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Introduction

On peut affirmer que c’est vers la fin des années soixante, avec les
travaux de Cobham [19], qu’a débuté 1'étude des relations liant les
propriétés arithmétiques des ensembles d’entiers aux propriétés syn-
taxiques des langages formels constitués par leurs représentations dans
un systeme de numération.

Depuis plus d'une dizaine d’années, de nombreuses avancées ont
été réalisées dans ce domaine [10], [14], [26], [30], [37], [63], .... On
y étudie non seulement les numérations classiques comme le systeéme
décimal ou encore le systeme binaire mais, d’'une maniere générale,
on s’intéresse aux systemes de numération de position. Dans un tel
systeme, on décompose un entier positif n comme une combinaison
linéaire

p
n=Y d;Ui, do,...,dy €N,d, #0
1=0

d’éléments d’une suite strictement croissante (U,)nen d’entiers com-
mencant par Uy = 1. On représente alors n par le mot d,, ---dy. Afin
que 'alphabet des chiffres d; soit fini, on suppose le rapport % borné.
Le systeme de numération est alors complétement spécifié lorsqnu’on dis-
pose d’un algorithme calculant la décomposition ci-dessus pour chaque
n. Le plus souvent, il s’agit de l'algorithme d’Euclide, encore appelé
algorithme glouton. Les systemes classiques, en base k, s’obtiennent

en appliquant cet algorithme a la suite (Uy,)nen = (K™)nen-

Une des préoccupations centrales dans les travaux concernant les
systemes de numération est 1’étude de la reconnaissabilité des ensembles
d’entiers, c’est-a-dire de la régularité du langage formé des représen-
tations de leurs éléments dans le systeme considéré. Pour la plupart,
les résultats obtenus relevent de themes généraux brievement décrits
ci-dessous.

Il y a tout d’abord, la caractérisation des parties reconnaissables
dans un systeme fixé et la détermination de systemes pour lesquels un
ensemble d’entiers donné est reconnaissable.

En particulier, un effort important a été consenti pour décrire les
systemes pour lesquels N tout entier est reconnaissable (en partie sans
doute en raison du fait que si I’ensemble des représentations des entiers
est régulier, il existe des algorithmes tres simples permettant de décider
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si un mot représente ou non un nombre). Le fait que N soit reconnais-
sable impose a la suite (U,)nen de vérifier une relation de récurrence
linéaire & coefficients constants (systémes linéaires) [63]. Des condi-
tions suffisantes, s’exprimant en termes de propriétés des polynomes
satisfaits par cette relation, ont été obtenues dans [37] et [43].

Les systemes de numération linéaires pour lesquels les problemes
ci-dessus sont les mieux cernés, sont a ce jour ceux dont le polynome
caractéristique est le polynéme minimum d’un nombre de Pisot [14],
[33]. Pour ces systémes, on dispose par exemple de plusieurs descrip-
tions pratiques des parties reconnaissables.

La reconnaissabilité d’un ensemble d’entiers est fortement liée au
systeme de numération utilisé pour le représenter. En effet, le théo-
reme de Cobham stipule que sous des hypotheses tres larges, les seules
parties simultanément reconnaissables dans deux systemes donnés sont
les unions finies de progressions arithmétiques [19]. Ce théoreme a été
largement étendu a des numérations non standards, citons [15], [25],
[26], [35], [48], [54], [66] et [67].

Une autre problématique envisagée dans la littérature est I’étude de
la stabilité du caractére reconnaissable vis-a-vis des opérations arith-
métiques. Il est bien connu que la multiplication ne peut garantir la
conservation de ce caractere. Par contre, pour les numérations clas-
siques en base entiere, ’addition préserve trivialement la reconnais-
sabilité et on peut espérer que cela soit encore vrai pour de larges
classes de systemes. En tout cas, les systemes basés sur un nombre de
Pisot forment la classe la plus riche actuellement connue de systemes
ayant cette propriété [14], [30].

Les systemes étudiés jusqu’a présent ont sans exception la propriété
d’eétre monotones : ’application associant a un nombre sa représenta-
tion est strictement croissante pour I’ordre naturel sur N et I’ordre lexi-
cographique induit par ’ordre des chiffres. Dés lors, indépendamment
de lalgorithme spécifique utilisé pour obtenir la représentation d’un
nombre, la numération est en fait entierement caractérisée par le lan-
gage formé de toutes les représentations et cette propriété de mono-
tonie. En effet, celle-ci impose que chaque entier soit représenté par le
mot dont il est le numéro dans I’énumération du langage fournie par
I’ordre lexicographique.

Fort de cette constatation, nous avons introduit dans [39] la notion
de systéme de numération abstrait S = (L, %, <) ou L est un langage
dénombrable sur I’alphabet > et ol < est un ordre total sur ce dernier.
Dans un tel systeme, la représentation d’un entier est 1’élément de L
dont il est le rang dans I’énumération de L par ordre lexicographique
croissant. Nous faisons également ’hypothese que L est régulier. En
effet, il nous semble d’une part que la reconnaissabilité de N occupe une
place importante dans les résultats mentionnés sommairement ci-dessus
et, d’autre part, vu le role particulier des progressions arithmétiques



mis en lumiere par le théoreme de Cobham, nous souhaitons que celles-
ci soient reconnaissables et c’est le cas si et seulement si N est [39].

Le présent travail est consacré a ’étude de la reconnaissabilité dans
le cadre des systéemes de numération abstraits ainsi qu’a 1’extension de
ceux-ci a la représentation des nombres réels.

Nous obtenons plusieurs caractérisations originales de la reconnais-
sabilité (notamment en termes de séries rationnelles en variables non
commutatives et en termes de mots morphiques). Nous montrons
également que des ensembles qui ne sont reconnaissables dans aucun
systeme de position a base entiére le sont toujours dans des systemes
abstraits appropriés (par exemple les ensembles de puissances d’entiers)
et que par contre, les nombres premiers ne sont jamais reconnais-
sables. Cependant, vu la tres grande généralité des systemes introduits,
on ne peut espérer obtenir des propriétés liées a la reconnaissabilité
aussi riches que dans les systemes de position comme, par exemple,
ceux associés a un nombre de Pisot. En effet, I’addition ne conserve
généralement pas la reconnaissabilité. A cet égard, il est frappant de
constater combien la complexité du langage sur lequel est construit
un systeme de numération abstrait, joue un role fondamental. Pour
les langages polynomiaux et les exponentiels a complémentaire poly-
nomial, la multiplication par des constantes — et a fortior: I’addition
— ne préserve pas la reconnaissabilité. Seuls les langages exponentiels
a complémentaire exponentiel sont donc susceptibles de donner lieu a
une addition réguliere [58|.

Il nous semble qu'un systeme de numération doit non seulement
permettre de représenter les entiers mais également les réels. Nous ins-
pirant de la maniere dont ceux-ci sont décrits dans les systémes en base
entiere, nous proposons pour une large classe de systemes abstraits,
une extension aux nombres réels dont nous donnons les premieres pro-
priétés.

Passons a présent en revue 1’organisation des chapitres du présent
travail.

Dans le premier chapitre, nous installons les notations et propriétés
de base relatives aux systémes de numération de position. Nous définis-
sons les systemes de numération abstraits et fournissons pour ceux-ci
des algorithmes permettant I’'un de calculer le nombre représenté par
un mot et I'autre de déterminer le mot représentant un nombre. Ce
dernier est une généralisation de I'algorithme glouton dans laquelle les
fonctions de complexité! des dérivés du langage utilisé se substituent 3
la suite (Uy,)nen des systemes de position.

1a fonction de complexité d’un langage L C ¥* compte le nombre de mots de
longueur n dans L, u,(L) : n — #(LNX").
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Le deuxieme chapitre est principalement consacré aux ensembles
reconnaissables dans un systeme abstrait. On y montre que les pro-
gressions arithmétiques sont toujours reconnaissables et que les trans-
lations par des constantes préservent la reconnaissabilité. Outre leur
intérét propre, ces résultats sont utilisés par la suite. Par apres, nous
construisons pour chaque exponentielle polynome

k
fn) =Y _P(n)a}, a; €N, P,€Qla], (N)CN
=1

un systeéme abstrait (L, X, <) dans lequel f(N) est reconnaissable. La
méthode consiste essentiellement a faire en sorte que f(N) soit repré-
senté par I’ensemble des plus petits mots de chaque longueur de L, ce
a quoi on parvient en choisissant L pour avoir u, (L) = f(n+1)— f(n).
Pour terminer ce chapitre, on établit que les ensembles reconnaissables
peuvent étre caractérisés par des séries formelles rationnelles en vari-
ables non commutatives.

Il est clair qu’une condition nécessaire a la stabilité de la régularité
vis-a-vis de l'addition est la conservation du caracteére reconnaissable
des ensembles d’entiers apres multiplication par une constante. Dans
le troisieme chapitre, apres une étude détaillée de la fonction de com-
plexité, nous démontrons que si un systeme de numération est construit
sur un langage polynomial de complexité ©(n'), alors un multiplicateur
assure la stabilité du caractere reconnaissable seulement s’il est puis-
sance ([ + 1)-ieme d’un naturel, prouvant des lors que 'addition n’est
pas réguliere pour les langages polynomiaux. Cette condition ne peut
étre suffisante car pour le systéeme construit sur le langage a*b*, la sta-
bilité est conservée si et seulement si le multiplicateur est un carré
parfait iémpair. Pour un langage exponentiel & complémentaire poly-
nomial, on prouve que les multiplicateurs pouvant assurer la stabilité
du caractere reconnaissable ne sont jamais puissance du cardinal de
I’alphabet. Enfin, nous obtenons des conditions suffisantes pour que
I’addition soit reconnaissable dans un systeme basé sur un langage ex-
ponentiel a complémentaire exponentiel. Les systemes ainsi obtenus
se ramenent par transduction a des systémes de position basés sur un
nombre de Pisot.

Cobham a montré que les ensembles reconnaissables pour une base
entiere k£ sont exactement ceux dont la suite caractéristique est
k-automatique, i.e. I'image par un morphisme lettre-a-lettre du point
fixe d’un morphisme uniforme de longueur & [20]. Dans le quatriéme
chapitre de ce travail, nous généralisons les suites automatiques aux
systémes abstraits (ceci étend notamment le cas traité dans [62]).
On parle alors de suites S-automatiques ou S est une numération
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abstraite basée sur un langage régulier. Nous étudions non seule-
ment les propriétés intrinseques de ces suites mais aussi leurs rela-
tions avec les parties reconnaissables. Il s’avere ainsi qu'un ensem-
ble est reconnaissable dans un systéme abstrait S si et seulement si
sa suite caractéristique est S-automatique. On montre que la com-
plexité d’une suite S-automatique (au sens nombre de facteurs de
longueur n apparaissant dans une suite infinie) est O(n?) et on en
déduit que I'ensemble des nombres premiers n’est reconnaissable dans
aucun systeme généralisé. Pour terminer ce chapitre, nous montrons
que toute suite automatique sur l'alphabet {0,1} est morphique et
réciproquement, que tout prédicat morphique est la suite caractéris-
tique d’'un ensemble d’entiers reconnaissable pour un systeme abstrait
que l'on peut construire effectivement.

Dans le cinquiéme chapitre, encore en relation avec la fonction de
complexité d’un langage L, on montre que si u,(L) est borné par
une constante, alors les parties reconnaissables pour les numérations
construites sur L sont exactement les unions finies de progressions
arithmétiques. Nous avons deés lors conservation du caractere recon-
naissable pour ’addition mais aussi pour le changement d’ordre sur
I’alphabet. Concernant cette derniére opération, nous montrons qu’en
général, le caractere reconnaissable d’une partie de N est une propriété
qui dépend de l'ordre total placé sur ’alphabet induisant 1’ordre lexi-
cographique sur le langage de la numération.

Pour terminer, dans le sixieme chapitre, nous nous intéressons a
la représentation des nombres réels. De maniere classique, la partie
entiere du nombre réel a représenter est donnée par un mot fini alors
que la partie fractionnaire est quant a elle représentée par un mot
infini (pouvant éventuellement se terminer par des zéros). On peut
voir ce mot infini comme limite d’une suite de mots finis ol chaque
mot est préfixe du suivant, la suite des approximations numériques
fournies par ces mots convergeant vers le réel donné. Nous montrons
comment étendre les systémes de numération abstraits pour permet-
tre la représentation des nombres réels a ’aide de mots infinis, d’une
maniere qui généralise de facon naturelle la description des réels en
base entiere. Nous mettons alors en place des hypotheses assurant la
convergence numérique des approximations données par les éléments
w, d’une suite de mots de L convergeant vers un mot infini w et pour
qu’il y ait assez de telles suites pour représenter un intervalle réel. Il
est intéressant de noter que nous sommes en présence de deux types de
convergence : numérique d’'une part et en mots d’autre part. Signalons
encore que la propriété de monotonie de I’application associant a un en-
tier sa représentation s’étend a I’application donnant la représentation
des réels. De plus, on montre que cette derniere est uniformément con-
tinue. En particulier, les représentations abstraites obtenues en uti-
lisant le langage des représentations normalisées de 'unique systeme
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de Bertrand basé sur un nombre de Pisot # > 1 coincident avec les
mots infinis obtenus comme #-développements de nombres réels. Dans
un développement en base entiere, un entier possede une voire deux
représentations. Ici, pour nos systémes abstraits, de multiples cas de
figure sont déterminés : nombre de représentations fini, dénombrable
et méme non dénombrable. Une fois encore, la clé du raisonnement
réside dans I’étude de la fonction de complexité.

Pour conclure, signalons que de nombreux résultats donnés dans ce
travail ont été induits par I'’expérimentation par des moyens informa-
tiques. Des lors, on trouve en annexe des procédures implémentant les
algorithmes de représentation et diverses constructions en relation avec
la théorie des automates.



Introduction

It can be said that, in the late sixties, with Cobham’s works [19],
started the study of the relationships linking the arithmetical proper-
ties of sets of integers to the syntactic properties of formal languages
constituted by their representations in a numeration system.

For more than ten years a lot of progress has been made in this
field [10], [14], [26], [30], [37], [63], .... Are studied not only classical
numeration systems, such as the decimal or the binary system, but
generally speaking, positional numeration systems. In such a system,
a positive integer n is decomposed as a linear combination

p
n=Y d;Ui, dy,...,dy €N,d, #0
=0

of elements of a strictly increasing sequence (U,)nen of integers be-
ginning with Uy = 1. The integer n is then represented by the word
dy---dp. In order that the alphabet of digits d;’s is finite, the ratio
U[’}—:l is bounded. The numeration system is then completely specified
when we have at hand an algorithm computing the above decomposi-
tion for every n. Euclid’s algorithm, also known as greedy algorithm,
is mostly used. We get the classic system with an integer base k, using

this algorithm with the sequence (Uy)nen = (K" )nen-

One of the main concerns in the works about the numeration sys-
tems is studying the recognizability of sets of integers, i.e., the regularity
of the language made up of the representations of their elements in a
given system. For most of them, the obtained results are related to the
general themes shortly described below.

There is first the characterization of the recognizable parts in a
fixed system and the determination of the systems for which a given
set of integers is recognizable.

A great effort has been made especially to describe the systems in
which the whole set N is recognizable (partly due to the fact that, if
the set of representations of all integers is regular, there are very simple
algorithms making it possible to decide if a word stands or does not
stand for a number). The fact that N is recognizable demands that
the sequence (Uy,)nen verifies a linear recurrent relation with constant
coefficients (linear systems) [63]. Sufficient conditions in terms of the

ix



properties of polynomials satisfied by this relation have been obtained
in [37] and [43].

The linear systems, for which the above problems have been figured
out best, are nowadays those the characteristic polynomial of which is
the minimal polynomial of a Pisot number [14], [33]. For these systems,
we have several practical descriptions of the recognizable parts at our
disposal.

The recognizability of a set of integers is strongly linked to the
numeration system that is used to represent it. Actually Cobham’s
theorem stipulates that, under very wide hypotheses, the only simulta-
neous recognizable parts in two given systems are the finite unions of
arithmetic progressions [19]. This theorem has been extended widely
to non standard numeration systems, see [15], [25], [26], [35], [48],
[54], [66] and [67].

Another problem which has been taken into account in the literature
is the study of the stability of the recognizability under arithmetic
operations. It is well known that the multiplication does not preserve
recognizability. On the other hand, for classical numeration systems
with an integer base, the addition preserves the recognizability trivially
and, hopefully, it is also true for wider classes of systems. Anyway, the
systems based on a Pisot number make up the currently known largest
class of systems having this property.

All the up to now studied systems have got the property of being
monotonous: the application mapping a number onto its representation
is strictly increasing for the natural order on N and the lexicographi-
cal order induced by the ordering of the digits. Thus, independently
from the specific algorithm used to compute the representation of a
number, the numeration system is actually wholly characterized by
the language made up of all the representations and this property of
monotony. Indeed, this latter property demands that each integer is
represented by the word whose number it is in the enumeration of the
language described by the lexicographic ordering.

In the knowledge of this statement we have introduced in [39], the
notion of abstract numeration system S = (L,X,<) in which L is a
countable language over the alphabet > and where < is a total order
on the latter. In such a system, the representation of an integer is
the element of L of which it is the rank in the enumeration of L by
increasing lexicographic ordering. We also assume that L is regular.
Indeed, we think that the recognizability of N is very important in
the above briefly given results and that, in view of the special role of
arithmetic progressions rendered by Cobham’s theorem, we wish they
are recognizable and it is, if and only if N is recognizable [39].
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This work is dedicated to the study of recognizability in the frame
of abstract numeration systems as well as to their expansion for the
representation of real numbers.

We achieve several original characterizations of the recognizability
(namely in terms of rational series in non-commuting variables and of
morphic words). We show too that some sets that are not recognizable
in any positional system with an integer base, are always recognizable
in suitable abstract systems (for example sets of powers of integers)
and that, on the other hand, the set of prime numbers is never recog-
nizable. However, as there is a very large generality in the introduced
systems, we cannot hope to obtain properties related to recognizability
that are as rich as in positional systems such as the ones related to a
Pisot number. Indeed, addition does not generally preserve recogniz-
ability. In that respect, it is worth noticing the essential role of the
complexity function of the language upon which an abstract system is
built. In case of polynomial languages and exponential languages with
polynomial complement, multiplication by constants — and a fortior:
addition — does not preserve recognizability. Only exponential lan-
guages with exponential complement are thus likely to give a regular
addition [58]. We think that a numeration system has to make it pos-
sible to represent not only integers but also real numbers. Using the
way those are described in systems with an integer base, we suggest for
a large class of abstract systems, an extension to the representation of
real numbers for which we give the first properties.

Let us now go over the organization of the chapters in this work.

In the first chapter we settle the notations and basic properties
connected with positional numeration systems. We define the abstract
numeration systems and give, for those, algorithms on the one hand
to compute the number represented by a word and on the other hand
to determine the word representing a number. The latter is a general-
ization of the greedy algorithm where the complexity functions? of the
derivatives of the used language substitute for the sequence (Up,)nen of
positional systems.

The second chapter is mainly about the recognizable sets in an
abstract system. In this chapter, we show that arithmetic progressions
are always recognizable and that translations by constants preserve
recognizability. Beside their own importance, these results will be used
later. Moreover, we build for each exponential polynomial function

k
fn) =Y _P(n)a}, a; €N, P,€Qla], P(N)CN
=1

2The complexity function of a language L C E* counts the number of words of
length nin L, u,(L) : n — #(LNX").
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an abstract system (L, X2, <) in which f(N) is recognizable. The method
consists mainly in having f(N) represented by the set of the smallest
words of each length in L, which we achieve when we choose L so that
we have u, (L) = f(n+ 1) — f(n). We end up this chapter in proving
that recognizable sets can be characterized by rational formal series in
non-commuting variables.

It is obvious that a necessary condition for the stability of regu-
larity after addition is the preservation of the recognizability of sets
of integers under multiplication by a constant. In the third chapter
we give a detailed study of the complexity function and show that if
a numeration system is built on a polynomial language of ©(n') com-
plexity then a multiplicator ensures the stability of the recognizability
only if it is an (I + 1)** power of a natural number, proving thus that
addition is not regular for polynomial languages. This condition can-
not be sufficient as, for the system built upon the language a*b*, the
stability is preserved if and only if the multiplicator is an odd perfect
square. For an exponential language with a polynomial complement,
we prove that the multiplicators that can ensure the stability of the
recognizability are never a power of the cardinality of the alphabet.
Eventually we get sufficient conditions so that the addition is recogniz-
able in a system built on an exponential language with an exponential
complement. The thus obtained systems lead back by transduction to
positional systems related to a Pisot number.

Cobham has shown that recognizable sets in an integer base k are
exactly the ones for which the characteristic sequence is k-automatic,
i.e., the image by a letter-to-letter morphism of the fixed point of a uni-
form morphism of length & [20]. In the fourth chapter of this work, we
generalize automatic sequences to abstract numeration systems (this
widens the problem studied in [62]). So we speak of S-automatic se-
quences where S is an abstract system built on a regular language. We
study not only the intrinsic properties of these sequences but also their
relationships with recognizable parts. It turns out that a set is recog-
nizable in an abstract system S if and only if its characteristic sequence
is S-automatic. We show that the complexity of an S-automatic se-
quence (in the meaning the number of factors of length n in an infinite
sequence) is O(n?) and from that it may be deduced that the set of
prime numbers is not recognizable in any generalized numeration sys-
tem. We end this chapter with proving that any automatic sequence
over the alphabet {0,1} is morphic and conversely, that any morphic
predicate is the characteristic sequence of a set of integers which is
recognizable in an abstract system that can be effectively built.

In the fifth chapter, still in connection with the complexity func-
tion of a language L, we show that if u,(L) is bounded by a constant,
then the recognizable parts for the numeration system built upon L are
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exactly the finite unions of arithmetic progressions. We have thus con-
servation of the recognizability under addition but also for the change
of order on the alphabet. As far as the latter is concerned, we show
that the recognizability of a subset of N is a property that generally de-
pends on the total ordering of the alphabet inducing the lexicographic
ordering of the language of the numeration.

In the sixth and last chapter, we go into the representation of real
numbers. In a usual way, the integer part of the real number to be
represented is given by a finite word whereas the fractional part is rep-
resented by an infinite word (that may be ending with zeroes). We
can consider this infinite word as the limit of a sequence of finite words
where each word is the prefix of the next one and the sequence of nu-
merical approximations given by these words converges to the given
real number. We show how the abstract numeration systems can be
extended to enable the representation of real numbers by infinite words,
in a way that generalizes naturally the description of real numbers in
an integer base. Then we set up hypotheses ensuring the numerical
convergence of the approximations given by the elements w, of a se-
quence of words in L converging to an infinite word w and so that there
are enough such sequences to represent an interval of real numbers. It
is interesting to notice that we face up two types of convergence: on the
one hand a numerical convergence and on the other hand a word con-
vergence. Let us underline the fact that the property of monotony of
the application mapping an integer onto its representation is extended
to the application giving the representation of real numbers. Moreover,
we show that the latter is uniformly continuous. In particular, the ab-
stract representations obtained through the language of the normalized
representations of the unique Bertrand system based on a Pisot number
f > 1 coincide with the infinite words obtained as #-developments of
real numbers. In case of an expansion in an integer base, a real number
has got one or even two representation(s). Here different cases are de-
termined for our abstract systems: a finite, countable or uncountable
number of representations. Once again, the key argument is found in
the study of the complexity function.

Eventually let us underline the fact that many results given in this
work have been induced by computer experiments. Thus, procedures
implementing representation algorithms and various constructions re-
lated to automata theory can be found in an appendix.



CHAPTER 1

Basics

In this introductory chapter, the first two sections are devoted to re-
call well-known definitions and results in formal languages theory. We
also recall some important results on positional numeration systems.
Next, we introduce abstract numeration systems on a regular language
and set the notations used throughout this work. In particular, we
study the structure of a lexicographically ordered regular language L
and the link with the functions counting the number of words accepted
from the different states of a deterministic finite automaton A recogniz-
ing L (i.e., the complexity function of the languages accepted from the
different states of A). The material of the sections related to abstract
numeration systems was introduced by P. Lecomte and the author in
[39].

1. Words, languages and automata

We recall some definitions. More details can be found in [28], [53]
or [70]. An alphabet is a finite set of symbols or letters. We will denote
alphabets by capital case Greek letters. A word over ¥ is the concate-
nation of a finite number of letters of 3. The set of words over ¥ is
denoted X*. It is the free monoid generated by > with respect to the
concatenation of symbols as monoid operation. The identity, or empty
word, is denoted €. The length of a word w is denoted |w|. A language
over X is a subset of X*. The concatenation of two languages M and
L is the set

ML ={vw|ve M, we L}.
The Kleene’s star L* of a language L is the language of all concatena-
tions of an arbitrary number of elements in L,

=, L°={e}.
n>0
We now introduce the class of regular languages.

DEFINITION 1.1.1. The set Ry of reqular expressions over the al-
phabet ¥ is the language over ¥ U {0, e, +, (,), *} defined inductively
by

(1) Vo € ¥ :0 € Ry
(2) 0,e € Ry,
(3) if z,y € Ry, then (zy), (x +y) and z* belong to Ry.

1
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We define an application o : Ry, — 2% in the following way,
(1) Vo € X : a(o) = {0}
(2) a(0) =0 and afe) = {¢}
(3) if 2,y € Ry then
— a((zy)) = a(z) a(y),
—a((z+y)) =a(z) Uay),
— a(z") = (a(z))".

DEFINITION 1.1.2. If z is a regular expression over 3 then «a(z) €
2% is said to be a regular language. In the literature, one also finds
the terms rational expression and rational language. In this work, we
will not distinguish a regular expression from the corresponding regular
language. Two regular expressions x and y are said to be equivalent if
a(z) = a(y).

We set forth the following result characterizing the class of regular
languages.

THEOREM 1.1.3. The family of regular languages over an alphabet
Y is the smallest subset of 2% containing 0, {o} for all 0 € ¥ and
closed under union, concatenation and Kleene’s star.

Regular languages can be described in two ways. Regular expres-
sions can be viewed as generators of regular languages and finite au-
tomata as acceptors.

DEFINITION 1.1.4. A deterministic finite automaton or DFA is a
quintuple A = (Q, %, 4, s, F') where @ is the finite set of states, ¥ is the
input alphabet, § : Q) X3 — @ is the state transition function, s € @) is
the starting state and F' C @) is the set of final states. The function ¢
can be extended to @ x ¥* by 6(p,e) = p and §(p,ow) = 6(d(p, o), w),
for any p € @), 0 € ¥ and w € ¥X*. We will often write p.w = ¢ instead
of 6(p,w) =q.

DEFINITION 1.1.5. A non-deterministic finite automaton (NDFA) is
a quintuple A = (@, %, E, I, F) where ), ¥ and F are defined exactly
the same way as for a DFA, I C () is the set of starting states and the
finite set £ C () x ¥* x () is the transition relation.

Automata will be as usual depicted by directed graphs. The states
will be indicated by circles. The starting states will be marked by an
arrow pointing toward the state. The final states will be denoted by
double circles. In a DFA, if 6(p,0) = ¢, p,q € Q, 0 € %, then there is
an edge labeled by ¢ from p to ¢. In an NDFA, we have the same kind
of construction when (p,w,q) € E, w € ¥*.

A word w € ¥* is accepted by a finite automaton (deterministic or
not) if there exists a path labeled by w starting in an initial state and
ending in a final state. A language L is accepted by a finite automaton
A if L is the set of words accepted by A.
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THEOREM 1.1.6 (Kleene’s theorem). A language is reqular if and
only if it is accepted by a finite automaton.

THEOREM 1.1.7. The class of reqular languages is closed under
the operations of union, intersection, complementation, concatenation,
morphism, inverse morphism and mirror image.

DEerFINITION 1.1.8. Among the DFA accepting a given regular lan-
guage L C X*, one distinguishes the minimal automaton

Ar = (Qr, %, 0z, 51, F1)
of L. The states of Aj, are the derivatives
w'.L={veX|wve L}

One sometimes finds the notation D, L in the literature [70]. The
starting state sy, is L = e~!.L, the set of final states is

Fro={peQrleep}={w ' LlwelL}

and the transition function is defined by d1,(p, o) = o~L.p. More about
minimal automaton can be found in Section IIL.5 of [28].

Let w € ¥* and p € Q. If sp.w = d.(sg, w) = p then w'.L is the
language L, of words accepted by A from the state p (i.e., the set of
words which are label of a path starting in p and ending in Fy),

L,={weX|pweFr}.

REMARK I.1.9. Notice that the set L, of words accepted from the
state p can be defined for any finite automaton (deterministic or not).

In this work, we will also encounter other kinds of automata. Let
us define them.

DEFINITION 1.1.10. A deterministic finite automaton with output
or simply a DFAO is a sextuple A = (Q,X%,6,s,A,7) where @, %, ¢
and s are defined exactly the same way as for a DFA, A is the output
alphabet and 7 : Q — A is the output function. The output produced
by A on a word w € ¥* is

T(6(s,w)).

DEFINITION 1.1.11. A 2-tape automaton or transducer is an NDFA
A= (Q,¥*xT'*, E, I, F) with edges labeled by elements of the monoid
¥* x I'*. If the set of edges E is finite (and thus @ is finite), A is said
to be finite. A 2-tape automaton is said to be letter-to-letter if the
edges are labeled by elements of ¥ x I', that is, by couple of letters.
A relation R C ¥* x I'* is said to be computable by a finite 2-tape
automaton if there exists a finite 2-tape automaton such that the set
of labels starting in I and ending in F'is R. A function f : ¥* — I'*
is computable by a finite 2-tape automaton if its graph f C X xrIr
is computable by a finite 2-tape automaton. These definitions can be
extended to infinite sequences of letters.
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ExAMPLE 1.1.12. The automaton depicted in Figure 1.1 is a letter-

to-letter transducer computing the relation (a2, b*)* U (a, ¢)(a?, ¢?)*. In
this example, ¥ = {a} and I" = {b, c}.

oL
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Ficure I.1. A transducer computing the relation
(a?,0%)* U (a,c)(a? c*)*.

2. Positional numeration systems

With a sequence of integers 1 = Uy < U; < Uy < - -+, any natural
number x can be written as a linear combination of the U,’s with
natural coefficients,

IE:dnUn++d0U0, do,...,dnEN,dn#O.

The fact that Uy = 1 makes sure that we have at least the trivial
decomposition x = xU,. Among the possible decompositions of an
integer =, a special decomposition is the one obtained by the greedy
algorithm in the following way. Let n be such that U, < x < U,4; and
zo =x. Fort=0,...,n, the quotient and the remainder of the Euclid-
ian division of z; by U,_; are respectively d,,_; and z;,1. Moreover, if
the ratio U;}—:l is bounded then the coefficients d;’s computed through
the greedy algorithm belong to the finite set {0, ...,a} where a is the
greatest integer less than sup U{}—:l

For a given sequence (U, ),cn, we can therefore associate any natural
number x with a canonical word d,, - - - dy representing z. So, we have

the following definition of a numeration system.

DEFINITION 1.2.1. A positional numeration system is a strictly in-
creasing sequence U = (Up,)nen of integers such that Uy = 1 and that
the ratio U{}:l is bounded. A numeration system U is said to be linear if
the sequence (U, )nen satisfies a linear recurrence relation with integer
coefficients,

Uy,=ct_1Up_ 1+ +coU,_g, co,...,C_1 € Z,C();é 0.

Let A C Z be an alphabet and w = w,, - - - wg € A*. We denote by

7TU(’UJ) = i W; Uz
=0
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the numerical value of w. If z € N is such that 7y (w) = = then we
say that w is a U-representation of x. Observe that an integer x can
have more than one U-representation. Among these representations,
we distinguish the normalized U-representation of x computed through
the use of the greedy algorithm (see [29]) and denoted by py(z). By
convention, the normalized representation of 0 is the empty word and
we assume that a normalized representation has no leading zeroes. We
introduce a partial function [30],

vap : A" = py(N)
called normalization, in the following way. If w € A* is such that
my(w) € N then va y(w) = py(my(w)).
ExampLE 1.2.2. With U, = 2" for all n € N, we obtain the binary
system. The normalized representation in base 2 of 83 is
p2(83) = 1010011
because
83=164+032+116+08+04+1.2+41.1.
Another representation of 83 is “210003” because
83=232+1.16+08+0.4+0.2+ 3.1.

In particular, v{,123},0(210003) = 1010011.

More generally, if U, = k™ for all n € N, £ > 2, then we have the
base k system or k-ary system. In this case, we use the notation py
and 7 instead of py and 7y to specify the base k.

Observe that (normalized) representations of integers in base k are
words over {0,...,k —1}. So a set X of numbers gives the language
pr(X) of normalized representations of the integers belonging to X and
we say that this set is k-recognizable if pp(X) is regular. The notion
of recognizability related to a numeration system will take a central
position throughout this work.

We now give an example of a recognizable set of integers. The set
of even integers is 2-recognizable since

p2(2N) = 1{0,1}*0 U {¢}.

The representations in base 2 of even integers are accepted by the
automaton in Figure 1.2 (the sink has not been represented).

iy

FI1GURE [.2. Automaton accepting even integers in base 2.
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For a survey on the k-recognizable sets and their properties, see [13]
or [15]. In particular, it is worth noting that arithmetic progressions are
k-recognizable for any k. In other words, any divisibility criterion can
be viewed as a syntaxical property of the normalized representations
in a specified base.

In this introductory chapter, we have to recall one of the most fa-
mous theorems for numeration systems with integer bases — Cobham’s
theorem — which says that the only subsets of N which are simultane-
ously k-recognizable and [-recognizable, £ and [ being multiplicatively
independent, are ultimately periodic (see [19]). A series of recent pa-
pers is devoted to the generalization of this result for non-standard
positional systems [15], [25], [26], [35], [54], [48], [66], [67].

ExXAMPLE 1.2.3. Another example of a positional number system is
the Fibonacci system defined by the linear recurrent sequence

Uy =1,
U, =2,
Un+2 =Upt1 + Un; n > 0.

The first terms of the sequence are
1,2,3,5,8,13,21,34,55, ...
The normalized U-representation of 17 is py(17) = 100101 since
17=113+08+4+05+1.34+02+1.1.

As a consequence of the greedy algorithm, the set of all normalized
representations is the set of words over {0, 1} which do not contain two
consecutive ones.

DEFINITION [.2.4. As for systems with an integer base k, if U is
an arbitrary positional number system, we say that a set X C N is
U-recognizable if py(X) is accepted by a finite automaton.

A series of recent papers is devoted to U-recognizable subsets of
N [14], [33], [35], [63]. In particular, the U-recognizability of N has
been extensively studied. Indeed, the case when N is recognizable is of
special interest because then it is very easy to decide whether or not a
given word represents an integer. Under quite general assumptions, it
is shown in [63] that for N to be U-recognizable, it is necessary that the
numeration system U = (U, ),en satisfies a linear recurrence equation.
In [37], a sufficient condition is given in terms of the polynomials of
the recurrence that (Up,)nen satisfies (it generalizes the case studied in
43)).

A wide class of positional numeration systems which has very in-
teresting properties is the class of systems defined by a linear recurrent
sequence such that its characteristic polynomial is the minimal poly-
nomial of a Pisot number. (A Pisot number, or Pisot-Vijayaraghavan
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number, is an algebraic integer greater than 1 with all its Galois con-
jugates having modulus less than one. Recall that an algebraic integer
is a root of a monic polynomial with integral coefficients.) It is clear
that systems with an integer base and the Fibonacci system belong to
this class. For instance, the characteristic polynomial of the recurrent
sequence defining the Fibonacci system is

PX)=X*-X—1.

1+v5
2

It is the minimal polynomial of and the other root of this poly-

nomial is 1_2—*/5 of modulus less than one.

If U is a linear numeration system the characteristic polynomial
of which is the minimal polynomial of a Pisot number then N is U-
recognizable (a proof of this result can be found in [14] and [33]). For
these systems, we have a nice characterization of the U-recognizable
subsets of N. Let us introduce the logical structure (N, +, V) where
Vi (z) = y means that y is the smallest U,, appearing in the normalized
U-representation of x with a non-null digit. We say that X C N is
U-definable if there exists a first order formula of (N, +,V};) defining
X. If U is the k-ary system, we use the term k-definable set and the
notation V.

THEOREM 1.2.5. [14] Let X be a subset of N and U = (Uy,)nen
be a linear numeration system such that the characteristic polynomial
of U is the minimal polynomial of a Pisot number. The set X s U-
recognizable if and only if X is U-definable.

Another property related to the normalization is the following.
PROPOSITION 1.2.6. [33] Let U = (Uy)nen be a linear numeration

system such that its characteristic polynomial is the minimal polyno-
mial of a Pisot number and A C Z be a finite alphabet. The set

{(v,w) € A* x py(N) |vapy(v) = w}
1s recognizable by a finite letter-to-letter automaton, i.e., the normal-
wzation function is computable by a finite 2-tape automaton.
For more about U-recognizability and linear numeration systems

whose characteristic polynomial is the minimal polynomial of a Pisot
number, see [14].

3. k-automatic sequences

A class of infinite sequences is related to the representation of inte-
gers and to the recognizable sets of integers. The construction of the
sequences belonging to this class is based on the representation of non-
negative integers in an integer base k. A given integer n is represented

ITo obtain couples of words of the same length, instead of (v,w), we have
to consider the couples (07~ %Iy, 0"~ ®lw) where n = max{|v|,|w|}. Indeed, if |v|
differs from |w| then (v, w) cannot be read by a 2-tape letter-to-letter automaton.
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in the base k using the greedy algorithm and we obtain a word p(n)
over the alphabet {0,...,k — 1}. Next, px(n) is given to a determinis-
tic finite automaton with output to obtain the n'* term of a sequence,
which is said to be a k-automatic sequence. In [20], the sequences are
said to be uniform tag sequences (they are fixed points of a uniform
morphism of length k).

DEFINITION 1.3.1. Let k£ > 1. The k-kernel of a sequence (Z)nen
is the set of sub-sequences

{n+— Tpap, |d>0, 0<r <k}
+

THEOREM 1.3.2. [62] A sequence is k-automatic if and only if its
k-kernel is finite.

Recall that the characteristic sequence of a subset X of N is the
sequence (xX)nen defined by

xX =1, ifneX;
Xy =0, otherwise.

We have the following characterization of the k-recognizable subsets
of integers.

PROPOSITION 1.3.3. [20, Theorem 3] A subset X C N is k-recogni-
zable if and only if its characteristic sequence (XX )nen 8 k-automatic.

The next proposition will be useful.

PROPOSITION 1.3.4. [20, Theorem 4] The set of k-automatic se-
quences 1s closed under finitary sequential transduction, i.e., closed
under function computed by a finite 2-tape letter-to-letter automaton.

4. Numeration systems on a regular language

In this section, we generalize positional numeration systems U for
which py(N) is regular. In particular, we generalize linear numeration
systems the characteristic polynomial of which is the minimal polyno-
mial of a Pisot number.

A total order on ¥ induces a lexicographic ordering of ¥*.

DEFINITION [.4.1. Let (3, <) be a totally ordered alphabet and
v,w be in X" n > 1. We say that v is lexicographically less than w,
and we write v < w, if there exists u,v',w’ € ¥* and 0,y € ¥ such that
v =uov', w = uyw' and o < . If v and w are words of different length
then v is lexicographically less than w if |v| < |w|. In the literature,
this ordering is sometimes called “radix order”, “genealogical order” or
“military order”.

The use of the greedy algorithm in positional numeration systems
has a trivial consequence.



[.4. Numeration systems on a regular language 9

PROPOSITION 1.4.2. Let U be a positional numeration system. Let
v and w be normalized U-representations of two integers x = my(v)
and y = my(w). Then
r<y=sv<w
where the ordering v < w s the lexicographic ordering.

Instead of using a sequence of integers and an algorithm to com-
pute representations, we can find another way to represent integers.
Observe that describing an arbitrary infinite language over a totally
ordered alphabet according to the lexicographic ordering gives a one-
to-one correspondence between N and this language. Doing this, the
application rep that maps a natural number onto its representation
is strictly increasing if one endows the set of words, rep(N), with the
lexicographic order (this is an assumption in [63] and it is also rel-
evant with Proposition 1.4.2). Among the possibly recognizable sets
of integers, N is of special interest. For instance, if N is recognizable,
then one can easily check whether a word over the alphabet of the dig-
its represents an integer or not. Taking this into account, we choose
to describe an infinite regular language according to the lexicographic
ordering. So we have the following definition.

DEFINITION 1.4.3. An abstract numeration system or numeration
system on a regular language is a triple S = (L, %, <) where L is an
infinite regular language over the totally ordered alphabet (X, <). Enu-
merating the elements of L lexicographically with respect to < leads to
a one-to-one map repg from N onto L. To any non-negative integer n,
it assigns the (n+1)" word of L, its S-representation, while the inverse
map valg sends any word belonging to L onto its numerical value.

Having generalized numeration systems at our disposal, it is natural
to be interested in the corresponding recognizable subsets of N.

DEFINITION 1.4.4. Let S = (L, X, <) be a numeration system. A

subset X C Nis said to be S-recognizable if rep4(X) is a regular subset
of L.

EXAMPLE 1.4.5. Let ¥ = {a,b}, a < b, and L = a*b*. We consider
the numeration system S = (L, 3, <). Table 1.1 gives the first words
of the ordered regular language a*b*. For instance,

repg(4) = ab and valg(aaa) = 6.

In a positional system, each digit has its own weight. Observe that
this is generally not the case for an abstract numeration system.

Numeration systems on a regular language generalize linear numer-
ation systems whose characteristic polynomial is the minimal polyno-
mial of a Pisot number. If U is a positional system having this “Pisot
property” then py(N) is regular and we have Proposition 1.4.2. So, we
can describe the regular language py(N) according to the lexicographic
ordering induced by the natural ordering of the digits and we obtain an
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a*b*
€
a
b

aa

ab

bb
aaa
aab

abb

OO Ul W R OIZ

TABLE I.1. S-representations with S = (a*b*, {a, b}, a < b).

equivalent abstract numeration system. Moreover, we can completely
forget the sequence (Up,)nen and the algorithm of representation. They
are just extra data devised to compute the function rep : n — py(n)
in some “practical” manner.

ExaMPLE 1.4.6. Consider the Fibonacci system introduced in Ex-
ample 1.2.3. The set of all normalized representations is

L = {e}u1{0,01}".
So the positional Fibonacci system and the abstract numeration sys-
tem S = (L,{0,1},0 < 1) are equivalent. In these systems, 17 is
represented by “100101” because 7(100101) = 17 but also because
100101 is the 18" word of the lexicographically ordered language L.

ExamMpPLE 1.4.7. Let £ > 2 and X be the totally ordered alphabet
of digits {1 < --- < k}. The abstract numeration system

S =243, <)
is said to be the k-adic numeration system and the (n + 1)™ word of

¥* is said to be the k-adic representation of n (see page 303 of [38]).
It is worth noting that if w = w,, - - -wy € 3* then

valg(w) = Zwi K.
=0

Observe that this system can be viewed as a positional numeration
system defined by the sequence (Up)nen = (K™)nen- In this case, the
k-adic representation of an integer is not computed by the greedy algo-
rithm (otherwise, we would obtain the classical representation in base
k over the alphabet {0,...,k—1}) but it can be easily shown that each
integer  has a unique decomposition

T=dp, k" + -+ do k°
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with the coefficients d;’s belonging to {1,...,k}. With our notations,
it is clear that the functions valg and m; coincide. Therefore, the re-
striction of 7, to the language {1,...,k}* is an increasing one-to-one
and onto mapping.

ExAMPLE 1.4.8. In a positional system U, allowing leading zeroes in
the representation w of an integer has no consequence on its numerical
value, my(w) = my(0"w), Vn € N. This is not the case for abstract
numeration systems because they are dependent on the lexicographic
ordering. This is shown in Table 1.2 where we have chosen the binary
system. One can see that if we allow leading zeroes, the words 0, 00

N | 1{o,1}*u{e} | {0,1}*
0 € €

1 1 0

2 10 1

3 11 00

4 100 01

5 101 10
6 110 11

7 111 000

TABLE 1.2. Allowing leading zeroes changes the abstract
system of numeration.

and 000 have different numerical values with respect to an abstract
system. Observe that the numeration system on the language {0,1}*
corresponds, up to a homomorphism, to the dyadic numeration system.
Consider the homomorphism A : {0,1} — {1, 2} defined by h(i) = i+1,
1 =0,1. The application of A is represented in Table 1.3.

w € {0,1}* | h(w) 7o (h(w))
€ € 0
0 1 120 =1
1 2 2.20 =2
00 11 120 4+12° =3
01 12 1214220 =4
10 21 221 +1.20 =
11 22 221 +220 =6
000 111 | 1.224+1.21 +1.20 =

TABLE [.3. Dyadic numeration system.
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5. First properties of abstract numeration systems

This section is mainly devoted to algorithms for the computation
of valg and repg. To obtain these algorithms, we have to study the
structure of an ordered regular language.

Let A= (Q,%,4,s, F) be a DFA accepting a language L C ¥*. We
define some sequences related to the states of A. If p is a state of A
then u,(p) is the number of words of length n accepted from the state
p, i.e.,

w,(p) = #(L, N T")
and v, (p) is the number of words of length at most n accepted from p,
that is,

Vn(p) - # E<n Zuz

Observe that the function which maps n onto u,(p) is the complezity
function of the language L, (i.e., the function which maps n € N onto
the number of words of length n belonging to L,). In the following of
this work, we mix up, whenever possible, the function n +— u,(p) and
the sequence (u,(p))nen provided that it does not lead to any confusion.
A well-known fact in automata theory is that the sequences (u,(p))nen,
and thus the sequences (v, (p))nen, satisfy a linear recurrent equation.
(A proof of this result is based on the fact that the series f, (X) =
Y nso Un(p) X™ is Nerational, see [7]. Another proof can be be given
in terms of graph theory by counting the number of paths of length
n starting in a state p and ending in a final state: the characteristic
polynomial of the incidence matrix of the automaton is satisfied by the
sequence (U, (p))nen-)

If we are only interested in the complexity function of a language
L, we simply write u, (L) or u, provided that it does not lead to any
confusion. Similarly, we allow the notation v, or v,(L) to denote the
number of words of length not exceeding n in L.

When we consider a numeration system S = (L,X, <) or more
specifically a DFA A = (Q, %, 4, s, F') accepting L, each state p € @ for
which L, = {w € ¥* | p.w € F} is infinite leads to a numeration system
Sp = (Lp, %, <). The functions repg and valg, are simply denoted by
rep, and val, if the context is clear. If L, is finite, the functions rep,
and val, are defined as in the infinite case but the domain of the former
is restricted to {0,...,#L, — 1}.

ExaMPLE 1.5.1. Consider the DFA depicted in Figure 1.3. We have
L; = a*bab*, Ly = ab*, L, = b* and L, = () and Table 1.4 gives the first
representations in these numeration systems.

Observe that the numerical value of a word w is equal to the num-
ber of words in the language which are lexicographically less than w.
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a
b
(s)b (1)

ab

F1GURE 1.3. A DFA and the languages L,’s.

N|| L, L, | L,
01| ba a €
1| aba | ab b
2 || bab | abb | bb
3

aaba | abbb | bbb

TABLE 1.4. The languages accepted from the different states.

Taking this into account, the next Lemma binds the numerical value
of a word and the different sequences (u,(p))nen and (v, (p))nen-

LEMMA 1.5.2. Let S = (L, X, <) be an abstract numeration system
and A = (Q,%,9,s,F) be a DFA accepting L. If zw belongs to Ly,
z,w € X =3*\ {e}, then val,(zw) is equal to

(1) vy (@) + Vi1 (9) = Viw-1(p-2) + Y W (p-2)-

2l<z
|2/ |=|z|

Proof. We have to compute the number of words belonging to L, and
lexicographically less than zw. There are three kinds of such words.
The first consists of words of length less than zw and counts vi,,|—1(p)
elements. The second consists of words of length |zw| admitting the
prefix z. Since a word z'w’ belongs to L, if and only if w’ belongs to
Ly, .+, we see that there are val, ,(w) —Vj,|—1(p-2) such words. It is clear
that there are

#{r e L, : z=72u || =]z, v =|wl and 2’ < z}
= Z u|w‘(p.2')

2l<z

| I=l|

words of the third kind.
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REMARK 1.5.3. Taking z to be a letter in Lemma 1.5.2 leads easily
to an effective algorithm to compute valg. If ow belongs to Ly, o € X,
w € X7, then

(2)  valy(ow) = valyo(w) + Viu|(P) = Viw -1(p-0) + Y wu(p-0").

o'<o
If o is a letter belonging to L,, it is obvious that
(3) val, (o) = uy(p) + Z uo(p.o’).
o'<o
So, applying several times (2), we obtain the following decomposi-

tion of the numerical value of a word w = w; - - - w; of length [ belonging
to L,

(4)
val,(w) = wvi_1(p) + Z u_i(po)+---+ Z u; (paw; - - - ws3o)

o<w; o<w2
—vo(p.w; - - - wg) + valy ., (W1)-

Thus, using (3) and the definition of v; 1(p), we have

|w| -1

(5) Valp(w) = Z Z ﬁq,i(pa w) ui(Q)

geQ =0

for some 3, ;(p,w) € N and the following proposition is obvious.

PROPOSITION 1.5.4. Let S = (L, %, <) be a numeration system and
A= (Q,%,0,s,F) be a DFA accepting L. If p,q € Q, w € L, and
i < |w|, then the coefficients of (5) are such that

Bui(p,w) < #X + bpq

where 6, 4 15 the Kronecker’s symbol.

ExaAMPLE 1.5.5. Consider the numeration system of Example 1.4.5.
The minimal automaton of a*b* is represented in Figure 1.4. It is easy

ba
a b a

FIGURE 1.4. The minimal automaton of a*b*.

b

to see that, Ly = a*b*, L, = b*, L, = () and Vn € N,

u,(s) = n+1 Va(s) = 3(n+1)(n+2)
u,(p) = 1 and ¢ v,(p) = n+1
u,(¢) = 0 vn(q) = 0.
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Using (4), one obtains, for instance,

valg(ab®) = wvy(s) +uy(s.aa) — vo(s.ab) + val, 4 (b)
= 6+2-1+1=8,
valg(a®b®) = v4(s) + uy(s.a®) + uy(s.a’ba) — vo(s.a’b?) + val 252 (b)

15+3+0—-1+1=18.

To conclude this first chapter, we give an algorithm to compute the
S-representation of an integer x. It is some generalization of the greedy
algorithm involving the complexity functions of the languages accepted
from the different states of the minimal automaton of L.

Let S = (L, ¥, <) be a numeration system with ¥ = {07 < --- < oy}
and Ay = (Qr,%, 0, sz, F1) be the minimal automaton of L. Recall
that for the minimal automaton of L, the set o~!.L of words that
concatenated with ¢ belong to L is 61,(sp,0) = sp.0.

It is clear that

(6) lrepg(z)| = i%f{n |z < vu(sp)}
This observation is enlightened by the following example.
ExaMPLE 1.5.6. Consider the languages L = a*b* and
M={weab:|w/=1 mod 2}.

Notice that uy, (M) = 0, Vn € N. Table 1.5 gives the positions of the
first v,, for L and M.

L M
0 9 Vo (M) a
Livo(L)| a b
2 b vi(M) =vo(M) | aaa
3| vi(L)| aa aab
4 ab abb
) bb bbb
6| vo(L) | aca v3(M) = vy(M) | acaaa

TABLE 1.5. Relation between (v;),en and a language.

Set |repg(z)| = n; then z — v,,_; is the number of words of length
n belonging to L and less than repg(z).

Table 1.6 sketches the structure of an ordered language L for words
of length n. To determine the first letter of the representation, we have
to compute the number N7 of words of length n belonging to L and
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Vn—1($L) 01 | 01

anl(SL) +11n,2(8L.0'10'1) 09

01 | Ok
Vpo1(s) + Uy _1(s2.01) | 02 | 01

09 | Ok

Vao1(sz) + 30 U 1(sz.03) | ok | o

Vao1(s2) + D0 Uno1(52.05) + Uy o(52.0%01) o2

Vvu(sp) — 1| ox | ok

TABLE 1.6. Structure of an ordered language for words
of length n.

beginning with oy or o9 or --- or o; (j < k)

J
NP = u,_i(o;".L).
=1

If N | <2 — v, 1 < N} then the first letter of repg(z) is o;. We
proceed in the same way to determine the other letters of the represen-
tation. Hence, the following algorithm computes the S-representation
w of a given integer z. See Appendix C for a practical implementation.

ALGORITHM L.5.7. repg : N — L : z — repg(z) = w.

Let n be such that v, ; <z <wv,,
D<= sL
T<— T — Vp_1
w<— €
for ; ranging from 1 to n do
Jj<1
while r > u,_;[01(p, 0;)] do
r =1 —u,_;[05(p, 0j)]
j—J+1
p < 0L(p, o))
w 4 concatenate(w, 0;).



CHAPTER 1II
Recognizability

In this chapter, we study the first properties concerning the recog-
nizability of subsets of N for numeration systems on a regular language.

In the first section, we show that for any numeration system S, the
S-recognizability of a set is conserved under translation by a constant.
Next, we show that ultimately periodic sets are always recognizable, for
any abstract numeration system on a regular language. The material
of the first two sections can be found in [39].

Consider a specific subset X of N. One can ask the following: is
X recognizable in any abstract numeration system ? As a consequence
of Cobham’s theorem, the answer is negative except for the ultimately
periodic sets. Therefore, the question becomes: can we build a par-
ticular system S for X to be S-recognizable. This kind of question is
treated in the third section of this chapter where we are interested in
the recognizability of P(N) when P is a polynomial. We prove that for
any P € Q[z] such that P(N) C N, there exists a numeration system
S such that P(N) is S-recognizable. The content of this section can be
found in [56].

In the fourth section, we generalize the technique of the previous
section and obtain abstract numeration systems that recognize expo-
nential polynomial functions. In other words, for any function of the
form

f(n) = Zﬂ(n) of

where P; € Q[z] is such that P(N) C N and o € N, there exists a
numeration system S such that f(N) is S-recognizable.

The last section of this chapter is devoted to the characterization
of the recognizable subsets of N in terms of N-rational formal power
series: a subset X C N is S-recognizable if and only if the series

Z valg(w) w

werepg(X)

is N-rational.

1. Translation by a constant

Here we show that the S-recognizability of a set of non-negative
integers is conserved under translation by a constant. The proof of

17
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this result reveals some interesting link between abstract and positional
numeration systems.

PROPOSITION IL.1.1. Let S = (L,X,<) be a numeration system.
For each natural number t, X +t is S-recognizable if and only if X C N
is S-recognizable.

Proof. Let ¥ = {0y < --- < o} and h : ¥* — {1,...,k}* be the
homomorphism defined by h(o;) =i. It is cleat that

(I)k:ﬂ'kOh,IE*—)N

is a strictly increasing one-to-one and onto mapping (see Example 1.4.7,
if w is the (n + 1) word of X* then h(w) is the k-adic representation
of n).

Let us show that A C 3* is regular if and only if ®;(A) C N
is k-recognizable. Let v be the normalization function which maps
representations of an integer n onto its normalized k-ary representa-
tion pg(n). If A is regular over 3, by Theorem 1.1.7 and Proposition
1.2.6, v(h(A)) is regular over {0,...,k— 1}, in other words, the set
7, (V(h(A))) = ®x(A) is k-recognizable. Conversely, if B C N is k-
recognizable, then ®,'(B) = h~ (v (px(B)) N {1,...,k}*) is regular
since for z € N, v7!(p(x)) can contain more than one element but
each natural number x has a unique representation over {1,...,k}, its
k-adic representation.

By Theorem 1.2.5, A C ¥* is regular if and only if ®;(A) C N is
k-definable. Let N} be the k-definable set ®;(L) (by definition of S,
L C ¥ is regular). We define the successor function by

Succr, : L — L : w s repg(valg(w) + 1).

The function
Succy, = @y o Sucey, o @,;1
is the restriction to N} of the function f : N - N:z — y = f(2)
defined in (N, +, V) by the formula
(yeN)AN(z<y) AN(V2)(zeNy Az < 2) = (y < 2).

So Succy, maps k-definable sets onto k-definable sets and Succy, trans-
forms regular subsets of L into regular subsets of L. The commutative
diagram on Figure II.1 summarizes the situation.

Dy

repg(N) = L N CN

Suchl J’SUCCN‘,‘,

repg(N\ {0}) C L <¢T Succy, (Vi) C N

FiGure II.1. The application Succy,.
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Assume now that X is S-recognizable, i.e., that repg(X) is a regular
set. Then repg(X +t) = Succ’ (repg(X)) is regular. The converse can
be obtained in a similar way by observing that if ®(repg(X +1)) C N
is definable by a formula ¢ of (N, +, V) then the set

{y € Nk [ (Fz)(p(2)) A (z = Sucen, ()} = Pr(reps (X))
is also definable.
O

ExaMPLE I1.1.2. In this example, we emphasize the different func-
tions encountered in Proposition I1.1.1. Consider again the numeration
system related to a*b*. We obtain Table II.1.

N | repg(N) = L | h(L) | v(h(L)) || ®2(L) = N>
0 € € € 0
1 a 1 1 1
2 b 2 10 2
3 aa 11 11 3
4 ab 12 100 4
5 bb 22 110 6
6 aaa 111 111 7

TABLE II.1. The application ®3 =19 oh =movoh.

One can observe that Ny = N if and only if L = X*. Here ba ¢ L
and thus 5 & Nb.

The normalization which maps representations over {0, 1,2} onto
the normalized binary representations is computed by the automaton
depicted in Figure I1.2 (the sink has not been represented). This au-
tomaton recognizes the set

{(v,w) € {0,1,2}" x {0,1}" - |v| = |w], pa(72(v)) = w}

where words are read from right to left. For instance, (?g?g) and (%?g)

0
1
Oz 083

Ficure I1.2. Transducer computing normalization over
{0,1,2} in base 2.

oo
e '

are recognized by this automaton. In fact,“202” is a representation
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of ten, “1010” is its (normalized) binary representation and “122” is
its dyadic representation. We use leading zeroes to obtain couples of
words of the same length.

REMARK II.1.3. The reader could be seduced by the logical argu-
ments introduced in the proof of Proposition I1.1.1. But it is difficult
to use a logical definition of the recognizable subsets of N because these
sets are viewed through the application ®; = 7 o h, where £ is the size
of the alphabet.

For instance, the use of a bigger alphabet changes the set N, itself
(N is trivially recognizable since repg(N) = L). Roughly speaking,
N contains the positions of the words of L in the lexicographically
ordered language {o1,...,0,}*. Consider again the language a*b* but
now viewed as a subset of {a, b, c}* instead of {a,b}*. In this case, one
considers 3-adic representations and 3-recognizable sets. Therefore, the
first terms of N3 are this time

0,1,2,4,5,8,13,. ..

because ¢ (3), ac (6), ba (7), be (9), ca (10), ¢b (11), cc (12) do not
belong to a*b*. For instance, h(ab) = 12 and m3(12) = 1.3' +2.3° = 5.
Compare the results obtained here with the ones in Table II.1. For
example, one can see that 3 € A, but 3 & N3 for the same language
a*b*.

Another example is to consider the multiplication by 2. The appli-
cation x — 2z is quite difficult to be defined logically! Indeed, we have
to work in N}, instead of N: if ' = 7, (h(repg())) is the i* element of
N, for some i, then (2z)" = mp(h(repg(2z))) has to be defined as the
(27)™" element of M. We shall see in Chapter III that such a logical
definition cannot exist for an arbitrary numeration system.

2. Arithmetic progressions

Let S = (L,%,<) be a numeration system. Having in mind a
possible generalization of Cobham’s theorem, it is a quite remarkable
fact that every arithmetic progression is S-recognizable (a special case
of this result has been obtained separately in [45]).

THEOREM I1.2.1. Let S = (L, %, <) be a numeration system and r,
d be two non-negative integers. The arithmetic progression r + Nd 1is
S-recognizable.

The proof below exploits directly the regularity of L. Another proof
at the end of this section uses the constructions introduced in the proof
of Proposition I1.1.1

Proof. We can assume that » < d. We show that the minimal au-
tomaton Ay = (Quar, 2, Oar, Sur, Far) of M = repg(r + Nd) is finite. Tts
states are the sets

w .M = {z € ¥* : valg(wz) =r mod d}, w € X*.
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Let Ar, = (Qr,%, 05, S1,, F1,) be the minimal automaton of L. Since
L is a regular language, Ay, is finite and it is well known (see justifi-
cation on page 12) that the sequence (u,(sL))nen = (F#(L N X"))pen
satisfies a linear recurrent relation with coefficients in Z. Moreover,
Via1(sr) — vn(sr) = uny1(sy). So the sequence (vi,(S7))nen is also
the solution of a linear recurrence equation and is therefore ultimately
periodic in the finite ring Z/(d), say of period t. By Lemma 1.5.2, one
has

valg(wx) = vals, (%) + Viwg -1(5L) = Vjg-1(50.w) + z u,(sp.w')

w/ <w
[w]|=|w

d

where the point in expression like s;,.w represents the transition func-
tion 07 of Ar. This latter automaton being finite, sy.w can only
take a finite number of values in Q. In Z/(d) and for |w| large

enough, the term vy, —1(sz) can be written as voyiq4i(s.) for some

i € {0,...,t — 1} and for some constant C' since (v, (Sr))nen is ulti-
mately periodic. Still working in Z/(d), the term Z u,(s,.w'") can
w! <w
wl=lw|

be written as ij u;|(p) for some j,’s belonging to Z/(d).

PEQL
So, for |w| large enough, any set w™!.M is of the form

{o + valy (@) + Vouiaai(se) = Via1(0) + 3 Jp Way(p) = r mod d)

PEQL

for some ¢ € Qr, j, € {0,...,d—1} and i € {0,...,t — 1}. So, there

is finitely many sets of this kind and the set of states of the minimal
automaton of Ay, {w™'.M |w € ¥*}, is finite.

O

REMARK I1.2.2. We can give an explicit method to construct an

NDFA accepting repg(r + Nd). The key of this method rests again on

the ultimate periodicity in Z/(d) of the sequences (u,)nen and (vy,)nen-

Let A = (Q,%,4,s, F) be a DFA accepting L. For each p € @, there

exist minimal constants a,, b,, e, and f, belonging to N such that

bp, fp > 1,
Vn > ap, Uy(p) = Upqgs, (p) mod d

and
Vn > ep, Vo(p) = Vniy, (p) mod d.
Set M to be the least common multiple of the b,’s and f,’s and
L = max {sup a,,supe, + 1}."
PEQ PEQ

!The consideration of e, + 1 instead of e, is due to the term V|w —1(p.0) in the
expression of val,(ow) given by (2) (see page 14).
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With these notations, the formulation (2) of Lemma 1.5.2 shows that
if |lw| > L, then val,(ow) is equal modulo d to val,,(w) plus some

remainder depending only on p, o and |w| mod M. Thus, we consider
the NDFA B = (Q'U{f},%, E, I, F) where

Q = Q@x{0,...,d—1}x{0,...,. M -1}
I = {(50,i)]i=0,...,M—1}
F = {f} where f ¢ Q"

The first component of a state of B is used to mimic the behavior of
A. The numerical value modulo d given by the already read letters
is stored by the second component. The length modulo M of the
remaining part of the word to be read is stored in the last component
of the state. The transition relation of B is such that
((pviaj)aaa (5(p:0)7ilaj - 1)) € E7 lfj € {LM - 1}7
((p,i,7),0,(0(p,0),i', M —=1)) € E, if j =0.

where the unique ', depending on p, ¢ and j, is easily computed

through the use of Lemma 1.5.2. If x € L, N X% and i € {0,...,d — 1}
are such that val,(z) +4 = r mod d then

((p,i, £ mod M), z, f) € E.

The finite language repg(r + Nd) N X<F is treated separately.

The reading of a word w of length greater than £ could be started
in any of the initial states of B. But notice that only one of these states
has to be chosen (with respect to |w|) to reach the final state f at the
end of the reading of w.

ExAMPLE 11.2.3. We apply the previously described method to ob-
tain an NDFA recognizing repg(3N + 1) where S is the numeration
system constructed on the language L of the words over {a,b} hav-

ing an even number of b. The minimal automaton of L is depicted in
Figure IL.3.

b
@ ,
a a

Ficure I1.3. DFA accepting words with an even num-

ber of b.
We have
u,(s)=2"1 n>1 u,(p)=2"""1 n>1
{ up(s) =1 and { ug(p) =0

So, in Z/(3), Vn > 1, u,(s) = u,(p) = (—=1)"! and Vn € N, v, (s) =
(=)™ and v,(p) = (—1)" — 1. With the notation of the previous
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remark, £ = 1 and M = 2. From (2) page 14, it follows the next
relations modulo 3. If |w| > 1,

val,(aw) = val,(w)+ (=1)wH?
val,(bw) = val,(w)+ (=1l +1
val,(aw) = val,(w)+ (=1)vH?
val,(bw) = val,(w)+ (=1)* —1.
N~——
o med 2

With these relations, one obtains easily the main part of the transition
relation:

(s,0,0) | (s,1,0) | (s,2,0) | (s,0,1) | (s,1,1) | (s,2,1)
al(s,2,1) | (s,0,1) | (s,1,1) | (5,1,0) | (s,2,0) | (s,0,0)
b|(®21)](p01)](p,1,1) | (p,0,0) | (p,1,0) | (p,2,0)

(p,0,0) | (p,1,0) | (,2,0) | (p,0,1) | (p,1,1) | (P,2,1)
a|(p,2,1) | (p,0,1) | (p,1,1) | (p,1,0) | (p,2,0) | (p,0,0)
b (s,0,1) | (s,1,1) | (s,2,1) | (5,1,0) | (s,2,0) | (s,0,0)

For instance, ((s,1,0),b,(p,0,1)) € E because in the minimal automa-
ton of L, s.b = p and when |w| = 0 mod 2 then 14 (=1)%l +1 =
0 mod 3. To conclude, observe that val(a) = 1, b ¢ L, a ¢ L, and
val,(b) = 0. So, ((s,0,1),a, f) and ((p,1,1),b, f) also belong to the re-
lation. The automaton recognizing repg(3N + 1) is depicted in Figure
I1.4.

FIGURE II.4. An NDFA accepting repg(3N + 1).

To reach the final state, the words of even (resp. odd) length have
to be read from the initial state (s,0,0) on the left (resp. (s,0,1) on
the top) in Figure I.4. If the reading of a word begins in the wrong
initial state, then no path reaches the final state.
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To conclude this section, here is another proof of the fact that r+Nd
is S-recognizable where S is the numeration system (L, X, <).

Proof. We use the notations of Proposition II.1.1. With £ = |X|, the
set @, (L) is |X|-recognizable. By Proposition 1.3.3, the characteristic
sequence x of ®,(L) is |X|-automatic. To conclude, use Proposition
1.3.4 and observe that the characteristic sequence of ®,(repg(r + Nd))
is the image of x under the frying pan finite transducer depicted in
Figure IL.5 (the tail has r nodes and the head counts d of them). In

0/0 0/0
1/0
/1 1/0
10 10 1/0
0/0 0/0
0/0 0/0 1o 1/0
0/0 0/0

Ficure I1.5. A frying pan transducer.

the representation of a finitary sequential transformation, a label of the
form «/8 means the reading of @ and the writing of £.
O

3. Polynomials

In a positional numeration system with an integer base, the set of
perfect squares is not recognizable, see page 311 of [28]. On the other
hand, the characteristic sequence of this set is a morphic predicate, i.e.,
it can be generated by iterating a non-uniform morphism, see page
141 of [45] or page 81 of this work. Here, in the frame of abstract
numeration systems, we give an example of a system recognizing the
set, of perfect squares. This example is based on the following classical
result in formal languages theory.

LEMMA I1.3.1. [63] Let L be a regular language over the totally
ordered alphabet (X, <). The set Min(L, <) (resp. Max(L, <)) obtained
by taking from all the words of L of the same length only the first (resp.
last) one in the lexicographic order is regular.

ExampLE I1.3.2. Consider the language L = a*b* U a*c*. Using
the previous lemma, one shows easily that the set of squares is S-
recognizable in the system S = (L,{a,b,c},a < b < ¢). Table I1.2
gives the first words of L.

Observe that (n+1)?—n? = 2n+1 is exactly the complexity function
u, (L) of the language L. So repg({n?: n € N}) is Min(L, <) = a*.
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cc
aaa
aab

B 00N U W = O
Q
(=l

TABLE I1.2. The language a*b* U a*c".

After seeing this example, J.-P. Allouche asked the following ques-
tion. Is it possible to generalize the result on recognizability of the
perfect squares to the set {n* : n € N}, &k > 2 ? Furthermore, if
P is a polynomial belonging to N[z| (resp. Z[z] or Q[z]) such that
P(N) C N then can one find a numeration system S such that P(N) is
S-recognizable ?

We answer affirmatively to all these questions. The constructions
encountered in this section use the same technique as the one of the
previous example: build a regular language L such that

u,(L) =P(n+1) — P(n).

The present section is organized as follows. First, we give an explicit
iterative method to obtain regular languages L*) such that the number
of words of length n is exactly n* (in [70] it is said that such languages
can be easily obtained but we need our construction for later purposes).
Next, we increase gradually the difficulty. We begin with the case
P € N[z| which is quite simple since we only deal with the operation
of addition. Next we consider P € Z|[z] and the problem of subtraction
must be resolved. The proof in the case of negative coefficients rests
on our construction of the languages L®*). Finally, we face up the most
general case, P € Qz]| and the problem of division is solved through
the use of Theorem II.2.1. In each of these last three steps, we give an
instructive short example of construction.
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3.1. Languages with complexity n*. Let us first recall two def-
initions.

DEeFINITION I1.3.3. If v and w are two words in X* then the shuffile
of v and w is the language v LI w of words vyw; . ..v,w, such that

V=01V, W=W1-- Wy, Vi, w; €27, 1<i<n, n>1.
If L, M C ¥* then the shuffie of the two languages is the language
LiWM={weX|wezxzllly,forsomez € Lyec M}.

Recall that if L, M are regular then L LI M is also regular (see for
instance Proposition 3.5 of [28]).
DEFINITION I1.3.4. Let L C Y¥*. Then X is the minimal alphabet of

L if for each o € ¥, there exists a word w in L containing o, |w|, # 0.

We want to build regular languages L*) such that u,(L*)) = n*

k € N. To that end, we define regular languages M®) such that
u,(M®) = (n+ 1)k, k > 2. The first two languages L(®) and L("
are, for example, L(® = ¢* and L) = a*b*.

Let k£ > 2. Let us assume that we have L(® ... L*¢=1  One has

E1 o
w () =3 (P
=0 7
Therefore, M) can be obtained as a finite union of regular languages
LU)’s over distinct alphabets, j < k. That is

k-1 (%5)
(7) u® =) U

j=0 i=1

where un(ng )) = nJ. If 04 does not belong to the minimal alphabet of

M®) then we can define L) as

(8) L® = M® L1 {o}}.

Indeed, for each of the (n+1)¥~! words w of length n in M®) w11 oy
contains n + 1 words of length n + 1. So there are exactly (n + 1)F
words of length n + 1 in L®*).

As an example, we give the nine words of length 3 in L(®. First,
we have M) = ¢* Ubtc* and Table I1.3 shows the situation.

M@ N {a,b,c}? | L® = M@ {d}
aa aad, ada, daa
bb bbd, bdb, dbb
bc bed, bdc, dbe

TABLE I1.3. The operation of shuffle.
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In what follows, M®*) and L®*) will refer to the languages defined
in (7) and (8) respectively.

REMARK I1.3.5. Let I, be the size of the minimal alphabet of L(*),
The construction of L) gives

ZO = ]-: ll = 27
k—1

=1+ ("1 Vk>2.
=0

By direct inspection, one can check that I, = 4, I3 = 10, 4 = 30,
Is =104 < 5! and for £k =6,...,9, I < k!l. Let £ > 9. One has easily,
by induction on k, the following upper bound

“— . (k-1
lk<Zj!< , ):eF(k,1)<e(k—1)!
=0 J
where I'(k, 1) is the incomplete gamma function defined by

+oo
['(a,b) :/ t* e tdt.
b

There are certainly several ways to improve the size of the mini-
mal alphabet of a language K such that u,(K) = n*. For instance,
a*b* LI {c} has the same complexity function as L = (a*Ub*¢*) LL{d}
but is over a smaller alphabet. This simple modification would change
Iy and thus would change [, for all n > 3. The question of finding the
minimal size of the alphabet of K is beyond the concern of the present
section. But we can give a lower bound for /. Indeed, for all n, it is
clear that I} > n* (with an alphabet of size l;, there are at most /7
words of length n and we need at least n* of them). Therefore, we have
a lower bound 2%/2 on the size of the alphabet of a language containing
n* words of length n. Moreover, there is a systematic construction to
get a regular language K over an alphabet with 2F letters such that
u,(K) = n*. Consider the matrix

11

One has (A7)12 = n. For k > 2, Ay is the direct product of the matrices
Ay and Ay_q,ie. Ay, = A1 ® Ai_1. For instance,

A_1A11A1_01
27\04; 14,) " |0 o0

Then (A});o¢ = n*. This matrix Ay can be viewed as the transition
matrix of a DFA over an alphabet of 2¥ letters. For instance, a DFA
for A, is depicted in Figure I1.6. Consequently, there exists a language
K over a 2F letters alphabet such that u, (K) = n*.

— = =
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FIGURE I1.6. DFA with a transition matrix As.

Nevertheless, in what follows, the main thing is that L®*) is built in
(8) with one last operation of shuffle with a new letter oy.
REMARK I1.3.6. After reading an earlier version of [56], J. Shallit

suggested another construction of a language K such that u,, (K) = n*.

It uses the following result (see Section 6.5 of [12])

nk = Xk:t! S(k, 1) (7;)

t=0
where S(k,t) are the Stirling numbers of the second kind®. The lan-
guage over {a,b} with all strings of length n containing exactly ¢ oc-

currences of the letter b is regular and has a complexity u, = (7;)
Therefore a union of such languages over distinct alphabets gives the
language K.

This construction is perhaps simpler than the construction of L®*)
but uses a larger alphabet. The size of the minimal alphabet is

max t!S(k,t)
t=0,...,k

and a lower bound is given by k!. We shall not use it in the following
because the operation of shuffle given in (8) is needed in our proof of
Lemma I1.3.10.

3.2. Recognizability of polynomials belonging to N[z]. The
main idea is that we have to find a regular language L such that the po-
sitions of the first words of each length in the lexicographically ordered
language L are the values taken by the polynomial.

PropPOSITION 11.3.7. Let P € Nz|. If P(N) C N then P(N) is
S-recognizable for some abstract numeration system S.

Proof. If P is constant then the result is obvious. So we may assume
that P is a non-constant polynomial.

This proof exploits the following observation. If there exists nyp € N
and a regular language L such that the position of the first word of
length ng in the ordered language L is P(ng) and that for all n > nyg,
u,(L) = P(n+1) — P(n) > 0, then the position of the first word of
length n > ng in L is P(n).

2The Stirling number of the second kind S(k,t) is the number of ways of par-
titioning a set of k elements in ¢ non-empty sets.
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Since translation by a constant does not alter the recognizability of
a set (see Proposition 11.1.1), we can assume that P(0) = 0.

For each n € N, P(n) < P(n+1) and the polynomial P(n+1)—P(n)
only contains powers of n with non-negative integral coefficients. Thus
the construction of a regular language L such that for all n > 1,

(9) u, (L) = P(n+1) — P(n)

can be achieved by union of languages L®*) over distinct alphabets T'j.
It is clear that if P(1) > 1 then (9) is not satisfied for n = 0 because
ug(L) < 1. We fix a total order < on ¥ = U,y and let S = (L, X, <).

Finite modifications of a regular language do not alter its regularity.
So we can assume that the first word w of length 2 in the lexicograph-
ically ordered language L, i.e., Min(L N X2, <) = {w}, is such that
valg(w) = P(2). To that end, the alphabet ¥ should maybe be ex-
tended. Notice that we have to consider words of length 2 instead of
words of length 1 because P(1) could be greater than one and therefore
cannot possibly be represented by the first word of length 1.

Let n > 2. Since u,(L) = P(n+ 1) — P(n), it is clear that the
numerical value of the first word of length n is P(n) and

repg(P(N) \ {P(0), P(1)}) = Min(L, <) N =2,
By Lemma IL1.3.1, P(N) is S-recognizable (two words should maybe
be added to a regular language for the S-representations of P(0) and
P(1)).

O
EXAMPLE I1.3.8. Let P(z) = 222 + 3. Then

P(z+1)— P(x) =4z +5.

We consider the language L which is made up of four copies of L(!) and
five copies of L(®). Observe that with five copies of LY, we obtain five
words of any positive length but the only one empty word €. To ensure
that repg(P(2)) = repg(14) is the first word of length 2 in L, we add
to our language four new words of length 1 (we possibly have to add
four letters to the alphabet). This remark applies for all the following
constructions: if one uses n copies of L then add n — 1 words of
length 1 and treat the case n = 1 separately. So here we can take

4 5
L={Jalb; ulJc U {b1,b2,b3,bs}.
i=1 i=1
Table I1.4 shows the first words of L. The lexicographic ordering is
induced by the ordering a1 < ---<ay <by <---<by<c; <---<cs.
COROLLARY 11.3.9. Let k € N\ {0,1}. There exists a numeration
system S such that the set {x* : x € N} is S-recognizable.
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13 Cy
P(2) =14 ajadg
15 a11)1
16 209

21 Cl4b4
22 C1Cq
26 C5Cs
P(3) =27 ajaiadi

P(4) =44 ajaiaial

TABLE I1.4. Numeration system recognizing P(x) =
212 + 3.

3.3. Recognizability of polynomials belonging to Z[x]. First,
we set forth a lemma to get rid of the problem of coefficients belonging
to Z instead of N.

LEMMA I1.3.10. Let k and a be two positive integers. There exists
a reqular language £ such that u, (L) = n* — an*=t for alln > o and
u, (L) =0 forn < a.

Proof. Let us assume that £ > 2. Let ¥ be the minimal alphabet of
M®). From the construction given in (8), one has L*) = M®) L11{0}}
where o, € ¥. For i =1,...,n, L™ has exactly n*~! words of length
n with oy in position ¢. From this observation, the language
a—1
L=LW\| ]z op ¥

J=0
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has exactly n* — an®!

u, (L) =0ifn < a.
If £ =1, it suffices to consider the language £ = a®a™b*.

words of length n for n > «a. Notice that

O

ProposiTION 11.3.11. Let P € Z[z]. If P(N) C N then P(N) is
S-recognizable for some numeration system S = (L, 3, <).

Proof. We proceed as in Proposition I1.3.7 and consider the polyno-
mial Q(n) = P(n + 1) — P(n). Observe that since P(N) C N, the
coefficient of the dominant power in P is positive and thus the same
remark holds for Q. By adding extra terms of the form z/ — 27, if
deg(Q) = k then Q(z) can be written as

k

gt — gy T — g 2 Zbl z!

1=0
where i1,...,i, € {0,...,k—1}, a;;,...,a;,, € N\ {0} and by, ..., b; €
N. Let « = sup;_; ,a;. Using Lemma IL.3.10, for j = 1,...,r
we construct languages £,’s such that for all n > «, u,(£;) = n¥* —
a;; 7. By union of languages £;’s and L()’s, we can construct a regular
language L such Vn > «, u,(L) = Q(n).

We can assume that L contains exactly P(«) words of length not
greater than aw—1. This can be achieved by adding or removing a finite
number of words from the language L (this operation does not alter
the regularity of L). Let S be a numeration system built upon the
ordered regular language L. The first word of length o has numerical
value equal to P(«) and Vn > o, u,(L) = P(n+ 1) — P(n). Then one
has

reps({P(n) : n > a}) = Min(L, <) N =%

To conclude we have to add a finite number of words for the repre-

sentation of P(0),...,P(a— 1) and

repg(P(N)) = (Min(L, <) N £2%) U {repg(P(0)),...,repg(P(a — 1))}.

By Lemma I1.3.1, repg(P(N)) is regular.
O

ExXAMPLE 1L1.3.12. Let P(z) = 2* — 32? — 22 + 5. Then
Q(n)=P(n+1)—Pn) = 42°+62> -2z —4
= 422 +52%+ 2> -3z +z—4.
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With four copies of L3, five copies of L(? and using Lemma 11.3.10,
one can construct a regular language L such that?

(L) = 4n*+6n%—-2n—4 ,if n > 4;
Unl5) =9 4nd + 502 , otherwise.

We have P(4) = 205 and the number of words of length not greater
than 3 belonging to L is 214 thus we remove 9 words of length not
exceeding 3 in L. Therefore, the first word of length 4 in L is the
representation of P(4) and

(10) repg({P(n) : n > 4}) = Min(L, <) N ¥=*

is a regular subset of L. Since {P(0),...,P(3)} is equal to {1, 5,53},
we add the second, the 6 and the 54" word of L to (10) to obtain
repg(P(N)).

ExAmpPLE I1.3.13. We begin another example which shows how
to obtain a correct expression for u,(L) in a trickier situation. Let
P(z) =2°—42% —22% + 8, then

Qz)=51"+92° +2° - 322+ 22 — 120 + 2 — 5.
To construct a language L, we use five copies of L*), nine copies of
L®) and apply Lemma I1.3.10 three times. Thus

Q(n) it > 12;
I)— 5nt+10n2 —3n24+n—>5 |, if 12>n > 5;
Un(L) =19 55441003 — 32 Lif5>n>3;
5nt+9n? , otherwise.

3.4. Recognizability of polynomials belonging to Q[z]. Fi-
nally, we obtain the theorem of recognizability in the general case.

THEOREM I1.3.14. Let P € Q[z]. If P(N) C N then P(N) is S-
recognizable for some numeration system S = (L,%, <).

Proof. Let

r p  Qg—1 p_q Qo

Plz) = 2¢ Zk-1 e 0

(x) bk:c +bk71x + +b0

with by, ..., bk, ar € N\ {0} and ag, ...,ax_1 € Z. Let m be the least

common multiple of by, ..., b;. One has
PI
pP—=__
m

with P’ € Z[z]. By hypothesis P(N) C N; thus P'(N) C mN. As in
Proposition I1.3.11, there exist a constant « and a language L' C X*
such that Vn > a,

up (L) = P'(n+1) — P'(n) = m[P(n+1) — P(n)].

3By Lemma I1.3.10, there exist languages £; and £, such that u,(£;) = n*>—3n
ifn > 3and u,(L2) = n—4if n > 4. Observe that if n = 3, u,(£1) > 0, u,(L£2) =0
and 4n3 +5n% +n? —3n =4n3+5n>
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We modify L' (by adding or removing a finite number of words) to have
a—1
Z u; (L") =m P(a).
i=0

In other words, if {w} = Min(L'NX%, <) then valg/(w) = P'(«) for the
numeration system S’ = (L', X, <) where < is a total ordering of X.
By Theorem I1.2.1, the arithmetic progression m N is S’-recognizable.
Consequently, L = repg/(mN) is a regular language such that

iui(L) = P(a) and Vn > «, u,(L) = P(n+1) — P(n).

Indeed, to obtain L one takes in the lexicographically ordered language
L' the words at position im+1, ¢ € N. Since the first word of length « in
L' is the first word of length « in L and its position in the lexicograph-
ically ordered language L is P(«), then we conclude as in Proposition
I1.3.7 by using Lemma II1.3.1.

O
ExaMPLE I1.3.15. Let
4 37 17
P(z) = %—2:133—1—?:52—3:54-4
1 17
= g(a:—7)x2(a:+1)+3x(a:—1)+4.

It is clear that P(N) C N since one of the numbers z, x — 7 or z + 1
must be divisible by 3 and one of the numbers z or  — 1 must be
divisible by 2. We have m = 6 and

P'(n+1)—P'(n) = 8n®—24n>+46n—24
Tn® +45n+n® —24n* +n — 24.
Using seven copies of L), 45 copies of L(Y) and applying Lemma
I1.3.10 twice, we construct a language L' such that
(L) = 6(P(n+1)—P(n)) ,if n> 24;
" Tl "n®+45n , otherwise.
The number of words of length not greater than 23 in L’ is 545652 and
6 P(24) = 517776. Thus we remove 27876 words from L' N <2, In
this new lexicographically ordered language, we only take the words
at position 67 + 1, 7 € N, to obtain the regular language L. Thus the
[P(24) + 1] word of L is the first word of length 24 belonging to L
and
u,(L) = P(n+1) — P(n) if n > 24.
Hence,
repg({P(n) : n > 24}) = Min(L, <) N X2*,
Eventually we have as usual to add a finite number of words for the
representation of P(0),..., P(23).
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REMARK I1.3.16. We want to emphasize the importance of the con-
structions encountered in this section. Indeed, when one considers
an arbitrary regular language L, the only infinite subsets of L C X*
that are regular are related to ordering considerations: Min(L, <),
Max(L, <) and eventually repg(r + dN) with S = (L, ¥, <). Checking
the regularity of Min(L, <) will be used as a powerful tool to make sure
of the non-regularity of L itself (see Chapter III).

4. Exponential polynomial functions

Proceeding in the same way as in the previous section, we show
that for any function of the form

f(n) =3 Pin) ol

where the P;’s are polynomials with rational coefficients such that P;(N)
is included in N and the a;’s are non-negative integers, there exists an
abstract numeration system S, such that f(N) is S-recognizable. It
is interesting to note that each predicate P = {Q(n) o™ |n € N} for
a > 0 and ) a polynomial with non-negative integer values is morphic
[16].

PropPOSITION I1.4.1. Let a € N\ {0,1}. There ezists a numeration
system S such that the set {a™ : n € N} is S-recognizable.

Proof. We have to build a regular language L such that
u, (L) ="t —a" = (a—1)a"
This can be achieved by using o — 1 distinct copies of ¥*, where ¥ is

an alphabet of cardinality «.
O

PROPOSITION 11.4.2. Let « € N\ {0,1} and P € N[z] such that
P(N) C N. There exists a numeration system S such that the set
{P(n)a" : n € N}
18 S-recognizable.
Proof. We have to build a regular language L such that

u,(L) = P(n+1)a"™ — P(n)o" =[aP(n+1) — P(n)] o™

It is obvious that a P(n + 1) — P(n) € N[z]. It is enough to show
how to build a regular language L*:% containing exactly n* o words
of length n > k > 1. First, we build L0®. Let ¥ be such that
|¥| = a. With « distinct copies of ¥*, we obtain a language M ;
such that u,_1(M;;) = o” if n > 2 (for each copy of £*, one has
u, 1(X*) = o™ ! and there are « copies). If a does not belong to the
minimal alphabet of M, ; then L3 can be defined as

L(l’a) = Ml,l |_|_|{0,}
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description complexity
Ms, | o® copies of ©* u, 3=0a"
Mo || M3y {a1} U 2 copies of My; | u, o =na”
M3 3 M3’2 LLI {CLQ} U 1 COpy of MQ,Q Up—1 = ’I'L2 a”
L(3,a) M3’3 LLJ {a3} u, = 77,3 a”

TaBLE I1.5. The construction of L&) (n > 4).

Indeed, if n > 2, for each of the " words w of length n —1 in M, ,,
wlLl a contains n words of length n. Next, we build L. With a?
distinct copies of ¥*, we obtain a language M, such that u,, (M) =
a” if n > 3. If a; does not belong to the minimal alphabet of M, then
u,_1 (M LLI{a1}) = (n — 1) a” for n > 3. Therefore,

MQ,Z = (Mg,l |_|_|{CL1}) U Ml,l is such that un_l(Mg,g) = TLO[n, n 2 3

where the union is made from languages over distinct alphabets. If ay
is a new symbol,
L(Q’a) = M272 LLI {ag}.

Continuing this way, we can build L% using the previously defined

languages M; ;’s and k operations of shuffle with new letters. For in-
stance, the construction of L®) is summarized in Table IL5.

O

REMARK I1.4.3. Observe that the last step in the building of L)

is the shuffle of M}, and a new symbol that does not belong to the
minimal alphabet of Mj ;. Moreover,

u,_1 (M) = nF=tam.

So, with the same construction as in Lemma II1.3.10 and Proposition
I1.3.11, we can consider polynomials belonging to Z[x]. Proceeding
as in Theorem I1.3.14, we can assume that the polynomials belong to
Q|z]. Thus the following result is obvious.

THEOREM I1.4.4. Let P; be polynomials belonging to Qx| such that
P;(N) C N and «; be non-negative integers, i = 1,...,k, k > 1. Set

k
f(n) =2 PF(n)a}.
i=1
There exists a numeration system S such that f(N) is S-recognizable.

5. Recognizable formal power series

We now characterize the S-recognizable subsets of N in terms of
rational series in the noncommuting variables 0 € ¥ and with coef-
ficients in N. In particular, we show that ) _ nrepg(n) is rational
(this kind of result is also discussed in [8] and [17]). Using classical
results on rational series, we obtain a generalization of the fact that
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ultimately periodic sets are S-recognizable for any numeration system
S. Let us start with a small introduction to rational and recognizable
formal power series.

A formal power series with coefficients in the semiring (R, +,-) is a
mapping T : ¥* - R : w — (¥, w). It can be written as a formal sum

T = Z (%, w) w.
wer*
The set of formal power series of X with coefficients in R is denoted
R{(X)). If one equips this set with the operations of sum,
(11 + ‘3:2, w) = (‘Il,w) + (‘:2, w)
and (Cauchy) product,

(3&@2,?11) = Z ((11,1)1) . ((IQ,UQ),
V1V =W

then R((X)) is a semiring.

DEFINITION I1.5.1. A polynomial of R{(3)) is a formal power series
% such that the set

{w e ¥*: (T, w) # 0}

is finite.

We mainly adopt the terminology of [7] concerning semirings, ra-
tional and recognizable series. The reader can also see [60].

Let us recall some definitions.

DEFINITION I1.5.2. A sequence (%,)nen of elements in R{(3)) con-
verges to the limit ¥ if for all [ there exists Ny such that

lw| <Il,n > Ny = (Tp,w) = (T,w).

If T € R{((X)) is quasi-reqular (i.e., (T,e) = 0) then the sequence
T,%2, %3, ... converges to 0 and

n
lim § q*
n—oo
k=1

exists. This limit is called the quasi-inverse of .

DEFINITION I1.5.3. A subsemiring of R((X)) is rationally closed iff
it contains the quasi-inverse of every quasi-regular element. The family
of R-rational series over X is the smallest rationally closed subset of
R((X)) which contains all polynomials.

As a consequence of this latter definition, any R-rational series can
be obtained from polynomials by a finite number of sum, product and
quasi-inversion.
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DEFINITION I1.5.4. A series ¥ € R{(X)) is R-recognizable if there
exist n € N\ {0}, a morphism g : ¥* — R"*™ and two matrices
A€ R and v € R™*! such that for all w € X*

(T, w) = Ap(w) .
In that case, (A, u,7y) is a linear representation of X.

According to the celebrated Schiitzenberger’s Theorem the class of
R-rational and R-recognizable formal power series coincides (a proof
of this result can be found in [7]).

Finally, recall that for each word v € ¥* and for each formal series
%, one associates the series v™'T defined by

vIT = Z (T, vw) w.
we*
In other words, (v™'%, w) = (T, vw).
It is shown in [7] that the series
Y m(w)w e N(({0,1}))
we{0,1}*

is rational. Here, we generalize this result for any numeration system
on a regular language. Another proof of the following proposition can
be found in [17] where complexity issues are discussed.

PROPOSITION IL.5.5. Let S = (L,X%,<) be a numeration system.
The formal series

Fs =) valg(w) w € N((T))
weL
s N-recognizable.

Proof. Let A;, = (Qr,%, 01, sr, F1,) be the minimal automaton of L.
For p,q € Qr, o0 € 3, we introduce the following series in N{{3}))

L = Z [val,(w) — Viy-1(p)] w

wELp,w#e
Upp = Z )y (p) w

wELg,w#e
Yy = Y wu@w

wELy

Vop = Z Viw -1(p) w

weLg,w#e
. — [val,(0) — vo(p)le ,if 0 € Ly;

P 0 , otherwise.

Ifp,qg € Qr, 0, € X, then we have the following relations
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(1) 0-713:;0 = zp.a + Z L(;0.(7,p.ac +20 N

a<o
. 71 _ !
(11) o L[(Iap - Z Llq.cr,p.a
a€XY
cee —1¢(r . !
(111) o LLq,p - Z LLq-tf,p-a

ack
(iv) o7'B,, = Vo.op + Ygop
(v) o ',, = 0.
To check relation (i), one has to compute (¥,,ow). Notice that ow €
L, if and only if w € L,,. Use Lemma 1.5.2 and treat the case w = ¢
separately. For the relations (ii) and (iii), if ow belongs to L, then
w € Ly, and

(ilq,p, aw) = u‘w|+1(p) = Z U|w|(p.a/).
acX
In (iv), one has to observe that v, (p) = Vjw/—1(p) + Ww|(p). Checking
relation (v) is immediate.

Therefore the submodule O of N((X)) finitely generated by the
series T,'s, Ugp’s, L ’s, By p's, Wy, ,'s is stable for the operation € —
0~ 1¢€, 0 € X. By associativity of the operation € — w~'€, this module
is stable. By Proposition 1, page 18 of [7], the series in O are N-
recognizable. To conclude the proof, notice that

L+ Uy, = Z val,(w) w = Z val,(w) w.
wE Ly, w#e weLp
Indeed, if € € L, then val,(¢) = 0.
O

ExAaMPLE I1.5.6. We consider again the abstract numeration sys-
tem S = (a*b*,{a,b},a < b). We obtain a linear representation (A, u, )
for s :

110 1 11 0
A=(100),pua)=10 1 1 |J,pub)=( 011 ],v=]1
0 01 0 01 1

where p : {a,b}* — N**3 is a morphism of monoids. Thus, one has

valg(w) = A p(w) 7.
Considering the definition of U-automata given in [14], we have the
following characterization of the regular subsets of a regular language.

LEmMmA IL1.5.7. Let L C ¥* be a reqular language. Its minimal
automaton is Ay, = (Qr, 2,0, s1, Fr). If Ax = (Qk, 2, 0k, Sk, Fi) 18
the minimal automaton of a regular language K C L then

h:Qx = Qp:u tKw—utL
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is a morphism h of automata between Ax and Ay, i.e.,
h(éK(qa 0)) = 6L(h(q)70): S E7 qc QK7

h(SK) =S,
h(Fg) C Fy.

Proof. The proof is an immediate consequence of the definition of the
minimal automaton given in page 3.

O

With this lemma, we can generalize Proposition I1.5.5 and obtain
a characterization of the S-recognizable sets.

THEOREM I1.5.8. Let S = (L, 3, <) be a numeration system, a set
X C N s S-recognizable if and only if the formal series

> valg(w) w € N((X))

werepg(X)
s N-recognizable or N-rational.

Proof. The condition is sufficient. The support of a recognizable series
belonging to N((X)) is a regular language (Lemme 2, page 49 of [7]).

The condition is necessary. By Lemma I1.5.7, one has a morphism
h: Aep(x) = AL where Ao (x) (resp. Apg) is the minimal automaton
of repg(X) (resp. L). We proceed as in the proof of Proposition IL.5.5.
Let Qrep(x) be the set of states of A.ep(x); for p, ¢ € Qrep(x), 0 € X, we
introduce the following series

T, = Y, [alygy(w) = Ve (h(k))] w
WELy,w#e
ilq,p = Z u\w|(h(p))w
wELg,w#e
s, = Y. uyhp)w
weELy
Ty = D, Vwa(h(p)w
wELg,w#e
g5, — { V() = vo(h(p))le , if o € Ly;
P10 , otherwise.

We conclude as in Proposition II1.5.5.
O

In the second section of this chapter, it was shown that for any nu-
meration system S, arithmetic progressions are always S-recognizable.
Using formal series, we can obtain a generalization of this result. Here,
the language L is not necessarily lexicographically ordered.
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PropPoOsSITION I1.5.9. Let L C ¥* be an infinite reqular language
and o« : L — N be a one-to-one correspondence. If

Fo =D a(w)w e N(E))
weL
is N-recognizable then o™ (m + Nd) is a regular language.
PROOF. After division, m can be written as gd+r with 0 < r < d.
Let us assume first that » = 0. Consider the congruence of the semiring
(N, +,-,0,1) defined by n ~ n+ d. Observe that the semiring N/~ is

finite. We denote by ¢ the canonical morphism ¢ : N — N/~. The
characteristic series of L,
L=} w,

wel
is recognizable (see Proposition 1, page 51 of [7]). So,

U=¢F+L) =) plaw) + 1w

is rational (see Lemme 1, page 49 of [7]). Since N/~ is finite and 4 is
rational, the set

U {eM}) ={w e ¥ : (Y w) = ¢(1)} = o (Nd)
is a regular language (see Proposition 2, page 52 of [7]). To conclude
this first part, observe that if ¢ > 1 then

a ' (m+Nd) =a '(Nd) \a '({nd:0<n<q}).

(Removing a finite number of words from a regular language preserves
its regularity.)

If r # 0 then
11—1({90(7“)}) = Oé_l(m +Nd)u a_l({nd—i- r:0<n<gq})
where U = ¢(§,). We conclude as in the previous case. O

REMARK I1.5.10. Observe in the previous proposition that as a
consequence of the N-recognizability of §,, the language L is necessarily
regular (Lemme 2, page 49 of [7]).

COROLLARY I1.5.11. Arithmetic progressions are S-recognizable for
any numeration system S.

Proof. This is a direct consequence of Propositions I1.5.5 and II1.5.9.
O

REMARK I1.5.12. In the proof of Proposition 11.5.9, we use the
finiteness of N/~, where ~ is the congruence defined by n ~ n + d.

It would be interesting to characterize the congruences ~ of the
semiring (N, +,-,0,1) with finite index p > 1. Indeed, if there is a
congruence ~ different from n ~ n+d such that N/~ is finite, then we
should obtain, using the same proof and thanks to Proposition I1.5.5,
new S-recognizable sets for any abstract numeration system S.
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Let us assume that ~ is a congruence with finite index p > 1. The
canonical morphism is denoted by ¢ : N — N/~. First notice that
©(0) # (1), because p > 1. Since N/~ is finite, there exist z,y € N
such that x +y ~ x. Let

Yo = min{y > 0|3z : z ~ x + y} and ¢ = min{z|z ~ z + Yo }.

Forallmn e Nand ¢+ =0,...,y0 — 1, one has xg + % ~ z¢ + 7 + ny. It
is obvious that if yo > 1 then for 4,5 € {0,...,yo — 1}, i # j, one has
To+i o To+J. By definition of z and yp, if 2 < x¢ then o~ 'p(2) = {2}

Therefore the congruences of N with finite index are generated by
the relation n ~ n + y, for n sufficiently large. So with the canvas
of the proof of Proposition I1.5.9, we can only reach the ultimately
periodic sets. Once again, it can be considered as an interpretation
of Cobham’s theorem. The only subsets, possibly recognizable in any
number system, are ultimately periodic.






CHAPTER III

Multiplication by a constant

The main purpose of this chapter is to study the stability of S-
recognizability under addition and multiplication by a constant.

It is well known that for linear numeration systems U = (Up)nen
such that the characteristic polynomial of (U, ),en is the minimal poly-
nomial of a Pisot number, the problem of addition and multiplication
by a constant is completely settled. The U-recognizable sets are exactly
those defined in the first order structure (N, +, Vi) (see Theorem 1.2.5).
It is obvious that addition and multiplication by a constant are defin-
able in the Presburger arithmetic (N, +). Therefore, U-recognizability
is preserved under addition or multiplication by a constant.

Having generalized numeration systems at our disposal, we can con-
sider the effect of addition on S-recognizable sets. If addition pre-
serves S-recognizability then multiplication by 2 also preserves the
S-recognizability. So, a natural question about the stability of S-
recognizability arises. When does the multiplication by an integer A
preserve the S-recognizability 7

In the first section of this chapter, we show that for the numeration
system S = (a*b*, {a,b},a < b), the multiplication by a non-negative
integer A transforms the S-recognizable sets into S-recognizable sets if
and only if A is an odd perfect square. As a consequence, addition can-
not be a regular map for an arbitrary numeration system on a regular
language.

The second section is devoted to recall results on the complexity
function u, (L) of regular languages L (see [64]). Indeed, the properties
related to the stability of recognizability under multiplication by a con-
stant are linked to the complexity function of the regular languages on
which numeration systems are built. Recall that the complexity func-
tion of a regular language is either ©(n') or of order 2% [64]. In the
first case, the language is said to be polynomzial. Otherwise, it is said to
be exponential. We show that if L is a polynomial language with ©(n!)
complexity then the sequence (-72r)nen converges to a strictly positive
limit. In contrast, the sequence (7%),en generally does not converge.

Notice that for the particular language a*b*, the only multiplica-
tors preserving the recognizability are squares and this language has a
polynomial complexity of degree one

u,(a*b*) =n+ 1.

43
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This observation is generalized by the following result: if S is a numer-
ation system built on a regular language with ©(n') complexity then
the multiplication by \ preserves the S-recognizability only if A = g!*!
for some integer 3.

For the sake of simplicity, we prove this result in two steps. In
the third section, we assume that the complexity of the language of
the numeration system S is a polynomial of degree [ with rational
coefficients. With such a language, we underline a subset X C N which
is S-recognizable and we prove that AX is not S-recognizable for any
A€ N\ {n*! :n € N}. The primary idea of the proof is the same as
the one on which rests the construction of polynomial regular languages
recognizing polynomial images of N found in the second chapter of this
work. Next, thanks to the results of Section 2 and the scheme given in
Section 3, we consider in Section 4 the general case of multiplication by
a constant for an arbitrary polynomial language with @(nl) complexity.

The end of this chapter is mainly related to exponential languages.
In the fifth section, we consider numeration systems built on the com-
plement of a polynomial language. As in the polynomial case, we find
a recognizable set X and constants A such that AX is not recognizable.
Here, the \’s are the powers of the cardinality of the alphabet.

In the last section of this chapter, we study relations between some
positional numeration systems U and an abstract system S on a reg-
ular exponential language L with exponential complement. We give
sufficient conditions for the equivalence of S-recognizability and U-
recognizability. These conditions are strongly dependent on the lan-
guage L (on the complexity functions of the languages accepted from
the different states of .A;) and the recognizability of the normalization
in U. Using these conditions, we give two examples of abstract nu-
meration systems on an exponential language such that addition and
multiplication by a constant preserve S-recognizability. One of these
systems is a generalization of the well-known Fibonacci numeration
system.

1. Multiplication in a*b*

We show that multiplication by a constant does not generally pre-
serve recognizability. To that end, we use the extensively studied sys-
tem S = (a*b*,{a,b},a < b), for which it is easy to see that

(1) valg(a?b?) = %(p P+ q+1)+q.

REMARK II1.1.1. Observe that the r.h.s. is the well-known function
of Peano [69].

It would suffice to show that, say, multiplication by two does not
preserve recognizability but here we are lucky enough to get more.
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THEOREM II1.1.2. [39] Let S be the system (a*b*,{a,b},a < b) and
let « € N. Multiplication by « transforms the S-recognizable sets into
S-recognizable sets if and only if o is an odd perfect square.

Proof. (i) Sketch. If « is not a perfect square, we show that for a
suitably chosen r,

L] =a"b* Nrepg(avalg(a®))

is infinite whereas the set of lengths | L7, | only contains finite arithmetic
progressions so that repg(avalg(a*)) is not even context-free, thanks to
Parikh’s theorem [42].

If o = %, N? is divided into B + 1 regions R; in each of which
an explicit formula for the function M : (p,q) — (r,s) such that
avalg(a?b?) = valg(a"b®) can be supplied. These regions come from
length considerations: given a word of length [ and of numerical value
x, there are S + 1 possible lengths for the word of value ax. When
a is an odd perfect square, the fact that multiplication by a pre-
serves the regularity of the subsets of a*b* then comes from an easy
lemma. If @ = (27)? then we show that there exist constants j and k
such that for n large enough, repg(avalg(a™)) = a/t™7p5*™. So that
repg(avalg(a*)) is not regular.

We give a visual example of these regions: consider the multiplica-
tion by 25 of the set of integers represented by a®*b%, 0 < 4,5 < 30.
In this example, a point of coordinates (p, q) represents the word a?b?
of numerical value %(p +q¢)(p+ g+ 1)+ g The effect of the multi-
plication by 25 is depicted in Figure III.1. The result is an intricate
set, of points without any clear regularity. This regularity seems only
to appear through the different regions as shown in Figures I11.2 and
II1.3. The left (resp. right) row contains the different regions before
(resp. after) multiplication.

(i1) Case of a non-perfect-square. Let « be a non-perfect-square integer.
We have
le|Ll] < Fp: valg(a™b™") = avalg(a?).
In other words, [ € |£7 | if and only if
(12) 2(r+t)+3°—a@p+1)?’=87+9—«

for some p, where t =1 — r.
To guarantee that |£’| is infinite, we choose 7 in such a way that

(13) X?—aY?’=8r+9—q«

has infinitely many solutions (X,Y") with X, Y odd. To that end, it
suffices to choose r such that 87 +9—« > 0 and that the equation (13)
admits a solution (z,1) with z odd (cf. Appendix concerning Pell’s
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FiGure III.1. The multiplication by 25 in a*b*.

equation). This can be achieved with r of the form 2?. Indeed, the
equation x2 — 822 = 9 has infinitely many solutions given by

Zo _(3 Tit+1 _ (3 8 Z; .
(5)=(0) (2)=(5) (%) vem
The z;’s are odd. We choose 4 such that 827 + 9 — a > 0 and take

Tr = Z;.

The set of the solutions of (13) with odd components is a finite
union of sequences (Xy(f),Yé]))neN, j=1,...,m, such that X > C»
for some C' > 1 (cf. Appendix).

We are now in a position to show that |£’| only contains finite
arithmetic progressions. Suppose on the contrary that it contains an
infinite progression, then there exist \,u € Nyu > 0, and, for each
t € N, indices n; € N, j; € {1,...,m} such that

Atpt=XG) > Cm,

n
Given t, the sequence ny, ..., n,; contains at least ¢ distinct numbers.
Therefore
Vt €N, A+ pumt > C*,
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a contradiction.

(iii) The case of an odd perfect square. Let o = 3% and (3 be an odd
integer.
We want to compute 7, ¢ such that avalg(a?b?) = valg(a"b'), i.e.,
[2(r + 1) + 3]* — B*[2(p + q) + 3]° = 8 — 8pB® — 9(” — 1).
Let l =p+gq, ' =7+t Observe that I’ > SI. Indeed, let z be an
integer, |repg(x)| = [ if and only if,
I+ 4+i<z<l+---4+(1+1)
and it is clear that 1+ -+ Bl < B%(1+--- +1). So, |[repg(5%z)| > Bl
and we can write I’ = ] + u for some u > 0. Obviously,
valg(a!) < valg(aPb?) < valg(D').
Then
al(l +1) < 2avalg(a”b?) < al(l + 3)
and
I'(I'+1) < 2valg(a™d) < I'(I' + 3).
Therefore, I'(I' +1) < B21(1 + 3) and B%1(l + 1) < I'(I' + 3). Replacing
I" with 8l 4+ u in these latter inequalities and since [ can be arbitrarily

large, we obtain
-3 36—-1
P31

2
From this, it follows easily that

r+s=Bp+q) + {EJ +14

2

and thus

{r=n~(p,q) = Bli+1)p— BB ~i—1)g+g[(B+2i+2)* -9
t=1t(p,q) = —Pip+B(B—1i)g—3[(B+2)*—-9 -1

for some i € {—1,...,8 — 1}. These equations together with the con-
ditions r,¢ > 0 define 8 + 1 regions R; which divide N?.
The regular subsets of a*b* are the finite unions of sets of the form

D = {549 [ g > 0},
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w,x,y,z > 0. Substituting y + fz and w + gz in place of p and g,
respectively, in 7;(p, q) and t;(p, ¢), one sees that

D' = repglavals(D N R;)]
is of the form (14) of Lemma I11.1.3 below, the matrix A being

A (D i)

—zi zB(B — i)
One can apply the lemma to see that D’ is regular except if i = —1
or zz = 0. In these cases, D' is easily shown to be regular by direct
inspection. Indeed, if : = —1 and x # 0, one has

r> 06 8w+ go) < (5 - 9)

Therefore, g has an upper bound and can only take a finite number of
values, say g1,...,9,. For each of these values, the condition s > 0 is
given by

Bly+ £2) > =6(8 +1)(w +g52) + £[(5 = 2)° = 9] + 1

and this gives a lower bound for f. If x = 0, there is no condition on
g and we may have a lower bound for f. If i 2 —1, x =0 or 2 =0
may give lower bound for f and g. In all these cases, the corresponding
languages of the form a™b™ are regular.

(iv) The case of an even perfect square. Let a = (B? with 8 = 27,
v € N\ {0}. Using the same kind of computation as in (%), we have,
for p large enough, repg(a valg(a?)) = a”b* with
{ ro= yp+r(y+1) -1
t = yp—3v7(y=1).
Therefore, repg(a valg(a*)) is context-free but not regular.
O

LeMMA II1.1.3. Let A be a non-singular p X p integral matriz. For

1=1,...,p, set
hi(1) = Aany + -+ - + Apny — by,

where i = (nq,...,n,) € NP and by,...,b, € Z. If the entries of
det(A)A™" are non-negative, then the language
(14) Lz{a’fl---azp:hl(ﬁ)20,...,hp(ﬁ)20,ﬁ€Np}
is a regular subset of ai - - - ay.
Proof. If 7i € NP satisfies h;(77) > 0 then (A7); = b; + u;, i.e.,

P

(15) ni =Y (A7)i(b +uy),
7j=1

for some u; € N.
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We need to describe those @ = (uy,...,u,) € NP for which (15)
defines non-negative integers n;.

If det(A) < 0, the entries of A~! are negative, there are finitely
many such @ and £ is finite. If det(A4) > 0, (A !);; > 0, for large
enough wu;’s, (15) thus defines positive numbers n; but it remains to
make sure that they are integers. To that purpose, since A=! =
2/ det(A), where the entries of 2 are natural numbers, it is neces-
sary and sufficient that the remainders r; € {0,...,det(A) — 1} of the
division of u; by det(A) satisty

iﬂw(b] + Tj) =0 (mod det(A))

There is a finite number of such (ry,...,r,) so that £ is a finite union
of regular languages of the form
(azliet(A)) *aildet(A)+r1 o ( aget(A)) * a;;pdet(A)—l—'rp'
(The s;’s are chosen to guarantee that the u;’s are large enough for the
corresponding n;’s to be non-negative.)
O

Theorem III.1.2 has a direct corollary. Let z € ¥* and y € A*,
with ¥ and A two finite alphabets. If |z| = |y|+1, i € N then (z,y)® =
(7, $'y) where $ is a new symbol which does not belong to ¥ U A. If
ly| = |z| +1 then (z,y)® = ($'z,%). This operation can be extended to
n-uples of words. Let R be a relation over ¥* x A*. We say that R
is reqular if R® is a regular language. This definition can be extended
to n-ary relations. A mapping f : ¥* — A* is regqular if its graph is
regular.

COROLLARY III.1.4. For the numeration system S built on a*b*,
the addition is not a regular map (i.e., the graph of the application
(x,y) — x +y is not reqular).

Proor. By Theorem III.1.2, there exists a subset X of N such
that X is S-recognizable and 2X is not. Assume that the graph of the
addition

G = {(reps(x), reps(y), reps(z + y))* : 7,y € N}
is regular. Let p3 be the canonical homomorphism defined by
p3(z,y,2) = 2.
It is clear that the set A = {(repg(z), repg(x), w)® : x € X, w € ¥*} is
regular. Therefore
ANg = {(repg(z), repg(z), rep5(2x))$ z € X}

is regular. Thus ps(A N G) = repg(2X) is also regular. This is a
contradiction. O
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2. About the complexity of regular languages

In this section, we extend in some way the results of [64] concerning
the complexity function of polynomial regular languages. We also show
that the sequence (v, (L)/n!™!),cn converges to a strictly positive limit
if the complexity of L is ©(n!). This result could be surprising because
generally, the sequence (u,(L)/n!),cn does not converge.

Let us recall some notations. Let f(n) and g(n) be two functions,
it is said that f(n) is O(g(n)) if there exist positive constants ¢ and nyg
such that for all n > ng, f(n) < cg(n); f(n) is Q(g(n)) if there exist
a strictly positive constant ¢ and a strictly increasing infinite sequence
Mg, N1, - -, N4, ... of integers such that for all i € N, f(n;) > cg(n;).
The function f(n) is ©(g(n)) if f(n) is O(g(n)) and Q(g(n)).

The class of regular languages splits into two subclasses according
whether the complexity function is bounded by a polynomial or is an
exponential function of order 2™). The first subclass is the class of
polynomial regular languages and the second is the class of exponential
languages. The gap between polynomial and exponential languages is
rendered by the following theorem.

THEOREM II1.2.1. [64, Theorem 6] There does not exist a regular
language such that its complezity function is neither O(n*), for some
integer k, nor 2°4™).

We now have a closer look at the polynomial languages. The lem-
mas recalled here are taken from [64].

DEFINITION II1.2.2. Let A = (Q, X, 0, s, F') be a DFA. For any word
w = wy - - - wy, of length n over X, the state transition sequence of A on
w, is the sequence of states

STSA(w) = Giy - i
where ¢;, = s and §(g;,, Wes1) = 4, for k=0,...,n - L.
DeFINITION II1.2.3. Let A = (Q,%,6,s,F) be a DFA. A word

w € ¥* is said to be t-tiered, t > 0, with respect to A if the state
transition sequence of w is given by

STSA(w) = affy -« By,

n

where
1) 0 < |a| <#Q
and for each i, 1 <1 <,
2) Bi = Gio- Qig; and ¥; = GioTi1 -1y, 0 < ki l; < #Q, where
the ¢’s and r’s are states of A.

3) ¢i,0 appears only as the first state in §; and 7;,
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LEMmMA 111.2.4. Let L be the reqular language accepted by the DFA
A=(Q,%,0,s, F). If there exists a word w € L which is k-tiered with
respect to A then the complexity function of L is Q(nF1).

LEMMA II1.2.5. Let L be a regular language accepted by some DFA
A. If the complezity function of L is O(n¥) for some integer k > 0,
then each word of L is t-tiered with respect to A for some non-negative
t<k—+1.

LeEmMmA II1.2.6. Let L be a reqular language accepted by a DFA
A= (Q,%,4,s F). If there exists k > 0 such that each word of L is
t-tiered with respect to A, for some t < k, then L can be represented
as a finite union of regular expressions of the form

TY 21 Y 2
with 0 <t <k, |z|, |z1],.--,|2t| < #Q and |y1], ..., |y| < #Q.
LemMA II1.2.7. If L is the language defined by the regular expres-
ston xyiz1 - yY;z4, wheret > 0 and x,y1, 21, - - ., Y, 2+ are all words over
Y, then the complexity function of L is O(n'™!).
In view of these lemmas, it is clear that the complexity function of
a polynomial regular language is ©(n¥) for some k and a language L

is such that its complexity function is O(n*) if and only if L can be
represented as a finite union of expressions of the form

TY 2L Yp 2
with 0 <t <k +1.

The next lemma is just an improvement of Lemma II1.2.4. We
simply notice that one can consider an ultimately periodic sequence n;
such that u,, (L) > by n! for some positive constant by.

LemmA I11.2.8. If L is a reqular language such that its complexity
function is ©(n') for some integer | then there exist constants by and C
and a strictly increasing infinite sequence ng, N, ... ,n;, ... of integers
such that for alli € N, u,,(L) > bynt and n; .y —n; = C.

Proof. Let A be a DFA accepting L. In view of the previous lemmas,
it is obvious that there exists a word w € L which is (I + 1)-tiered with
respect to A,

w = :Ey‘li1 21.. .yiﬁl 2141

Let C = |y1|...|y;s1| and C; = ﬁ, 1 <4 <1l+1. For an arbitrary

integer t > 0, let ny = |zz1...2141| +tC. For any [ + 1 arbitrary
non-negative integers ti, ..., %41 such that ¢t; +---+1%,1 = t, the word

t1C1 t1+1C1
TYr 21 Y Rl4+1
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belongs to L and its length is n;. Indeed,
t1C1 ti11C141
1z

|$ Yy 1Y Zl+1|
= ‘iEZl .. ZH_1| —+ tl Cl|y1\ + e+ tl—|—1 Cl—|—1|yl—|—1‘
=C =C

= |.T21...ZH_1‘+(t1+"'+tl+1)0

The number of words of length n; belonging to L is at least equal to
the number N'*1(¢) of (I + 1)-uples of integers such that

I+1
NHl(t) =# {(tla---atH-l) e N1 . Zti = t} .

=1

It is shown in Theorem 29 page 80 and Exercise 87 page 102 of [21]

that l
t
wirzwo= (1) =(7) -

Hence the conclusion, since n; is a linear function of .
O

REMARK II1.2.9. Let us recall Skolem’s theorem (see Chapter 4 of
[7] or [34]). Let
>

be a rational series with coefficients in Q. The set 2, = {n € N|a, =
0} is ultimately periodic.

Therefore, the ultimate periodicity of the sequence n; in Lemma
II1.2.8 is quite natural when one recall that u,(L) is the solution of a
linear recurrent equation. For decidable problems related to the set Z,
see [6] or [49].

Recall (see [11]) that the finite sum of integer powers is given by

n

, (n+B+1)ptt — Brtt
16 P =
(16) Z p+1

i=0
where all terms of the form B™ are replaced with the corresponding
Bernoulli numbers B, which are usually defined by the identity

x >, B, ™
er—1 mz: m!
The formula (16) will be useful in the proof of Theorem I11.2.12.
REMARK II1.2.10. We give below a useful result on the convergence
of the sequence (‘;l”,—iLl))neN when L is a language of complexity ©(n!).

We prove that the limit always exists. Although this is generally not

the case for the sequence (“’;E,L) Jnen- Consider for instance the language

W = a*b* N ({a, b}?)".
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It is obvious that ug, 1 (W) = 0, ug,(W) = 2n + 1 and vo,(L) =

Vont1(L) = (n+1)2. Tt is clear that (%)%N does not converge since
it contains two subsequences converging to different limits,
w w
tim 22 ) o gy B V)
n—00 n n—00 n
and -
lim 7‘["(2 ) =1.
n—oo mn

LEmmA II1.2.11. Let py,..., pg,01,...,0k, ®1,..., @ be real num-
bers such that for all i # j, 0; # 6; (mod 27) and for all j, p; # 0.
There exists € > 0 such that

M, = |py €I g gy e MOTPR)| 5
for an infinite sequence of integers n.

Proof. Assume that for all € > 0, M,, > ¢ only for a finite number
of integers n. In other words, M, — 0. By successive applications of
Bolzano-Weierstrass’theorem, there exist complex numbers zy, ..., 2
and a subsequence t(n) such that

pi € UM UT2) 5 2 and |z] = |pj] # 0.
Since M,, — 0, then 2?21 z; =0. For [ =0,...,k — 1, one gets in the
same manner

k k
Z p] ei [(t(n)—H) Hj-l-q)j] - Z Zj eilej — 0
j=1 j=1

Therefore one has

1 1 .. 1 21 0
et eit> ... e 29 0
gt (k=)0 i (k—1)0 ¢t (k—1)0 o 0

This equality leads to a contradiction since the Vandermonde determi-
nant does not vanish.

O

We are now able to prove the convergence of (v, (L)/n!™1),en. This
result and its proof were suggested by P. Lecomte. Recall that if L
is regular, then the sequence (u,(L)),en satisfies a linear recurrence
relation (a justification of this fact was given in page 12).

THEOREM III.2.12. If L s a polynomial regular language such that
u, (L) is ©(n') then the sequence (-¥it)nen converges to a strictly posi-
tive limit. Moreover, 1 is a root of the characteristic polynomial of the
sequence (U, (L))nen with a multiplicity at least equal to | + 1.
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Proof. The sequence (u,(L))nen satisfying a linear recurrence relation,
it can be written as a finite sum,

(17) u,(L) = 3 P(n) 2

where the P;’s are polynomials and the z;’s are distinct complex num-
bers.

Let 7 = sup, |#;| and d be the maximal degree of polynomials Py’s
corresponding to the different numbers of modulus 7. Let us take the
following notations. Let 2, = 7€,... 2z = 7¢e* be the numbers
of modulus 7 having a corresponding polynomial Py of degree d (the
coefficient of n? in Py(n) is denoted by c;). We may assume that
0; # 0 (mod 2m) for j # k, j,k € {1,...,7}. Let z,41,..., 25 be the
other numbers of modulus 7 having a corresponding polynomial P of

degree less than d. Finally, z,,1,..., 2 are the numbers of modulus
less than 7. So we can write
u,(L)|  7"nd

lep e 4. e L R,

nt n!

In the last expression, R, is made up of two sorts of terms, namely

Ru= s (Z@-(n) et + YD Pi) )

So, R, — 0 if n — 4+o00. Therefore, by Lemma III.2.11, there exist
e > 0 and an infinite sequence of integers such that

u,(L)| _ ™ n?
"nl > nt (6 - |Rn|)
For n large enough, |R,| < ¢/2 and \“”n—(,L)| > 7" n4t £ occurs infinitely

often. If 7 > 1 or if 7 = 1 and d > [, we obtain a contradiction with
the hypothesis that u,(L) is O(n!).

Consequently, in (17) the degree of the polynomials P;’s correspond-
ing to the numbers z;’s of modulus one cannot exceed ! and there is
no z; of modulus greater than one. So there exist polynomials ;s of
degree not exceeding [ such that

u,(L) = Z Q;(n) e 4 T(n)

with 6y = 0 and for i # j, 6, # 0; (mod 27) and
T(n)= Y Pin)z}.

it z;]<1
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Let g; be the coefficient of n’ in @;(n); notice that ¢; could be zero,
q=0,...,k. We have

k k
L)=qn' + Z gje™int + Z(Q](n) —gjn!) e™i 4+ T(n)
j=1 j=0

and by definition of v,,, V“,SFLI) can be written

Zp 0p+z poe p

nit+l

Z szo (@ (p) —q;p') e + ZZ:O T(p) )

it i+l
=0
We have, by (16)
lim Lp=o? _ !
nooo npitl [+1
and . N i
iy 2r=0(@iP) — g p) e
nl—)rgo ’rLH'l N

because the degree of Q;(p) — ¢; p' is less than . For the second term,

n ip8; a0
1. Zp:() elp Jp
m —

n—00 ni+l

=0.

The computation of this latter limit can be achieved by applying (z%)l
to Zzzo zP. Indeed, in the one hand, one has

a Il n n
(s5) =20
p=0 p=0
On the other hand,

8 \' 2t — : 1 (2) R(2)
<Z§> 2_1 => Z_1l+1 k+(z_1)l+1

k=0

where the Ry’s and R are polynomials of degree less than [+2. Observe
that if z = €% then the moduli of the fractions in the r.h.s. equation
are bounded. Finally,

lim ZZ:() T(p)

n—»00 nttl

=0.
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To obtain this limit, let us consider one of the term appearing in 7'(n),
say P(n) 2", where |z| = ¢ < 1and P(n) = 3% ,a;n’, d € N. We have

1 n d .
< =52 D lalp
p=0  i=0

n

1
50 PE) 7

p=0

We conclude with the same kind of computation as in the previous
limit and using the fact that ¢ < 1.

Eventually gy cannot vanish. Otherwise, lim,,_,, VT;’IEFLI) = 0, which

is a contradiction with Lemma II1.2.13 below. Thus, 1 has at least a

multiplicity [ + 1 as a root of any polynomial satisfying the recurrence.

O

LeEMmMA I11.2.13. Let L be a reqular language such that its complez-
ity function is ©(n'). The sequence v, (L) = >_1 ,u;(L) is Q(n't).
Proof. With the sequence n; of Lemma I11.2.8, we have

n; i i i
Vo, (L) =Y uy(L) > “un (L) > 8o Y (no+5C) > b CHY 5.
§=0 §=0 §=0 §=0
Since n; = ng+1 C, there exists a constant M > 0 such that for ¢ large
enough,
Vi, (L) > M nt,
O
REMARK II1.2.14. Theorem II1.2.12 can be applied not only to the
complexity function of polynomial regular languages but to any linear
recurrent sequence (u,)neny Which is ©(n') with a possible gy = 0.
REMARK II1.2.15. So far, we have taken stock of the notations for
a regular language with ©(n!) complexity. From Lemma I11.2.8, we
have an ultimately periodic sequence n; of period C such that

and a constant by such that

Since u, (L) is O(n!) there exists a constant b; > by such that for n
large enough,

lln(L) S b1 nl.

By Theorem I11.2.12, lim,,_,, ‘;",—SFLI) = a > 0. Consequently, for any
constant K > a, there exists nyx such that

Vn > ng, vu(L) < Kntt
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and for any constant J < a, there exists n; such that

Vo > ny, vu(L) > Jn'th

3. Multiplication for exact polynomial languages

Here, we study the multiplication by a constant for abstract numer-
ation systems built on regular languages L with a polynomial complex-
ity function. This step contains the main ideas for the discussion of
arbitrary polynomial languages (i.e., languages with complexity func-
tion bounded by a polynomial).

LeEMMA TI1.3.1. Let f : N — N be a strictly increasing function
such that f(N) is a finite union of arithmetic progressions, i.e., there

exist yo € f(N) and I' € N\ {0} such that for all y > yo,
ye f(N) & y+T € f(N).
Let k= f~Yyo +T) — f~' (). Then for allz > f~'(yy), n €N,
f(x+nk) = f(z) +nT.
Proof. Let zo = f~'(1y). We have by definition of &,

flzo+ k)= f(xg) +T.
It is sufficient to show that if z > xy then
fla+k)=fz)+ T = flr+k+1)=flza+1)+T.
Since f is strictly increasing,
flx+k+1)> flz+k)=f(z)+T.
Since f(N) is ultimately periodic of period I', there exists v > zy such
that f(v) = f(t+k+1)—T > f(z). Then v > = + 1. There exists
u € Nsuch that f(u) = f(z+1)+T > f(z) +T = f(z + k).
Now, let us assume that v > = + 1. Therefore f(v) > f(z + 1) and
fla+k+1)=f)+T > fz+1)+T = f(u) > f(x +k).
So we have r+k+1 > u > x+k which is a contradiction and v = x+1.
O
REMARK II1.3.2. Lemma II1.3.1 will be used in the proofs of The-
orem II[.3.4 and Theorem II1.4.1 with the same scheme. We take a
well-chosen S-recognizable set X and let Y = AX = {y1,y,...}. The
choice of the set X makes sure that |repg(v;)| < |repgs(vit1)|- To ap-

ply Lemma III.3.1, we assume that Y is S-recognizable. Therefore,
lrepg(Y')| has to be ultimately periodic and we obtain a contradiction.

The next lemma will be useful when applied to a complexity func-
tion.
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LemwmA I11.3.3. If H is a polynomial such that
Ve e N\ {0}, H(z) € Z

then H(Z) C Z.
Proof. We proceed by induction on the degree of H. If H is a poly-
nomial of degree one then we have H(z) = ax + b with a,b € Z and
H(Z)C Z.

Assume that the result holds for polynomials of degree £ > 1. If
H is a polynomial of degree k + 1, then R(z) = H(x + 1) — H(z) is
a polynomial of degree £ and R(N) C Z. Therefore R(Z) C Z and
H(0) = H(1) — R(0) € Z. We can conclude by induction on z < 0
because H(z) = H(x + 1) — R(z).

O
THEOREM II1.3.4. Let L C ¥* be a regular language such that

l .
_Jan'+---4+ain+a if n>0;
un(L) = { 1 , otherwise

where the a;’s belong to Q and a; > 0. Let < be an ordering of the
alphabet > and S = (L, %, <) be the corresponding numeration system.
If A € N\ {n'*' : n € N}, then there exists a subset X of N such
that repg(X) is reqular and that repg(A X) is not.
REMARK II1.3.5. To avoid any misunderstanding in the proof of
Theorem II1.3.4, we use the notation

ur(n) :N—=->N:n—#(LNX")

to denote the complexity function of L. This notation turns out to be
easier than u,(L) where n is only an index when we need a function
with n as an argument.

Proof. One can build a polynomial P € Q[z]| of degree [ + 1 such
that P(0) = 0 and for all n > 1, P(n+ 1) = P(n) + uy(n). This
polynomial is some kind of “discrete primitive” of uz(n). Indeed, let
P(x) = by 2 +- - -+b; x+by. The conditions on P give the following
triangular system

ap = bl_|_1 (l + 1)
a1 = bl+1 (l + 1) % + bll

(/1)) = bl+1+"‘+b1
bo - 0

This polynomial P has some useful properties. We have the polynomial
identity P(z + 1) = P(x) + ur(z) for z € N\ {0}. Then it holds for
x € R if we extend the definition of the function uy, to

u, R R:z—azt+---+ag.
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By Lemma I11.3.3, P(1) = ur(0) = a9 € Z. One shows by induction
on n € N that P(n) (resp. P(—n)) is an integer since ur(N) C N (resp.
since uy(Z) C Z by Lemma II1.3.3).

Let z € N\ {0}, notice that

(18) lrepg(z)| =n<x € [P(n) —ag+ 1, P(n+ 1) — agl.

Indeed, an integer x has a representation of length n if v, 1 <z < v,
(see (6) page 15) and

v, =1 +zn:uL(z') =1 +zn:[P(z' +1)— P(i)] = P(n+1)— P(1) + 1.

Notice that repg(P(N)) is a translation of the set Min(L, <) of the first
words of each length. Therefore, by Lemma I[.3.1 and Proposition
I1.1.1, X = P(N) is S-recognizable.

Let A € N\ {n!*! : n € N}. Our aim is to show that \ P(N) is not
S-recognizable.

e For n large enough, we first show that
n < |repg(A P(n))| < |[AY'n| < AVin.

The first inequality is obvious. In view of (18), to satisfy the second
inequality, it suffices to check whether

AP(n) < P(|IA\Y'n)) — ag + 1.

We can write P(n) as b1 n'tt + Q(n) with b,; > 0 and Q being a
polynomial of degree not exceeding . Then,

P(IA'n]) = AP(n) —ag+ 1
= b (A ') = Ab ! + QA n]) = AQ(n) —ag + 1
> bl+1((/\1/ln _ 1)l+1 _ )\nH—l) + O(nl) (*)

because A\'/'n — |A\'n| < 1. The coefficient of n'*! in (*) is
s AEDE_)) > 0.

So, there exists ng such that for all n > ny, the expression (*) is strictly
positive and [repg(A P(n))| < AYin.

e If n is sufficiently large, we show that
repg(A P(n+1))| > [repg(A P(n))].
Let i = |repg(A P(n))|. In view of (18), we have to check that
AP(n+1) > P(i+1) — ao.
By definition of P and by (18), one has
AP(n+1)=AP(n)+ Aur(n) > P(i) —ap + Aur(n).
Therefore it is sufficient to check whether

P(i) —ap+ Aur(n) > P(i+1) — ag
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that occurs if and only if
Aug(n) —ug(i) >0
i.e., if and only if
a(Ant =)+ Fay (W —iF)+- -+ ag(A=1) > 0.

To check that this inequality holds, remember that a; > 0 and by the
previous point of this proof and the definition of 7, there exists ng such
that for n > ng, 1 < X < At Since Aug(n) — ug(i) can be written

SN\ L .\ k
2 1 a
nla (A=(2) |+ +— A= (=) |+ + 2 -1,
n n n
L v ~~~
N~ —0 —0
>0 is bounded

it is clear that lim,,_, %,"L() > 0. Thus there exists ng > ng such
that for all n > ny, |repg(A P(n +1))| > [repg(A P(n))|.

e Assume that repg(A P(N)) is regular. The set |repg(A P(N))| is a
finite union of arithmetic progressions. We may apply Lemma II1.3.1
because the function |repg(A P(.))| is strictly increasing for n > ny,.
Thus there exist [y and I' € N\ {0} (depending on \) such that VI > I,

l € [repg(AP(N))| < [+ T € |repg(A P(N))|.
Let ny > nj be such that |repg(A P(n1))| > lp. By Lemma IIL.3.1,

there exists £k € N\ {0} (depending on \) such that for all n > n; and
for all & € N,

reps(A P(n + ak))| = [repg(A P(n))| + of.
Let i = |repg(A P(n))|. In view of (18), one has
Pi4+al')—ap+1<AP(n+ak) <P(i+al'+1)—am.
If one considers the Lh.s. inequality, A P(n+ ak) — P(i+ al') + ap — 1
must be non-negative for all @« € N. Consequently, the coefficient of

the greatest power of o, o/t!, appearing in this polynomial expression
in a must be non-negative. This coefficient is

bl—|—1 ()\ kl-l—l _ Fl-l—l)

Notice that this latter coefficient vanishes only if A = (%)Hl. By

hypothesis, this case is excluded. Indeed, suppose on the contrary that
A= (—)lJrl IfL eN then A € {n**!: n € N} and this case has to be
excluded. Otherw1se + € Q\N and thus A = (1) € N, which is also
impossible, since we cons1der multiplication by a non-negative integer.
So we have the condition

r

k> AL/
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But AP(n+ak) — P(i+al' + 1) 4+ ap < 0 for all @ € N. The
coefficient of the greatest power of « is also by (A k't — 1) and
must be strictly negative. Then we have simultaneously the condition

r
INUCDE
which leads to a contradiction and repg(AP(N)) is not regular.

k<

O

In Theorem III.3.4, we have underlined a recognizable set X =
P(N) such that |repg(A P(N))| is not a finite union of arithmetic pro-
gressions. When we consider the case A = 1, 8 € N\ {0,1}, we
cannot find easily a subset X which is recognizable and such that A X
is not. The next proposition shows that |reps(8F1P(N))| is a finite
union of arithmetic progressions if the complexity function of L is a
polynomial of degree I. The author would like to thanks P. Mathonet
for his help in the development of the following proof.

ProrosiTION I11.3.6. With the assumptions and notations of The-
orem II1.3.4, there exists C' € Z such that for n large enough,

(19) [reps(871 P(n))| = Bn +C.

Proof. In the proof of Theorem III.3.4, we have introduced a polyno-
mial P(x) = b1 2"t + -+ + by x such that P(n+1) — P(n) = ug(n).
In view of (18), to satisfy (19), we have to find an integer C' such that
for n large enough

(20) PBn+C+1)—ay— B Pn) > 0

(21) B P(n) —P(Bn+C)4+a—1 > 0.

The coefficient of n'*! vanishes in (20) and (21). The coefficient of n!
in (20) is £ [a; (C +1) + b (1 — B)] with a; = b1 (I +1). It is strictly
increasing with C' and equals zero for

h(B-1) —q

ap '
The coefficient of n' in (21) is —8'[a;C + b; (1 — B)]. Tt is strictly
decreasing with C and equals zero for C = Cy := (4 1. This situation
is explained in Figure II1.4.

If C; and C, are not integers then there exists C' €]C1, Cy[NZ such
that the coefficients of terms of maximal degree are both strictly posi-
tive (and the two inequalities are satisfied for n large enough).

Otherwise, one has to consider the integer case C = C or C' = Cj
(it is obvious that any other C leads to a strictly negative expression
for (20) or (21)). Moreover, if C = C; (resp. C' = Cy) then (21) (resp.
(20)) is satisfied for n large enough.

Notice that for i = 1,...,1 — 1 the coefficient of n’ in (20) with
C = () is the opposite of the coefficient of n’ in (21) with C = C,
since Cy = C; + 1. Notice also that the independent term in (20) for

0201::
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coefficient of coefficient of 1

in thefirst expression in thefirst expression
coefficient of i
in the second expr.

coefficient of nI
in the second expr.

Cy Co

Z D N R Z

| 1 | | 1

C, not integers C, integers
FIGURE II1.4. The coefficients of n! in (20) and (21)

C = Cis P(Cy) —ag. In (21) for C = C, this term is —P(Cs) + ag — 1.
Thus we can write (20) with C' = C} as

Al,lnl_l ++A1n+P(02) — Qo
and (21) with C = C; as
—Al_lnl_l — ---—Aln—P(Cg)—f—ao—l.

If there exists ¢ such that A; # 0 then let j = max,»o%. If 4; >0
(resp. Aj < 0) then one takes C = C; (resp. C = Cs).

Now, let us assume that A; =0fori=1,...,1—1. If P(Cs)—ay >0
then one takes C' = C). Otherwise, —P(Cs) + aq is a strictly positive
integer (remember the properties of P obtained in the proof of Theorem
I11.3.4). Therefore —P(Cy) 4+ ag — 1 > 0 and one takes C' = Cb.

O

4. Multiplication for arbitrary polynomial languages

Thanks to the material developed in the two previous sections, we
obtain the generalization of Theorem II1.3.4 for an arbitrary polynomial
regular language.

THEOREM I11.4.1. Let L C ¥* be a regular language such that u, (L)
is O(n') for some integer . If \ € N\ {n'*! : n € N}, then there exists
a subset X of N such that repg(X) is reqular and that repg(\ X) is not.
In other words, multiplication by a constant A conserves recognizability
only if X is of the form n'*', for some n € N.

Proof. To simplify the notations, we write u,, and v,, instead of u, (L)
and v, (L) since we are not interested in the complexity functions of
the different states but only in the complexity of L itself.

e (i) Sketch of the proof. We have the sequence n; and the constant !
depending only on the regular language L. We can also fix two con-
stants J and K such that the last two inequalities of Remark I11.2.15
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are satisfied for n large enough. In Theorem III.3.4, the first step was
to show that
n < |repg(A P(n))| < AY'n.
Here we will show that, if A > (£)" then
n+1< [reps(Av,)| < \in+C.
The second step was to show that
reps(A P (n +1))| > [repg(A P(n))].

Here, since u,, periodically vanishes, we consider the subsequence v,,
and show that the function

i = [repg(Ava,—1)]

is strictly increasing for ¢ large enough and for some suitably chosen
s. In the third step, we assume that repg(A{v,,,_1 : i € N}) is regular
and, as in Theorem I11.3.4, use Lemma II1.3.1 to obtain a contradiction
thanks to the set of lengths. To conclude the proof, a last step is
necessary to get rid of the assumption A > (£)!. This can be achieved
through the use of Theorem I11.2.12.

e (ii) Preliminaries. As a consequence of Lemma II1.2.8, it is clear
that for n sufficiently large, n+1 < |repg(vy)| < n+ C + 1 since for C
consecutive values of u,, at least one of them does not vanish. (Recall
that |repg(x)| = n iff v,,_1 <z < v, (see (6) page 15) and therefore if
u,, > 0 for all n, then |repg(v,)| = n+ 1 and the situation is simpler
to handle.)

e (i77) Assume that the integer constant \ is strictly greater than (%)l
We show that for n large enough,

(22) n+1< |repgAvy)| < A n]+C—1<Ain+C.

It is sufficient to show that Av, < vpui,11c_q- For n large enough,
Viaig] = J([AEn])H > T (A )+t (see Remark IT1.2.15). More-
over the function n — v, is increasing. So,

141 I+1
V[/\1/z n]+C—1 > JAXT n'T

Moreover, for n large enough, A\v, < A K n*! (see Remark I11.2.15).
By the choice of ), it is clear that A K n*! < J N i,

e (iv) Let s € N\{0} such that sby > b; where by and b; are the

constants related to u,, given in Remark I11.2.15. Let a = lim,, 4, ‘Z’,Sﬂ)

We show that for any J, K such that J < ¢ < K and for any A > (%)l,
the function

i = [repg(A Va1
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is strictly increasing for i sufficiently large. So we have to show that'
[reps (A Vi, y1)=1)| = [repg(A Vi, 4s0-1)] > |repg (A va,,—1)].

Let g = |repg(AVp,,—1)| then v,_y < Av,_,_1 < v, and we must show
that

sC—1

AVig4sC1 = AV, 1+ A Z Up,+j = Vg = Vg1 + Uy.

=0
So, it is sufficient to show that A Zjﬁgl U, 4; > ug. In view of (22),
we have g < A/!(ng; — 1) + C. Therefore u, < by [\/!(ng; — 1) + CJL.
On the other hand,

sC—1 s—1
!
A Ui =AY Unio > Abosn.
im0 =0 N——

T >bo (nsi+j O)!
To conclude this part, notice that the coefficient of n’; in
by [)‘l/l(nsi -1)+Cf

is by A and by the choice of s, we have by A < Abys. So the inequality
holds for ¢ sufficiently large.

e (v) Consider the subset
X = {Vnm-—l 11 € N} = {Vno+siC—1 11 € N}

By Lemma I11.2.8, u,,1sic > 0. Thus repg(vy,+sic—1) is the first word
of length ng + siC and

repg(X) = repg ({vn:n € N}) nxm (2€)°
= Min(L,<)n L™ (£°9)’
is regular and X is an S-recognizable subset of N (by Lemma II.3.1).
Assume that A X is S-recognizable. Therefore, |repg(A X)| is a finite
union of arithmetic progressions. In view of (iv), we can apply Lemma
II1.3.1 and obtain two integer constants I and &k (depending on ) such
that for all @ € N and for 7 large enough
|rep5(/\ Vino+sC(i+a k)71)| = |rep5()‘ Vn0+sC’z'—1)| +al.
Or in an equivalent manner, if we set z = |repg(A Vyo1sci-1)| then
(23) Vztal-1 < )\vno—l—sC(i—l—ak)fl < Vztarl-

First consider the left inequality in (23). For i large enough,

Vitall—1 Z J(Z +al — 1)l+1.
On the other hand,
)‘vno—l—sC(i—Fak)fl < AK (n() +sCi+ sCka — 1)l+1.

IRecall that n; is ultimately periodic, hence nyy1) — 1 =ng +sC — 1.
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Since o can be arbitrary large, we focus on the terms of the form o!*!

and we obtain the condition JI'"*? < A K (sCk)'*1) i.e.,

J ([ T\
24 > — | — .
(24) A2 K (ka)

If we consider the right inequality in (23), then we have, using the
inequalities in Remark II1.2.15,

Vztal S K (Z + ar)H-l
and also
)‘vno—i-sC(i—}-ak:)—l > AJ (n() +sCi+ sCka — 1)l+1.

If we focus on the terms of the form o/*!, we obtain

K (T \'
2 <= [ .
(25) AS J (ka)

e (vi) By Theorem III.2.12, the sequence (-7%r)nen converges to a
strictly positive limit denoted by a. We consider the sequences

Km:a—i-iand Jm:a—l.

m m

Consequently, if m is given, then for n large enough v, < K, n!*!
and v, > J,, n!*! because J,, < a < K,,. So if we replace K by K,
and J by J,, the previous points (i), (iv) and (v) remain true for i
sufficiently large.

I
When m tends to infinity, the condition A > (%) given in (iii) is

equivalent to A > 2 because A is an integer; from the conditions (24)

and (25), we deduce that
I+1
= (L
sCk

which contradicts the hypothesis (remember that I',s,C and k are
integers) and therefore AX is not S-recognizable.
O
This latter theorem has a direct corollary. Its proof is the same as
the one of Corollary II1.1.4.
COROLLARY II1.4.2. Under the assumptions of Theorem III.}.1,
the addition is not a regular map.
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5. Complement of polynomial languages

The class of exponential languages splits into two subclasses ac-
cording to the fact that the complement of a language is polynomial or
not. In this section, we have a closer look at the numeration systems
built over an exponential regular language such that its complement
has a complexity function bounded by a polynomial. We show that
for such systems, multiplication by a constant does not generally pre-
serve recognizability. It is interesting to notice that the method used
to check the non-recognizability of a set differs from the one encoun-
tered in the previous sections. We use here a so-called pumping lemma
stated below (a proof of this result can be found in [70]).

LeEmmA IIL.5.1. Let L C ¥* be a regular language. There exists a
constant k depending only on L such that for each w € L, |w| > k,
there exist x,y,z € X* such that

(1) w=wyz,
(2) |zyl <k, ly| >0,
(3) for alln € N, zy™z € L.

We begin with the example of L = ¥* \ M where M is the polyno-
mial language a*b* and ¥ = {a,b}. Thus, with S = (L, {a,b},a < b),
we compute the representations of 2 v, (L) and obtain Table III.1.

In view of this table, it appears that the number of leading b’s in
the representation is increasing. Furthermore, it seems that the length
of the tail also increases. Let us show that this observation is true and
can be generalized. But first we set a useful notation.

DEeFINITION II1.5.2. For L C ¥* and = € X*, we set
L,={weL:w=uaxy}.

Any confusion with the notation L, where p is a state of a DFA is
cleared from the context. Notice that if o € ¥ then L,i+1 C Lyi, 2 € N.

It is clear that L, C L. So u,(L;) < u,(L) and u,(L;) is O(n')
whenever u, (L) is O(n').

In our example, for 0 < k < n, we have

un(Lbn—k) = un(zzn_k) — un(Mbn—k) = 2k — 1.

The complexity function u,(L) = u,(X* \ M) of the language L asso-
ciated to the system S is 2" —n — 1. So

va(L) = :Zou,-(L) =g w =)

The words of repg({v,(L) : n € N}) are the first words of each length
in L. So {v,(L) : n € N} is S-recognizable. Let us show that {2v, (L) :
n € N} is not S-recognizable.

Recall that

lrepg(z)| =n < vy (L) <z < vy(L).
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n | 2vy(L) | repg(2va(L)) = bFaw k| |w|
1 0 ba 110
2 2 baa 1|1
3 10 baab 1] 2
4 32 babab 1] 3
5 84 bbaaaa 21 3
6 198 bbababa 2| 4
7 438 bbbaaabb 3| 4
8 932 bbbabbabb 3|5
9 1936 bbbbabaaba 4| 5
10| 3962 bbbbbaabaaa 51 5
11| 8034 bbbbbabbbbab 5| 6
12| 16200 bbbbbbabbaaab 6| 6
13| 32556 bbbbbbbabaabaa | 7 | 6
14 | 65294 bbbbbbbbaababba 8| 6
15| 130798 bbbbbbbbbaaaabbb 91 6
16 | 261836 bbbbbbbbbabbbabbb | 9 | 7
17 | 523944 bbbbbbbbbbabbaabba | 10 | 7
18 | 1048194 bbbbbbbbbbbabababaa | 11| 7
19 | 2096730 bbbbbbbbbbbbabaaaaab | 12 | 7
20 | 4193840 bbbbbbbbbbbbbaababbab | 13 | 7
21 | 8388100 bbbbbbbbbbbbbbaaabbaaa | 14 | 7

TABLE III.1. The first 2 v, in {a,b}* \ a*b*.

Since vu41(L) — 2v,(L) = n(n + 1)/2, it is obvious that for n large
enough, v, (L) < 2v,(L) < vy41(L). Thus |repg(2v, (L)) =n+ 1.
For each n there exists a unique i (depending on n) such that?
U1 (Lpntos) =27 =1 < vy 1 (L) — 2V (L) < 20—1 = up g (Lynsr ).
—n(n+1)/2
Then repg(2v,(L)) = b ‘az with |z| = i — 1. This phenomenon
can be enlightened by the following example given in Table I11.2 where

n =4 = 3 and the representation of 2 v3(L) begins with exactly one b.
As a function of n, ¢ is increasing but

log(n(n +1)

n(n+ 1)

+1) <i < log( 5

+1)+1.

So
lim n — i = +o0.
n—oQ
2Since 2v,(L) is represented by a word of length n + 1, we compare this rep-
resentation with the first word of length n + 2 and of numerical value v, 1 (L) to
obtain the number of leading b’s in repg(2v, (L)) as shown in Table IIL.2.
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5 | aaba
abaa
abab
abba
baaa ug(Ly) =7
2v3(L) =10 | baab {
baba
babb
bbaa 114(Lb2) =3
bbab
15 [ bbba | uy(Lys) =1 T 0
v4(L) =16 | aaaba

TABLE II1.2. Structure of ¥* \ a*b*.

Assume that £ = repg({2 v, : n € N}) is accepted by an automaton
with ¢ states. There exist ng, 49 and ¢ > 0 such that repg(2vy,,(L)) =
b tazy with |z9| = 9. By the pumping lemma (Lemma I11.5.1), there
exists & > 0 such that

Vm e N, by Mgz, € L.

In this last expression, zy has a constant length ¢y independent of m,
which is a contradiction.
In view of this example, we state the following theorem.

THEOREM II1.53. Let ¥ = {01 < - < op1 < T}, t > 2 and
L C ¥* be a reqular language such that u,(L) is O(n!). Let S =
(X*\ L, %, <). There exists an S-recognizable set X C N such that for
all j > 1, ¥ X is not S-recognizable.
Proof. For 0 < k£ < n, we have
un((z* \ L)’r"—k) = un( :—n—k) - un(LT”—k) =t - un(LT”—k) .
€0(nt)

To avoid any misunderstanding, v,, is the sequence associated to the
language ¥* \ L of the numeration S and v, (L) is related to L. So,

val(L) = S0 g wi(L) and
Vo= (S L) = tn;__l L (D).

We take X = repg({v, : n € N}), as a recognizable set. Let j > 1. We
have for n sufficiently large,

Vip+tji—1 S tJVn < Vot
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Indeed, vy, i; — 9 v, = t9 v (L) — v (L) + tz__ll. By Theorem I11.2.12,
there exists a > 0 such that® v, (L) ~ an!tl. So, we have

Vi —t vy ~ (7 — 1) an!t™.

On the other hand,

-1
S t-1
has an exponential dominant term. Then |repg(#’ v,,)| = n + j.

For all n sufficiently large, there exists a unique 7 (depending on n)
such that

(26) l‘ln+j((2* \ L)Tn+j7i+1)J < Vpyj— t v, < PVH-]'((E* \ L)Tn+j7i)l

-~

v, — Vitj—1 = 4 Viotj—1(L) — t/ v, (L)

-~
:tifl—un_;,_j (Lrn+j—i+1) :ti_un+j(L7.n+j—i)

Then repg(t/ v,) = 7%z with |2| = i — 1 and 0 # 7. Notice
that as a function of n, ¢ is increasing and not bounded. To show that
n—1i — +o0o if n —» 400, let us assume that n—1¢ is bounded and divide
all members of (26) by t". Let n — +o00 and obtain a contradiction.
Suppose that repg({t?X}) is accepted by an automaton with ¢
states. There exist ng, 49 and ¢ > 0 such that repg(t/v,,) = T oz
with |29] = 49 and o # 7. Then using the pumping lemma (Lemma
I11.5.1), we obtain a contradiction.
O

6. Exponential languages with exponential complement

In this section, we give sufficient conditions to achieve the compu-
tation of a U-representation of an integer from its S-representation,
where U is some positional numeration system related to a sequence of
integers. In particular, we obtain sufficient conditions to guarantee the
stability of the S-recognizability under addition and multiplication by
a constant. These conditions are related to the normalization function.

ProrosiTION II1.6.1. Let L C ¥* be a regular language accepted
by the DFA A = (Q,%,6,s,F) and S = (L, %, <) be an abstract nu-
meration system. Let U = (U, )nen be a sequence of integers such that
Up=1. If there exist k,a e N\ {0}, ¢,, € Z (p€Q,i=0,...,k—1)
such that for all states p € QQ and alln € N

k-1
(27) aUpip1(p) = Z €p;i Unyi-
i=0

Then there exist a finite alphabet B C Z and a finite letter-to-letter
2-tape automaton which computes a function g : L. — B* such that
jw| = [g(w)| and

avalg(w) = my(g(w)).

3Let f,g two functions, f ~ g iff lim,,_, % =1.
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In other words, g(w) is a U-representation over B of valg(w).
REMARK II1.6.2. The function g of the previous proposition is in-
jective. If v and w are two words of L such that g(v) = g(w) then
valg(v) = valg(w). Thus the conclusion, since valg is a one-to-one
correspondence.
Proof. We consider words in L of length at least k. Indeed, there is
only a finite number of words of length less than k£ and to take them into
account, we simply have to do finite modifications to the transducer
that we will obtain at the end of this proof. Let

W= Wk W 1Wg—2...Wo

be a word in L of length £+ [ + 1 with [ > —1. We apply on the first
[+ 2 letters of w the formula (2) of Lemma 1.5.2 with respect to A (see
page 13) and we obtain the following expression for val,(w),

l -1
Z uk+l(5.a) + Zuk+i(8) + Z Z uk+i(8-wk+l cen wk+i+10)

o<Wy 4 i=—1 t=—1 o<wg4;
+valg oy 1 (Wk—2 - .. Wo) + Vi_2(5) — Vi_o(S. Wt - - . Wg—1).

In this latter expression, we have written Zé:_l Ug1i(8) + Vik—a(s) in-
stead of vi,,(s). Let us also recall that the notation p.c is written
instead of d(p,0). We will denote by C,, the sum of the last three
terms. For all g € Q, p € Q\ {s} and 0 € ¥, let us define
Bypo = #{0o' <o :q.0' =p}

and

Buse =1+ #{o' <o:q.0 =s}
With these notations, we can rewrite vals(w) as

-1
C'w + Zﬂs,p,wk_,_l uk+l(p) + Z Z/Bs.wk+l...wk+i_1,p,wk+i Ugs (p)

PEQ 1=—1peQR

Therefore, using (27) we have

k—1
avalg(w) = aCy + E E /Bs,p,’wk+l epj Uty
Jj=0peQ
-1 k-1

+ § : § :E :53-wk+l---wk+i—lap:wk+i €p.j Ui+j+1'

i=—1j=0pcQ
Set now forg e Q, 0 € ¥ and j =0,...,k -1,

(28) Agoj = Z/Bq,p,o €p,j-

PEQ
It is obvious that these numbers ), ;’s take their values in a finite set
R. Therefore sums of k£ elements of R also take their values in a finite
set, say 7.
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We are now able to build a finite letter-to-letter 2-tape automaton
M over ¥* x B* with B C Z a finite alphabet. The formula expressing
avalg(w) is given by

k—1 -1 k-1
aCy + § :)\Sywkﬂ,j Ul+j+1 + E : E :As-wk+l---wk+i—17wk+iaj Ui+]'+1'
j=0 i=—1 j=0

and can be interpreted in the following way. The reading of wy,
| <i < —1, provides the decomposition of « vals(w) with

Aqwirik—1 Urtis Aquprik—2Uktiz1; -5 Aqaopys0 Uit1

where ¢ = sifi =l and ¢ = s.wgy; ... Wk 1, otherwise. The reading of
Wy gives a coefficient Ay, ., k-1 for Uyy;. The other £ —1 coefficients
can be viewed as “carries”. Roughly speaking, if we have already read
the word ¢ = wy4y . .. wkyir1 and if we are reading 0 = wy,4, then the
computation of the coefficients \’s of Uy, ...,U; 11 depends only on
the knowledge of o and the state s.t. Therefore it seems natural to
mimic A in M.

Thereby we give a precise definition of M. The set of states is
K=QU{f}xT x---xT where f does not belong to @ and is the

—_——

k—1
unique final state of M. The copies of 7" will be used to store the
k — 1 “carries”. The start state is (s,0,...,0). The transition relation

A: K x (3 x B) = K of M is defined as follows. If p€ Q, 0 € &,

A((pa Ye—2y-- -, ’YO)a (J: )\p,a,k—l + ’Yk:—?))
= (p.a; )‘p,a,ka + Ve-35---3 )‘p,a,l + Vo3 )‘p,a,O)
These transitions compute an output gy ...xx_1 from wg,;... w_;.
The alphabet B is finite since 7T is finite.
But we have still to read the last £ — 1 letters of w. For each state
p € Q, D, = L,NXF1 s finite (recall that L, are the words accepted
from p). So, for each state p € @ and each word wy_s...wy € D,, we
construct an edge from (p,Yx_o,...,7%) to f labeled by

(wk_Q -2 Wo, V-2 "Y1(’)’o + Cw))

(This kind of edge can naturally be split in k£ — 1 elementary edges
using k — 2 new states.) Indeed, notice that C,, is a constant which
only depends on the reached state s.wg;...wy 1 (the first component
in ) and the remaining word wy_s . . . wp.

O

REMARK II1.6.3. The complexity functions of languages accepted
from the different states of the DFA A accepting L satisfy the same re-
currence relation of degree | (they only differ by the initial conditions).
A practical way of checking (27) is seeking a final state f € F such
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that
u(f) -0 wea(f)
det : : # 0.
w1 (f) - uy_a(f)
If such an f exists then for all p € ), there exist ¢,; € Q such that

-1
Unii-1(p) = Z Cp,i Uni(f)
i=0

and (27) can be easily obtained. In fact, the integer o of (27) can play
the role of the least common multiple of the denominators appearing
in the ¢, ;’s.

COROLLARY II1.6.4. Let S = (L, X, <) be an abstract numeration
system and let the hypothesis and notations of Proposition II1.6.1 be
satisfied. If the sequence U = (Uy)nen defines a positional numeration
system such that the normalization function vy g is computable by finite
letter-to-letter 2-tape automaton then X C N is S-recognizable if and
only if aX is U-recognizable.

Proof. Let the regular language § C (X x B)* N (L x B*) be the
graph of the function g defined in Proposition II1.6.1. We denote by
p1: 2 X B— Y and py : ¥ X B — B the canonical homomorphisms of
projection. Let

Y = pofp; *(reps (X)) N g].

If X is S-recognizable then by Theorem [.1.7, Y C B* is regular and
by Proposition I11.6.1, 7;(Y) = aX. So aX is U-recognizable since
vy,p(Y’) is computable by a finite letter-to-letter transducer.

Conversely, if py(aX) is regular then 1/,},33 o pr(aX) is also regular.
For each y € a X, 1/5’% o py(y) may contain more than one element, but
only one is in po(g). So the set

1 (P3 ' [Vgp © pu(aX)]N )
is regular and equal to repg(X).
O
COROLLARY II1.6.5. Let S = (L, %, <) be an abstract numeration

system and let the hypothesis and notations of Proposition II1.6.1 be
satisfied. If the sequence U satisfies a linear recurrence relation

Un:dlUn—1+"'+den—madi EZ;dm#Oanzm

such that its characteristic polynomaial is the minimal polynomial of a
Pisot number then X C N is S-recognizable if and only if X is U-
recognizable.

Proof. It is well known that for the system U the normalization vy ¢ is
computable by a finite letter-to-letter 2-tape automaton for any finite
alphabet C' C Z (see Proposition 1.2.6). So by the previous corollary,
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X is S-recognizable if and only if X is U-recognizable. Another well-
known fact related to Pisot numeration systems is that a subset X is
U-recognizable if and only if it is definable in the structure (N, +, Vi)
(see Theorem 1.2.5). In particular, multiplication by a constant « is
definable in (N, +). So aX is definable in the structure if and only
if X is definable. Indeed, if aX is definable by a formula ¢ then
X ={z e N|(Fy)(e®)) A (az=y)}.

O

ExaMPLE II1.6.6. Consider the language L over {a,b,c} of the
words that do not contain aa. Its minimal automaton A; is given
in Figure II1.5. This example can be viewed as some kind of general-
ized Fibonacci system. (In the Fibonacci system, one considers only a
two letters alphabet.) The sequences associated to the different states

Figure II1.5. The minimal automaton for the general-
ized 3-letters Fibonnaci system.

satisfy the relation
Upio = 2U,y1 + 2u,,Vn € N

with the initial conditions ug(s) = 1, ui(s) = 3, ug(t) =1, uy(¢) = 2,
ug(p) = uy(p) = 0. The sequence U = (Uy)nen of Proposition II1.6.1 is
given by (u,(s))nen. For all n € N, we have the relations

Upt1(s) =1 Upia(s) + 0 un(s) , e0=0, e1=1

W,r1(t) =0 uppi(s) + 2 uu(s) , eo=2, e1=0

U, 1(p) =0 upa(s) + 0 uu(s) , eo0=0, €,1=0
Notice that the characteristic polynomial of the recurrence relation of
u,(s) is

2> =20 -2=(z—1+V3)(z—1-3).

So U = (un(s))nen is a positional numeration system associated to
the Pisot number 1 + v/3. From Ay, we compute the 3 x 3 matrices
B, = (/Bq,r,a)q,'re{s,t,p}a oceX:

100 110 21 0
B,=|100|,B,=(101],B.=|20 0
100 101 112

See the proof of Proposition III.6.1 for the definition of 3,,,. If £ =
(€q,i)qe{s,tp}iic{o,1} then it follows from (28) that (BoE)g; = Ag0i- We
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have
01
E=120
00
and
01 2 1 2 2
B,E=|01|,BBE=| 01| ,B.E=| 0 2
01 01 2 1

To obtain the complete transducer, with the notations of the proof of
Proposition I11.6.1, we have to compute the C,, namely

Cq,o = Valq(O') + VO(S) - VO(Q)

for ¢ and o such that q.o is a final state. Finally we have in Figure I11.6
the finite letter-to-letter automaton built from A;, and the A, ,;’s. For

bc
12
a
1

Ficure II1.6. The transducer computing g.

instance, since the first line of B,F is (0,1), we have, starting in the
state (s,«), an edge labeled by (a,1 + «) pointing towards the state
(s.a,0), @ = 0,2. This transducer can be used in the following way.
Notice that the first terms of U = (u,)nen are

1,3,8,22,60, ...

By enumeration of the words of L, we get valg(ba) = 6, valg(aba) = 12
and valg(abca) = 39. Starting in the initial state of the transducer and
ending in its final state, we obtain the couples

b a a b a a b c a
1 3/’\V111)"\v1 12 3])/°
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To conclude this example, observe

m(13) = 134+3.1=6
mp(111) = 1.841341.1=12
mr(1123) = 1.224+ 1.8+ 2.3+ 3.1=39.

We can do the same construction for the language L' = a™{a, b}*.
Its minimal automaton Ay is given in Figure II1.7. The sequence U of

FIGURE IIL.7. The minimal automaton of a*{a, b}*.

Proposition IT1.6.1 is given by u,(t) = 2". So here, the involved Pisot
number is 2 and it is multiplicatively independent from 1 + v/3. So,
from [54], the only subsets which are simultaneously recognizable in
(L,{a,b,c},a < b < ¢) and (L',{a,b},a < b) are the finite union of
arithmetic progressions.

Although the conditions of Proposition II1.6.1 are only sufficient
conditions, the next remark shows us an example of a system which
does not satisfy all these conditions and such that S-recognizability is
not closed under multiplication by 2.

REMARK IIL.6.7. Let J = a{a,b}* U {a, b}*bb{a,b}*. Notice that .J
is an exponential language with exponential complement. Its minimal
automaton A; is given in Figure I11.8. We consider the numeration

FIGURE II1.8. The minimal automaton of a{a,b}* U {a,b}*bb{a, b}*.

system S = (J,{a,b},a < b) and we show that

(i) there exists no linear recurrent sequence associated to a Pisot
number such that the condition (27) of Proposition II1.6.1 is
satisfied for all states of Aj;

(ii) the set X = {v,(s) : n € N} is S-recognizable but 2.X is not.

One can check that for all n > 1, u,(t) = 2" and

\/5(1+\/5>"+\/5(1_\/5>”

5

n =2" - —
tn (s) 5 2 )
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So (i) holds. To check (ii), we use the same technique as in Theorem
I11.5.3. One can verify that

5

5(1-v5) V5 [1+v5)

Vn+1(5)_gvn(s):1_£( f) +\/—< \/_>
5 2 2

has an exponential dominant term. Furthermore, for all n large enough

there exists 7 such that
unH(Jsz) =1 < Vit (8) — QVR(S) < Nt = un+1(Jbi+1)

and n —i — 400 if n = 4+00. One can conclude as in Theorem II1.5.3;
repg(2va(s)) = b laz with |z| =n —i— 1.

We end this chapter with a concluding remark.

REMARK II1.6.8. In this chapter, we have studied the stability of S-
recognizability under multiplication by a constant in relation with the
complexity of the regular languages on which the systems are built.
With a small exception, the only regular languages for which multi-
plication preserves recognizability, are exponential languages with ex-
ponential complement. This result itself is interesting if one would
like to build an abstract numeration system having useful arithmetic
properties. This result can also be connected to the case of positional
systems. The problem of addition in the frame of positional system is
not settled yet, even for linear positional systems having a characteris-
tic polynomial that is not the minimal polynomial of a Pisot number.

The last section of this chapter shows that the only class of “good”
numeration systems with respect to arithmetic operations, seems once
again to be the class of linear numeration systems such that their char-
acteristic polynomial is the minimal polynomial of a Pisot number.
(If it is not exactly this class, the abstract systems encountered are
strongly related to positional systems having the “Pisot property”.
See the assumptions of Proposition II1.6.1.) All our attempts in the
building of an abstract numeration system in which addition and mul-
tiplication by a constant do preserve recognizability, have lead to the
assumptions of Proposition II1.6.1 and a Pisot number.

Although the question remains open, this chapter is a testimony
that the only “good” class of positional numeration systems is the class
of linear systems such that their characteristic polynomial is the mini-
mal polynomial of a Pisot number. It is therefore challenging to find an
abstract numeration system which cannot be related, using Proposition
IT1.6.1, to a Pisot number and for which addition and multiplication
by a constant do preserve recognizability.

One can also notice, in view of Theorem II1.4.1, that if the com-
plexity function of a regular language is bounded by a constant, i.e. by
a polynomial of degree zero, (a language with such a complexity func-
tion is said to be slender) then the possible multiplicators for which
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recognizability holds are of the form n', n € N. Therefore, the slender
languages have to be discussed for their own properties. This situa-
tion is studied in Chapter V (see Theorem V.2.3). It is shown that
for abstract numeration systems built on a slender regular language,
addition and multiplication by a constant preserve recognizability.



CHAPTER 1V

S-Automatic sequences

For a given subset X of N, a question arises naturally. Is this set
S-recognizable for some system S ? This kind of question is answered
in Chapter 2 when X is an exponential polynomial image of N. An
interesting question could be the following: is there a system S such
that the set of primes is S-recognizable 7

To answer this question we generalize Proposition 1.3.3 and show
that a subset of N is S-recognizable if and only if its characteristic
sequence can be generated by an “automatic” method. The term au-
tomatic refers, as we shall further see, to a generalization of the k-
automatic sequences for numeration systems on a regular language.

The k-automatic sequences are well-known and have been studied
extensively since the 70’s [3], [20], [23] and have already been gener-
alized in many different ways [1], [62]. In particular, to generalize the
k-automatic sequences, J. Shallit considers some kind of linear numera-
tion system instead of the standard numeration system with an integer
base k [62]. Two properties of Shallit’s systems are precisely that the
set of all the representations is regular and that the lexicographic or-
dering is respected.

Here, instead of giving pi(n) to a deterministic finite automaton
with output, we feed it with repg(n) to obtain an output which is the
n' term of an S-automatic sequence for an abstract numeration system
S.

Having thus introduced the concept of S-automatic sequences, we
can learn their intrinsic properties but also use them as a tool to check
if a subset of N is S-recognizable. The material of this chapter can be
found mainly in [57]. In the first section, we recall some definitions
and we introduce a running example which could be instructive for the
reader not familiar with automatic sequences. In the second section,
we adapt the classical results concerning the fiber and the kernel of an
automatic sequence.

In the third section, we show that an S-automatic sequence is al-
ways generated by a substitution (i.e., an iterated non-uniform mor-
phism followed by the application of another morphism). From this, we
deduce that the number of distinct factors of length [ in an S-automatic
sequence is O(I?). We also show how to build S-automatic sequences
with at least the same complexity that infinite words obtained by iter-
ated morphisms.

79
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A. Cobham showed the equivalence between the k-automatic se-
quences and the sequences obtained by iterating a uniform morphism
(also called uniform tag system) [20]. Thanks to the results developed
in the third section, the fourth section shows the equivalence between
morphic predicates and S-automatic characteristic sequences.

In the fifth section, we shall be able to show that for any numer-
ation system S, the set of primes is never S-recognizable. To be S-
recognizable, the characteristic sequence of the set must be generated
by a substitution. We use some results of C. Mauduit about the com-
plexity of the infinite words obtained by substitution [46], [47].

1. Some definitions

Let 3 be a finite alphabet. We denote by ¥“ the set of right-infinite
words over ¥. A right-infinite word z over ¥ is a sequence (z;,)nen Of
elements belonging to 3.

DEFINITION IV.1.1. Let S = (L, X, <) be an abstract numeration
system and A be a finite alphabet. A sequence z € AY is S-automatic

if there exists a DFAO A = (Q, %, d, s, A, 7) such that for all n € N,
T = 7(6(s,1epg(n))).

If the context is clear, we write 7(w) in place of 7(d(s,w)).

REMARK IV.1.2. A subset X C N is S-recognizable if and only if
its characteristic sequence (XX )nen € {0,1}* is S-automatic.

Two additional methods for generating infinite sequences will be
used in the sequel.

DEFINITION IV.1.3. Let ¢ : ¥ — ¥* be a morphism of monoids

such that for some o € 3, ¢(0) € oX*. The word

2, = ¢“(0) = lim ¢"(0)
is a fixed point of ¢ and we say that x, is generated by an iterated
morphism. A morphism is uniform if |p(o1)| = ... = |¢(on)], ¥ =
{0'1, faay O'n}.

ExAMPLE IV.1.4. We give two classical examples of words gener-
ated by an iterated morphism. The first is the Thue-Morse word (also
known as Prouhet-Thue-Morse sequence) obtained by iterating the uni-
form morphism 9 defined on {a, b} by 1(a) = ab and ¥ (b) = ba. The
first applications of v are shown in Table IV.1.

The second is the Fibonacci word generated by the non-uniform
morphism ¢ defined by ¢(a) = ab and ¢(b) = a. The first applications
of ¢ are shown in Table TV.2.

DEFINITION IV.1.5. A substitution T is a triple (¢, h, ¢) such that
¢ : X — X*and h : ¥ — A* are morphisms of monoids. Moreover
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Y(a) =ab

¥?(a) = abba

¥3(a) = abbabaab

Y*(a) = abbabaabbaababba

TABLE -IV.l. The Thue-Morse word.

pla) =ab

¢©*(a) = aba
©3(a) = abaab
¢*(a) = abaababa

TABLE IV:2. The Fibonacci word.

c €3, ¢(c) € cX* and for any 0 € X, h(o) =€ or h(o) € A (h is said
to be a weak coding). We said that the word

zr = h(p¥(c))
over A is generated by the substitution T.
If h(o) = € for some o then h is said to be erasing otherwise h is
said to be non-erasing.

ExXAMPLE IV.1.6. We consider the following substitution (¢, h, )
to build the characteristic sequence of the perfect squares (see [45]),

v +— ~abc v = 1
) a = a Rl oo 1
PYb o= bee ") b =0
c — c c — 0
p(y) =nabe
©2(y) = yabeabecee
©3(y) = vyabeabeecabeeeee
©*(y) = yabeabeecabececcabeeeceee

h(¢* (7)) = 1100100001000000100000000 . . .

TABLE IV.3. A substitution generating the characteris-
tic sequence of the perfect squares.
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FIGURE IV.1. A deterministic finite automaton with output.

1.1. A running example. We consider the numeration system
S = (a*b*,{a,b},a < b), the alphabets ¥ = {a, b}, A ={0,1,2,3} and
the following DFAO

The first words of a*b* are

€,a,b,aa,ab, bb, aaa, aab, abb, bbb, . . .
Therefore, by feeding the automaton in Figure IV.1 with these words,
we obtain the first terms of the sequence z € AY,
z = 01023031200231010123023031203120231002310123010123.. . ..

REMARK IV.1.7. The sequence z is not ultimately periodic. We
can observe that the distance between two occurrences of the block
‘00’ is not bounded. Indeed,

(29) 7(w) =0« It e N:w=a"b
thus a block ‘00’ comes from two consecutive words b*" ! and a*", r > 1
and the number of words of length n in a*b* isu, =n+1,n € N.

REMARK IV.1.8. The sequence z is not generated by an iterated
morphism ¢. First, observe that

1 QALY qAr 2Rl qar 3Bt
T(w)=1< 2 & InteN:w= a2 grt2pst girt3pditl
3 a‘”“b?’t“, a4r+2b3t+2’ CL4T+3b3t.

Assume that there exists a morphism ¢ such that z = lim,_, ;5 ©"(0).

1) If ¢(0) € 0102A* then the block ‘0102’ must appear at least
twice in x since ‘0’ appears twice in z. If the first ‘0’ of the
block is obtained from a word a*"b* with r > 1 then the second
‘0’ is obtained from a*"~2p"*2. In view of (29), this leads to a
contradiction. If the first ‘0’ is obtained from b* with ¢ > 1
then the second ‘0’ comes from a’b and we have t = 4y. The ‘2’
is obtained from a*¥~'b?, which also leads to a contradiction.

2) If ¢(0) = 01 then in view of the first terms of z,

o(1) € 023031200231A*.

We show that ‘023031200’ appears only once in z. Suppose
that we can find another block of this kind. Thus the last
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two ‘0’ come from words b* ! and «* with » > 2. Since
we consider all the words of a*b* in ascending lexicographic
order, the first ‘0’ of the block comes from a’b* 8, which is in
contradiction with (29).

3) If ¢(0) = 010 then

©(1) € 23031200231A

and ¢(010) € 01023031200A*. The block ‘010’ appears at
least twice in x but we know that ‘023031200 appears only
once.

We shall further see that = is generated by a substitution.

2. First results about S-automatic sequences

Some classical results on k-automatic sequences can be easily re-
stated [20], [23].

DEFINITION IV.2.1. Let a € A and S = (L, %, <) , the S-fiber
Fs(z,a) of a sequence x € A is defined as follows

Fs(z,a) = {repg(n) : z, = a}.
PROPOSITION 1V.2.2. Let x be an infinite sequence over A and
S = (L,X,<) be an abstract numeration system. The sequence z is

S-automatic if and only if for alla € A, Fs(x,a) is a reqular subset of
L.

Proof. If x is S-automatic then we have a DFAO A = (Q, %, d, s, A, 7)
which is used to generate z. Let L(A') be the language recognized
by the DFA A" = (@, %, 4, s, F) where the set of final states F' only
contains the states g such that 7(¢) = a. Then Fs(x,a) is regular since
it is the intersection of the two regular sets L(.A’) and L.

The condition is sufficient. Let A = {ay,...,a,}. Notice that if
i # j, Fs(z,a;) N Fs(z,a;) = 0 and L = UL, Fs(z,q;). For all i =
1,...,n, Fs(z,q;) is accepted by a DFA A; = (Q;, %, s;, 0, F;). From
these automata we build a DFAO A = (@, %, 5,0, A, 7) to generate x
using the numeration system S. The set Q) is Q1 X - - - X (),,, the initial
state is (s1,...,8,). For all states (¢q1,...,¢,) € @ and for all o € X,
0((q1,---5qn),0) = (01(q1,0), - - -, 0n(qn, 0)). If there is a unique 7 such
that ¢; € F; then 7((q1,...,¢,)) = a; otherwise the state cannot be
reached by a word of L and the associated output is meaningless. The
sequence z is obtained from S and the DFAO A. Hence the result.

O

The notion of k-kernel of a k-automatic sequence can be transposed
as follows.

DEFINITION 1V.2.3. Let S = (L,3,<) and z be an infinite se-
quence. As in Definition I11.5.2, for each w € ¥*, we set

L,={vel|3ze¥ :v=mwz}
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One can enumerate L,, lexicographically with respect to <,
L, ={wz < wz < ...}

Thus for each w € X*, one can construct the subsequence n — Tyai4(wz,)
(notice that the subsequence can be finite or even empty). The set

{n = Tagwz) W € X7}

is the S-kernel of z.

PROPOSITION 1V.2.4. Let S = (L, %, <) be a numeration system.
A sequence x € AY is S-automatic if and only if its S-kernel is finite.

Proof. If z is S-automatic, then we have a DFAO A = (@, X, 4§, s, A, 7)
used to generate x. We define the equivalence relation ~; over ¥* by
v ~q w if and only if d(s,v) = §(s,w). In the same way, the minimal
automaton of L provides us with an equivalence relation ~5. The two
relations have a finite index. So the relation ~q 4, given by v ~q o w if
and only if v ~; w and v ~5 w, has also a finite index. Notice that
the classes of ~1o give exactly the sequences n — Tyag(wz,)- Indeed,
v ~9 w implies that {z € ¥* : vz € L} = {z € ¥* : wz € L} thus
L, ={vzg <wz < ...} and L, = {wzy < wz; < ...} with the same
20y RLy e+ s
The condition is sufficient. We show how to build a DFAO. The
states are the subsequences ¢, = (7 = Tyaig(wz,))- The initial state is g,
(i.e., the subsequence obtained from the empty word). The transition
function 0 is given by §(¢w, o) = que and the output function 7 is given
by T(qqu) = Tvalg(w)-
O

We now study some operations on S-automatic sequences.

DEFINITION 1V.2.5. The sequence (y,)nen is a finite modification
of the sequence (z,)nen if

dp,g e N:VneN, ypin = Tgin.

PROPOSITION 1V.2.6. Let S = (L,%, <) be an abstract numera-
tion system. The set of S-automatic sequences is closed under finite
modifications.

Proof. A sequence z € A" is S-automatic if and only if for all a €
A, Fs(z,a) is a regular language (see Proposition IV.2.2); in other
words, if valg(Fs(z, a)) is S-recognizable. By Proposition II.1.1, the S-
recognizability of this latter set is conserved by translation. Therefore,
forall a € A, Fs(y, a) is also a regular language. Hence the conclusion.

O
DEFINITION IV.2.7. A sequence (y,)nen is obtained by periodic
deletation of the sequence (z,)nen if there exist a, b, jo,. .., Jjo1, 1 <

a<b 0<jyg <+ <jg_1 <bsuch that

Yan+i = Ton+j;» 0<i1< a, ne N.
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PROPOSITION 1V.2.8. Let S = (L, X, <) be an abstract numeration
system and x = (xp)nen be an S-automatic sequence. If the sequence
Y = (Yn)nen is obtained by periodic deletation of x then there exists
a numeration S’ such that y is S'-automatic. Moreover, the set of
S-automatic sequences is not closed under periodic deletation.

Proof. The sequence z is generated through the use of a DFAO A and
the language L. To obtain y, we can consider the same DFAO A but
the language

a—1
L'= U repgs(bN + 7;).
i=0
By Theorem I1.2.1, this latter language is regular. It is obvious that A
and S’ = (L', X, <) produce y.
To prove the second part, we consider the following DFAQO depicted
in Figure IV.2 and the language a*b*. If we assume that a < b, this

oEVolVarwe

Ficure IV.2. A DFAO.

automaton produces the sequence
r = 0142443444044441444442444444344444440) . ..
which is S-automatic for the system S built on a*b* and
Fs(z,0) = (a*)*.
In view of (11),
valg((a*)*) = {2n (4n+ 1) | n € N}.
We delete from z the letters at odd positions and obtain the sequence
y = 0443404444444434440 . . .

Therefore,

Fs(y,0) = {repg(n (4n+ 1)) | n € N}.
To conclude the proof, we show that this latter language is not regular.
Assume that Fg(y,0) is regular. Therefore, Fg(y,0) N a*b* must be



86 Chapter IV. S-Automatic sequences

regular. A word aPb* belongs to Fs(y,0) if and only if there exists n
such that

1
n(dn+1)=S(p+4)(p+5) +4
in other words, such that
(8n+1)% — 2(2p + 9)? = 63.

We use the same technique as in the proof of Proposition II1.1.2. The
minimal solution of the Pell’s equation U? —2V2 =1 is (u,v) = (3,2)
and X? — 2Y? = 63 has the solution (X, Yy) = (9,3) and

Xiti \ _ (3 4 X;
Yiin )\ 23 Y, )
Thus for each n € N, X5, € 8N + 1. We conclude as in the proof of

Proposition I11.1.2 and obtain a contradiction.
O

3. Complexity of S-automatic sequences

The complexity function p, of an infinite sequence x maps n € N
to the number p,(n) of distinct factors of length n occurring at least
once in z. In this section, we shall show that since every S-automatic
sequence is generated by a substitution, its complexity is in O(n?).

Recall that an infinite word w generated by an iterated morphism
has a complexity such that

c1f(n) < pw(n) < e f(n)
where f(n) is one of the following functions: 1, n, nloglogn, nlogn or
n? [50]. For a survey on the complexity function, see for instance [2].
The next remark shows that an S-automatic sequence can reach at
least the same complexity as a word generated by a morphism.

REMARK IV.3.1. For every infinite word w generated by an iterated
morphism ¢ over an alphabet A, there exists an S-automatic sequence
u such that for all n € N, p,(n) < py(n).

We show how to proceed on the following example,

0~ 0101

It is well known that the complexity function p, of w = ¢*(0) is
O(nloglogn) [50]. To the morphism ¢, we associate a finite automaton
A (A is not deterministic because the morphism is not uniform). The
set of states is A, all the states are final and the transition function
0 is obtained by reading the productions of ¢ from left to right. For
this purpose, we introduce a new ordered alphabet 3 such that #> =
Supzen |o(x)|. Here, 0 gives the initial state (because we consider the
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word ¢*¥(0)) and 1 the other state. Thus with ¥ = {a < b < ¢ < d},
we have

0(0,a) = [p(0) =0

0(0,6) = [p(O)]2 =1 4 { 0(La) = [p(l)h =1
0(0,c) = [p(0)]s=0 0(1,0) = [p()]:
0(0,d) = [p(0)]s=1

Then A is the automaton given in Figure IV.3.

ac ab

O ®

FiGure IV.3. The automaton associated to the mor-
phism ¢.

The language accepted by A is L = {a,c}*{b,d}{a,b}* U {a,c}*.
So, the numeration system S is (L,Y,a < b < ¢ < d). This kind of
construction can also be found in [45]. Now, from A, we simply build
the DFAO A’ given in Figure IV.4.

ac ab ab,c,d
0 b,d & cd .

FicURE 1V.4. The DFAQ A'.

Its output is easily computed. The third state can have any output
because it is never reached through a word belonging to L. One remarks
that the S-automatic sequence obtained with A" and S is

u=(0)¢*(0)¢(0)...
and thus every factor of w = ¢“(0) belongs to wu.

We now show that every S-automatic sequence is generated by a
substitution. First, we set forth an obvious Lemma.

LEMMA IV.32. Let L ={o1 < ... < a,}, A= (Q,%,4,s, F) be a
DFA and o ¢ Q. The morphism ¢4 : Q U{a} — (QU {a})* defined
by

{ a— as

g 6(q,01)...0(q,0n), ¢ €Q

produces the sequence ((,)n)nen of the states reached by the words of
¥ ie., Vi € N\ {0}, (z,); = 0(s,w;) where w; is the ™ element of
(2%, <).
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ExaMPLE IV.3.3. Here is an application of Lemma IV.3.2. Con-
sider the automaton A = (@, X%, 4, s, F) depicted in Figure IV.5. By

FIGURE IV.5. The minimal automaton of a*b*c*.

the previous lemma, we obtain

o = as
s = spq
¥ p = TPq
q — T7Tq
T Trr

and the sequence of the states reached by the words of {a, b, c}* is

Ty = QSSPYSPGTPTTYSPTPYTTTTTTPGIT].Q - . .
ProprosiTiON IV.3.4. Every S-automatic sequence is generated by
a substitution.
Proof. Let S = (L,%,<), A = (Q,%,0,s,F) be a DFA accept-
ing L and x be an S-automatic sequence obtained with the DFAO
M = (Q,%,d,s',A,7). From these two automata, we build the
product automaton P = (@ x @Q',%,(s,s'),n) where n((¢,q'),0) =
(6(q,0),0'(¢',0)). We shall not explicitly write the final states of
P. By Lemma IV.3.2, we associate to this automaton a morphism
ep (@ xQ)U{a} = ((Q x Q") U{a})*. To conclude the proof, we
make up the erasing morphism A : (Q x Q') U {a} — A* defined by

h(a) =¢

h(q,q)) =e  ,ifq¢ F;
=17(¢') , otherwise.

Indeed, ¢% () is the sequence of the states reached by the words of ¥*
in P. But we are only interested in the words belonging to L and in
the corresponding output of M. Thus z is generated by (p, h, @).

O

Dealing with erasing morphisms whenever one wants to determine the
complexity function of a sequence can turn out to be painful. So the
next lemma allows us to get rid of erasing morphisms. (The author
thanks J.-P. Allouche who has pointed out this result.)
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LEMMA 1V.3.5. [18, 4] If f and g are arbitrary morphisms such that
f(g“(a)) is an infinite word, then there exist a non-erasing morphism
k and a coding h (i.e., a letter-to-letter morphism h) such that

f(g”(a)) = h(k*(a)).
THEOREM 1V.3.6. The complexity of an S-automatic sequence s

in O(n?). Moreover, there exists an S-automatic sequence ¥ = (Yn)nen
and a positive constant d' such that Vn > 0, p,(n) > d'n?.

Proof. Let x = (z,)nen be an S-automatic sequence. By Proposition
IV.3.4, x is generated by a substitution (¢, h, @) and by Lemma IV.3.5
we can assume that A is non-erasing. The word z, = ¢ () is generated
by an iterated morphism. Then p,,(n) < dn?. Remember that if v,
w are two infinite words and if A is a non-erasing morphism such that
h(v) = w then there exist positive constants a, b such that p,(n) <
apy(n + b) [50]. Hence the conclusion, since z = h(z,).
We show that there exist a language L over an ordered alphabet and
a DFAO such that the corresponding automatic sequence y = (Yn)nen
has a complexity function p,(n) > d'n?.
The morphism
0—01
p:< 112
22

generates the word
w = ¢“(0) = 01121221222122221222221222222 ... ..

Since 2 is a bounded letter (i.e. |¢"(2)| is bounded) and 2" is a factor
of w for an arbitrary n, there exists a positive constant d’ such that
Pw(n) > d'n? (see [50]). Using the same technique as in Remark IV.3.1,
we construct an S-automatic sequence y such that p,(n) > p,(n). One
finds easily that the regular language used in the numeration system S
is L =a*Ua*ba* Ua*ba*ba*.
O
To conclude this section, we refine in a very simple way Proposition
IV.3.4 to give a characterization of S-automatic sequences.
DEFINITION 1V.3.7. Let T' = (p, h,c) and T" = (¢', h', ) be two
substitutions such that ¢ : ¥ — ¥* h : ¥ — A* ¢ : ¥ — ¥ and
B X' — A"™. A morphism of substitutions m : T — T is a surjective
morphism m : X U A — ¥ U A’ such that
(1) m(c) =¢,m(X) =% m(A) = A
(2) m(e(0)) = ¢'(m(0)), Vo € X
(3) m(h(c)) = h'(m(0)), Yo € X.
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EXAMPLE IV.3.8. There exists a morphism m between the following
substitutions (¢, h,a) and (¢', #',d’),

a — abc a — 0
) b — bd b — 1
v c — ac c — ¢
d — dbc d — 2
a — dbd a — 0
e b = bVd KV - 1
d — dd d
It is clear that, one can find
!
i : y 0 — 0
m , m:g 1 — 1
§ : Z, 2 = 0

For a regular language L on the totally ordered alphabet (X, <)
and for a DFAO D = (@, %, 4, s, A, 7), one can make up the canonical
substitution Ty, « py by proceeding in the same way as in Proposition
IV.3.4 with A equal to the minimal automaton Ay, of L and the DFAO
M equal to a reduced and accessible copy of D.

To reduce D, one has to merge the states p, ¢ such that for all
w € X, 7(8(p, w)) = 7(5(g, w))-

DEFINITION IV.3.9. A substitution 7" is an (L, <, D)-substitution
if there exists a morphism m : T' — T{;  p). This kind of construction
has already been introduced in [14] for linear numeration systems based
on a Pisot number.

The next theorem is obvious and we state it without proof.

THEOREM 1V.3.10. Let S = (L,X,<). The sequence x € A¥ is
S-automatic if and only if x is generated by a (L, <, D)-substitution
for some DFAO D.

4. Equivalence with morphic predicates

In this section, we obtain the converse of Proposition IV.3.4. Con-
sequently, the S-automatic sequences and the infinite words obtained
by substitution are the same. In particular, the recognizable subsets
of N are exactly the morphic predicates. Let us fix the terminology of
[45].

DEFINITION 1V.4.1. The characteristic word of a predicate P over
N is the infinite sequence x* = (,,)nen such that z, = 1 iff n € P and
z, = 0 otherwise. A predicate is said to be morphic if its characteristic
word is generated by a substitution.

ExaMPLE 1V.4.2. In view of Example IV.1.6, the predicate P =
{n?|n € N} is morphic.
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The main issue of the present section is the following proposition.
It results from a joint work with A. Maes.

PROPOSITION 1V.4.3. Every infinite word generated by a substitu-
tion is an S-automatic sequence for some abstract numeration system

S.

Proof. Let (¢, h,a) be a substitution. Thanks to Lemma IV.3.5, we
can assume that ¢ : ¥ — X7 is non-erasing and that h: ¥ — A is a
coding. As in Remark IV.3.1, to the morphism ¢ we associate an au-
tomaton A4 over an alphabet I' = {71, ...,7,} with r = max,ex |p(0)].
The set of states of A is X. Let L C I'* be the regular language ac-
cepted by A. Since p(a) € aXT, it is clear that if w € L then yyw € L.
Indeed, the transitions of A are given by the images of ¢ and therefore,
the initial state of A has a loop labeled by the first letter of I'.

To enlighten the proof, we consider the following short example.
With the previous notation, ¥ = {a, b, c}, A = {0, 1,2},

a — abc a — 0
0: Y=Y b = bc andh:X—A: b — 1
c — aac c — 2.

The automaton A over I' = {a, 3,7} is given in Figure IV.6.

F1GURE IV.6. The automaton A associated to (.

If ¢ is not uniform then the transition function of A is partial. In
our example, b.y is not defined because |p(b)| = 2. If we apply without
any adaptation Lemma IV.3.2, instead of the sequence of states reached
by the words of I'*, we obtain the sequence of states reached by the
words of L. Indeed, by construction, A has no sink and all its states
are final. Continuing our example, we have a morphism 1) obtained
from A (or equivalently from ¢ since A is derived from ¢). Let p ¢ X,

Lo pa

a — ¢(a) =abc
YiY b e o) = be

c — ¢(c) = aac.
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The main point is to compare the sequence ¥ (u) of the states reached
by the words of L and the infinite word % (a),

©“(a) = a bc beaac bcaacabeabea - - -
YW(u)= p a _a , bc abc, beaac gbcbeaac beaacabeabea - - -
~~~ ~~ S——
w1 w2 w3

Notice that we = ¢(a) is obtained by applying ¢ to w; and ws = ¢(abc)
is obtained by applying ¥ to wy. For each n € N\ {0}, there exists a
sub-word w,, in ¥*“(u) that is derived from a = w; by application of
¥"~1. The first elements of )*(u), except u, are the states reached by

67aiﬁ’,y’aa’O{IB7a"yiﬁa’ﬁﬁ’rya,q/ﬁ,vq/’aaa""

Roughly speaking, the two sequences ¢*(a) and ¥*“(u) would coincide
if we removed from ¢*“(u) the states of A reached by the words in L
beginning with «. This observation is general. Indeed, in the definition
of ¢, ¢(a) always begins with a. It simply ensures the convergence of
¢©"(a) when n tends to infinity. On the other hand, to any substitu-
tion (¢, h,a), the associated infinite word ¢“(u) always begins with
uaa (the states reached by ¢ and 7, are a). This second letter a is a
“seed” producing sub-words w; in 9*(u). By construction of 1, these
sub-words correspond exactly to the states reached by the words of L
beginning with ;.

So it is clear that if we consider the language L \ v I'* then the
corresponding numeration system S and the DFAO built with A where
the output of a state o € X is h(o) produce the S-automatic sequence
h(¢®(a)).

O

This latter result has an important corollary.

COROLLARY 1V.4.4. The recognizable subsets of N for abstract nu-
meration systems and the morphic predicates coincide.

Proof. Let S be a numeration system. A subset X C N is S-
recognizable if and only if its characteristic sequence x* is S-automatic.
By Proposition 1V.3.4 and Proposition 1V.4.3, any S-automatic se-
quence over {0, 1} is a morphic predicate.

O

REMARK IV.4.5. It is well known that the multiplication by a con-
stant ¢ does not preserve generally the S-recognizability of a set of in-
tegers. But thanks to the characterization of the recognizable subsets
of N given in the previous corollary, we can build from an abstract nu-
meration system S and an S-recognizable subset X C N, a new system
S’ such that c¢X is S’-recognizable. Indeed, x* is S-recognizable and
is therefore generated by a substitution (¢, h,c) where h : 3 — {0,1}
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is a coding (thanks to Lemma IV.3.5). We can replace h by h' where

p 107ty | if h(o) =1;
h((’):{ og ) ,ifhgo—gzo.

By Lemma IV.3.5, there exists a substitution (¢, g, d) such that

9(°(d)) = h'(¢*(c)) = x*.
In other words, ¢X is a morphic predicate and is S’-recognizable for
some system S’. Notice that the computation of S’ can be effectively
achieved (the proof of Proposition IV.4.3 is constructive).

5. Application to S-recognizable sets of integers

Proposition IV.3.4 gives a necessary condition for a set X of integers
to be S-recognizable. The characteristic sequence x* € {0,1}* has to
be generated by a substitution. Thus this proposition can be used as
an interesting tool to show that a subset of N is not S-recognizable for
any numeration system S.

In the sequel of this chapter, P is the set of primes and 7 is its
characteristic sequence. We show that P is never S-recognizable. But
first we build by hand a subset of N which cannot be S-recognizable
because its characteristic sequence is too complex.

ExAmpLE IV.5.1. For n > 3, consider the (g) words belonging
to {0, 1}" that contain exactly three ‘1’ and concatenate these lexico-
graphically ordered words to obtain the word w,_3. To conclude, let
us consider the infinite word

w=wowywy ... = 111 011110111101111000111 01011 ......
wo w1 w2

By construction, it is obvious that for all positive constants C, there ex-
ists ng such that Vn > ng : p,(n) > Cn?. Thus w cannot be generated
by a substitution and the corresponding subset
w ={0,1,2,4,5,6,7,9,10,11,12,14,15,16,17, 21,22, 23, 25,27, .. .},
such that x" = w, is never S-recognizable.

ProprosiTiON IV.5.2. For any numeration system S, P is not S-
recognizable.
Proof. In [46], [47], C. Mauduit shows using some density arguments
that x” € {0,1}* is not generated by a substitution (¢, h, o) where h
sends all the letters on 0 except one. A slight adaptation of the proof
leads to the conclusion for any letter-to-letter morphism h. For the
sake of completeness, a proof of Proposition IV.5.2 can be found in the
appendix.

O






CHAPTER V

Some topics on S-recognizability

In the first section of this chapter, we study the stability of recog-
nizability under the change of ordering of the alphabet. Thanks to the
language {a, b}* \ a*b*, we show that this operation does not generally
preserve recognizability.

In the second section, we study the class of slender languages. For a
numeration built on such a language, it is shown that the recognizable
sets of integers are exactly the ultimately periodic sets. Consequently
addition, multiplication by a constant and the change of ordering do
preserve recognizability.

In the third section, we give some examples related to Cobham’s
theorem. We consider two systems built on exponential language hav-
ing the same dominant root (that is, two supposedly “dependent” sys-
tems) and we find subsets of integers recognizable in a system and not
recognizable in the other system.

1. Changing the ordering

In this section, we give some results concerning the changing of
ordering. This operation induces a transformation from N onto N and a
transformation in the language on which numeration systems are built.
We study the conservation of S-recognizability under such operations.
It is convenient to introduce notation for the changing of numeration
systems. Given systems S = (L, %, <) and T = (L', ¥, <), we set

(s =reprovalg: L — L' and {g = valporepg : N — N,
If the underlying S and 7" are known from the context, we simply write
¢ and &'.

ExaMpPLE V.1.1. Consider the abstract numeration systems S =
(a*b*, {a,b},a < b) and T = (a*b*,{a,b},b < a). The first words are
given in Table V.1. In this example, {5 r(aab) = abb and &1 (5) = 3.
It is clear that

Esr(a’) =db', i,j €N
Thus, £s7(w) = h(w?), where w? is the reversal of w and h : {a, b} —
{a, b} is the homomorphism defined by A(a) = b and h(b) = a. There-
fore, if X C N is S-recognizable then X is also 7'-recognizable.

95
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N| § | T
0 e €
1 a b
2 b a
3| aa | bb
4 || ab | ab
51 bb | aa
6 || aaa | bbb
7 || aab | abb
8 || abb | aab
9 || bbb | aaa

TABLE V.1. Changing the ordering in a*b*.

In spite of the previous example, the change of ordering of the
alphabet does not generally preserve the recognizability as we shall see
in the case where ¥ = {q, b} and L = ¥* \ a*b*.

LEMMA V.1.2. Let n € N. For U = (X¥*,%,a < b) and V =
(X*,3,b < a) one has

Ey(n) =32"—n -3,
where | = |repy(n)|.

Proof. Observe that if w; < --- < wy then wy < --- < w;. Moreover
2! — 1 <n < 2! — 2 It is enlightened by Table V.2 which shows the
words of length 3. Hence

N|U |V

7 || aaa | bbb
8 || aab | bba
9 || aba | bab
10 || abb | baa
11 || baa | abb
12 || bab | aba
13 || bba | aab
14 || bbb | aaa

TABLE V.2. Changing the ordering in ¥*.

Ev(n) =27 —2—[n—(2'-1)].



V.1. Changing the ordering 97

PROPOSITION V.1.3. Let ¥ = {a,b} and L = ¥* \ a*b*. For all
n>2, if l = |repy(n — 1)| then

Esr(bab™) = aba™ " brepy(n — 1),

where S = (L, X,a < b), T =(L,3,b<a) and U, V are defined as in
Lemma V.1.2. In particular, vals(ba b*b*) is not T-recognizable.

Proof. The minimal automaton Ay of L is depicted in Figure V.1.
Therefore L, = ¥*,

b a
()
a b ab

FIGURE V.1. The minimal automaton of ¥* \ a*b*.

up(s) =uy(s) =0,
u,(s)=2"—-n—-1, Vn>2,
while u,(t) =2" — 1 for all n € N.

In L, there are v,.1(s) words of length not greater than n + 1,
U, 1(s) words of length n + 2 beginning with a and u,(p) — 1 words of
length n + 2 beginning with ba. Hence, the number of words belonging
to L and lexicographically less than ba b™ is

n+1
valg(bab") =) (2" —i—1) 42" 42" —n—3.
=2
We sketch the computation of valy[aba™ '~ brep; (n —1)] obtained by
using Lemma 1.5.2
n+1 )
val[a® T hrepy(n — 1)+ D (28 —i— 1)+ 2" +n
=2

n+l
= val,[a" " 2brepy(n — 1)+ D (2" —i—1)+ 2" —1
i=2

n+1 n—1

= valbrepy(n— 1)+ > (2° —i—1)+2"" =1+ > 2°
1=2 1=1+2
ntl n—1
= val[repy(n— 1]+ 3 (2" —i— 1)+ 2" =1+ 37 2742
1=2 i=l+2
n+l
= vn-1)+ > (2—i-1)+2" 142" -3.2"
1=2

Hence the value of {57 (bad"), in view of Lemma V.1.2. Applying the
pumping lemma (Lemma III.5.1), it is now straightforward to check
that valg(ba b*b*) is not T-recognizable.

O
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Although, the class of recognizable sets of integers is not closed
under the change of ordering of the alphabet, we can exhibit some
classes of languages for which this operation keeps recognizable sets
unchanged. We also review some situations encountered throughout
this work where the change of ordering has no effect.

ProposITION V.1.4. Let S = (L,%,<) and T = (L, %, <) be two
numeration systems. Let ny be a non-negative integer. If for all states
pand q of AL = (Q,%,9,s, F) and all n > ny,

un(p) = un(q);
then X C N is S-recognizable if and only if X is T-recognizable.

Proof. Assume that ¥ = {0y <--- <o0,} = {0, <--- < 0,,} where
v is a permutation of {1,...,p}. We prove that the graph

£ ={(z,y) € L x L:valg(z) = valp(y)}
of {7 is a regular language over the alphabet ¥ x ¥, showing that

repr(X) = pa(§ N py " (repg (X))
is regular if and only if rep(X) is regular, where py,ps : (¥ x X)* — X*
are the canonical homomorphisms of projection.
Let (,) belonging to £&. The two systems S and T have the same
sequence (Vy)nen, thus |z| = |y|.
By Algorithm 1.5.7, if || > ng then

!
x:Uil...ailﬁandy:Jiyl...oiulﬁ
N—— ——

o o

where |/B| = |ﬁl| =ng, B € Ls.a, ﬁl € Lo and’
valg, . (8) = valy,_,(8').

To conclude, it is then sufficient to observe that the words of é of
length at least ng are exactly the words accepted by the following non-
deterministic finite automaton. The set of states is (Q x @) U {f}.
The initial state is (s, s). The new symbol f denotes the unique final
state. According to what precedes, there are two kinds of transitions.
First, those of label (oy, 0,,) mapping the state (¢, q’) onto (¢.0;,¢".0,,).
Second, those of label (3, ') mapping (g,q') onto f, provided that
8] = |B'| =no, BE€ Ly, B/ € Ly and valg, (8) = valr,, 8.

O

ExAMPLE V.1.5. The language L over the alphabet ¥ = {a,b}
consisting of the words containing an even number of b’s satisfies the

1f S is a numeration system built on a regular language L accepted by a DFA
A then S, denotes the system built on the language L,, ¢ being a state of A.
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hypothesis of Proposition V.1.4. Its minimal automaton was given in
Figure I1.3 page 22 and
ug(s) =1, ug(p) =0,
u,(s) = u,(p) =2"", vn > 1.
Hence the transducer depicted in Figure V.2 computing the function
Esr where S = (L, X,a <b)and T = (L, X,b < a).

a
a

b
a
FI1GURE V.2. A transducer computing &g 7.

In the next proposition we give equivalent formulations of the as-
sumption of Proposition V.1.4. They are expressed in terms of the
incidence matrix M of the minimal automaton A;, of L. Recall that it
is the matrix defined by

n
M;; = Zéqi-gtaQW 1<4,5 <k,
t=1
where the 0;’s and the ¢;’s denote the n letters and the « states of Ay,
respectively.
We denote by f; the characteristic vector of the set of final states

Of.AL:
1 y if iGF;

, otherwise.
Observe that

(30) (M™f)i = (M™)i;f; = um(0).
j=1
PROPOSITION V.1.6. Let L be a reqular language over an alphabet
Y and let A, = (Q,%,6,s, F) be its minimal automaton. Let m be the
multiplicity of zero as root of the minimal polynomial of M. Letr > m.
The following assertions are equivalent:

(1) Vn > 7, Yq,q € Q, un(q) = un(q),
(2) Vn > m, ¥g,¢' € Q, un(q) = un(¢),
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(3) INe N\ {0}: M™f = \¥, with 7= (1,...,1)T.
In particular, Vg € Q, Vi > 0, Up1i(q) = (#X)'un(q).
Proof. This follows immediately from (30) and the well-known fact
that any polynomial that is annihilated by M is the characteristic poly-
nomial of a linear recurrence equation satisfied by each of the sequences
u, (k).
O

Here is another easy characterization of the languages for which the
assumption of Proposition V.1.4 holds true.

ProrosiTION V.1.7. Let L be a reqular language over an alphabet
.. Then L satisfies the hypothesis of Proposition V.1.4 if and only if
there exist ng, oy € N such that for allw € 3%, #((w L.L)NE"™) = qy.

Another class of languages for which the recognizable sets of integers
are independent of the ordering of the alphabet is the class of slender
languages. This class has in fact a wider underlying property and is
discussed in the next section.

REMARK V.1.8. Recognizability of exponential polynomial functi-
ons. We have shown in Sections 3 and 4 of Chapter II, how to build
an abstract numeration system S = (L, 3, <) that recognizes the set
f(N) where

f(n)=2_ Pin)a].

The construction was made up to make sure that
reps(f(N)) = Min(L, <).

Changing the ordering of ¥ does not change the complexity function
of the language L and repg(f(N)) = Min(L, <) is regular whatever the
ordering < is. Indeed, Lemma I1.3.1 holds true for any ordering of the
alphabet.

REMARK V.1.9. Relation between abstract and positional systems.
The definition of the A, ;’s given in (28) depends on the ordering of
the alphabet since the 3;,, given in the proof of Proposition III.6.1
are defined by

Bypo = #{o' <o :q0o =p}.
So the transducer obtained in this proof depends on the ordering of the
alphabet but whatever the ordering is, a transducer can be obtained.
For instance, with the assumptions and notations of Corollary II1.6.5,
a subset X is U-recognizable if and only if it is S-recognizable for any
ordering of the alphabet.



V.2. Slender languages 101

2. Slender languages

The set of slender languages is a second class of languages for which
the recognizable sets of integers are independent of the ordering of the
alphabet. This property has been introduced in [39] and for the sake of
completeness, we recall its original proof in this section. But in fact, the
slender languages make up a particular class of languages with respect
to abstract numeration systems: the recognizable subsets are exactly
the ultimately periodic subsets of N.

DEFINITION V.2.1. [5] Let d be a positive integer. The language L
is said to be d-slender if
Vn >0, u,(L) <d,

L is said to be slender if it is d-slender for some d. A regular language
is slender if and only if for some k£ > 1 and words z;, v;, 2z;, 1 <1 <k,

k
L= U i Y; 2.
i=1

In this case, L is said to be a union of single loops [52], [63]. Moreover,
we can assume that the sets x; y;z; are pairwise disjoint.

The next proposition was first stated in [39]. We leave it in this
work, only for the construction given in its proof. In fact, it is a
consequence of a wider result given below.

PROPOSITION V.2.2. Let d be a positive integer. Let L be a reqular
d-slender language. Let S = (L, %, <) and T = (L, %, <) be two numer-
ation systems. If X C N is S-recognizable, then X is T-recognizable.

Proof. As in the proof of Proposition V.1.4, we show that the graph

5/5} of the change of systems is regular. Using Lemma I1.3.1, we define
iteratively the regular languages I; . and I; - by

L. = Min(L,<)
I, = Min(L,<),

and, for i = 2,....,d,
i-1
Ii« = Min[L\ ('U1Iv’<)’ <]
‘7:
i—1
Lic = Ml \ (U 1. <)
‘7:

Since for all z € L, |z| = |£(z)|, the graph of £ is thus given by

= Ul x LN (Ex 0y,
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THEOREM V.2.3. Let L C X* be a slender language and S =
(L, X, <). A set X C N is S-recognizable if and only if X is a finite
union of arithmetic progressions.

Proof. By the characterization of the slender languages, we have
k
L= szy:zz UF(), Ti, 2 € E*,yi eyt
i=1
where the sets z; y;z; are pairwise disjoint and Fj is a finite set.
(i) The sequence (u,(L)),en is ultimately periodic of period

C = lemy|y;).

lth

Moreover, for n large enough, if z; y" z; is the I word of length |z; z;| +

n|y;| then z; (y" /%) 2 is the I word of length |x; z;| +n |y;| + C. In
other words, for n sufficiently large, the structures of the ordered sets
of words of length n and n + C' are the same.

(#) The regular subsets of L are of the form
U @)z U F,

jeJ

where J C {1,...,k}, a; € Nfor j € J and F{ is a finite subset of L.

(#i) If X is S-recognizable, then repg(X) is a regular subset of L

and we can apply (ii). In view of (i), it is clear that X is ultimately
periodic. The converse is immediate by Theorem I1.2.1.

O

This theorem has direct corollaries.

COROLLARY V.2.4. Let S be a numeration system built on a slender
language. If X C N is S-recognizable then aX is S-recognizable for all
aeN

REMARK V.2.5. This corollary is relevant with Theorem III.4.1
since the complexity function of a slender language is bounded by a
constant.

COROLLARY V.2.6. Let S be a numeration system built on a slender
language. If X and Y are S-recognizable subsets of N then X +Y is
S-recognizable.

3. Dependent systems and recognizability

For the representation of integers in an abstract numeration system,
a lot of open questions remain. The most challenging is certainly the
possible generalization of Cobham’s theorem. We know from Theorem
I1.2.1 that the ultimately periodic sets are recognizable in any system
but what could be the “multiplicatively independent condition” 7 If
the regular languages on which numeration systems are built, are ex-
ponential with a unique dominant root, a guess would be to consider
two systems to be independent if their respective dominant roots are
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multiplicatively independent. Having in mind Corollary IV.4.4, a pos-
sible path would be to connect our results with Durand’s results [25]
and [26].

It is well know that if m and n are multiplicatively dependent in-
tegers then m-recognizable sets and n-recognizable sets coincide (any
formula definable in (N, +,V},) is definable in (N, +,V;,) and the con-
verse also holds true). In this small section, we consider exponential
languages having the same unique dominant root. We exhibit subsets
which are recognizable in a numeration system and which are not rec-
ognizable in another system having the same dominant root. Roughly
speaking, we have possibly “dependent” systems with different recog-
nizable sets of integers.

The technique used here is the same as the one found in Theorem
I11.5.3. In the different examples, we consider complement of poly-
nomial languages of different degree, next complement of polynomial
languages of the same degree and finally exponential language with
exponential complement.

ExAMPLE V.3.1. Let X = {a, b},
Ly =%\ a*ba*ba*ba*
and
L2 =X \ a*b*.
We consider the systems S; = (L;, X, a < b), i = 1,2. An easy compu-
tation shows that

nd n?

w3

and

u,(Ly) =2"—n—1.
Thus, the two systems have the same dominant root. We consider the
subset X of N such that

repg, (X) = Min(L, <) = a”.
One has
X = valg, (a*) = {i(—?él +32" —2n+n?+2n* —n') :ne N}
We show that repg, (X) is not a regular language using the same tech-
nique as in Theorem II1.5.3. The first words of repg, (X) are given in

Table V.3. We see that the number of leading b’s seems to increase as
well as the length of the tail. We have

_nlntD)

Vo(Ly) = 2" — 2 5

n.

For n large enough, the n'* element of X,

n? n® nt

X, ot _ " Py
" 12+24+12 24 ’
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X Ly
385 b ababbba
813 b abbaabaa
1717 b abbbbabbb
3600 bb aababbbba
7476 bb  abbaaabbbb
15382 bbb  aaabbbbbbb
31402 bbb abbaabaaaba
63715 bbbb  aababbababb
128691 bbbb  abbbabaabbaa
259083 bbbbb  abaababbabba
520411 bbbbbb aaabbaabbaab
1043730 bbbbbb  abbabbbbaabaa
2091166 bbbbbbb  abaabbaaaabab
4186988 bbbbbbbb  aabaaabbabaab
8379752 bbbbbbbb  abbbbaabbbbbaa
16766589 bbbbbbbbb  ababbbbababaab
33541781 bbbbbbbbbb  aabbbbbbabbaba
67093913 || bbbbbbbbbbb aaabbabbbbbaaa
134200177 || bbbbbbbbbbb abbbbaabbbababb

TABLE V.3. The first words of repg, (X)

has a representation in S, of length n since
Vn—l(LZ) S Xn S Vn(L2)-
With the notation given in Definition I11.5.2, it is clear that for each

n, there exists a unique k such that
Pn((lﬂ)bk“l < yn(LQ) - X@ < Pn((lﬂ)bkl-

~n4/24

—on—k—2 —on—k—1

As a function of n, k is increasing and it is clear that n — k& — oo if
n — oo since the growth of £ is logarithmic. We conclude using the
so-called pumping lemma (Lemma II1.5.1).

EXAMPLE V.3.2. We consider the languages L; = X* \ a*ba* and
Ly = 3%\ a*b* where ¥ = {a,b}. So,

u,(L;) =2" —n and u,(Ly) =2" —n — 1.
Let us consider the set X C N such that
repg, (X) = Min(L, <) = a”

and X, = 2"t —1— %n(n—l— 1). One can verify that for n large enough,
lrepg, (Xy,)| = n+ 1. In Ly, the first word of length n + 1 begins with
n — 1 letters a followed by ba (notice that uy(Lg) = 1). Next, there
are ug(Ly) words beginning with at least n — 2 letters a and so on.
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Therefore repg, (X,) begins with exactly n — i letters a followed by a
tail of length ¢ + 1 if
Vin(La) + ;-1 (Le) < X, < vip(Le) + ui(Lo)
ie., if . .
27 1< n<2 —i-2.
Hence the conclusion.

ExAMPLE V.3.3. In this last example, we consider exponential lan-
guages with exponential complement. Let ¥ = {a,b}, L; = a¥X* and
Ly = a¥* U X*bbY*. One has,

. (L)—an_§(1+ﬁ>n+“5(l‘*/5)n
m 5 2 2

We set X such that

5

repg, (X) = Min(Ly, <)

and

X, =2"t!
" 10 2 10 2

e (1—\/5>"_ 3v5+5 (1+\/3>"_1
For n large enough, one has

Vn(Ll) < Xn < Vn+1(L1)
thus |repg, (X,)| =n+1 and

lln-l-l((Ll)abi""l)J < Yn-l-l (Ll) - X@ < Pn—kl((Ll)abil-

-~ -~

nict ~((4VB)/2)" =2

As a function of n, ¢ is increasing and n — ¢ — oo if n — oo.







CHAPTER VI

Representing real numbers

The other chapters of this work were wholly related to the repre-
sentation of natural numbers. In a classical numeration system, the
representation of a non-negative real number = can be achieved in two
steps. First the representation of its integer part |z]| is computed by
the greedy algorithm. Next, an infinite word over a finite alphabet
of digits is used to represent its fractional part {z}. In this chapter,
we give some results concerning the representation of non-negative real
numbers using an abstract numeration system. In particular, we have
to set up hypotheses for the convergence of the numerical approxima-
tions given by an infinite word. Once again, these hypotheses rely on
the complexity function of regular languages. The here obtained re-
sults generalize classical results in an integer base and in particular,
give a deeper understanding of the fact that a rational number could
have two different representations in a k-ary numeration system. Here,
a real number can have a finite number, a countable number or even an
uncountable number of abstract representations. The number of repre-
sentations is determined by the complexity functions of the languages
accepted from the different states of the minimal automaton. We also
show that if # > 1 is a Pisot number then classical #-developments and
our representations of real numbers for the language of the numeration
associated to the Bertrand numeration system related to # coincide.
It is interesting to note that we shall be confronted with two different
kinds of convergence: numerical convergence of real numbers but also
convergence of words to an infinite word. The material of this chapter
was introduced in [40].

1. Some definitions

If w is a finite (resp. a right infinite) word, we enumerate the letters
of w starting with 0 and if £ <1 < |w]| (resp. k < 1), w[k,[] denotes
the factor of w starting at the k** position and ending at the [** one.
We simply write w; instead of wy;;;, 0 < j < [w].

A sequence (wy)nen of words belonging to ¥* converges to an infi-
nite word w € X“ and we write lim,,_,o, w, = w, if

Vi€ NN € N:Vn > N, w,[0,1] = wl0,1].

In the same way, a sequence (wy)nen Of infinite words converges to
w € X¥ if the same condition is satisfied. One can endow X¥ with
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108 Chapter VI. Representing real numbers

a distance d defined as follows. Let z,y € 3¢, d(z,y) = 27" where
n = inf{j : z; # y;} and n = oo if z = y. With this distance,
> is a topological space and the previous definition of a convergent
sequence of elements of X* in terms of common prefixes is relevant.
Observe that any finite word x € ¥* can be viewed as an infinite word
z¢? € (X U{C})¥, ¢ ¢ X. So a sequence (wp)pen of finite words
converges to an infinite word w if and only if (w,(*),en converges to
w in the topological space (X U {C})“.

We shall use the notation 3“n as an abbreviation for “there exist
infinitely many n”.

2. Positioning the problem

In the classical numeration system in base 10, a real number r €
R\ N is represented by an infinite word v which can be decomposed in
three parts,

UV = V1, V2 V3.
The integer part of r is represented by v;. Its fractional part is repre-
sented by v, which contains a finite number of zeroes and vs which is
an infinite word in {1,...,9}{0,...,9}*. As an example,

16501
e | .
1100 5,000 909090
v1 v2 v3
Observe that an infinite word v3 = ajas--- such that a; # 0 can

be viewed as the representation of a real number z in [%,1]. The
prefixes a; - - - a;, 7 > 1, of this word make up a sequence of finite words
convergent to the infinite word vs. Moreover, each of these prefixes
gives a numerical approximation of r,

a1 7] . 71'10(0,1"'0,]')
(31) T w0
The sequence of these approximations is convergent to x. To represent
the interval |0, 1, we have to represent not only [5, 1] but [t 157) for
each p € N. Tt is the reason of the presence of vo. If 107771 < 2 < 1077
then 107 z € [, 1], this latter number being represented by a word of
the kind of v3. To obtain the representation of = instead of 107 x, it is
enough to know the exponent p. Therefore, v = 0P can be viewed as
a “coding” of p.

In this chapter, we want to extend in a natural way this representa-
tion of real numbers to abstract numeration systems. Let us consider
the system S = (L,%,<). The word vs representing an element of
[15> 1] can be replaced in a first guess by an infinite word in £ having
an infinite number of prefixes w,, in L. In (31), the numerical approx-
imation given by a;---a; has its numerator equal to the numerical
value of a; ---a; and the denominator, 107, is exactly the number of
words of length not greater than j in the language of the numeration
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{1,...,9H0,...,9}* U {0}. Consequently, for the numerical approxi-
mation given by w,, we suggest to replace (31) with

valg (wy,)

Viw, (L)
Instead of an infinite word w having an infinite number of prefixes in
L, we can consider the weaker condition of a sequence (wy,),en of words

in L convergent to w and such that (|wy|),en is strictly increasing. (In
this case w, is not necessarily a prefix of w.) A part of this chapter is

dedicated to the convergence of the numerical sequence ("3157(“’“)) .
neN

v|w'n|

It is obvious that
V|1 < valg (wy,) < Vi, — 1

Viwa| — Viwal Vi
As a consequence of Theorem II1.2.12, if L is a polynomial regular
language then for any sequence (wy)nen increasing in length,

i valg (wy,)

=1.

Consequently, for the representation of real numbers, we have to con-
sider abstract systems built on an exponential language. Roughly
speaking, if the complexity function of L has a dominant term of the
form 6", § > 1, the interval [, 1] obtained in base 10 will be replaced
by [5,1] (details will follow in the other sections). As for the decimal
system, the representation of the interval [#77~' #7P] p € N, relies
simply on some conventions.

To conclude, it is interesting to note that classical #-representations
and representations of real numbers in an abstract numeration system
built on a Pisot number # coincide (see Section 8). Recall that for
any real numbers § > 1 and z > 0, any sequence (€,)nen Of non-
negative integers such that z = Y oo €60 is a O-representation of
x. A distinguished f-representation is the @-development of x. It is
computed through the use of the greedy algorithm: zy = |z], ro = {z}
and for n > 0, z, = |0 r,_1] and r,, = {#r,_1} with

[z] =sup{y € N|y <z}
and
{z} =2 — |z].
So, z =Y,_,ri07". (For more, see [55].)

ExAMPLE VI.2.1. Consider again the numeration system S intro-

duced in Example I11.6.6. We shall see that

1 n 1
im Y2ls((ba)"c) _ 3 o 0.53580838486224541.
n—00 V2n+1(8) 1+ \/g 9+ 5\/3

Table VI.1 gives some numerical approximations of that number ex-
pressed in S.
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w valg(w) | Vi | valg(w)/viy|

be 8 12 0.66666666666666667
bac 19 34 0.55882352941176471
babc 52 94 0.55319148936170213
babac 139 258 | 0.53875968992248062
bababc 380 706 | 0.53824362606232295
bababac 1035 1930 | 0.53626943005181347
babababc 2828 5274 | 0.53621539628365567
babababac 7723 14410 | 0.53594725884802221
bababababc 21100 | 39370 | 0.53594107188214376
bababababac 57643 | 107562 | 0.53590487346832524
babababababc 157484 | 293866 | 0.53590411956469956
babababababac | 430251 | 802858 | 0.53589924992962641

TABLE VI.1. Some numerical approximations.

DEerINITION VI.2.2. Let L be a language. We denote by L., C 3¢
the set of infinite words having an infinite number of prefixes belonging
to L,

Ly = {w € X°|3n : w[0,n| € L}.
Let us introduce the set
Loo = {w € X¥|F(wp)peny € L : nlggown =w}.

Notice that Lo C L.

ExaMPLE VI.2.3. Consider the language L accepted by its minimal
automaton depicted in Figure VI.1. For instance, it is clear that (ab)“

Figure VI.1. The minimal automaton of a language L
such that Lo, # L.

belongs to L. One also has (ba)” € L, because
lim (ba)"a = (ba)
n—00

but this infinite word does not belong to L.
Some natural problems related to the representation of real numbers
addressed in this chapter are:
e Characterizing regular languages L for which L. or L is
uncountably infinite.
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e Giving assumptions insuring the existence of

lim Lﬂs(wn).

e Showing that any sequence (wy)nen of words belonging to L
such that lim, ,, w, = w € L gives a sequence of approxi-
mations converging to a unique real 7.

e Showing that for some interval I C R, any z € I can be
represented by an infinite limit word of L.

3. Regular languages with uncountably infinite L., or L.

Since we want to represent an interval of R, it is natural to seek
under which conditions L., or £, has uncountably many elements. In
the other sections of this chapter, we shall mainly be interested in the
set L.

3.1. Languages with uncountable L.,. Here it is a character-
ization of the regular languages with uncountable £, in terms of au-
tomata.

ProprosIiTION VI.3.1. The set L s uncountably infinite if and
only if there ezist two distinct cycles (p1,...,pr,p1) and (q1,-. -, 4, q1)
in a DFA accepting L such that

) p=a
(2) there is an accessible’ state in {p1,...,pr,q1,s---,Q}
(3) there is a coaccessible? state in {p1,...,Pr,q1,---,q}-

Proof. The condition is sufficient. Let ¢ (resp. d) be the accessible
(resp. coaccessible) state given in the assumptions. Thus, there exist
w,w’ € ¥* such that s.w = ¢ and that d.w' is a final state. The cycle
(p1,---,pr, 1) is labeled by a word ag = my - - -m,, that is

m1 mo Myp—1 me
P1r——=>P2 —>P3" Dr—1 — Dr — P1.

In the same way, the cycle (q1,- .., q,q1) is labeled by a word 4. It is
clear that there exist two words, v, v’ such that c.v = p; and p;.v" = d.
Let f : N — {0,1} be a function. With this function, we build the
following sequence (wy)nen of words belonging to L, Vi € N,

w; = W) - - - 0p VW'

This sequence is convergent to a limit word wy of L. If f # g then it
is obvious that wy # w,. Moreover, the set of functions of domain N
and codomain {0, 1} is uncountable.

We now show the converse. Let us assume that any state lying on
a path starting in s and ending in a final state belongs to at most one

TA state ¢ is accessible, if there exists a path starting in the initial state and
ending in q.
2A state g is coaccessible, if there exists a path from ¢ to a final state.
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cycle. In other words, if zyz € L, y # € and if s.z belongs to a cycle
(s.x,p2,...,pr,s.x) and s.zy belongs to a cycle (s.xy, qo, - . ., G, S-TY)
then {s.z,ps,...,p} N{s.2y,¢,...,q:} = 0. Therefore L is a finite
union of languages of the form

(32) AL Ao fty - s Apfp A1, iy s € X7

If m € L then by definition, there exist words of L having an arbitrary
long common prefix with m. These words belong to a set of the form
(32), so m has one of the following forms

Aty My Mgptss ooy At Aapty? < - - gt Aty may - e 1 €N
There is a countable number of such words. So L, is a finite union of

countable sets, a contradiction.
O

REMARK VI1.3.2. A finite union of languages of form (32) is a poly-
nomial language (see Chapter III Section 2). So a regular language L
such that L. is uncountable, is exponential.

3.2. Languages with uncountable L. An obvious adaptation
of the previous proof leads to the following characterization of the ra-
tional languages with uncountable L.

ProprosiTiION VI.3.3. The set Ly, ts uncountably infinite if and
only if there exist two distinct cycles (p1,-..,pr,p1) and (q1, - -, s, q1)
in a DFA accepting L such that

1) pr=a
(2) there is an accessible state in {p1,...,pr,q1,---,Q}
(3) there existi <r, j <t such that p; and g; are final states.

For instance, the language of Example I11.6.6 is such that Ly, = L
is uncountably infinite.

REMARK VI.3.4. The subset L., of L. is interesting in terms of
Biichi automaton. Recall that a Bichi automaton is a nondeterministic
finite automaton which accepts infinite words if reading the word from
left to right, a final state is reached infinitely often (see for instance
[65]). So we can use the minimal automaton of L as a Biichi automaton
to recognize L.

4. The basic assumptions

From now on, we shall assume the following.

Hypotheses. The set £, is uncountable and for all state® g of A,
either

3Tn the following of this chapter, we use by convenience the minimal automaton
of L but this automaton could be replaced by any accessible DFA accepting the
same language.
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(i) AN, e N:Vn > N, u,(q) =0
or
(ii) 30, > 1, P,(z) € Rlz] , b, > 0 :

o u(g)
P () o b
Notation. By Remark VI.3.2, situation (i) never occurs for the initial
state s. Let us denote 6; > 1, P, and b, respectively by 6, P and aj.

Consequence 1. For any state ¢ such that (ii) occurs, either 6, < 6
or either §, = 0 and d(P,) < d(P), where d(P) is the degree of the
polynomial P. Indeed, let us assume that there exist §, > 1 and
P,(z) € R[z] such that

is unbounded and that
. u,(q)
lim -\
nev0 Py(n) O
Since Ay, is accessible (this is a property of the minimal automaton),
there exists a constant 4 such that u,(s) > u,—;(q). So,
nl) | ) LRG-) b,
Py(n) 0 — Py(n—1)07% i Py(n) o
This is a contradiction, because a subsequence of
u,(s)  uy(s) P(n)o"
Py(n) 0 P(n)om Py(n)or

= b, > 0.

converges to 0.

Consequence 2. The limit lim,_, Plzzgqgn exists for any state ¢ and

we denote by a, its non-negative value. Indeed,

W) wle) P06
P(n) 6" P,(n)6? P(n)o"
———

—bqg
where the second factor in the r.h.s. is bounded.

REMARK VI.4.1. By Remark VI.3.2, we know that the language

is exponential thus it is quite natural to hope that u,(s) ~ P(n)6".

In the same way, any sequence u,(q) satisfies some recurrence relation

with coefficients in Z and therefore, we can also expect that u,(q) ~

P,(n) 0. But notice that, with these hypotheses, we loose at least

languages of the form M N (X7)* where M is rational and n > 1 (in
(@)

this case u,(s) = 0 infinitely often and the sequence (E?T)%")”EN is not

convergent).



114 Chapter VI. Representing real numbers

ExaMPLE VI.4.2. A class of languages satisfying the hypotheses
introduced in this section is the set of languages for which the assump-
tions of Proposition II1.6.1 and Corollary II1.6.5 are verified. If L is
such a language and if # is the Pisot number introduced in Corollary
II1.6.5 then for every state g of Ay, "g—,(ﬂ) converges when n tends to
infinity.

5. Convergence of numerical approximations

In this section, we show that if (w,),en is a convergent sequence of
words belonging to L then the numerical sequence (¥25(n)) . is also

Viwn|
convergent. So, it will be meaningful to say that a word of L, is a
representation of a real number (or an S-representation if we want to

refer to the numeration system S5).
REMARK VL5.1. Recall (5). If A = (Q, %, 9, s, F) is a DFA accept-
ing L, p€ @ and w € L, then
w|-1
Valp(w) - Z Z ﬁq,|w|7i71(pa w) ui(q)'
qeQ =0
Observe that the most significant coefficients, i.e., the coefficients of the
uy,|—1(g)’s are here indexed by zero. It is worth noting that if z and zy
belong to L,, it is obvious that for any state ¢ and for¢ =0, ..., |z|—1,

Bai(p, ) = Bgi(p, 2y).
In other words, the first n letters of a word w determine completely
the coefficients G, ;(p, w) fori =0,...,n— 1.
ExAMPLE VI.5.2. Consider the language of Example I11.6.6. Using
(5), we have

valg(abc) = 1ug(s)+ 1ui(s)+2ug(s) + 1ue(t) + 1ui(p)
valg(abcha) = 1uy(s)+ Lus(s) +2u(s) + 1ui(s) + 1ug(s) + L ua(t)
+1uy(t) + Lus(p).

In the following, we shall be interested only in the numerical value
of words y (i.e., valg(y) = vals(y)). So the notation f,;(p,y) can be
replaced by a simpler one, (,;(y), since p will be fixed to the initial
state s. As a consequence of the latter remark, notice that to any w €
L, it corresponds, for each state ¢, a unique sequence (5, (w))nen of
integers. Therefore, if (wy,)nen is a sequence of words of L convergent
to w,

I i n—1i ]
lim M — lim Z > iz Ban—i(w) u (Q)
n—00 Vn(S)
9€Q
Indeed, the sequence in the L.h.s. is a subsequence of the one in the

r.h.s.; if the latter is convergent, then the former converges to the same
limit.
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In the last part of this section, we fix the limit word w. So, we
simplify the notation and replace f, ;(w) by f,,; since it does not lead
to confusion.

ProprosiTION VI.5.3. If g is a state of A such that a; > 0 then

i
diouile) _aq

llm —r - =
n—00 ZZ 0 uz(s) ag

lim u, (Q) — 0—1

n—00 ZZ oW (q) 0

ii.

iil.

lim ZZ Oﬁqn ZuZ Zﬁqd 0_

n—0o0

Otherwise, a, = 0 and
lim Zi:O ﬁq,n—i u; (Q)
n—00 Vi (s)
Proof. Let us assume a, > 0. Let r be the degree of P. Then
P(n) = an™ + Q(n) with d(Q) < r and some a > 0. We have,

u,(g)  u(g)  u(g) Qn)

antd  P(n)dn  P(n)fr anr

because (”()'D — aq. We may thus assume that

=0.

u

lim n(9) =
n—oo A"

replacing a, by aa, if necessary. So for p € {¢, s}, there exists a

sequence (af),en convergent to 1 such that

(33) u,(p) = b a,n"0".

For k > 1, there exists some K > 1 such that

q

1 1
(34) n>K=a,, age[l—%,l—kﬂ.

The three limits can be computed using the same technique, search-
ing convenient upper and lower bounds. This can be achieved by the
use of (34). Here, we only give a proof for the third limit because it
contains all major arguments. We set

Z?:o Byn—i wi(q)
u,(q) .

Zp =
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Let € > 0. We first give an upper bound to z,. Using (33), one has
for any pair (k, K) satisfying (34),

Qq Z?:K+1 ﬁq,nfi Ojg i 6 + Zfio ﬁq,n—z’ ui(Q)

2
"= agoh T on u,(q)
K
k + 1 i ﬂ v 91 n Zi:o 5(],71—1' ul(q)
= n—i
i u,(q)
Moreover,
n—K-—1 Z
> B i (L) 67 = Bog (1= 2)r 6
i=K+1 1=0
n—K-—1
= D But”
i=0
T r n—K-—1
" ( ) - Z By (—i)7 07"
=Y/
:zﬁn

The series Y 2, B, 0~" is uniformly convergent and may be differenti-
ated term by term. Thus

08 S = S0

is bounded. Notice that, in the expression of &,, r is a constant and
& € O(n ). So, if K is fixed, & — 0 as n tends to infinity. We can
write,

n—K-1 K
< U+ Al e + Luelursuld
=0 n

Zn

> , 2 » 2

< Zﬂq,zﬂ—W—Zﬁq,io +(1+—)&
pa k—1 & k—1
+Zz oﬂq, zuz( )

u,(q)

The series Y oo, B, 07" is bounded. Let k large enough to insure
the second term in the latter expression is less than e. Taking such a
k, we choose K to satisfy (34). Thus, for n large enough, the last two
terms in the latter expression are also less than €. So,

Zn — iﬂq,i H_i S Je€.
1=0
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For the upper bound, we obtain
n—K—1

Zn, Z Z ﬁq, ]-__
2&n

- ;Bq’iez Zﬁq’e +§"_k+1z*6q’ . k41

i=n—K

The fourth term in the latter expression is greater than —e as are the
others but the first, for n large enough. Hence

Zn — zn:ﬂq,i 0> —de
i=0

and the conclusion.

Assume now that a, = 0. We have to show that d,, := E?:O"B,‘;—’(’;)“”(q)

tends to 0 as n tends to infinity. If u,(¢) = 0 for all n sufficiently large,
the result is obvious. Otherwise, we have P, and 6, such that

un(g)
nlioop( Yo~ s

q
If 6, = 1, d, is the ratio of a function bounded by polynomial and of
an exponential function. Otherwise, either §, = § and ¢ = d(Q) <
d(P)=rorl <6, <#6. In these two cases, one proceeds as above. For
p € {q, s}, there exists a sequence (a?) convergent to 1 such that

u,(s) = o a;,n"0" and u,(q) = o by n'0;.

It is clear that d,, > 0 and one has to find a convenient upper bound
to conclude as in the previous cases.

> 0.

O
The latter proposition has some direct corollaries.
CoOROLLARY VI1.5.4. One has

fin TR LSS

nl
COROLLARY VI.5.5. One has

Vnoi(s) _ 1

li Vn-1 -
oo Vi (8) 60
Proof. Indeed,
Vi 1(9) 1 u,(s) 1 6—1
Vi (s) Vi (8) 0
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COROLLARY VL.5.6. If (p)nen and (Yn)nen are two sequences of
words belonging to L which converge to the same limit word w then

lim Lds(xn) = lim Lﬂs(yn)'

n—00 V‘$n| n—oQ V|yn|
Proof. The two sequences give the same sequence (8;,(w))nen. One
concludes using Corollary VI.5.4.

O

6. Representation of real numbers

Recall that if w € L N X" then valg(w) € [v, 1(s),va(s) — 1].
Therefore, if we admit to represent a real number by an infinite word
and if we consider the words w of length n as approximations %ﬂ”’)
of real numbers, then these numbers necessarily belong to [%, 1], since
Yl — g and 2L — 1as n — oo.

These considerations appear in the classical system with an integer
base p. It is obtained by describing the language

{1,...,p—1}{0,...,p— 1} U {0}

according to the natural ordering of the digits. In this system, an infi-
nite word w = ajay - - -, a1 # 0, is used to represent the real Y oo a; p~".
Consequently, we can only represent the interval [1—1), 1]. Let z be a real
number in [0, %] There exists t such that % < ptz < 1. So the rep-
resentation of z can be achieved by representing p'x and storing ¢ in
some way. For the base p, the infinite word representing x is thus pre-
ceded by t zeroes and the interval [0, 1] is decomposed in intervals of
the form [p~~! p7'], t € N. In an abstract numeration system, we
have the same phenomenom with p replaced by 6.

Let z €]z, 1[. We can build a sequence (wy)nen of words satisfying
the following conditions (35),

o VneN, w, €L

(35) o (Jwn|)nen is strictly increasing
o limy,_, o %(wl") =1z.

Indeed, for n large enough, there exists w € L N X" such that
valg(w) valg(w) + 1
va(s) ~ va(s)
The length of this interval containing z is trivially 1/v,(s) which tends
to zero. Such a sequence of words does not converge necessarily to a

limit word but the following lemma shows that we can always extract
a convergent subsequence.

LEMMA VI.6.1. Every infinite sequence (wy)nen of words belonging
to L has a subsequence (wk(n))neN convergent to an element of L.
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Proof. Let Ay = {w, : n € N} and (I,),>1 be a strictly increasing
sequence of positive integers. There exists p; € X which is a prefix of
an infinite number of elements of A;. We define the infinite set

Ay =pi(prt L) N Ay = {w, € Ay : Iz € T, w, = pr12}

and wy(1) as the smallest word of A;. Similarly, there exists p, € DI
which is a prefix of an infinite number of elements of A;. Observe
that p; is prefix of p;. Continuing this way, we obtain a convergent
subsequence (Wg(n))nen-

O

Let z €]3,1[, our aim is to characterize the set @, of words of Lo
that are the limits of sequences satisfying (35). Roughly speaking, Q.
is the set of all infinite words representing z. If w belongs to (), then
w is said to be an S-representation of x.

We can already notice that for a given z, the set @), depends on the
ordering of the alphabet. We shall not emphasize this observation and
in the following, we assume that the ordering of the alphabet is fixed.

6.1. Defining the intervals [Ij. The characterization of @), is
simplified by the introduction of some special real intervals.

Let | € N and W, be the set of words of length [ which are prefixes
of an infinite number of words belonging to L (i.e., words W € X! such
that W~1.L is infinite). We can enumerate this set lexicographically,

W ={W;, <...<W,}, k <#3
Notice that, since L is infinite, W, is never empty.

For [ fixed and n large enough, any word of L N ¥>" has a prefix
in W,. Figure V1.2 sketches the situation. In particular, the number
of words of length n belonging to L and having a prefix of length [
lexicographically less than W is v,_(s) + Z u,_(s.V). For

V<W, VEW,
W e W, we set
n _ Vaoi(s) u,_(s.V)
Gw = Vi (8) + Z Vi (s)
V<W, VEW,
and (sT7)
n n n u,(S.
Iy, = [aw,aw+ A (s) } .

With our notations, using Corollary VI.5.4 and Corollary VI.5.5, we

have
lim u,_(q)  ag -1

n—00 vy (s) Ca, O
We denote by Iy the limit of the Ij},’s when n tends to infinity, i.e.,

1 0—1 Qs v 1 0—1 Qs v
Iw = [§+ gi+1 Z ay ’§+ gi+1 Z a, ] :

VW, Vew, VW, Vew,
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Wl : o Vn-]_(s)
|
|
u, (sW) :
|
W, FTT
W, | | Ve 94U, (sW)
-
|
Unii (SV\é) :
l
I —_— =
W, :
W3 : o Vi1 (S)+un-l (SV\&)
| . | | +un-| (S'V\é)
n— =

Ficure VI.2. The ordered set L N X" and the corre-
sponding numerical values.

By convention, if W € ¥!'\ W then Iy = (). Notice that if W € W) is
such that asw = 0 then Iy is reduced to a unique element.
REMARK VI.6.2. Observe that a real number y belongs to Iy if

and only if y = lim,,_, % for a sequence (wy)nen of words of L

n|

convergent, to an element of W3,
We also have, for all [ € N,

(36) B 1} = WLEJW Iy

Indeed, the upper bound of an interval is equal to the lower bound
of the next interval. Moreover, the lower bound of the first inter-

val is lim,, "3;1 = % and the upper bound of the last interval is
limy o0 (Y52 + 30, 252 = 1.

REMARK VI.6.3. Let [ € Nand W € W,. Observe that the length
of the interval Iy is O(0~41).
LemmA VI.6.4. If x, y € ¥*, then
Iy C L.
Proof. Let ¥ = {0y < ... < 0,}. Notice that I, = @) implies I, = 0 (if
z~1.L is finite or empty so is (zy)~!.L = y~1.(z7'.L)). Let us assume
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that I, # (. With our notations,
Uy 1z((s.2)
£ oot B
In this proof, we take n large enough to guarantee that any word of
LNX>" has a prefix in Wy, 11. It is enough to observe that, if (zo1) 'L

P n
is infinite then o7, = af and

Uy, [g—1(5.201)
I3, = [ oz 4 Boean)]
indeed, among the words of length n beginning with x, the first ones
begin with 2o, and there are u,,_|;—1(s.z01) such words. Similarly, for
i=2,...,p, if (zo;) 'L is infinite then
- .
o= 23:1 un—|m|—1(8.$0i) n 22:1 un_|$|_1(8.$0'i)]

To;

n
o, +

Vi (s) T Vi (8)

Notice also that Y7 | u, |4 1(5.20;) = U, |g(s.z). So, for n suffi-
ciently large, I' C I7. Hence the conclusion.
O

COROLLARY VI1.6.5. We have for w € ¥*,

U Iyo = I

gEYN

6.2. Some trees 7,. Now, we shall introduce infinite trees related
to Q. These trees are constructed on the intervals Iy and we show
that the infinite paths in the tree are the S-representations of the real
x.

DEFINITION VI.6.6. To any real x E]%, 1[, we associate a unique
tree 7, defined as follows.

e The root (i.e., the node of level 0) of 7, is I, where ¢ is the
empty word.
e The nodes of level [ > 1 are the Iy such that W € W, and
e An edge connects a node Iy of level | > 0 to a node Iy, of level
[ + 1 if and only if there exists ¢ € X such that W =V, i.e.,
Iy C Iy. This edge is labeled by o.
A path in 7T, is a sequence of consecutive connected nodes starting in
the root. To a (finite or infinite) path P, one associates a unique (finite
or infinite) word formed by the consecutive labels of the edges in P.

As a consequence of Corollary VI.6.5, each node of 7, has at least
one son and at most #X sons. The tree has some other properties.

ProPOSITION VI.6.7. Let E]%, 1[, the tree T, contains an infinite
number of nodes and at least an infinite path.
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Proof. The number of nodes is infinite because, by (36), for each
[ € N, there exists at least one W &€ W, such that x € Iyy. An infinite
tree, the nodes of which have a bounded number of sons, has always
an infinite path.

O

PRroOPOSITION VI.6.8. Let x 6]%, 1[. The set of words labeling infi-
nite paths in Ty 1s Q.
Proof. Let P be a label of an infinite path in 7,. By definition of 7,
one has © € Ip, (P, is the first letter of P). By definition of Wi, an
infinite number of words belonging to L have F; as a prefix. Let w;
be the smallest of these words. For the same reasons, x € Ipj,1 and
an infinite number of words of L begin with P[0,1]. Let wy € L be
the smallest word of length greater than |w;| beginning with P[0, 1].
Continuing this way, we obtain a sequence (wy)nen of words strictly
increasing in length which converges to P. To show that P € Q,, we
still have to verify that the third condition of (35) is satisfied. Let
€ > 0. By Remark VI.6.3, for [ large enough, the length of Ipyg is less
than e/4. So for m large enough, say m > M, the length of I;"[O’l] is
less than €/2. Since x € Ipjo, for m sufficiently large, say m > M,
IZ Nz — €/2,2 + €/2[# 0. There exists Ny such that, for all n > N,
|wy,| > sup{ My, Msy}. Since w, — P, there exists Ny such that, for all
n > Ny, w, starts with P|0,[]. So, for all n > sup{Ny, Ny},

valg (wy,) valg (wy,)

|wa|
€ IP[O,l] and — x| <e.

v|wn‘ V‘wn|

Let w € Q. By definition, there exists a sequence (wy)nen satisfy-
ing (35) and such that (wy,)nen is convergent to w. By Remark VI.6.2,
for any I € N, z € I and I is a node of 7,. Thus w is the label
of an infinite path in 7.

O

COROLLARY VI.6.9. Let z €]g,1[. Assume that for each l, there
exists Wy € W, such that x € (IW(,))O- All the sequences (Wy)nen
satisfying (85) converge. Their limits are equal each to the other. In
other words, Q) contains a unique element.

Proof. Let | > 1. If z € (I,,)° then for any word W € W, \ {W,},
x & Iy . So each node in 7, has exactly one son.
O

6.3. The endpoints of Iy. If z E]%, 1[ does not satisfy the as-
sumptions of Corollary VI.6.9 then it is the endpoint of some interval
Iy . In this section we study such a case. To that purpose, we shall
distinguish special elements in @), .
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Since X is an ordered alphabet, the set ¥“ is also totally ordered
by the lexicographic order. Recall that for that order u < v if u = tou’
and v =tpv witht € ¥*, o, € X, v',v € ¥¥ and 0 < S.

ProposITION VI.6.10. Ifx E]%, 1 is the endpoint of Iy then inf Q,
(resp. sup Q) is an ultimately periodic word (i.e., the smallest (resp.
greatest) word of Q is of the form x(y)* for some x € ¥* andy € X1 ).

Proof. Let us assume that z is the upper bound of I, W € W,. We
may assume that Iy, has non empty interior. This follows from (36) and
from the definition of the intervals. (If Iy # () has an empty interior
then it is reduced to one point; observe that in this case a;w = 0.)
Note that no U € W, is such that x € Iy and U < W.

By Corollary VI.6.5, there exists a unique letter oy such that x
is the upper bound of Iy,, with (Iy,,)° non empty. (Notice that if
B < oo then x & Iyp.) In terms of paths in the minimal automaton of
L, we were in a state qo = s.W and we chose the greatest letter oy of
the alphabet such that ag, ,, > 0. So, we define ¢; = g9.0¢. Continuing
this way we obtain a sequence (g, )nen Of states (each element being
completely determined by the previous one) and from this sequence,
we compute a sequence (0, )nen Of letters (a letter o, being determined
by the state g,). The automaton .A;, is finite hence (¢, )nen and then

(0n)nen are ultimately periodic. It is clear that ogoq - - - = sup Q.. One
can do the same proof with x being the lower bound of some interval.
O

As a consequence of this result, an endpoint of ]%, 1] has at least two
different representations.

ProproOsITION VI.6.11. The endpoints of Iy are algebraic numbers.

Proof. For all state ¢ of My, it is well known that the sequence u,(q)
verifies some recurrence relation with coefficients in Z. The real 6, is a
root of the characteristic polynomial of the recurrence and is therefore
an algebraic number. We set 0, = 0,., P, = P, 1. We have
un(q) = Poa(n)bgy + - -+ + Pyr(n)dy,
where 0,1,...,0,, are the roots of the characteristic polynomial of
the recurrence with multiplicity m4, ..., my and d(P,;) < m; for i =
1,...,k. The coefficients of the polynomials P,;’s (and specially b,)
are completely determined by the initial integral conditions ug(g), . . -,
u,,(¢) where m is the degree of the recurrence. So, b, and therefore q,
are also algebraic reals. An endpoint of Iy is obtained from the a,’s
and 60,’s by quotients and sums and is then algebraic.
O
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7. Some examples of representation

ExampLE VI.7.1. Consider the language and the automaton of Ex-
ample II1.6.6. One can show that

w(s) = (VA2 + (1 VB 2
nil) = (VAP + (1 VEP
un(p) =0

va(s) = (14 V3 B 4 (1 3y 8 4.

Sof=1++/3and forl>1,
ui(s) _ 3+23

1y, - oo va(s) T (54+3v/3) (1+V3)
lim un—l(t) — 3
"m0 v (s) (9+5/3) (14+v3)I-1°
The upper bound of [, is
1 .. u,1(s.a) 1 3

+ lim

r= = = + .
0 nooo vi(s) 1+v3 9453

It is equal to the lower bound of I,. Figure V1.3 shows 7. In this case,

/\

C¢ a¢
|
c¢ b¢ba
Iacc Ibab
v v

- _ 1 3
FiGure VI.3. The tree 7., with z = Ta T i

= {a( )¥, (ba)“}. Another example of this kind is given by

- + Z lim w _ 1 iy Ui (5:0) + g (s bab)
n—oQ

Vi ( 6  nooo Vi ()

where H = {aba, abb, abe, aca, ach, acc, bab}. So,
= {bab(c)", bac(ab)”}.
Notice that the two infinite words have the same prefix ba.

ExaMpPLE VI.7.2. If we want to find back the classical numeration
system in base k£ > 2, we use the regular language

L={1,....k—1}0,....k—1}* U {0}

accepted by the DFA in Figure VI.4. The first intervals are

1 2 k-1
Il_ [%a%]a tee Ik—l_ |:T31:|
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FIiGURE VI.4. The minimal automaton for the k-ary system.

andifi=1,....k—1,

N T R TR S S
il — kjk k2 3 oceey di(k—1) — k k2 ) k .

On Figure VL.5, we have represented some trees when k£ = 10. The

L2 WL
I I I I

o, 02 a)t 3,°
9¢'19 szo 1¢|14 3¢'33
| | | |
¢199 ¢200 ¢141 ¢333

F1GURE VI.5. The trees 75/10, T5_; and Ty3 .

sets (), /5_; and @y/3 contain only one element (this is a consequence of
Corollary VI.6.9) but Q210 = {1(9)“,2(0)“} (Proposition VI.6.10). It
is obvious that for systems in base k, (0, contains two elements if and
only if x = r/k™ for some positive integers n and r < k™. Otherwise,
(), contains exactly one element.

ExAMPLE VI.7.3. This third example was constructed to obtain an
infinite ),. The language L used here is based on the one found in
Example II1.6.6. Its minimal automaton is depicted on Figure VI.6.
In this language, the number of words beginning with a or ¢ has an
exponential growth as in Example II1.6.6 but bX* N L = bTa* has a
polynomial growth. So, u,(s.b)/v,(s) tends to zero when n goes to
infinity but for all n, u,(s.b) =n+1 > 0. We have

I, = [%,x], Iy = [z,z] and I, = [z, 1]

where z = 1+1\/§ + 9+53\/g- The tree 7, is depicted on Figure VL.7.

Notice that @, = {a(b)*, c(ab)*} U {b"(a)¥ : n > 1} is infinite.
ExaMPLE VI.7.4. In the previous example (), was countable. Here
we show that we can also obtain a set (), being uncountably infinite.
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FIGURE VI.6. The minimal automaton of L.

0t Aty )

biab aJba ajbb\b bJca
| | | | |
¢abb ¢baa ¢bba ¢bbb ¢Cab

3

- _ 1
Ficure VI.7. The tree 7., with = =i T e

Let ¥ ={a,b,c}, I' = {d,e}. Consider the language
L={a,c}T"UbI" Cla<b<ec<d<e}.

It is obvious that for all n, u,(s.b) = 2", u,(s.a) = 3" and for n > 1,
u,(s) =3"1+2" 1 and v,(s) =2" — 1+ (3" —1). Sofor | > 1,

n— . . n— . 2
lim w =0 and lim Un—i(s.0) = .

n—o0  Vp($) n—oo v (8) 3+t
Let x = % + 33,

Q: ={a(c)’, c(a)*}Ubl™
is uncountably infinite.

8. Equivalence with #-development

We consider a Pisot number # > 1. To this number corresponds
a unique positional Bertrand number system U = (U,),en having its
characteristic polynomial equal to the minimal polynomial of 8. We
denote by L the language py(N) of all normalized representations. We
show that this latter language satisfies the hypotheses given in Section
4 and that the representations of real numbers in the abstract numer-
ation system built upon L and the 6-developments of numbers in [, 1]
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coincide. This section has the following articulation. First, we begin
with an introductory example and consider the golden mean 6 = 1+T‘/5
Next, we recall basic facts related to #-developments and positional

systems. Thanks to these results, we show the announced equivalence.

DEFINITION VI.8.1. A positional numeration system U = (Uy)nen

is said to be a Bertrand numeration system if

Vn € Nyw 0" € py(N) & w € py(N).
As examples, k-ary number systems and the Fibonacci system are
Bertrand systems.

Let # > 1 be a Pisot number. To this number corresponds a
class of positional linear number systems such that their character-
istic polynomial is the minimal polynomial of . The systems in this
class differ only by the initial conditions Uy, ..., U;. Among these sys-
tems exactly one is a Bertrand number system and it shall be denoted
by Up = (Up)nen or simply U if the context is clear. We shall fur-
ther see that the initial conditions defining U, are derived from the
f-development of one.

ExampLE VI.8.2. Consider the Fibonacci system U introduced in
Example 1.2.3. It is well known that

pu(N) =1{0,01}* U {e}.
Hence, it is obvious that the Fibonacci system is the Bertrand nu-

meration system related to the golden mean 6 = 1+T‘/5 The minimal
automaton of py(N) is depicted in Figure VI.8. The complexity func-

@1@;@0

FicGure VI.8. The minimal automaton accepting nor-
malized representations in the Fibonacci system.

tion of the different states are given by
V5 on _ V5 [1-5 " .3
w,(s) = 4 = ( 5 ) ;ifn > 1,
1 ; if n =0,
u,(g2) = unti(s), Vn €N

— 1 — "
?9”%5 1?)\/5( 2\/5> , VneN.

and

u,(q1) =



128 Chapter VI. Representing real numbers

Therefore,

Vi (8)

5+3v5 . 5+3v5 [1-v5)"

With these sequences, we can compute the endpoints of the intervals
I, defined in Section 6 of the present chapter. The first intervals are

I, I, 1o, L1100, 1101, L1000, L1001, L1010, L100005 L100015 100105 101005 L101015 - - -
Observe that

unfi(QQ) \/5 10 1-i _ g—i-1

lim ————= =

Vo 0y

and in the same way,

U, ; ,
fim 2t _ s

n—oo  Vy(s)
For instance, we can compute the endpoints of the three intervals cor-
responding to words of length four: 11000, 11001 and 11010. The upper
bound of Iy is the lower bound of I1py; and is equal to

L g Bnea(s:1000) 11
- im ————~ =~ + —,
f  nooo Vi (s) 0 6+
The upper bound of I;g9; is equal to the lower bound of I;y;y and is

equal to
1 1 . up4(s1001) 1 1 1
S 4 |y A 2
R TRTI
Since 6 is a root of X2 — X — 1, this latter endpoint is equal to % +
Finally the upper bound of Iy is

L1 ua(s1010) 1 01 1 1 1

T BT v e tE e TeE
With our conventions, a real number belonging to [5, 5+ 7] (resp. [§+
ar» 1 751 or [5+ 45, 1]) has a representation having a prefix 1000 (resp.
1001 or 1010). On the other hand, if we use the greedy algorithm to
compute the f-development of real numbers in [%, 1], we obtain exactly
the same intervals. For instance, if z belongs to [ + 7z, 5 + 75[ then it
is obvious that the #-development of z, ey(z), begins with 1001.

It is clear that at each step of the procedure, the intervals I,, and the
intervals derived from the greedy algorithm computing #-developments
are the same. So if we use py(N) or the greedy algorithm then we
obtain the same representation. (For the abstract numeration system
built on py(N), a real number can have two representations if it is
the endpoint of some interval; hence, the representations coincide if we
choose for each endpoint its greatest representation with respect to the
lexicographic ordering.)

L
63"
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Consider an arbitrary Pisot number 6. It is well known that the
f-development of one is finite or ultimately periodic [61]. In the first
case,

and we define, as usual,
ep(1) = (tr - - tmor (tm — 1))*.

It is clear that we still have

tl tz tm—l tl
l=—+_—+ -+ + 4o
0 02 gm pm+1

In the second case, there exist minimal integers N > 0, p > 1 such that

60(1) = tl e tN (tN—|—1 e tN+p)w.

REMARK VI1.8.3. When the #-development of one is finite or ulti-
mately periodic, then a particular polynomial naturally arises. In the
first case, we introduce the polynomial

bh(X)=X™— Zm:t,- XMt
=1

It is clear that b(f) = 0. If ey(1) is ultimately periodic then we define
N+p N
(X)) =XV =N ", XV XNV 4y XV
i=1 i=1
It is clear that b(f) = 0 since

t t t t 1 1
1= 4. 4 N+< N+l N+p) <1+_+_+...)_

9 “ TN T\ gy oN+p gr ' g2p

Since N and p have been chosen to be minimal, then we say that b(X)
is the canonical beta polynomaial for 6.

Let 8 > 1 be a real number. The set Dy of all -developments of
numbers in [0, 1] is characterized as follows.

THEOREM VI.8.4. [51] Let § > 1 be a real number. A sequence
(n)n>1 belongs to Dg if and only if for all i € N, the shifted se-
quence (ZTnyi)n>1 is lexicographically less than the sequence eg(1l) or
e5(1) whenever es(1) is finite.

For any real number 5 > 1, we denote by F'(Dg), the set of finite
factors of the sequences in Dg. Bertrand numeration systems are char-
acterized by Bertrand’s Theorem given below. Notice that U is not
necessarily linear.

THEOREM VI.8.5. [10] Let U = (Uy)nen be a positional numeration

system. Then U is a Bertrand numeration system if and only if there
ezists a real number > 1 such that 0*py(N) = F(Dg). In this case,
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if eg(1) = (dn)n>1 (or e5(1) = (dn)n>1 whenever es(1) is finite) then
Uy=1 and

Up=di Uy +doUpg+-++dyUp+ 1, n> 1.

Let 6 > 1 be a Pisot number. In what follows, we assume that ey(1)
is ultimately periodic

60(1) = tl e tN (tN—|—1 e tN+p)w.

The Bertrand numeration system Uy = (Uy)nen belonging to the class
of positional systems related to # is a linear numeration system satis-
fying the recurrence relation

Un = tl Un—l +-- tp—l Un—p+1 + (tp + 1) Un—p
+(tpr1 —t1) Unp1+ -+ (tngp —tN) Unon—p, n > N +p.

In other words, (U,),en satisfies the canonical beta polynomial of 6.
In what follows, 8 is fixed and we denote U, simply by U.

The main point is the following. Since # is a Pisot number, the set
F(Dy) = 0*py(N) is recognizable by a finite automaton A [33] (the
6-shift is sofic). This automaton has N + p states qi,...,qn4p. For
each i € {1,..., N + p}, there are edges labeled by 0,1, ...,t; — 1 from
¢; to g1, and an edge labeled ¢; from ¢; to ¢;; if ¢ < N + p. Finally,
there is an edge labeled ¢y, from gy, to gny1. All states are final and
¢1 is the initial state. The set F(Dy) is recognized by the automaton
depicted in Figure VI.9 (the sink is not represented).

FIGURE VI.9. Automaton recognizing F(Dy) = 0*py(N).
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REMARK VI.8.6. We can check that the characteristic polynomial
of the incidence matrix A of A,

( t1 1 \
t2 0o .
: : 1
tn 0 01

A: tN+1 0 0 0 1

tnsa O 0/0 0
: : 3 R |
txip1 O 0/0 0 0 1
tney O 01 0 0 0)

is the canonical beta polynomial of #. Hence for each i € {1,..., N+p},
the sequence u,(q;) satisfies the same recurrence relation as (U, )nen-
We could use this information but we are lucky to get more thanks to
the characterization of A.

In an abstract numeration system, allowing leading zeroes changes
the representations. Therefore, we modify slightly the automaton A
to obtain an automaton A’ recognizing py(N). We add a new state
s. There are edges labeled by 1,...,¢; — 1 from s to ¢; and an edge
labeled ¢; from s to ¢o. This state s is the initial state of A’ and is also
final. The automaton A’ is sketched in Figure VI.10.

FIGURE VI.10. Automaton recognizing py(N).

Our task is now to determine the different sequences u,(g;). To that
end, we use the specific form of A’. The first word of length n + 1 in
pv(N) is 1(0)™ and its numerical value is U,. In the same way, 1(0)"!
is the first word of length n. Therefore,

un(s) = Un - Un—l-
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Since 6 is a Pisot number and the characteristic polynomial of U is the
minimal polynomial of @, there exists a real number 7 such that

U, ~y6".
For n > 1, it is clear that
u,(s) = (b1 — 1) up1(q1) +up-1(g2)
and
U, (q1) =t up1(q1) + un—1(g2) = un(s) + un—1(q1)-
Consequently,
U, (q1) = vu(s).
We also have u,, 1(¢2) = u,(q1) — t1 u,_1(¢1) and thus
Un(g2) = Var1(s) — t1 va(s).

But u,(g2) = tau,_1(¢1) + u,_1(gs3). So we find

Un(g3) = Vipio(8) — t1 Vg1 (8) — ta v ().
Continuing this way, for : < N +p

Un(¢i) = Vinyio1(8) — t1 Vipica(s) — ta Vayios(s) — - - - — ti1va(s).

We are now able to determine the endpoints of the intervals I,,. It

is clear that
Vn(s) = U, ~ v 6.
Therefore, for i € N

lim =0
n—00 vn(s)
and in the same manner,
lim U"L(QQ) =0t —t, 0%

n—o0 vy (s)
Continuing this way, for j < N+pand: €N
u i . . . 3 ) )
Jim %(5)9) =07 T =0
n

We can now compute the different intervals. The first words in py(N)
are

1., (t—1),t1,10,..., 181,20, ..., (t — D1, 440, ..., tits, . ..
We have the intervals corresponding to words of length one
un—l(ql)] — [.7 ]+ 1

JJ .
L=[1,241 J
J [0’0 +ni)r{.10 v”( ) 0’ 0 ) j <t1
and o .
L, = [_1,—1 + lim unfl((h)] = : 1].

0’0 noco vy(s)
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For the words of length two, if 7,k < ¢; then

Lp=1[5+ =%+ -+ lim -] =[2 + — =
jk [0+02:0+02+n1_{20 VH(S) ] [0+9270+ f2 ]
and
L T P () P B
Ijtl—[0+92a0+92+nlggo Vn(s) ]_[0+92a 9

For the words of length two beginning with ¢;, we have
v, J ti J+1

hi=lg @9+

and

1 to t1 1o . Up-2(g3 1 1o
hm:b*ﬁﬁ*@*k&ﬁﬂ%h:h+ﬁ”-

On the other hand, we can associate intervals to the #-developments
of real numbers. These developments are computed through the use of
the greedy algorithm. For instance, if z € [3, 2[ then it is obvious that
eg(x) begins with 1. By Theorem VI.8.4, e4(1) induces the definition of
intervals related to 6-developments and it is clear that these intervals
coincide exactly with the intervals I,,.

REMARK VI.8.7. If ey(1) is finite, that is if eg(1) = ¢; - - - t,,, with
tm # 0and t,, = 0 for n > m, then the construction of A still holds with
N = m and p = 0. All the edges from ¢,, lead to ¢; and are labeled
by O,...,t, — 1. Indeed, by Theorem VI.8.4, the shifted sequences
in Dy are less than ej(1). The automaton A is represented in Figure
VI.11. As an example, the golden mean is such that ey(1) = 11 and

FIGure VI.11. Automaton recognizing 0*py(N) when
ep(1) is finite.

the automaton recognizing py(N) is depicted in Figure VLS.

To conclude this section, we give a small example showing that
generally f-developments and abstract representations do not coincide.

ExAMPLE VI1.8.8. We consider the language L = 0*1{01,0}*U{e}.
It is simply the language of the normalized representations in the Fi-
bonacci system when we allow leading zeroes. The minimal automaton
of L in Figure VI.12 differs slightly from the one depicted in Figure
VI.8. In particular, the sequences (u,(¢1))nen and (u,(g2))nen are the
same as in Example VI.8.2. The real number 6 related to this system
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01 1 0
1@0

FIGURE VI.12. The minimal automaton of 0*1{01,0}* U {&}.

is once again the golden mean. Consider the real number

1 . un_l(ql.O) 1 1
= — 1 _ = — —_—.
T ) 6P
It is the upper bound of I, and the lower bound of I;. Using the
language L, we obtain two representations of z,
(01)“ and 1(0)“.

On the other hand,
eg(x) = 101.

9. Uniform continuity

In this section, we consider the application ¢ : L —)]%, 1[ which
maps an infinite word w, limit of a convergent sequence (wp)nen Of
words of L, to the real number lim,_, ., %(wln)
maps a representation onto its numerical value.

ProproOSITION VI.9.1. The function g is uniformly continuous.
Proof. Let w,w' € L. By Corollary VI.5.4, we have |g(w) — g(w')]
equal to

-1 - . pP— .
§ :_q E :Bq,j(w)e 7 — § :_q E :/Bq,j(w,)g 7.

0 a a
geK % j=0 geK ° j=0

If w and w’ have the same prefix of length M, then 3, ;(w) = S, ;(w’)
for j=0,...,M — 1 and

In other words, g

6—1 [ P i
lg(w) — g(w')] < Tza—q D Beiw) 077 =N By i(w') 07
geK % |j=M j=M
6—1 Uy |~ _j - N p—j
S i 2oy D Bagrnw) 077 = " By jana(w') 0
gekK % | j=0 j=0
< 01 % 9 (4 N 67
< i Do 2D )
geEK 7=0
2 (#X) Qq
< g 2o 0
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Since € > 1, for any € > 0, the latter bound can be taken less than ¢ if
M is large enough. Hence the conclusion because d(w,w’) = 2.
O

ProprosiTiON VI.9.2. The function g is monotone: if w,x € Lo
and w < x then
g(w) < g(x).
Proof. There exists [ € N such that w1} = Zjoy—1) and wy; < T
By definition of the intervals,

Y € Ly, 2 € Lafog) = Y < 2.
To conclude, observe that g(w) € I and g(z) € Iy -






APPENDIX A

About Pell’s equation

An equation in integers of the form
X?—aY?’=N

where « is not a perfect square and N > 0, is said to be a Pell’s
equation. In this section, we explain how to solve such equations.

The next proposition summarizes some well-known facts that are
used in the proof of Theorem II1.1.2. The reader will find in [22] or in
[59] the material necessary to achieve its proof.

ProrosITION A.1.1. Assume that o € N is not a perfect square
and that N > 0 is a natural number.

(i) The set of solutions (X,Y) € N? of the equation X?—aY? = N
is the (finite) union of the sequences (Xy, Yy )nen defined by

Xiv1 ) [ v av X;
@ )= ().
VieN, and 0 < X, < uV'N,
where the couple (u,v) € N? is the minimal non-trivial solution
of U2 — aV? =1, i.e., that for which u > 1 is the smallest.
(ii) Fach component of any solution (X, Y, )nen of (37) is a solu-
tion of
Zi—|—2 = QUZZ'_H - Zia Vi € N
In particular, Xo,, Xony1, Yor and Yo, 11 are of the same parity
as Xo, X1, Yy and Y, respectively.
(iii) For any solution (Xn,Yn)nen of (37), one has X, > u™.
In view of the previous proposition, one has to study the equation
U? — aV? = 1. (Notice that o cannot be a perfect square since the
difference of two perfect squares is never equal to 1 except for 12 —02.)
The minimal non-trivial solution of U? — aV? = 1 is given by the
development of \/« in continued fractions (see for instance, Chapter
IV of [22]). It is well known that any quadratic irrational has an
ultimately periodic continued fraction of the form

\/a: (qo,qla"'aQR72q0,q1a'"aQR72q0,q1---)-
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This latter writing is a shortcut for

1
Va =g+ 1
Q1+ 1
g2 + 1
4+ —
The convergents of a continued fraction are
Ay @ A 1 Ay 1
Bo_laBl_qo+qlaBZ_qo+ 13
G+ —
q2

If the length [ of the period (gi,...,qn,2qo) is even, the minimal
solution (u,v) of U? — aV? =1 is given by (A,_1, B;_1) (for a proof of
this result see pages 108-109 of [22]).

EXAMPLE A.1.2. Search the minimal solution of U%? — 21 V? = 1.
One has

V21 = (4,1,1,2,1,1,8,1,1,2,1,1,8,...).
—_———

length [=6
The first convergents are
Ay 4 A 1 5 A 1 9
= —:4 —:——:4 —_— = =, ...
By, 1 B +1 1’ By + 12
1+I

Thus one gets £* = %5 and (u,v) = (55,12).
Otherwise, the length [ of the period (g1, ..., gn, 2qo) is odd and the
minimal solution (u,v) of U? — aV? =1 is given by (Ay 1, By 1)-
EXAMPLE A.1.3. Search the minimal solution of U? — 29V? = 1.
One has
V29 = (5,2,1,1,2,10,2,1,1,2,10,...).
————

length (=5
The first convergents are
A 5 A 1 11 A 1 16
s o= 25— =
By, 1 B 2 2'DBy 1 3
2+ -

1

Continuing this way, one obtains %2 = 2855 and (u,v) = (9801, 1820).
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Proof of proposition IV.5.2

In [47], C. Mauduit shows that the characteristic sequence x” of
the set of primes is not generated by a substitution (¢, h,a;) where
p:YX={ay,...,a,y = X" and h : ¥ — {0,1} sends all the letters of
Y. onto 0 except one. Here, we consider the case where h sends more
than one letter of 3 onto 1. In the first part of this appendix, we give,
for the sake of completeness, a variation of Mauduit’s proof. Next, we
explain the modifications.

1. Preliminaries

First, recall the prime number theorem (see for instance [36]). The
prime counting function wp(n) counts the number of primes less than
n and the theorem stipulates that

n

p(n) ~ ogn’

Let ¢ : ¥ = {ay,...,a4} — X* be an homomorphism such that
o(a1) € a1 XF. We denote by

L) = le"(@)l, i= 1,0,
the length of the image of ¢™ on the i'* letter of the alphabet. We
denote by D;(N), the number of a;’s appearing in the first NV letters of
the infinite word ¢“(ay).

With ¢, one can build a matrix

(Mij)(i,)eq1,g)”
such that M;; is the number of a,’s in the word ¢(a;). We fix a, € ¥
and denote by I(t) the subset of {1,...,g} such that i € I(¢) if and
only if there exists an integer n such that M, > 0. In other words,
i € I(t) if a; appears in ¢"(a;) for some n. We denote by r the spectral
radius’ of M and by d + 1 the maximal order of the Jordan’s blocks
associated to r. We denote by M'® the matrix (M;;)( jyerr2- For this
latter matrix, we define r; and d; as for M.

INotice that the elements of M are non-negative. So M has a real non-negative
eigenvalue r and any other eigenvalue A of M is such that |A| < r.

139
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PROPOSITION B.1.1. [47, Prop. 1, p. 184] There exist non-zero
real numbers C' and C; which are algebraic over Q such that
My ~ Cyndrp
Li(n) ~ Cnirm

2. First part of the proof

For the sake of simplicity, since we consider the only infinite word
¢¥(ay), we will denote I;(n) by [ (I depends on n). Since all the letters
are sent onto 0 except one, say a;, we will simply denote D;(l;(n)) by
D (depending on n).

Proof. Assume that x” is generated by such a substitution (¢, h, a;).
With these notations, one has

. Dlogl

(38) T D
. D

(39) JLH;O 7075 e 7"? = 1a
) l

(40) lim =1

n—oo C'ndrn

The first equation is the translation of the prime number theorem and
the last two equations are given by Proposition B.1.1.

By [46, Cor. 1, p. 242], there exist (¢,%) € R x [0,1] and «,
o' €]0, +o00[ such that, for n large enough,

a(log)?1¥ < D < o (logl)?1¥

with ¢ € Z(1). Therefore, using (38), there exists constants § and 5’
such that

(41) 0< A < (logh)?™ ¥ <8< 0.

o If ¢y < 1, then
lim (log1)*™ ¥ =0
n—oo

which contradicts the Lh.s. of (41).

elfyy=1and ¢+1 > 0 (resp. p+1 < 0) then (logl)?™ — +oo (resp.
(log1)?*! — 0) if n tends to infinity which also contradicts (41).

e The last case, ¥ = 1 and ¢ = —1 splits into two sub-cases. First,
assume that r > 1. A refinement of Proposition B.1.1 gives

¢ = dt_dlogr'rt
v = log, 1
and thus, r; =r and d; = d — 1, since ¥ = 1 and ¢ = —1. In view of
(38), (39) and (40),
. Dlogl I Cyn%rp
lim

= 1.
n—oo | Cndrn D
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nooo (On

Taking the logarithm of (40) leads us to

C
lim —(logC +d logn +nlogr) =1

t
n—oo (U n

and therefore,

lim Ce logr = 1.
n—oQ

In this latter expression, C;, C' and r are constants, so
logr = —.
g C,
Since C' and C} are algebraic over Q, c% is also algebraic over Q. This
leads to a contradiction, r > 1 is algebraic over Q and by Hermite-
Lindemann theorem [24, pp. 128-137], logr is transcendental.

If » = 1 (the second sub-case) then ¢ = 0 and this case was already
discussed.

O

3. Generalization of the proof
Let (¢, h,a;1) be a substitution such that
p:X=A{ay,...,0k, Ct1,...,05} = X"
and to simplify the notations, we assume that

1, ifi=1,... k
h(ai) = { 0, otherwise.

We need to extend the notations of the previous section. For i =
1,...,k, we have D; = D;(l1(n)) and | = l;(n). Notice that D; and [
depend on n.

Proof. We assume that x” is generated by (¢, h,a1). Equation (38)
given by the prime number theorem, becomes

log! _
o=

Fori=1,...,k, by Corollary 1 page 242 of [46], there exist (¢;, ¢;) €

R x [0,1] and oy, B; €]0,+00] such that, for n large enough,

(43) a; (log)? Y1 < D; < B; (log )% 1%

with ¢; € Z(1;). If we set

a = inf o; and 8 = sup ;.
i i

(42) lim (Dy + -+ + Dy) 1.
n—r00
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Then, for i € {1,...,k},
D, D,
-t log )% Vs < =2
5 < (logl) .
Therefore,
1 logl _ < 1 log !
B(D1+...+Dk)% (10gl)¢z+1l¢l_1< (D1+"'+Dk) %
i=1
In view of (42), we have for n large enough
1 < 2
- $itl -1 2
(44) 0<26§Z(logl) <~ < oo
If for all i € {1,...,k}, (¢, ¢:) # (1,—1), one can conclude as in the

previous section by obtaining a contradiction. Otherwise, we assume
that there exists s € {1,...,k} such that

(%;(ﬁz) = (17 _1)a 1 < { < S;

(wza¢z) 7é (17 _1)a otherwise.
With the same arguments as in the previous section, for ¢ > s, it is
clear that (logl)?*! ¥ ! cannot tend to infinity, otherwise

lim Z log )% ¥ = o0,

n—oo

which is not possible in view of (44). So for ¢ > s,

log!
lim (log )+ 1%~ = lim (log )% 1% 8~ — ¢
n—oo n—oo
and in view of (43), for i > s,
1
lim D; log! =0.
n—00 [
Therefore, (42) becomes
log
lim (D +--- + D,) —2' = 1.
n—oQ l
And with (40),
. logl
Mm (Dy 4o+ D) e = 1
As in the previous section, one has
ri=---=rg=randd, =---=dys=d — 1.
So,

: - D;
B (3 G pp) 1081 =
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Taking the logarithm of (40) gives

1 < D; .1
nh_}rgloa(z — r?) E(logC—i—dlogn—i—n logr) = 1.

=1
Equation (39) can be applied for t =1,...,s, so

lim u logr = 1.
n—00 C
And therefore,
log r = Ci+---+C;
-

the r.h.s. is algebraic over Q and by Hermite-Lindemann theorem, the
l.h.s. is transcendental, a contradiction.
O






APPENDIX C

Implementation with Mathematica

A lot of results given in this work were discovered through the
extensive use of computer simulations. In this appendix, we give an
implementation of different algorithms related to regular languages and
abstract numeration systems. We have chosen Mathematica' for the
implementation because we can easily use arbitrary large numbers and
lists of arbitrary objects. In the following sections, we give source code
written with Mathematica. For the reader not familiar with the syntax
and basic structures like arrays or lists, see for instance [68].

1. Data structure for automata

A NDFA Ais a 5-uple (@, %, E, I, F). We have to code this struc-
ture. Observe that a DFA is a special case of a NDFA. In this chapter,
we only use elementary NDFA. A NDFA is elementary if its edges are
labeled by single letters or by the empty word . If a NDFA has edges
labeled by words, then it can be easily made elementary by adding new
states. For instance, if p “@ g then this transition can be replaced by
PSP g

We define an ordered list alphabet containing the different letters
of 3 (with respect to the ordering) and an extra symbol for the empty
word (in a NDFA, we can have e-transitions). This extra symbol has
no special role in the data structure, except as a reminder. The states
¢; of A are enumerated by 1,...,#Q and the i*® element of the list
transMat contains the ordered list of the sets of states reached from
the i state of A by reading the different letters of ¥ with respect to
its ordering (transMat stands for transition matriz). In other words, k
belongs to the set transMat[[i,jl] if and only if ¢;.0; = g;. The lists
finState and iniState are equal respectively to F' and I.

ExaMPLE C.1.1. For instance, consider the NDFA &£ depicted in
Figure C.1, with a set of states {1,2,3}. This automaton has the
following transition table:

a b ¢
2 1
3__
1,2 3 —

IMathematica® is a trademark of Wolfram Research.
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FIiGURE C.1. A NDFA with three states and e-transitions.

With our definitions, we get the following implementation:
alphabet={"a" , np , "8"};
transMat={{{2},{1},{3}},{{3}.{}.{}}.{{1,2}.{3}.{}}};
finState={2};
iniState={1};
REMARK C.1.2. For the coding of a DFA, iniState has to contain
a single element and transMat [[i]] is a list of arrays, each containing
a single element; the last array being empty (no e-transition). So the
next function IsDFA returns the value True if the actual automaton is
deterministic and False, otherwise.
IsDFA:=Module[{i,]j,x}
x=True;
If [Length[iniState] !=1,x=False,
For[i=1, (i<=Length[transMat])&&(x==True),
If [Length[transMat [[i,Length[alphabet]]]]1>0,x=False];
For[j=1, (j<Length[alphabet])&&(x==True),
If [Length[transMat[[i,j]1]]!=1,x=False];
j++1;
i++];
1;
X

]

2. Mirror of an automaton

The mirror of an automaton A = (Q, X, E, I, F') is the automaton
AR = (Q,%, ER, F,I) where
(p,0,9) € E & (q,0,p) € B™.
In the following procedure, if k belongs to transMat[[i, j]] then the
new transition matrix of the mirror automaton built in temp must be
such that i belongs to temp[ [k, j1]. So we have the following program.

Mirror:=Module[{i,j,k,temp},
temp=Table[{},{i,1,Length[transMat]},
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{j,1,Length[alphabet]}];
For[k=1,k<=Length[transMat],
For[i=1,i<=Length[transMat],
For[j=1,j<=Length[alphabet],
If [MemberQ[transMat[[i,j1], k],
temp[[k,jl]=Union[temp[[k,j1],{i}1];
j++1;
i++];
k++];
transMat=temp;
temp=finState;
finState=iniState;
iniState=temp;
1;
ExAMPLE C.2.1. Continuing Example C.1.1, the mirror automaton
of £ is depicted in Figure C.2. After application of Mirror, we get

FIGURE C.2. The mirror automaton .

transMat={{{3},{1},{3},{{1, 3},{},{3},{{2},{3},{13}}
finState={1}
iniState={2}

3. Determinization of an NDFA

In this section, we implement the subset construction to build, from

a NDFA A accepting a language L, a DFA accepting the same language.
(See for instance [70], for the description of this classical method.) In
the first procedure of this section, we consider the case of e-transitions
and define a new list statesWithoutRead of sets of states. A state g,
coded by the integer j, belongs to the set statesWithoutRead[[i]] if
and only if ¢;.c = g, that is if ¢; can be reached from ¢; without the
reading of a letter.
EpsilonTrans:=Module[{i,j,k,x,stateStatus},

statesWithoutRead={};

For[k=1,k<=Length[transMat],
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stateStatus = Table[0,{i,1,Length[transMat]}];
stateStatus[[k]] = 1; (* The state k is visited. *)
(* Code : 0 = None, 1 = Visited, 2 = To be visited. *)

(x Is there some epsilon-transitions from k 7?7
If it is the case, the states must be visited. *)

If [Length[x=transMat [[k,Length[alphabet]]]1]>0,
For[i=1,i<=Length[x],
If[stateStatus[[x[[i]]]1]==0,

stateStatus[[x[[1]]1]1]1=2;];
i++];

(* While there is some state to be visited, a state is
visited and checked for epsilon-transitions. *)

While[Length[Position[stateStatus,2]]1>0,
j=Position[stateStatus,2] [[1,1]1];
stateStatus[[j1]=1;

If [Length[x=transMat [[j,Length[alphabet]]]]>0,
For[i=1,i<=Length[x],
If[stateStatus[[x[[i1]]1]1==0,
stateStatus[[x[[i]]1]1]1=2];
i++]1];
1;
1;

(* The states visited are the states reached
from k by epsilon-transitions. *)

statesWithoutRead=Append[statesWithoutRead,
Flatten[Position[stateStatus,1]]];
k++];

The following procedure implements the subset construction. No-
tice that there is a call to the procedure EpsilonTrans.

Determinization:=
Module [{states={Sort[iniState]},c=0,numberStates=1,
i,j,k,x,y,newTrans,newFin},
EpsilonTrans;
(* newTrans is the transition matrix of the
determinized automaton. *)
newTrans={};

While[c!=numberStates,
c++:

b

newTrans=Append [newTrans,
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Table[{},{i,1,Length[alphabet]}]1];

(* y contains the states reached from states[[c]]
by epsilon-transitions. *)
y={};
For[k=1,k<=Length[states[[c]]],
y=Union[y,statesWithoutRead[[states[[c,k]1111];
k++];

(* The subset construction.x*)
For[j=1,j<Length[alphabet],
x={};
For[i=1,i<=Lengthl[y],
x=Union[x,transMat [[y[[i]],3j11]1;
i++];
x=Sort [x];
If [MemberQ[states,x]==False,states=Append[states,x];
numberStates=numberStates+1;];
newTrans[[c,jl]=Flatten[Position[states,x]];
j++l;
1;
transMat=newTrans;
iniState=Flatten[Position[states,Sort[iniStatel]l];

(* Determining the final states. *)
newFin={};
For[i=1,i<=Length[states],

If [Length[Intersection[states[[i]],finState]]>0,

newFin=Union[newFin,{i}]];

i++];

finState=newFin;
]

ExampLE C.3.1. Continuing Example C.1.1. After application of
the procedure Determinization to £%, we find
transMat={{{2},{3},{}},{{4},{2},{3},{{3},{3},{}},

{{5},{2},{3},{{5},{2},{}}}
iniState={1}
finState={2,5}
Indeed, the subset construction gives by hand the following table:

States a b
{2y | {3 0
{1,3} | {23} {1,3}
0 ] ]
(2,3} |{1,2,3} {1,3}
{1,2,3} | {1,2,3} {1,3}

This automaton is depicted in Figure C.3
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ab

FicUurge C.3. The determinization of £,

REMARK C.3.2. It is well known that if A is a DFA accepting the
regular language L then applying twice the procedures Mirror and
Determinization gives the minimal automaton of L (see pp. 43-49
of [28]). Hence we continue Example C.1.1 and want to obtain the
minimal automaton of the language L(€) accepted by €. First, we have
to apply Determinization. Next, we need two successive applications
of Mirror and Determinization to obtain the automaton depicted
in Figure C.4. The languages accepted from the different states are

b a
Oxs©
FIGURE C.4. The minimal automaton of L(£).

L(g) = L1 = {a, b}*a and L2 = {6} U Ll.
4. Implementing the function val,

Having now the minimal automaton?® A;, of a regular language L
over an ordered alphabet (3, <) at our disposal, we can compute the
first terms of the sequences (u,(q))nen and (vy(q))nen for the differ-
ent states ¢ of A;. With these sequences, we can use the formula
(4) of Lemma 1.5.2 to obtain a function computing the values of the
function val,. We consider two arrays dataU and dataV such that
dataU[[i,jll1= u,_1(¢;) and dataV[[i,jll= v, 1(¢g;). We also de-
fine two functions ULq,n] and V[q,n] to access the data and such that
U[q’n:]: un(q) and V[q’n]: Vn(Q)'

2To compute valy, we simply need a DFA, but the computation of rep, requires

the use of the minimal automaton. So, from now on, we will assume that we have
the minimal automaton of the considered language.
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First, we build an array Adjac for the adjacency matriz of the au-
tomaton, (Adjac);; = n if and only if there exist n edges labeled by
elements of ¥ from ¢; to g;.

MatAdj:=Module[{i,j},
Adjac=Table[0,{i,1,Length[transMat]},
{j,1,Length[transMat]}];
For[i=1,i<=Length[transMat],
For[j=1,j<Length[alphabet],
Adjac[[i,transMat[[i,j,1]111]++;
j++1;
i++];
]

The recurrence relation satisfied by u,(¢) can be computed through
the use the characteristic polynomial of the matrix Adjac. To compute
the initial conditions of the recurrence, we have to remark that u,(q)
is the number of paths of length n starting in ¢ and ending in a final
state. So this number is equal, in Adjac”, to the sum of the elements
at the line corresponding to ¢ and in the rows corresponding to a final
state.

Init:=Module[{i,j,k,x,y,temp,mat,coeff,caractPol,1},
dataU = {}; dataV = {}; MatAdj;

(* We put the coefficients of the recurrence satisfied
by u in the list RecCoeff. *)

caracteristicPol=
Det[Adjac-z IdentityMatrix[Length[Adjac]l]l];
1=Exponent [caracteristicPol,z];
coeff=-Coefficient [caracteristicPol,z"1];
RecCoeff=
Table [Coefficient [caracteristicPol,z"~(1-1i)]/coeff,
{i,1,1-1}]1;
RecCoeff=
Append [RecCoeff, (caracteristicPol/.z->0)/coeff];

(* Computation of the first terms in dataU and dataV,
the initial conditions of the recurrence. *)

For[k=1,k<=Length[Adjac],
x=Table[0,{i,1,Length[RecCoeff]}];
y=Table[0,{i,1,Length[RecCoeff]}];

If [MemberQ[finState,k],x[[1]1]1=1;y[[1]11=1];
For[j=1,j<Length[RecCoeff],
temp=0;
mat=MatrixPower [Adjac,j];
For[i=1,i<=Length[finState],
temp=temp+mat [ [k,finState[[i]]]];
i++];
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x[[j+1]]1=temp;
y[[j+111=y[[j1]+temp;
j++l;
dataU=Append [dataU,x];
dataV=Append[dataV,y];
k++] ;

After application of Init to the minimal automaton depicted in
Figure C.4, we have

dataU={{0,1},{1,1}}
datav={{0,1},{1,2}}
RecCoeff={2,0}

For instance,

Upi2(@2) = 2Uni1(g2) +0un(ge), Vn >0,
U.()((IQ) = ]-a
u(gp) = 1,

Access to dataU and dataV is made through the use of the following
functions. If terms do not exist in dataU or dataV, they are added to
the corresponding list.
Ulg_,n_] :=Module [{j,k},
If [n<Length[dataU[[ql]],dataU[[q,n+1]1],
For[j=Length[dataU[[ql]1]+1, j<=n+1,
dataU[[q]l]=Append[dataU[[ql],
Sum[RecCoeff [[k]]dataUl[[q,j-k]],
{k,1,Length[RecCoeff]}]];
j++l;
dataU[[q,n+1]]
]
]

V[Ig_,n_] :=Module[{j,k},
If [n<Length[dataV[[q]l]l],dataV[[q,n+1]],
Ulq,n];
For[j=Length[dataV[[q]l]l]+1, j<=n+1,
dataV[[q]l]=Append[dataV[[ql],
dataV[[q,j-1]1]+dataUl[q,j11]1;
j++1;
dataV[[q,n+1]]
]
]

We are now able to implement the function val,(w).

val[qg_,w_] :=Module[{temp,1l,i,j,k,state},
state=q;
1=StringLength[w];
If[1>0,
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temp=V[q,1-1];
For[i=1,i<=1,
j=Position[alphabet,StringTake [w,{i}]]1[[1,1]];
If[j>1,temp=temp+
Sum[U[transMat [[state,k]][[1]],1-i],{k,1,j-1}1]1;
state=transMat [[state,jl11[[1]1];
i++];,
temp=0;];
(x If w is not in Lq then val gives a negative value. *)
If [MemberQ[finState,state] ,temp,-1]
]

5. Implementing the function rep,

Here, we implement Algorithm 1.5.7 for the computation of rep, ()
very easily. Indeed, we have at our disposal, the minimal automaton
of the language and the complexity sequences of the different states.
Recall that ¢ is a state of the minimal automaton and is thus coded by
an integer q.

replq_,x_] :=Module [{n=0,p,r,w,i,j},
While [x>=V[q,n] ,n++];

P=q;

r=x-V[q,n-1];

W="";

For[i=1,i<=n,
i=1;

While[r>=U[transMat[[p,j]1]1[[1]1],n-1i],
r=r-U[transMat [[p,j1]1[[1]1],n-i];
j++;

1;

p=transMat[[p, j11[[11];
w=w<>alphabet [[j1];
i++];

W

]

Notice that this procedure will not end if L, is finite and = > #L,.
For the sake of simplicity, we leave this procedure as it is but it could be
improved to handle this kind of error (one can seek in the automaton
the cycles reaching or containing a final state, L, is finite if ¢ cannot
reach a cycle of this kind).

6. Real numbers

Sequences of words in L (and more generally words of L,) give
approximations of real numbers, see Table VI.1 page 110. The approx-
imation given by a word w € L, is computed by

RVallqg_,w_]:=vall[q,w]/V[q,StringLength[w]]
Let us introduce two small macros.
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Succlq_,w_]:=replq,vallq,w]+1]
Pred[q_,w_]:=replq,vallq,w]-1]

In the following procedure, we want to obtain successive approxi-
mations in L, N X5 of a real number z (in the appropriate range,
see Chapter VI for details) such that

lim val,(wy,) _
n—oo V\wn\(Q)
In the first part of the procedure, we find the greatest word of minimal
length with a numerical approximation less or equal to . Next from an
approximation w, we build the next one. For the sake of simplicity, we
assume that each word in L; is a prefix of another word in L;, for any
state t. To speed up the computations of the next best approximation,
we take the concatenation of w and rep, (1) as a plausible approxi-
mation (this is justified by Corollary VI.6.5) and then try to improve
it. This proceduce gives an array (stored in Approx) containing the
different approximations.
Approximate[q_,x_,leng_]:=Module[{n,w,state,i,Approx},
(* initialisation *)
n=0;
While[U[q,n]==0,n++];
(* w is the greatest word of length n *)
w=replq,V[q,n]-1];
While[RVall[q,w]>x,w=Pred[q,w]];
Approx={w};

While[StringLength[w]<leng,
(* simulation of the reading of w *)
state=iniState[[1]];
For[i=1,i<=StringLength[w],
state=transMat [[state,
Position[alphabet,StringTake [w,{i}]1[[1,11111[[11]1;
i++] ;
(* state is the state reached by w *)

w=w<>repl[state,1];

If[RVallq, wl>x,
While[RVal[q,w]>x,w=Pred[q,wl],
While[RVall[q,w]<=x,w=Succ[q,w]];w=Pred[q,w]];
Approx = Append[Approx, wl;

1;
Approx
]

An application of Approximate[1,0.7,15] with the minimal au-
tomaton of L(£) depicted in Figure C.4 gives Table C.1.
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w € Ly valy (w) /]y (1)

a 0

aba 0.57142857142857142857
abba 0.66666666666666666667
abbaa 0.67741935483870967742
abbaba 0.69841269841269841270
abbaaba 0.69291338582677165354
abbaabba 0.69803921568627450980
abbaabbaa 0.69863013698630136986
abbaabbaba 0.69990224828934506354
abbaabbaaba 0.69956033219345383488
abbaabbaabba 0.69987789987789987790
abbaabbaabbaa | 0.69991454034916371627
abbaabbaabbaba | 0.69999389611182323140

TABLE C.1. Application of Approximate[1,0.7,15].

7. Other operations on automata

In this section, we define some procedures which are useful to build
new automata accepting new languages from previously defined au-
tomata.

First, let us assume that we have an automaton (DFA or NDFA)
accepting a language L, the next procedure builds a NDFA accepting
L*.

Star :=Module[{i},

If[Length[finState]>0,

For[i=1,i<=Length[finState],
transMat [[finState[[i]] ,Length[alphabet]]]=
Union[transMat [[finState[[i]],Length[alphabet]]],

iniState];

i++];

1;

transMat=Append[transMat,
Append[Table[{},{i,1,Length[alphabet]-1}],iniStatel];

iniState={Length[transMat]};

finState=Union[finState,{Length[transMat]}];

Let us assume that we have an automaton (DFA or NDFA) accept-
ing a language L over X, the next procedure builds a DFA accepting
¥*\ L.

Complem:=Module[{i},
Determinization;
finState=Complement [Table[i,{i,1,Length[transMat]}],
finStatel;
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The following procedures need two automata over the same alpha-
bet. If A is an automaton accepting L; and B is an automaton accept-
ing Lo, the following procedure gives a unique NDFA over X accepting
L, Ly. The elements defining an automaton are denoted by transMatz,
finState: and iniStates, 7 = 1, 2. For instance, we can consider two
copies of the same automaton £ introduced in Example C.1.1.
alphabet={”a" , np" , ||€u};
transMat1={{{2},{1},{3}},{{3}, {3, {3}, {{1,2},{3},{33}};
finStatel={2};
iniStatel1={1};
transMat2=transMatli;
finState2=finStatel;
iniState2=iniStatel;

We have the following procedure for the concatenation.

Concat :=Module[{i},
transMat2=transMat2+Length[transMat1];
iniState2=iniState2+Length[transMatl];
iniState=iniStatel;
finState=finState2+Length[transMatl];
transMat=Join[transMatl,transMat2] ;

If [Length[finStatel]>0,

For[i=1,i<=Length[finStatel],
transMat [[finStatel[[i]],Length[alphabet]]]=
Union[transMat [[finStatel[[i]],Length[alphabet]]],
iniState?2];

i++];

1;

]

Applying this procedure gives an automaton accepting L(E)L(E),

transMat={{{2},{1},{3}},{{3}, {3, {43}, {{1,2},{3},{}},
{{5%,{4},{6}},{{63,{},{3},{{4,5},{6},{3}}

iniState={1}

finState={5}

In the next procedure, from A accepting L; and B accepting Lo, we
build a NDFA accepting L; U Ls.

Uni:=Module[{},
transMat2=transMat2+Length[transMat1];
iniState2=iniState2+Length[transMatl];
finState2=finState2+Length[transMati];
finState=Union[finStatel,finState2];
transMat=Join[transMatl,transMat2] ;
transMat=Append[transMat,

Append[Table[{},{i,1,Length[alphabet]-1}],
Union[iniStatel,iniState2]]];
iniState={Length[transMat]}; ]
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The following procedure computes the product A x B of two au-
tomata A and B. The language accepted by this new automaton is
L(A) N L(B). If ¢; is the " state of A and g; the j™ state of B, then
the position of the state (g;,¢;) in the set of states of A x B is defined
by

(1—1)#Qs+J
where #@Qp is the number of states of B. If the set of initial states of
A (resp. B) is I4 (resp. Iz) and the set of final states is F4 (resp. Fj)
then the set of initial states of A x B is 4 X Iz and the set of final
states is Fiq X Fpg.
Inter:=Module[{i,j,k,1,m},
transMat=Table[Table[{},{i,1,Length[alphabet]}],
{j,1,Length[transMatl] *Length[transMat2]}];
For[i=1,i<=Length[transMat1],
For[j=1,j<=Length[transMat2],
For[k=1,k<=Length[alphabet],
If[Length[transMatl1[[i,k]]]*
Length[transMat2[[j,k111>0,
For[1=1,1<=Length[transMat1[[i,k]]],
For [m=1,m<=Length[transMat2[[j,k]1]1],

AppendTo[transMat [[(i-1)*Length[transMat2]+j,k]1],
(transMat1[[i,k,1]]-1)*Length[transMat2]+
transMat2[[j,k,m]]1];

m++] ;

1++];
1;
k++];
j++l;
i++];
iniState={};
For[1=1,1<=Length[iniStatel],
For[m=1,m<=Length[iniState?2],
AppendTo[iniState, (iniStatel [[1]]-1)*
Length[transMat2]+iniState2[[m]]];
m++] ;
1++];
finState={};
If [Length[finStatel] *Length[finState2]>0,
For[1=1,1<=Length[finStatel],
For[m=1,m<=Length[finState2],
finState = Union[finState,{(finStatel[[1]]-1)*
Length[transMat2]+finState2[[m]]1}];
m++] ;
1++];
1;
]
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coaccessible state, 111 3
Cobham’s theorem, 6 normalization, 5, 7, 18, 19, 73
coding, 89 of Peano, 44
weak, 81

complexity function, 12, 86 golden mean, 127
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exponential, 51
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automaton, 3, 70, 73, 75
morphism, 89
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matrix
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transition, 27, 145
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automaton, 3
modification
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of substitutions, 89
uniform, 80
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theorem, 139
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abstract, 9
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counting function, 139
theorem, 139
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direct, 27
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expression, 2
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recognizable
S-recognizable set, 9
U-recognizable set, 6
k-recognizable set, 5
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U-representation, 5
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f-representation, 109
k-adic representation, 10
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state transition, 51
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Skolem’s theorem, 53
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accessible, 111
coaccessible, 111
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determinization, 147
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word, 1
accepted by a finite automaton, 2
characteristic, 90
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Fibonacci, 80
generated by a substitution, 81
generated by an iterated morphism,
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