

University of Liege Gembloux Agro-Bio Tech

Physicochemical properties of lipids extracted from Tenebrio molitor larvae

What is Entomophagy?

- Consumption of insects as human food Over 1900 insect species are popularly eaten
- in many parts of the world mportant source of proteins, lipids and some minor components
- . High social value to people who believe they have good nutritive and pharmaceutical properties
- Heavily influenced by local cultural and religious practices

Why to eat insects?

- 1. Nutritionally superior to conventional meats 2. Production results in lesser emission of green
- house gases and ammonia
- 3. Insects are not closely related to humans, so chances of disease transmission are very low compared to livestock
- 1. Much less water requirement
- 5. Higher feed conversion ratio and percentage edibility

	Crickets	Poultry	Beef
Feed Conversion Ratio (kg feed: kg live weight)	1.7	2.5	10
% Edibility	80	55	40

Material and methods

Samples

- 1. Two batches of mealworms were purchased from a local supplier
- 2. Three batches reared in lab were considered

Methods

- All the larvae were freeze dried during 48h before analysis and stored at 4°C before analysis
- Protein estimation was done using dumas method
- Lipid extraction was done by a cold extraction technique using 2:1 chloroform/methanol as solvent.
- Fatty acid compositions were determined by gas chromatography on a HP 6890 Series GC System apparatus fitted with a HP 7683 Series injector and flame ionization detector
- Thermal profile was analyzed by differential scanning calorimetry Q1000 DSC connected to refrigerated cooling system utilizing aluminum SFI pans.

Danthine S, Blecker C, Paul A*, Frederich M, Taofic A, Lognay G, Fauconier M-L & Francis F University of Liege, Belgium *Email- paul.aman@ulg.ac.be

Resu	lts	and	dis

Protein & Fat Content (% dry matter) of Tenebrio molitor larvae					
Samp	ole Pr	otein conte	ent Fat	content	
Comme	rcial	58%		30%	
Lab rea	ared	52%	:	36%	
Fatty Acid profile of Tenebrio molitor larvae					
Fatty Acid %	Sample A (Lab Reared 1)	Sample B (Lab Reared 2)	Sample C (Commercial 1)	Sample HT (Lab Reared 3)	
C 12:0	0.34±0.00	0.36±0.00	0.36±0.00	0.33±0.00	
C 14:0	1.52±0.26	4.30±0.07	2.36 ±0.66	4.19±0.01	
C 16:0	20.75±0.01	17.31±0.03	14.36 ±0.01	17.23±0.01	
C 18:0	2.05±0.05	4.00 ±0.00	2.33 ±0.02	3.40 ±0.02	
C 16:1	1.00±0.00	1.54±0.00	1.30±0.00	1.60±0.00	
C 18:1	51.84±0.01	53.12±0.08	40.34±0.06	54.18±0.01	
C 18:2	16.06±0.01	15.67±0.08	29.74±0.06	15.71±0.03	
C 18:3	0.13±0.00	0.17±0.00	1.13±0.03	0.14±0.00	

% MUFA & PUFA				
Sample	MUFA	PUFA		
Commercial	41%	31%		
Lab reared	53-56%	16%		

Raksakanong P., Meeso N., Kubola J. and Siriamornpun S. (2010). Fatty acids and proximate composition of

Food Science & Formulations