(57) and (63)–(75), and the
baryon mass M � 1207 MeV as it follows for the ‘‘clas-
sical’’ mass in the mean field approximation [5]. The self-
consistent scalar ��q� and pseudoscalar ��q� fields are
plotted in Fig. 10. The probability distributions �z;q?�
(76) and 
�z;q?� (59) that two or three valence quarks
leave the fraction z of the baryon momentum and the

transverse momentum q? are plotted in Fig. 11 in the
nonrelativistic limit and in Fig. 12 with relativistic correc-
tions to the discrete-level wave function. By comparison
one immediately sees that relativistic corrections shift the
bump in the probability distributions to lower values of z
and smear it a little bit. When relativistic corrections to an
axial charge are considered, one has to use the ��z;q?�
probability distribution which is slightly different (see
Fig. 12) from the relativistically corrected 
�z;q?�. We
remind that the normalization of the discrete-level wave
functions h�p� [and j�p�] is chosen such that we have

�0; 0� � 1.
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The numerical evaluation of the nonrelativistic direct
integrals (54)–(57) yields

 

K�� � 0:0624; K�� � 0:0284;

K33 � 0:0373; K3� � 0:0334:
(106)

We have recalculated the integrals. The numerical preci-
sion is the reason why these numbers are slightly different
from those given in [11].

The numerical evaluation of the direct integrals (54)–
(57) with relativistic corrections to the discrete-level wave
function yields
 

K�� � 0:0365; K�� � 0:0140;

K33 � 0:0197; K3� � 0:0163:
(107)

As one can expect from the comparison between Figs. 11
and 12, relativistic corrections reduce strongly (about one
half) the values of the scalar integrals.

The numerical evaluation of the direct integrals (54)–
(57) with relativistic corrections to the discrete-level wave
function that enter axial charges and first moment of po-
larized quark distributions yields

 K0�� � 0:0300; K0�� � 0:0112; K033 � 0:0163:

(108)

The numerical evaluation of the exchange integrals
(63)–(75) yields
 

K1 � 0:0056; K2 � 0:0097; K3 � �0:0008

K4 � 0:0047; K5 � 0:0086; K6 � 0:0042;

K7 � 0:0029; K8 � 0:0043; K9 � 0:0031;

K10 � 0:0069; K11 � 0:0017; K12 � 0:0057;

K13 � 0:0023: (109)

All nucleon axial charges and first moment of polarized
quark distributions are collected and presented in Table I.
Although the 5-quark contributions improve the too sim-
plistic 3-quark view, one can see that the direct contribu-
tions are dominant while the exchange ones are clearly
negligible. This is partly due to the small values of the
integrals (109) which are phase-space suppressed com-
pared to (106). One can also notice that relativistic correc-
tions have a nonnegligible impact on the observables (the
relativistic correction to the 3-quark component of the
axial charges amounts to a multiplication of the nonrela-
tivistic values by a factor of 0.861) and then conclude that
the nonrelativistic approximation is too crude. Since non-

1 2 3 4 5
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15

FIG. 10. The self-consistent pseudoscalar �jqj��q� (solid
curve) and scalar �jqj��q� (dashed curve) fields in baryons.
The horizontal axis unit is M.
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FIG. 11 (color online). The nonrelativistic probability distri-
bution that two (left) or three (right) valence quarks leave the
fraction z of the baryon momentum and the transverse momen-
tum q? plotted in units of M and normalized to unity for z �
q? � 0.
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FIG. 12 (color online). The probability distribution that two (left) or three (middle) valence quarks leave the fraction z of the baryon
momentum and the transverse momentum q? with relativistic corrections to the discrete-level wave function plotted in units of M and
normalized to unity for z � q? � 0. Relativistic corrections clearly shift the bump in the probability distributions to smaller values z
meaning that they leave less longitudinal momentum fraction to the quark-antiquark pair. They seem also to smear a little bit this
bump. On the right is plotted the probability distribution that enters scalar integrals when an axial charge is considered.
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relativistic exchange contributions change the observable
so little we have not computed their relativistic corrections.

We have fairly well reproduced g�3�A � 1:241 while the
experimental value is 1:257� 0:003. However, the com-
puted axial charges g�8�A and g�0�A are not satisfactory (0.444
and 0.787 against 0:34� 0:02 and 0:31� 0:07). Only
additional quark-antiquark pairs contribute to 	s.
Unfortunately, the effect of one pair in our computation
is in the wrong direction since the contribution is positive.
On top of that, relativistic effects and an addition of a pair
reduce the nonrelativistic 3-quark amplitude of 	d instead
of increasing it. In order to preserve g�3�A , one should
explain the shift of 0.2 between experimental and com-
puted values for 	u and 	d.

The axial charge of the �� ! K�n transition allows
one to roughly estimate the �� width. If we assume the
approximate SU�3� chiral symmetry one can obtain the
�! KN pseudoscalar coupling from the generalized
Goldberger-Treiman relation

 g�KN �
gA��! KN��M� �MN�

2FK
; (110)

where we use M� � 1530 MeV, MN � 940 MeV. and
FK � 1:2F� � 112 MeV. Once this transition pseudosca-
lar constant is known one can evaluate the �� width from
the general expression for the 1

2� hyperon decay [28]

 �� � 2
g2

�KNjpj
8�

�M� �MN�
2 �m2

K

M2
�

; (111)

where jpj �
����������������������������������������������������������������
�M2

� �M
2
N �m

2
K�

2 � 4M2
Nm

2
K

q
=2M� �

254 MeV is the kaon momentum in the decay (mK �
495 MeV) and the factor of 2 stands for the equal proba-
bility K�n and K0p decays. All results for the �� penta-
quark are collected in Table II. Such as in the nucleon case,
the exchange contribution is negligible. However, relativ-
istic corrections to the discrete-level wave function are not
negligible (reduction of 30% for the axial coupling and of
50% for the width). This can be expected from the fact that
the �� width directly depends on the number of q �q pairs in
ordinary baryons [11]. Indeed, the axial transition from the
�� to a nucleon can only take place between similar Fock
components. This means that the 5-quark component of the
�� can only be connected with the 5-quark component of
the nucleon. Since relativistic corrections reduce the 5- to
3-quark normalization of the nucleon, so is the �� width.

XIII. CONCLUSION

The chiral quark soliton model [4] provides a relativistic
description of the light baryons with an indefinite number
of q �q pairs. Using this model, Diakonov and Petrov [11]
have presented a technique allowing one to write down
explicitly the 3-, 5-, 7-, . . .quark wave functions of the
octet, decuplet, and antidecuplet. It is important that the q �q
pair in the 5-quark component of any baryon is added in the
form of a chiral field, which costs little energy. That is why
the 5-quark component of the nucleon turns out to be
substantial and why the exotic �� baryon is expected to
be light.

TABLE I. Results for the nucleon: axial charges, first moment of polarized quark distributions, and ratio of the 5- to the 3-quark
normalization. First, results in the nonrelativistic approximation are given, then with relativistic corrections to the discrete-level wave
function.

Nonrelativistic Relativistic
3q 3q� 5q direct 3q� 5q dir:� exch: 3q 3q� 5q direct Exp. value

g�3�A 5=3 1.359 1.360 1.435 1.241 1:257� 0:003

g�8�A 1=
���
3
p

0.499 0.500 0.497 0.444 0:34� 0:02

g�0�A 1 0.900 0.901 0.861 0.787 0:31� 0:07
	u 4=3 1.123 1.125 1.148 1.011 0:83� 0:03
	d �1=3 �0:236 �0:235 �0:287 �0:230 �0:43� 0:043
	s 0 0.012 0.012 0 0.006 �0:10� 0:03
N �5�=N �3� – 0.536 0.550 – 0.289 –

TABLE II. Results for the �� pentaquark: axial charge of the �� ! K�n transition, �!
KN pseudoscalar coupling, and �� width. First, results in the nonrelativistic approximation are
given, then with relativistic corrections to the discrete-level wave function.

Nonrelativistic Relativistic
3q� 5q direct 3q� 5q dir:� exch: 3q� 5q direct

gA��! KN� 0.202 0.203 0.144
g�KN 2.230 2.242 1.592
�� (MeV) 4.427 4.472 2.256
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For self-consistency, this technique has been reviewed
and then used in the present paper. It is really powerful and
with sufficient patience one can write any Fock component
of any baryon and compute lots of matrix elements.
Diakonov and Petrov have estimated the normalization of
the 5-quark component of the nucleon as about 50% of the
3-quark component, meaning that about 1=3 of the time the
nucleon is made of five quarks. They have also showed that
the 5-quark component in the nucleon moves its axial
charge gA�p! ��n� from the naı̈ve nonrelativistic value
5=3 much closer to the experimental value. They have
estimated the �� width as being �4 MeV thanks to the
axial constant for the �! KN transition and showed that
it is proportional to the number of q �q pairs in ordinary
baryons. Assuming SU�3� symmetry, the �� width is
additionally suppressed by the SU�3� Clebsch-Gordan fac-
tors. Therefore, the �� width of a few MeV appears
naturally in the chiral quark soliton model without any
parameter fixing.

However, these estimations are rather crude since sev-
eral approximations were used (the first-order perturbation
theory in 1� � where � � Elev=M� 0:58): the lower
component of the valence wave function j�r� was ignored
as well as the distortion of the valence wave function by the
sea, an approximate expression for the pair wave function
was used, the 7-, 9-, . . .quark components were neglected
and exchange contributions to the 5-quark component were
disregarded. It is difficult to evaluate the errors of these
approximations. Unfortunately, the uncertainty associated
with this nonrelativistic approximation is expected to be
large since the expansion parameter 1� � � 0:42 is poor.
Another sign saying that the nucleon is a relativistic system
comes from the 50% ratio of the 5-quark to the 3-quark
normalization. It was also expected that exchange contri-
butions reduce further the �� width and that is what
actually motivated the present work.

We have improved the technique by taking into account
on the one hand the 5-quark exchange contributions and on
the other hand relativistic corrections to the discrete-level
wave function. Because of the relative sign of their con-
tributions, the 5-quark exchange diagrams were expected
to be a main source of error. In fact it turns out that they are
completely negligible, a fact partly due to the phase-space
suppression of the integrals. The other main source of
uncertainty was the relativistic approximation. This time,
as expected from the hints that the nucleon is a genuine
relativistic system, the relativistic corrections have a non-
negligible impact on observables. Especially, they reduce
the 5- to 3-quark normalization of the nucleon to 30%
instead of 50%. This has the direct effect to reduce also
the �� width which has now been estimated to �2 MeV.
We have also computed all nucleon axial charges. Even if
we find g�3�A � 1:241, g�8�A and g�0�A are not satisfactory,
especially the latter (0.444 and 0.787 against 0:34� 0:02
and 0:31� 0:07). The 	s then obtained is small and

positive (0.006 against �0:10� 0:03) while 	u and 	d
are both 0.2 higher than the experimental values (1.017 and
�0:230 against 0:83� 0:03 and �0:43� 0:043).

The distortion of the valence level due to the sea has
been neglected and has probably another nonnegligible
effect on the observables. The 7-, 9-, . . .quark Fock com-
ponents are not believed to have a strong impact.
Nevertheless it is rather difficult to estimate the impact
unless an explicit computation is done.

The formalism has a broad field of applications, apart
from exotic baryons. One can indeed compute any type of
transition amplitudes between various Fock components of
baryons, including the relativistic effects, the effects of the
SU�3� symmetry violation, the mixing of multiplets, and so
on. One can then in principle study various vector and axial
charges and the magnetic moments and magnetic transi-
tions, as well as derive parton distributions thanks to this
technique.
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APPENDIX A: GROUP INTEGRALS

We give in this appendix a list of group integrals over the
Haar measure of the SU�N� group and normalized to unityR

dR � 1 that are needed for the technique. Most of them
are simply copied from Appendix B of [11]. For the sake of
completeness we have also added the group integral that
allows one to derive the 5-quark component of the decuplet
baryons.

For any SU�N� group one has

 

Z
dRRfi � 0;

Z
dRRyif � 0;

Z
dRRfi R

yj
g �

1

N
�fg�

j
i :

(A1)

For N � 2, the following group integral is nonzero

 

Z
dRRfi R

g
j �

1

2
�fg�ij (A2)

while it is zero for N > 2. The SU�3� analog is

 

Z
dRRfi R

g
jR

h
k �

1

6
�fgh�ijk (A3)

which is on the contrary zero for SU�2�.
Here is the general method of finding integrals of several

matrices R, Ry. The result of an integration over the
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invariant measure can be only invariant tensors which, for
the SU�N� group, can be built solely from the Kronecker �
and Levi-Civita � tensors. One constructs the supposed
tensor of a given rank as a combination of �’s and �’s,
satisfying the symmetry relations following from the inte-
gral in question. The indefinite coefficients in the combi-
nation are then found from contracting both sides with
various �’s and �’s and thus by reducing the integral to a
previously derived one.

For any SU�N� group one has
 Z

dRRf1
i1
Ryj1
g1
Rf2
i2
Ryj2
g2
�

1

N2 � 1

�
�f1
g1
�f2
g2

�
�j1
i1
�j2
i2

�
1

N
�j2
i1
�j1
i2

�
� �f1

g2
�f2
g1

�
�j2
i1
�j1
i2

�
1

N
�j1
i1
�j2
i2

��
: (A4)

In SU�2� there is an identity

 �jj1
�j2j3

� �jj2
�j3j1

� �jj3
�j1j2

� 0; (A5)

using which one finds that the following integral is non-
zero:

 

Z
dRRf1

j1
Rf2
j2
Rf3
j3
Ryjg �

1

6
��f1

g �
j
j1
�f2f3�j2j3

� �f2
g �

j
j2
�f3f1�j3j1

� �f3
g �

j
j3
�f1f2�j1j2

�: (A6)

For N > 2 this integral is zero. The analog of the identity
(A5) in SU�3� is

 �jj1
�j2j3j4

� �jj2
�j3j4j1

� �jj3
�j4j1j2

� �jj4
�j1j2j3

� 0; (A7)

which gives the group integral involved when an octet
baryon is projected onto three quarks

 

Z
dRRf1

j1
Rf2
j2
Rf3
j3
Rf4
j4
Ryjg �

1

24
��f1

g �
j
j1
�f2f3f4�j2j3j4

� �f2
g �

j
j2
�f3f4f1�j3j4j1

� �f3
g �

j
j3
�f4f1f2�j4j1j2

� �f4
g �

j
j4
�f1f2f3�j1j2j3

�:

(A8)

To evaluate the SU�3� average of six matrices, one needs the identities

 �i1j2j3
�j1i2i3 � �i2j2j3

�i1j1i3 � �i3j2j3
�i1i2j1

� �j1i1j3
�j2i2i3 � �j1i2j3

�i1j2i3 � �j1i3j3
�i1i2j2

� �j1j2i1�j3i2i3 � �j1j2i2�i1j3i3 � �j1j2i3�i1i2j3
� �i1i2i3�j1j2j3

: (A9)

One gets then the group integral involved when an antidecuplet baryon is projected onto three quarks

 

Z
dRRf1

j1
Rf2
j2
Rf3
j3
Rh1
i1
Rh2
i2
Rh3
i3
�

1

72
��f1f2f3�h1h2h3�j1j2j3

�i1i2i3 � �
h1f2f3�f1h2h3�i1j2j3

�j1i2i3 � �
h2f2f3�h1f1h3�i2j2j3

�i1j1i3

� �h3f2f3�h1h2f1�i3j2j3
�i1i2j1

� �f1h1f3�f2h2h3�j1i1j3
�j2i2i3 � �

f1h2f3�h1f2h3�j1i2j3
�i1j2i3

� �f1h3f3�h1h2f2�j1i3j3
�i1i2j2

� �f1f2h1�f3h2h3�j1j2i1�j3i2i3 � �
f1f2h2�h1f3h3�j1j2i2�i1j3i3

� �f1f2h3�h1h2f3�j1j2i3�i1i2j3
�: (A10)

The result for the next integral is rather lengthy. We give it for the general SU�N�. For abbreviation, we use the notation

 �f1
a �

f2
b �

f3
c �dj1

�ej2
�fj3
� �abc��def�: (A11)

One has the following group integral involved when a decuplet baryon is projected onto three quarks:

 Z
dRRf1

j1
Rf2
j2
Rf3
j3
Ryi1h1

Ryi2h2
Ryi3h3

�
1

N�N2 � 1��N2 � 4�
f�N2 � 2���123��123� � �132��132� � �321��321� � �213��213�

� �312��312� � �231��231�	 � N��123���132� � �321� � �213�� � �132���123�

� �231� � �312�� � �321���312� � �123� � �231�� � �213���231� � �312� � �123��

� �312���213� � �132� � �321�� � �231���321� � �213� � �132��	

� 2��123���312� � �231�� � �132���213� � �321�� � �321���132� � �213��

� �213���321� � �132�� � �312���123� � �231�� � �231���312� � �123��	g: (A12)

Apparently at N � 2 something goes wrong. For N � 2 there is a formal identity following from the fact that one has for
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this special case �f1f2f3�h1h2h3
� 0

 �123� � �231� � �312� � �132� � �321� � �213� � 0: (A13)

Consequently, for SU�2� one obtains a shorter expression

 Z
dRRf1

j1
Rf2
j2
Rf3
j3
Ryi1h1

Ryi2h2
Ryi3h3

�
1

6
f��123��123� � �132��132� � �321��321� � �213��213� � �312��312� � �231��231�	

�
1

4
��123���132� � �321� � �213�� � �132���123� � �231� � �312�� � �321���312�

� �123� � �231�� � �213���231� � �312� � �123�� � �312���213� � �132� � �321��

� �231���321� � �213� � �132��	g (A14)

If one is interested in the presence of an additional quark-antiquark pair in an octet baryon, one has to use the group
integral

 

Z
dRRf1

j1
Rf2
j2
Rf3
j3
�Rf4

j4
Ryj5
f5
�Rh3R

yk
g �

1

360
f�f1f2h�j1j2

��f3
g �

f4
f5
�4�j5

j4
�kj3
� �j5

j3
�kj4
� � �f4

g �
f3
f5
�4�j5

j3
�kj4
� �j5

j4
�kj3
�	

� �f1f3h�j1j3
��f2

g �
f4
f5
�4�j5

j4
�kj2
� �j5

j2
�kj4
� � �f4

g �
f2
f5
�4�j5

j2
�kj4
� �j5

j4
�kj2
�	

� �f1f4h�j1j4
��f2

g �
f3
f5
�4�j5

j3
�kj2
� �j5

j2
�kj3
� � �f3

g �
f2
f5
�4�j5

j2
�kj3
� �j5

j3
�kj2
�	

� �f2f3h�j2j3
��f1

g �
f4
f5
�4�j5

j4
�kj1
� �j5

j1
�kj4
� � �f4

g �
f1
f5
�4�j5

j1
�kj4
� �j5

j4
�kj1
�	

� �f2f4h�j2j4
��f1

g �
f3
f5
�4�j5

j3
�kj1
� �j5

j1
�kj3
� � �f3

g �
f1
f5
�4�j5

j1
�kj3
� �j5

j3
�kj1
�	

� �f3f4h�j3j4
��f1

g �
f2
f5
�4�j5

j2
�kj1
� �j5

j1
�kj2
� � �f2

g �
f1
f5
�4�j5

j1
�kj2
� �j5

j2
�kj1
�	

 

� �f1f2f3�j1j2j3
��hg�

f4
f5
�4�j5

j4
�k3 � �

j5
3 �

k
j4
� � �f4

g �hf5
�4�j5

3 �
k
j4
� �j5

j4
�k3�	

� �f2f3f4�j2j3j4
��hg�

f1
f5
�4�j5

j1
�k3 � �

j5
3 �

k
j1
� � �f1

g �hf5
�4�j5

3 �
k
j1
� �j5

j1
�k3�	

� �f3f4f1�j3j4j1
��hg�

f2
f5
�4�j5

j2
�k3 � �

j5
3 �

k
j2
� � �f2

g �hf5
�4�j5

3 �
k
j2
� �j5

j2
�k3�	

� �f4f1f2�j4j1j2
��hg�

f3
f5
�4�j5

j3
�k3 � �

j5
3 �

k
j3
� � �f3

g �hf5
�4�j5

3 �
k
j3
� �j5

j3
�k3�	g: (A15)

For finding the quark structure of the antidecuplet, the following group integrals are relevant. The conjugate rotational
wave function of the antidecuplet is

 Afh1h2h3g
k �R� �

1

3
�Rh1

3 R
h2
3 R

h3
k � R

h2
3 R

h3
3 R

h1
k � R

h3
3 R

h1
3 R

h2
k �: (A16)

Projecting it on three quarks and using Eq. (A10) one gets an identical zero because all terms in (A10) are antisymmetric in
a pair of flavor indices while the tensor (A16) is symmetric. It reflects the fact that one cannot build an antidecuplet from
three quarks

 

Z
dRRf1

j1
Rf2
j2
Rf3
j3
Afh1h2h3g
k �R� � 0: (A17)

However, a similar group integral with an additional quark-antiquark pair is nonzero:
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 Z
dRRf1

j1
Rf2
j2
Rf3
j3
�Rf4

j4
Ryj5
f5
�Afh1h2h3g

k �R� �
1

1080
f��j5

k �j1j2
�j3j4

� �j5
3 �j1j2k�j3j4

� �j5
3 �j1j2

�j3j4k�

� ��h3
f5
��f1f2h1�f3f4h2 � �f1f2h2�f3f4h1� � �h1

f5
��f1f2h3�f3f4h2 � �f1f2h2�f3f4h3�

� �h2
f5
��f1f2h1�f3f4h3 � �f1f2h3�f3f4h1�	 � ��j5

k �j2j3
�j4j1

� �j5
3 �j2j3k�j4j1

� �j5
3 �j2j3

�j4j1k���
h3
f5
��f2f3h1�f4f1h2 � �f2f3h2�f4f1h1� � �h1

f5
��f2f3h3�f4f1h2

� �f2f3h2�f4f1h3� � �h2
f5
��f2f3h1�f4f1h3 � �f2f3h3�f4f1h1�	

� ��j5
k �j1j3

�j2j4
� �j5

3 �j1j3k�j2j4
� �j5

3 �j1j3
�j2j4k�

� ��h3
f5
��f1f3h1�f2f4h2 � �f1f3h2�f2f4h1� � �h1

f5
��f1f3h3�f2f4h2 � �f1f3h2�f2f4h3�

� �h2
f5
��f1f3h1�f2f4h3 � �f1f3h3�f2f4h1�	g: (A18)

We complete this set of integrals by adding the projection of a decuplet baryon onto three quarks and a quark-antiquark
pair. The result is rather lengthy. We introduce on the top of (A11) the following notation:

 

�abcd	 � �1234��abcd� � �2341��bcda� � �3412��cdab� � �4123��dabc� � �2134��bacd� � �1342��acdb�

� �3421��cdba� � �4213��dbac� � �3214��cbad� � �2143��badc� � �1432��adcb� � �4321��dcba�

� �4231��dbca� � �2314��bcad� � �3142��cadb� � �1423��adbc� � �1324��acbd� � �3241��cbda�

� �2413��bdac� � �4132��dacb� � �1243��abdc� � �2431��bdca� � �4312��dcab� � �3124��cabd�: (A19)

We then obtain
 Z

dRRf1
j1
Rf2
j2
Rf3
j3
Rf4
j4
Ryi1h1

Ryi2h2
Ryi3h3

Ryi4h4
�

1

N2�N2 � 1��N2 � 4��N2 � 9�
f�N4 � 8N2 � 6��1234	 � 5N��2341	 � �4123	

� �3421	 � �4312	 � �3142	 � �2413	� � �N2 � 6���3412	 � �2143	

� �4321	� � N�N2 � 4���2134	 � �3214	 � �1432	 � �1324	 � �1243	

� �4231	� � �2N2 � 3���1342	 � �4213	 � �3241	 � �2314	 � �3124	 � �4132	

� �2431	 � �1423	�g: (A20)

There seems to be a problem when N � 2 or N � 3. There are, however, formal identities that have to be taken into
account leading to shorter and well-defined expressions. For N � 3, we have �f1f2f3f4�h1h2h3h4

� 0
 

�1234� � �2341� � �3412� � �4123� � �2314� � �3142� � �1423� � �4231� � �3124� � �1243� � �2431� � �4312�

� �1324� � �3241� � �2413� � �4132� � �3214� � �2143� � �1432� � �4321� � �2134� � �1342� � �3421�

� �4213� � 0: (A21)

Consequently, for SU�3� we obtain the shorter expression
 Z

dRRf1
j1
Rf2
j2
Rf3
j3
Rf4
j4
Ryi1h1

Ryi2h2
Ryi3h3

Ryi4h4
�

1

2160
� f48�1234	 � 7��2341	 � �4123	 � �3421	 � �4312	 � �3142	 � �2413	�

� 6��3412	 � �2143	 � �4321	� � 11��2134	 � �3214	 � �1432	 � �1324	

� �1243	 � �4231	�g: (A22)

For N � 2, on the one hand we have �f1
a �f2f3f4�bcd � �f2

b �
f3f4f1�cda � �f3

c �f4f1f2�dab � �f4
d �

f1f2f3�abc � 0

 �abcd� � �acdb� � �adbc� � �acbd� � �abdc� � �adcb� � 0; (A23)

 �abcd� � �cbda� � �dbac� � �cbad� � �abdc� � �dbca� � 0; (A24)

 �abcd� � �bdca� � �dacb� � �bacd� � �adcb� � �dbca� � 0; (A25)
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 �abcd� � �bcad� � �cabd� � �bacd� � �acbd� � �cbad� � 0: (A26)

On the other hand for N � 2 we have �f1f2f3f4�abk�cdl�kl � �f1f3f2f4�ack�bdl�kl � �f1f4f2f3�adk�bcl�kl � 0

 �abcd� � �bacd� � �badc� � �abdc� � �cdab� � �cdba� � �dcba� � �dcab� � 0; (A27)

 �abcd� � �cbad� � �cdab� � �adcb� � �badc� � �dabc� � �dcba� � �bcda� � 0; (A28)

 �abcd� � �dbca� � �dcba� � �acbd� � �badc� � �cadb� � �cdab� � �bdac� � 0: (A29)

Consequently, for SU�2� we obtain the shorter expression

 Z
dRRf1

j1
Rf2
j2
Rf3
j3
Rf4
j4
Ryi1h1

Ryi2h2
Ryi3h3

Ryi4h4
�

1

240
� f8�1234	 � 3��2341	 � �4123	 � �3421	 � �4312	 � �3142	 � �2413	�

� 4��3412	 � �2143	 � �4321	�g: (A30)

APPENDIX B: GENERAL TOOLS FOR THE
n-QUARK FOCK COMPONENT

In this appendix we give general remarks and ‘‘tricks’’
that help to derive easily the contributions of any Fock
component. We will show that schematic diagrams drawn
by Diakonov and Petrov [11] are a key tool that allows one
to rapidly give the sign, the spin-flavor structure, the num-
ber of equivalent annihilation-creation operator contrac-
tions, and the factor coming from color contractions for
any such diagram. We first give the rules and then apply
them to the 7-quark Fock component.

(1) First, remember that dark gray rectangles in the
diagrams stand for the three valence quarks and light
gray rectangles for quark-antiquark pairs. Each line
represents the color, flavor, and spin contractions

 �	i	0i
�fif0i
��i�0i

Z
dz0id

2p0i?��zi � z
0
i��
�2��pi? � p0i?�:

(B1)

The reversed arrow stands for the antiquark.
(2) For any n-quark Fock component there are �n�

3�=2 quark creation operators and �n� 3�=2 anti-
quark creation operators. The total number of

annihilation-creation operator contractions is then

 

�
n� 3

2

�
!
�
n� 3

2

�
! (B2)

This means that for the 3-quark component there are
6 annihilation-creation operator contractions and 24
for the 5-quark component.

(3) The number of line crossings N gives the sign of the
annihilation-creation operator contractions ��1�N .
Indeed, any line crossing represents an anticommu-
tation of operators.

(4) The color structure of the valence quarks is �	1	2	3

and for the quark-antiquark pair it is �	4
	5 . So if one

considers color, the antiquark line and the quark line
of the same pair can be connected and then belong to
the same circuit. The color factor is at least 3! due to
the contraction of both �’s with possibly a minus
sign. There is another factor of 3 for any circuit that
is not connected to the valence quarks.

(5) The valence quarks are equivalent which means that
different contractions of the same valence quarks are
equivalent. Indeed any sign coming from the cross-
ings in rule 3 is compensated by the same sign
coming from the � color contraction in rule 4.

FIG. 13. Schematic representation of the 7-quark contributions to the normalization.
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That is the reason why one needs to draw only one
diagram for the 3-quark component.

(6) The quark-antiquark pairs are equivalent which
means that any vertical exchange of the light gray
rectangles (quark and antiquark lines stay fixed to
the rectangles) does not produce a new type of
diagram. This appears only from the 7-quark com-
ponent since one needs at least two quark-antiquark
pairs.

So for the 5-quark component there are only two types of
diagrams. The direct one has no crossing and is thus
positive while the exchange one is negative due to one
crossing. There are 6 equivalent direct annihilation-
creation contractions and the color factor is 3! � 3 (there
is an independent color circuit within the quark-antiquark
pair). There are 18 equivalent exchange annihilation-
creation contractions but the color factor is only 3! since
the pair lines belong to a valence circuit. This is exactly
what was said in Sec. IX B. Of course there are 6� 18 �
24 annihilation-creation operator contractions for the 5-
quark component as stated by rule 2.

Let us now apply these rules to see what happens when
one considers the 7-quark Fock component. From rules 5
and 6 we obtain that there are only five types of diagrams;
see Fig. 13.

Let us find the signs. These prototype diagrams have
been chosen such that color contractions do not affect the
sign. The first diagram is obviously positive (no crossing).

The second one has three crossings (they are degenerate in
the drawing but it does not change anything considering
one or three crossings since the important thing is that it is
odd) and is thus negative. So is the third one with its unique
crossing. The fourth diagram has four crossings and is thus
positive. The last one has six crossings and is thus also
positive.

Following rule 2 there must be 5!2! � 240 contractions.
Indeed, there are 12 of the first and second types while
there are 72 of the other ones. Thus we have 2 � 12� 3 �
72 � 240 contractions as expected.

The color factor of the first diagram is 3! � 3 � 3 � 54
since there are two independent circuits. The color factor
of the second one is only 3! � 3 � 18 since there is only one
independent circuit as one can see in Fig. 14. The third
diagram also has a unique independent circuit and thus a
color factor of 3! � 3 � 18. For the two last diagrams there
are no more independent circuits and consequently have a
color factor of 3! � 6.

We close this appendix by considering the diagram in
Fig. 15. Since two valence quarks are exchanged, it must
belong to the fifth type of diagram. There are seven cross-
ings and thus a negative sign while the fifth type of dia-
grams is positive. In fact, for this particular diagram, the
color contractions give an additional minus sign since the
third quark on the left is contracted with the second on the
right �	1	2	3�	1	3	2

� �6.

[1] D. Diakonov and V. Petrov, Phys. Lett. 147B, 351 (1984);
Nucl. Phys. B272, 457 (1986).

[2] E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981).
[3] E. Witten, Nucl. Phys. B223, 433 (1983).
[4] D. Diakonov and V. Petrov, Pis’ma Zh. Eksp. Teor. Fiz. 43,

57 (1986) [JETP Lett. 43, 57 (1986)]; D. Diakonov,
V. Petrov, and P. Pobylitsa, Nucl. Phys. B306, 809

(1988); D. Diakonov and V. Petrov, in Handbook
of QCD, edited by M. Shifman (World

Scientific, Singapore, 2001), vol. 1, p. 359.
[5] D. Diakonov, V. Petrov, and M. Praszalowicz, Nucl. Phys.

B323, 53 (1989).
[6] M. Wakamatsu and H. Yoshiki, Nucl. Phys. A524, 561

(1991). The first qualitative explanation of the spin crisis

FIG. 14 (color online). The color factor of this diagram is 3! �
3 since one has the valence circuit and an independent circuit.

FIG. 15 (color online). The color contractions in this diagram
give a minus factor because of interchange of two valence
quarks.
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