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Abstract

We propose a method that computes a piecewise constant approximation of a function defined on a mesh. The
approximation is associated with the cells of a restricted Voronoï diagram. Our method optimizes an objective
function measuring the quality of the approximation. This objective function depends on the placement of the sam-
ples that define the restricted Voronoï diagram and their associated function values. We study the continuity of the
objective function, derive the closed-form expression of its derivatives and use them to design a numerical solution
mechanism. The method can be applied to a function that has discontinuities, and the result aligns the boundaries
of the Voronoï cells with the discontinuities. Some examples are shown, suggesting potential applications in image
vectorization and compact representation of lighting.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

In this paper, we introduce a new method to compute an ap-
proximation of a function on a 3d mesh. Sampling functions
is a problem that appears in many different fields and has
lots of applications, such as storing attributes on meshes.
Our approximation uses a set of samples located in 3d space
around the mesh. With the restricted Voronoï diagram of the
samples, the mesh is segmented into regions in which the
approximation takes a constant value. An example is shown
on Figure 1. Our goal is to optimize both the positions of
the samples and the associated approximation values. This
approach offers several advantages :

• the approximation is not stored directly on the combina-
torics of the mesh. The surface can be remeshed without
impacting the approximation built on it ;
• the size of the storage is fully controlled by the number of

samples, and therefore by the user.
• the approximated function is used as a black box. We here

mean that we solely need to evaluate the value of the func-
tion at any point on the surface (no gradient required) ;
• it fully automatically captures the sharp features of the ap-

proximated function, without any heuristic to locate these
features explicitly ;

Figure 1: Direct light sampling. Left, the original lighting.
Center, our approximation with 1000 samples. Right, opti-
mized restricted Voronoï diagram.

We formulate this problem as the minimization of an ob-
jective function (Section 4.2). Using Reynolds transport the-
orem, we provide a closed form expression for its derivative
(Section 4.5), and study its continuity (Section 4.6). An it-
erative procedure is then provided to minimize our objective
function (Section 5). In Section 6, we apply our method to
image vectorization and compact representation of lighting
on meshes.
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2. Background and related work

2.1. Segmentation

Segmentation is one of the most obvious applications for
our work. In this context, the goal is to split an image or
a mesh into a set of regions, depending on a attribute such
as color. Hoiem et al. [HEH05] use the technique designed
by Felzenszwalb [FH04] to build pixel clusters in an im-
age. This method performs the segmentation using a greedy
graph clustering. Compared to our approach, the resulting
regions are not restricted to convex shapes. This technique
strongly uses the fact that the image is described by a set
of pixels with a grid structures, and therefore cannot handle
f as a black box as we do. A similar clustering technique
is used by Lecot and Lévy [LL06] in the context of image
vectorization.

On 3d meshes, the method proposed by Cohen-Steiner
et al. [CSAD04] shares a lot of similarities with ours. The
main difference is that their technique applies on dense
meshes, and clusters triangles of the mesh, whereas ours
uses a restricted Voronoï diagram. We therefore can handle
very coarse meshes, at the cost of topology issues when the
surface is thin. As shown on Figure 9, these issues do not
weaken our results. Another difference is that the clustering
and the choice of a representative for each cluster are done in
separate passes in this work, whereas we integrate our choice
of a representative (the approximation values) in the objec-
tive function (Section 4.2) and fully describe the problem
with a single objective function.

2.2. Image vectorization

As shown in Section 6.2, our method can be applied as an
image vectorization technique. We must however admit that
our current choice for a piecewise constant approximation
makes our results visually less pleasing than the latest re-
search in the field, which is more focused on describing
smooth gradients [LL06,OBW∗08,SLWS07]. The main ad-
vantage we have over these methods is that we do not need
the approximated function f to be described with a set of
pixels, and only require to be able to evaluate f at any point
of the domain. This allows us to approximate functions on
more general domains like meshes.

2.3. Light sampling on surfaces

Lehtinen et al. [LZT∗08] describe a hierarchical sampling
method for storing light on meshes. Their representation
does not depend on the combinatorics of the underlying
mesh. This approach is in essence different from ours, since
their goal is to effectively compute the lighting on the sam-
pling, whereas we aim at generating the sampling from a
known function. Because of its hierarchical structure, this
approach is able to consider light interaction at different
scales between the objects of the scene. In contrast, uur

method adapts the density of the sampling to the variations
of the approximated function, and captures particularly well
the discontinuities such as shadow boundaries.

Discontinuities require a special attention. Holzschuch
and Alonso [HA∗04] use the notion of discontinuity mesh-
ing to capture the shadows in a radiosity simulation. Var-
ious approaches have been developed to segment a mesh
along the discontinuities in the lighting. Heckbert [Hec92]
and Litschinski et al. [LTG92] provide an algorithm to cut
a mesh along shadow boundaries. Durand et al. [PV93] of-
fer a definition and an algorithm to compute the visibility
complex, which describes the visibility between any pair of
points in the scene. The complexity of these algorithms rises
rapidly with the complexity of the scene. Our method does
not provide exact shadow boundary information, but com-
putes the best approximation of the discontinuities given a
fixed number of samples. This is done without any particu-
lar discontinuity detection mechanism.

2.4. Centroidal Voronoï tessellations

The objective function we define and minimize in this work
is a generalization of the objective functions minimized for
the generation of centroidal Voronoï tessellations. These
techniques usually aim at the generation of regular sam-
plings. Okabe and Suzuki [OS97] list many applications re-
lated to the minimization of such functions. The correspond-
ing objective function is of class C2 [LWL∗09]. More re-
cently, Lévy and Bonneel [BB∗12] use such a minimization
for the anisotropic remeshing of surfaces, while de Goes et
al. [dGBOD12] optimize power diagrams for stippling ap-
plications. Because it aims at sampling any function pro-
vided by the user, our method is very similar to this last ap-
proach. The main difference is that our approximation is de-
fined by approximation values associated with each sample,
whereas the work of de Goes et al. approximate the func-
tion with the density of the samples. Their method therefore
increases the number of samples where the value of the ap-
proximated function is high, whereas our number of samples
is provided by the user, and these samples tend to accumu-
late where the gradient of the function is high.

3. Restricted Voronoï diagrams

Given a set of samples V = {vk}k ⊂ R3 and a surface S ⊂
R3, a restricted Voronoï cell Ωk|S is defined as:

Ωk|S = {x ∈ S,‖x−vk‖< ‖x−v`‖ for all v` ∈ V}. (1)

In other words, it corresponds to the intersection between
the 3d Voronoï cell of a sample vk and the mesh S. The re-
stricted Voronoï cells are polygonal meshes. They define a
partition of S. The set of all the restricted Voronoï cells and
their boundaries is called the restricted Voronoï diagram. An
example is shown on Figure 2.

The set of samples V is said to be in general position if it

c© 2013 The Author(s)
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Figure 2: Restricted Voronoï Diagram. The restricted
Voronoï cell Ωk|S is the set of points x ∈ S for which vk
is the nearest sample.

generically defines a Voronoï diagram. In other words, three
samples are not colinear, four samples are not coplanar, four
samples are not on a same circle, and five samples are not
on a same sphere. In addition, we require that the intersec-
tion between the vertices, edges and faces of S, and the ver-
tices, edges and faces of the Voronoï cells are either empty
or have the right dimension. For instance, no vertex of S is
contained in the boundary of a Voronoï cell, and the inter-
section between a Voronoï face and an edge of S is either
a point or empty. In practice, symbolic perturbation [EM90]
can be used to handle degenerate configurations.

4. Objective function

4.1. Building an approximation

Our goal in this work is to compute and approximation of
a function f : S → R defined on a mesh S. We here as-
sume that f is bounded, piecewise continuous and locally
integrable. Our approximation is encoded by

• a set of n sample positions V = {vk}k ⊂ R3 ;
• a set of n sample approximation values F̃ = { f̃k}k ⊂ R.

From this data, our approximation f̃ : S → R is defined by
mapping each point x ∈ S to the approximation value f̃k of
its nearest sample vk. The main advantage of this method
is that the data stored for the approximation is indepen-
dent from the combinatorics of S. In particular, it decouples
the sampling resolution from the mesh resolution, which is
suitable for applications like light sampling [LZT∗08]. The
approximation f̃ is however piecewise constant on S, and
therefore discontinuous.

From V and F̃, the value at a given point x ∈ S can be re-
trieved using a nearest neighbor search, which can be done
efficiently using space decomposition techniques [MA97].
The approximation can also be computed globally by com-
puting the Voronoï diagram of V restricted to S. Each re-
gion Ωk|S of S (see Equation 1) indeed corresponds to the
portion of S that receives the approximation value f̃k. Such
a restricted Voronoï diagram can be efficiently and exactly
computed using the algorithm of Yan et al. [YLL∗09], or
approximately using GPU techniques [HIKL∗99, SGG∗07].

4.2. Objective function

To optimize the placement of the samples, we minimize the
objective function defined below. The rationale for using this
specific function is explained further.

F (V) =−
n

∑
k=1

1
|Ωk|S |

(∫
Ωk|S

f (x)dx

)2

, (2)

where |Ωk|S | is the area of the restricted Voronoï cell Ωk|S .
Note that this objective function solely depends on the sam-
ple positions V. The approximation values F̃ are then com-
puted from the sample positions as :

f̃k =
1

|Ωk|S |

∫
Ωk|S

f (x)dx. (3)

We now further explain the relation between this objective
function and the initial problem. The quality of an approxi-
mation can be measured by summing the squared difference
between f and f̃ at each point x ∈ S :

G (V, F̃) =
∫
S
‖ f (x)− f̃ (x)‖2dx.

Segmenting S using the Voronoï diagram of V, this function
can be rewritten as :

G (V, F̃) =
n

∑
k=1

∫
Ωk|S

‖ f (x)− f̃k‖2dx. (4)

Considering the sample positions V as constants, G falls
back to a classical least squares minimization problem,
which is minimized when each approximation value f̃k co-
incides with the mean value of f on Ωk|S . From now on,
we will therefore consider that the approximation values are
bound to the sample positions V by Equation 3. With this
assumption, our minimization problem reduces to finding a
set of samples V that minimize the objective function :

G (V) =
n

∑
k=1

∫
Ωk|S

‖ f (x)− f̃k(V)‖2dx,

which corresponds to the variance of f on the restricted
Voronoï cells. The function G can be reformulated as :

G (V) =
n

∑
k=1

[∫
Ωk|S

f (x)2dx− f̃k(V)2|Ωk|S |

]

=
∫
S

f (x)2dx−
n

∑
k=1

1
|Ωk|S |

(∫
Ωk|S

f (x)dx

)2

=
∫
S

f (x)2dx+F (V). (5)

Finally, since the first term does not depend on the sample
positions, it can be discarded without changing the mini-
mizer of G , hence the final expression of our objective func-
tion, as stated by Equation 2.

A global minimum of F is very difficult to obtain. We
therefore focus on finding a local minimum of F . To do so,

c© 2013 The Author(s)
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we will use a variant of a gradient descent method, described
in Section 5. Such a method needs to evaluate the gradient
of F , we will therefore now focus on its computation. In
other words, we need to compute gradients of expressions
with variable integration domains. A key mathematical tool
for that is Reynolds transport theorem presented in the next
section.

4.3. Reynolds transport theorem

We quickly review existing methods that compute the gradi-
ent of F with respect to the sample positions. The difficulty
lies in the fact that the integration domains Ωk|S vary with
the sample positions. Lévy and Liu [LL10] decompose Ωk|S
into triangles, are able to provide an analytic formula for the
integral. The gradient is then derived from this formula. In
our context, such an analytic formula is not available since
we suppose that f can only be evaluated at discrete locations.
Carrier Baudouin et al. [CBRM∗12] use a parameterization
x(u,v) of each triangle onto a reference triangle which no
longer depends on V. The derivation with respect to a sample
can therefore be transferred under the integrals. The problem
however is that the derivation of f (x(u,v)) requires the value
of the derivative of f at any point x ∈ S.

For this reason, we use another technique to compute the
derivative of F , with Reynolds transport theorem [Rey03].
A formulation of this theorem was proved by Cortes, Mar-
tinez and Bullo [CMB05] in the context of the optimization
of 2d Voronoï cells, and [dGBOD12] also use this theorem
to compute the derivative of their objective function. If F is
a face of S, and Ωk|F the Voronoï cell of vk restricted to F ,
and if φ : S ×R3n → R is a function of a point x ∈ S and
the set of samples V, continuous on S ×R3n, continuously
differentiable with respect to the sample positions, and pro-
vided the following integrals are well defined, then :

d
dv`

[∫
Ωk|F

φ(x,V)dx

]
=

∫
Ωk|F

∂φ

∂v`
(x,V)dx

+
∫

∂Ωk|F

φ(x,V)
dx
dv`

.nbdx, (6)

where ∂Ωk|F is the boundary of Ωk|F , dx
dv` encodes the vari-

ations of this boundary with respect to the position of the
sample v`, and nb is the normal of ∂Ωk|F at x. Appendix B
extends this theorem when f is only piecewise smooth on S.
We will first focus on the computation of dx

dv` .nb.

4.4. Boundary variations

Let us assume the samples are in a general position V. Let
[c1,c2] be an edge of the polygon corresponding to Ωk|F , this
section details the following result :

• if [c1,c2] is the intersection between an edge of F and Ωk

then for any point x ∈ [c1,c2] and any sample v`
dx
dv`

.nb = 0t (7)

• otherwise, [c1,c2] is the intersection between F and a
Voronoï face separating Ωk and another cell Ω` :

dx
dvk

.nb =
(vk−x)t

nb.(vk−v`)
,

dx
dv`

.nb =
(x−v`)t

nb.(vk−v`)
, (8)

and the derivative with respect to any other sample is zero.

The fact that the samples are in general position means
that there exists a neighborhood N of V in which the combi-
natorics of the restricted Voronoï diagram does not change.
Let x : [0,1]× N → S be a parametrization of the edge
[c1,c2] on the unit segment [0,1] for any sample configu-
ration V ∈ N. Let dV = {dvk}k ∈ R3n be a non zero pertur-
bation of the sample positions and let h∈R+. The derivative
of a point x of [c1,c2] in the direction dV is given by the limit

dx
dV

(u,V) = lim
h→0

x(u,V+hdV)−x(u,V)

h
. (9)

Without loss of generality, we consider h to be small enough
so that V+ hdV ∈ N. Since the dot product bilinear form is
clearly continuous in its own arguments, we have

dx
dV

(u,V).nb = lim
h→0

[
x(u,V+hdV)−x(u,V)

h
.nb

]
. (10)

The edge [c1,c2] can be either the intersection of an edge
of F and Ωk or the intersection between F and a face of
Ωk. In the first case, the points x(u,V) and x(u,V+ hdV)
both belong to the edge of F , and the difference of these two
points is therefore a vector colinear with the edge, and or-
thogonal to the edge normal, hence the result provided by
Equation 7. If [c1,c2] is the intersection between a Voronoï
face and F , the plane of the Voronoï face is the bisector be-
tween vk and another sample v`. Let a be a scalar and w be
any unit vector such that :

x(u,V+hdV)−x(u,V) = aw. (11)

Since x(u,V+hdV) is contained by the bisector of vk+hdvk
and v`+ hdv`, and since x(u,V) is in the bisector of vk and
v`, we have :

a =
h((vk−x(u,V)).dvk− (v`−x(u,V)).dv`)+o(h)

w.(vk−v`)+O(h)
.

(12)
If e is a unit vector contained in [c1,c2], and nb is the normal
of [c1,c2] in F , the vectors e and nb form an orthogonal basis
of the plane of F , and we can write :

w = (w.e)e+(w.nb)nb.

In addition, [c1,c2] is contained in the bisector of vk and v`,
thus e.(vk−v`) = 0. Therefore,

aw.nb =
h((vk−x(u,V)).dvk− (v`−x(u,V)).dv`)+o(h)

nb.(vk−v`)+O(h)
.

(13)

c© 2013 The Author(s)
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Note that this expression of aw.nb no longer depends on the
direction w. This remark will be useful to study the conti-
nuity of F (see Equation 19, Appendix A). By substituting
the expression of aw in Equation 10 and Equation 11, we
obtain the expression of the gradient (Equation 8). A prop-
erty worth a remark is that this result does not depend on the
parametrization chosen for [c1,c2] as well.

4.5. Gradient of F

With the variations of the boundary derived in Equations 7
and 8, we are now able to express the derivative of our ob-
jective function with respect to a given sample v`. Supposing
that f is evaluated at x, and that dF

dv` , f̃k and f̃` are evaluated
at a position V of the samples,

dF

dv`
= ∑

p,q

∫
[cp,cq]
(‖ f − f̃`‖2−‖ f − f̃k‖2)

(v`−x)t

n`
b.(v`−vk)

dx,

(14)
where [cp,cq] is an edge on the boundary of Ω`|S , vk is the
sample neighboring v` along this edge, and n`

b is the normal
of the edge oriented outside of Ω`|S .

Proof This expression is obtained from Equation 2 by ex-
panding the derivatives, which leads to :

dF

dv`
= ∑

k

[
f̃ 2
k

d|Ωk|S |
dv`

−2 f̃k
d

dv`

(∫
Ωk|S

f (x)dx

)]
(15)

Using Reynolds transport theorem with φ(x,V) = 1 and
φ(x,V) = f (x) respectively, in both cases the first term of
Equation 6 vanishes, since φ does not depend on V. Among
all the edges of the restricted Voronoï diagram, the only
edges that depend on v` are those on the boundary of Ω`|S .
If [cp,cq] is such an edge between restricted cells Ωk|S and
Ω`|S , the term on Ωk|S in the sum of Equation 15 yields the
gradient : ∫

[cp,cq]
(‖ f − f̃k‖2− f 2)

(x−v`)t

nk
b.(vk−v`)

dx,

where nk
b is the normal of [cp,cq] oriented outside of Ωk|S ,

and the term on Ω`|S gives us∫
[cp,cq]

(‖ f − f̃`‖2− f 2)
(v`−x)t

n`
b.(v`−vk)

dx.

Grouping these two integrals on the same edge, and using the
fact that n`

b = −nk
b, we obtain the result presented in Equa-

tion 14.

4.6. Continuity

We here summarize our results about the continuity of F
and delay the formal proof th Appendix A. Studying the con-
tinuity of F is important since it determines the class of
solvers which can be used to minimize it. We here suppose
that f is continuous.

C0 contnuity : F is C0 continuous almost everywhere. The
only situations when it is not are when a face of S and a
Voronoï face of the diagram of V intersect with dimension
2. This is proved as Theorem 1 in Appendix A.

C1 continuity : F is C1 continuous almost whenever it is
C0. The additional discontinuities happen when an edge of
S intersects the Voronoï faces with dimension 1, or when
a Voronoï edge intersects a face of S with dimension 1.
This is proved as Theorem 2 in Appendix A.

These results render our objective function eligible for
gradient descent methods, but not for higher order methods
based on the Hessian of the objective function.

5. Solution mechanism

5.1. Gradient descent

The gradient descent algorithm that we use finds a local min-
imum of an objective function by successively updating the
positions of the samples [NW99] :

V(i+1) = V(i)−δ
(i)
(

dF

dV
(V(i))

)t

,

where i is the index of the current step and δ
(i) is a positive

scalar called the step length, which controls the amplitude of
the update of the sample positions. To determine an adequate
step length value, a common method is to use a linesearch al-
gorithm, which ensures that each step decreases the value of
the objective function. Using such a technique however does
not work well in our case, since the objective function can
be very anisotropic, in the sense that there is a wide vari-
ation of the magnitudes of the derivatives with respect to
different variables. In addition, when f has discontinuities, a
minimum may correspond to a situation when the gradient is
discontinuous, which causes the linesearch to fail in fulfill-
ing usual conditions like Wolfe conditions [NW99]. For this
reason, we use instead the following heuristic to compute the
step length at each iteration step :

δ
(i) = δ0σ

r(i), with r(i) =
i

imax−i
, (16)

where imax is the number of iterations required by the user,
δ0 is the initial step length, and σ controls how fast the step
length decreases to 0. In all of the results presented in Sec-
tion 6, we used the same values for these parameters :

• δ0 is 2% of the scene bounding box diagonal ;
• σ = 1

2 .

In addition, to limit the effects of the anisotropy of the
objective function, we do not use the global gradient direc-
tion for the update, but use instead the normalized gradient
direction for each sample :

v(i+1)
k = v(i)k +δ

(i) g(i)k

‖g(i)k ‖
, with g(i)k =

(
dF

dvk
(V(i))

)t

(17)

c© 2013 The Author(s)
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Figure 3: Convergence of the solver. These curves were gen-
erated using the function presented in Figure 5 with 1000
samples. Left, the value of the objective function reached as
a function of the number of iterations imax requested by the
user. Right, the evolution of the objective function value with
the current iteration in a single run of 5000 iterations. As
no linesearch is performed, the objective function oscillates
within the blue area, and the center curve is the median of
the objective function values over periods of 25 successive
iterations.

Figure 3 illustrates the convergence of this iteration scheme.
Since no linesearch mechanism is used, the objective func-
tion does not necessarily decreases at each iteration and os-
cillates. The oscillations decrease with the step length.

5.2. Approximation of the integrals

We consider f as a black box. By black box, we mean that
no closed form formula may be available for f . The only
requirement we have for f is a way of evaluating it at any
point of S. To estimate the integrals, quadrature rules are
needed [PTVF07]. Integrals are required at two different
steps. First, we need to compute the approximation values of
the samples at each step, using Equation 3. Then, to compute
the gradient of F given in Equation 14, we need integrals on
the edges of the restricted Voronoï diagram.

In our experiments, quadratures of degree two have
proved sufficient. Each restricted Voronoï cell is decom-
posed into triangles, and f is evaluated at three points per
triangle [Dun85]. For the gradients, f is evaluated at two
points per edge of the restricted Voronoï diagram.

5.3. Algorithm

Our numerical solution mechanism is summarized in Algo-
rithm 1. In terms of complexity, each step requires the com-
putation of the Voronoï diagram of the samples and the com-
putation of the restricted Voronoï cells. Although no theoret-
ical complexity analysis is available, the empirical results
presented by Yan, Lévy et al. [YLL∗09] tend to show that
this algorithm approximately behaves with a O(m+n) com-
plexity in most practical scenarii. Figure 4 confirms this be-
havior in our case.

input : a mesh S, a function f on S, the number of
samples n and iterations imax.

output: optimized samples and approximation values.

Generate n random samples on S for V(0)

foreach i from 0 to imax do
Compute restricted Voronoï diagram of V(i) and S
foreach restricted cell Ωk|S do

// Compute the sample values with Equation 3
f̃k← 1

Ωk|S

∫
Ωk|S

f (x)dx

foreach edge of Ωk|S ∩Ω`|S , with k < ` do
// Accumulate the gradient using Equation 14
update dF

dvk
and dF

dv`

Compute the step length δ
(i) using Equation 16

foreach sample vk do
// Update the sample positions

v(i+1)
k = v(i)k +δ

(i)g(i)k

Algorithm 1: Optimization of a set of samples to approxi-
mate a function f on a mesh S.
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Figure 4: Timing of one gradient descent algorithm step
with respect to the resolution of the mesh and the number of
samples. The approximated function is the direct lighting of
the David mesh, and the various resolutions were obtained
via a remeshing algorithm. The blue regions correspond to
the portion of the time dedicated to the computation of the
approximation values with triangle integrals. The green part
is the time dedicated to the gradient computation, with line
integrals.
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Figure 5: Approximation of the function arctan
( y

x
)

on
[−1,1]2. The top shows the approximation, the diagram is
displayed at the bottom, and a close-up of the center is pro-
vided on the right. The samples align along the direction of
the gradient of f and on both sides of the discontinuity, to
ensure that the boundary of the Voronoï cells match the dis-
continuity. 500 samples, 1500 iterations for 20 sec runtime

6. Results

6.1. Test function

We first demonstrate the behavior of our algorithm on a
simple analytic function (Figure 5). The function we use is
f (x) = arctan

( y
x
)
, which is piecewise continuous except for

x = y = 0 and exhibits a discontinuity along the x = 0 line.
The result obtained by the minimization exhibits the follow-
ing characteristic properties :

the samples align along gradient directions. as a conse-
quence, the cells are thin in the direction where f varies
most ;

pairs of sample capture the discontinuities by aligning
on each side of the discontinuity, in such a way that the
edge between the cells is along the discontinuity.

As explained in Appendix B, when f has straight discontinu-
ities, the minimum of the objective function is a point where
the gradient of F is discontinuous, since edges of the re-
stricted Voronoï diagram align with the discontinuities. This
also explains why usual linesearch techniques fail to effi-
ciently minimize our objective function.

6.2. Image sampling

Figure 6 demonstrates our method used in the context of im-
age vectorization. In this context, the function f is defined by
an rgb image and is thus trivariate. It is used as a black box
in the sense that it is only queried through the evaluations
required by the quadrature rules mentioned in Section 5.2.
In particular, we emphasize that Voronoï cell boundaries are
naturally aligned with the discontinuities. This behavior nat-
urally emerges from optimizing our objective function, with-
out requiring any edge detection phase. As for Figure 5, the
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Figure 6: Vectorizing a color painting by Tamara de Lem-
picka (top left). Sampling size and timings are given on each
result, as well as a study of the final objective function value
with respect to the number of samples. All the results were
obtained using 300 iterations.

Figure 7: Comparison between a random sampling (left) of
an image and our result (right), both using 1000 samples.
Objective function values are 0.09 for the random sampling
and 0.02 for the optimized one.

sharp features are well captured. Using the parameters given
in Section 5.1, the algorithm is fully automatic. We also plot
in Figure 6 the evolution of the final value of F obtained
with respect to the number of samples optimized using 300
iterations. Figure 7 demonstrates the difference between a
random sampling and our result on a greylevel image.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



V. Nivoliers & B. Lévy / Approximating Functions on a Mesh with Restricted Voronoï Diagrams

Figure 8: Direct illumination from a point source on the Pegaso model. The shadow boundaries are well captured, and very
few samples are placed in regions with uniform color. 1500 samples, 300 iterations, 12 min runtime for a mesh with 85k faces.

Figure 9: Direct lighting on a thin surface. The samples
have to align on both sides of the surface to prevent the
restricted Voronoï cells from having several components.
Shadows remain well captured, even at the sharp angles in
the center. 1500 samples, 500 iterations, 1 min runtime.

6.3. Direct illumination sampling

We now switch to 3d and show some examples of function
approximation on 3d meshes. The function we use is the re-
sult of the direct illumination of the surfaces from a point
source, with ray traced shadows. Figure 8 shows such an ex-
ample. An additional difficulty on meshes appears because
of the use of restricted Voronoï cells. When the mesh has
thin features, the restricted Voronoï cells may have several
connected components. In the context of lighting, such a
phenomenon is particularly undesirable since the connected
components may have opposite normals, one component be-
ing lit while the other remains in the shadow. As can be seen
in Figure 9, our method properly handles these difficult con-
figurations. The optimization of our objective function natu-
rally places a sample on each side of the thin feature, which
allows properly representing the lighting variation on them.

7. Conclusion and future work

We proposed a fully automatic method to approximate a
function on a mesh.This method has very few requirements
on the function to be approximated, since only evaluation
is required. It makes it possible to use the method for func-
tions that are not known explicitly, such as direct lighting in
Figure 9, where evaluation is the result of an algorithm (e.g.
ray-traced shadows). In its current state, the solver we use to
optimize the sample positions could probably be improved
to accelerate the convergence. Designing a new solver may
however be difficult, since the optimal solution to the prob-
lem is a situation where the gradient of the objective function
is discontinuous. Another limitation of our method is that
the approximation we compute is only piecewise constant.
We therefore plan on extending this approach to be able to
generate higher order smooth approximations. An idea for
such an extension could be done by using a method sim-
ilar to the work of Orzan et al. [OBW∗08], by specifying
constraints for the diffusion process from the sample val-
ues and positions, and using a threshold on the edges of the
restricted Voronoï diagram to create curves blocking the dif-
fusion along discontinuities.
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Appendix A: Detailed continuity of F

Theorem 1 If φ : S×R3n→R is a continuous function, and
if Ωk|F denotes the Voronoï cell of a sample vk restricted to
a face F of S, then

Fk|F (V) =
∫

Ωk|F

φ(x,V)dx,

is continuous when F in not coplanar with a face of Ωk.

Proof What we want to prove is that for any ε > 0, there
exists a ρ > 0 such that if the amplitude h > 0 of a displace-
ment of the samples in any direction dV is such that h < ρ,
we have

‖∆Fk|F‖= ‖Fk|F (V+hdV)−Fk|F (V)‖< ε. (18)

Whatever the combinatorics of the vertices of the boundary
of Ωk|F , these vertices depend smoothly on the sample posi-
tions if F is not coplanar with a Voronoï face of vk. There-
fore, for any ε1 > 0, there exists ρ1 such that if h < ρ1, the
displacement of a vertex c1 of the boundary of Ωk|S is con-
tained in a ball of radius ε1. Let Λε1 be the set of all points
at distance at most ε1 from ∂Ωk|F and let Ω

′
k[F denote the

restricted Voronoï cell of vk + hdvk. We are therefore sure
that no point of Ω

′
k|F is outside of Ωk|F ∪Λε1 . We can thus

write

∆Fk|F =
∫

Ω′
k|F\Λε1

φ(x,V+hdV)dx−
∫

Ωk|F\Λε1

φ(x,V)dx

+
∫

Ω′
k|F∩Λε1

φ(x,V+hdV)dx−
∫

Ωk|F∩Λε1

φ(x,V)dx.

First, since φ is continuous on F , it is bounded on this do-
main by some value fmax, and the last two terms of this sum
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can be bounded by∫
Ωk|F∩Λε1

φ(x,V)dx≤ |Λε1 | fmax

where |Λε1 | is the area of Λε1 , and is O(ε1). In addition,
the domains of the first two integrals are the same, since the
boundary variations of Ωk|F are enclosed in Λε1 . These inte-
grals can thus be combined to form∫

Ωk|F\Λε1

φ(x,V+hdV)−φ(x,V)dx.

Since φ is continuous, for any ε2 > 0, we can find a ρ2 > 0
such that if h < ρ2, φ(x,V+hdV)−φ(x,V)< ε2. We finally
obtain

∆Fk|F ≤ |Ωk|F |ε2 +2|Λε1 | fmax = O(ε1 + ε2).

Decreasing the values of ρ1 and ρ2 such that ‖∆Fk|F‖ < ε,
and using ρ = min(ρ1,ρ2), we obtain the result.

Theorem 2 If φ : S ×R3n → R is a continuous function
such that for each x ∈ S the map φx : V 7→ φ(x,V) is contin-
uously differentiable, and if Ωk|F denotes the Voronoï cell of
a sample vk restricted to a face F of S, then

Fk|F (V) =
∫

Ωk|F

φ(x,V)dx,

is continuously differentiable if no edge of F is contained in
a face of Ωk and no edge of Ωk is contained in F .

Proof We will prove that all the partial derivatives of F ex-
ist and are continuous. Let us consider the partial deriva-
tive with respect to the sample vk. All the other samples are
therefore considered as constants. Let us denote Γ`|F the re-
stricted Voronoï cell of any other sample v` in the Voronoï
diagram of V\{vk}. We can thus write

Fk|F (V) = ∑
6̀=k

∫
Γ`|F∩Ωk

φ(x,V)dx.

Intersecting Γ`|F is actually just a matter of cutting it by the
bisector of vk and v`. If the bisector contains no vertex of
Γ`|F , a sufficiently small displacement of vk will not change
the combinatorics of Γ`|F ∩Ωk, and we can apply Reynolds
transport theorem. The integral is therefore continuous in
this situation.
If the bisector contains a vertex c1, the locus of the samples
vk such that c1 is contained in the bisector of v` and vk is the
sphere centered at c1 passing through v`. Therefore, given
any unit direction dvk, for a sufficiently small h, vk + hdvk
will no longer belong to the sphere, and the bisector of vk and
v` will not contain c1. If the bisector contains another vertex
c2 of Γ`|F , we can apply the same principle. Therefore, for h
small enough, the bisector of vk +hdvk and v` contains none
of the vertices of Γ`|F . Let x1 and x2 be the two intersections
between the bisector of vk + hdvk and v` and the boundary
of Γ`|F , and let Ω

′
k be the Voronoï cell of vk + hdvk. Since

[x1,x2] is the only edge depending on the position of vk,

using Reynolds transport theorem, we obtain

∂

∂vk

[∫
Γ`|F∩Ω′

k

φdx

]
=

∫
Γ`|F∩Ω′

k

∂φ

∂vk
dx+

∫
[x1,x2]

φ
dx
dvk

.nbdx,

where φ and its derivatives are evaluated at (x,V + hdV),
with dV being the perturbation of the samples which only
moves vk in the direction dvk. Using Theorem 1, when ∂φ

∂vk
is continuous, the first term in the sum above is continuous,
and therefore we have

lim
h→0

∫
Γ`|F∩Ω′

k

∂φ

∂vk
(x,V+hdV)dx =

∫
Γ`|F∩Ωk

∂φ

∂vk
(x,V)dx

For the second term, using Equation 8 which does not de-
pend on the parameterization of the edge, we can rewrite it

‖x1−x2‖
∫ 1

0
φ(x(u),V+hdV)

vk +hdvk−x(u)
nb.(vk +hdvk−v`)

du

(19)
Since the inner part of the integral is bounded for all h in
(0,ρ) and for all (x1,x2) ∈ F2, we can use Lebesgue domi-
nated convergence theorem to move a limit into the integral
and therefore obtain

lim
h→0

∫
[x1,x2]

φ(x,V+hdV)
dx
dvk

.nbdx,=
∫
[c1,c2]

φ(x,V)
dx
dvk

.nbdx.

Combining these two limits, we obtain that whatever the dis-
placement direction dvk

lim
h→0

∂

∂vk

[∫
Γ`|F∩Ω′

k

φ(x,V+hdV)dx

]

=
∫

Γ`|F∩Ωk

∂φ

∂vk
(x,V)dx+

∫
[x1,x2]

φ(x,V)
dx
dvk

.nbdx,

which proves that the partial derivative of F with respect to
vk is continuous. Since all the partial derivatives of F are
continuous at V, F is continuously differentiable at V.

Appendix B: Approximating piecewise smooth functions

In the form provided by Cortes et al. [CMB05], Reynolds
transport theorem cannot be applied when f is not contin-
uous. This property is also used in Appendix A to prove
the continuity of our objective function F . These results ex-
tend when f is only piecewise continuous. By definition, be-
ing piecewise continuous means that S can be partitioned
into a set of compact subset in which f is continuous and
on the boundary of which f can be continuously extended.
By segmenting S between these compact sets, we obtain a
set of meshes (with curved boundaries), and f is continu-
ous on each of these meshes. We therefore fall back to han-
dling meshes with boundaries with a continuous f . Since the
discontinuities of f add edges to the mesh, discontinuities
also appear in the objective function gradient when bisectors
align with these new edges.
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