
Académie Universitaire Wallonie - Europe 

Université de Liège 

Faculté de Médecine Vétérinaire 

Département des Maladies Infectieuses et Parasitaires 

 Service d’Immunologie et de Vaccinologie 

Thèse présentée en vue de l’obtention du grade  

de Docteur en Sciences Vétérinaires 

Année académique 2013-2014 

Ping OUYANG 

Etude des rôles du gène ORF134 dans la biologie de 

l’infection de l’Herpèsvirus cyprin 3  

Study of the roles of Cyprinid herpesvirus 3 ORF134 in  

the biology of the infection 



Cover page : the central picture represents the analysis by in vivo imaging system of a carp infected withCover page : the central picture represents the analysis by in vivo imaging system of a carp infected with
a Cyprinid herpesvirus 3 recombinant strain expressing firefly luciferase as a reporter gene. The flanking
pictures represent the word “fish” in old Chinese.



Académie Universitaire Wallonie - Europe
Université de Liège

Faculté de Médecine Vétérinaire
Département des Maladies Infectieuses et Parasitaires

Service d’Immunologie et de Vaccinologie

Study of the roles of Cyprinid herpesvirus 3 ORF134 in 
the biology of the infectionthe biology of the infection

Etude des rôles du gène ORF134 dans la biologie de g g
l’infection de l’Herpèsvirus cyprin 3 

Promotor : Prof. Alain Vanderplasschen

Thèse présentée en vue de l’obtention du grade 
de Docteur en Sciences Vétérinaires

Année académique 2013-2014

Ping OUYANG



 
 
 
 
 
 
 
 
 
 
 
 

« The way ahead is long and has no ending, yet high and low I’ll search with my will unbending. » 

« 路漫漫其修远兮, 吾将上下而求索. » 

 

 屈原 (Qū Yuán, 343–278 BCE)  

 

http://www.evene.fr/celebre/biographie/louis-pauwels-2950.php


Acknowledgments 

 
 

Acknowledgments 

       

The work presented in this thesis has been carried out in the laboratory of 

Immunology-Vaccinology, faculty of Veterinary Medicine, University of Liège, Belgium. I am 

extremely grateful to my promotor Prof. Alain Vanderplasschen for giving me the opportunity to 

study in his lab. His trust, his permanent support and his passion for science have been an essential 

source of motivation and inspiration for me. I will always admire him for his constant positive attitude 

when facing problems and for his trust that the “good must win”. 

I would like to express my gratitude to the members of my PhD committee who monitored my 

work progress and took effort in reviewing and providing me with insightful comments: Prof. Daniel 

Desmecht and Dr. François Lieffrig. 

The present work was at the origin of several fruitful collaborations with other laboratories. I 

would like to thank Prof. Ruddy Wattiez and Dr Baptiste Leroy (Proteomic and Microbiology, 

University of Mons, Belgium) for their interest in our project and their willingness to perform 

proteomic analyses. Many thanks to Dr. Andrew Davison and Dr. Derek Gatherer (Centre for Virus 

Research, University of Glasgow, United Kingdom) for their contribution on the study of viral IL-10 

evolution. Many thanks also go to Dr. Adrie Westphal (Department of Agrotechnology and Food 

Sciences, Wageningen University, The Netherlands) for his contribution on viral IL-10 structural 

analyses. 

The four years spent in the laboratory of Immunology-Vaccinology have not only been my 

source of scientific experiences, but also of invaluable human relationships. Many thanks go to all the 

members of the Immunology-Vaccinology lab. I would like to start with the members of the fish group. 

This very rich environment is composed of 7 persons originating from 6 different countries. Dr. 

Krzysztof Rakus and his wife Dr. Joanna Jazowiecka-Rakus are from Poland, thanks for their 

endless support and invaluable suggestions on fish immunology. Dr. Anca Reschner comes from 

Romania, thanks for her constant help and nice discussions. Maygane Ronsmans is a beautiful 

Belgian girl, thanks for her help during the doctoral formation courses. Maxime Boutier is a very nice 

French guy and it has been a great pleasure to work with him. Dr. Ma. Michelle Penaranda, the new 

addition in the lab, comes from the Philippines. Many thanks to these people for their constant help 

and the very friendly atmosphere they are creating in the fish group office.  

I also would like to thank members of the fish group who left the lab. Dr. Guillaume 

Fournier, his precious help has been essential to the progress of my thesis. Thanks to Dr. Robert 

Vrancken, Dr. Stalin Raj, Dr. Benjamin Michel, Dr. Hélène Schroeder and Dr. Bérénice Costes 

for helping me settle in when I arrived in Belgium.  



Acknowledgments 

 
 

The laboratory of Immunology-Vaccinology is composed of three sub-groups that are 

constantly interacting. I would like to thank the people from the two other sub-groups I had the chance 

to work with. Thanks to the people of the group lead by Prof. Laurent Gillet: Dr Bénédicte Machiels, 

Dr Céline Lété, Dr Sylvie François, Dr Sarah Vidick, Bérengère Boutard, Bilal Latif and 

Mickael Dourcy, as well as the group what lead by Dr Benjamin Dewals: Dr Leonor Plameira, Dr 

Steven van Beurden, Françoise Myster, Océane Sorel. 

The three sub-groups of the Immunology-Vaccinology lab benefit from the work of dedicated 

technicians and secretaries. I’m thankful to Cédric Delforge, Emeline Deglaire, Christine Thys, 

Jérémy Dumoulin, Nathalie Poncelet, Antoine Guillaume, François Massart, Dominique Ziant 

and Charles Gaspar who contributed directly or indirectly to experiments. Last but not the least, I 

would like thank our secretaries Christina Espert and Lorère Dams, who made my life more 

convenient in the lab. 

I would like to thank my master supervisor Prof. Liancheng Lei (College of Animal 

Husbandry and Veterinary Medicine, Jilin University, China) for his permanent encouragement and 

constant help. Without him, I would not have the chance to study abroad for 4 years. 

I also would like to acknowledge my Chinese friends in Belgium, Xuerong Jiang, Huijun 

Cheng, Zhiyan Zhang, Wanbo Li, Qiongzhong Chen, Yongzhen Li, Ji Liu, Ming Fang, Xuewen 

Xu, Cheng Liu, Xin Zhang, who offered me their help to solve the numerous practical problems that 

I had to face when arriving in Belgium. They made also my life in Belgium more colorful. 

Many thanks go to my beloved family for their loving consideration and their great confidence 

in me throughout all these years. Most importantly, I would like to thank my parents for supporting me 

spiritually throughout my life. I must acknowledge my boyfriend, Dr. Lizi YIN, without his love, his 

permanent encouragement and constant help, I would not have finished my thesis and life in Belgium 

would not have been so nice. 

Being in Belgium to complete a PhD thesis is definitely one of the most interesting, 

stimulating and exciting experiences of my live. This experience has been possible thanks to the 

financial support of the Chinese Scholarship Council (Application No.2009617025). 

 

         Liège, 15th September 2013 

         Ping Ouyang 



Abbreviations 

 
 

List of abbreviations 

2D-LC MS/MS:  Two-dimensional liquid chromatography tandem 
mass spectrometry 

α gene: Immediate early gene 

aa: Amino acid 

ACHV: Atlantic cod herpesvirus 

AciHV-1: Acipenserid herpesvirus 1 

AciHV-2: Acipenserid herpesvirus 2 

AlHV-1:  Alcelaphine herpesvirus 1 

AngHV-1: Anguillid herpesvirus 1 

APCs: Antigen presenting cells 

AtHV-3:  Ateline herpesvirus 3 

Au:  Goldfish fin cell 

β gene : Early gene 

BAC:  Bacterial artificial chromosome 

BaCMV: Baboon cytomegalovirus 

BaLCV: Baboon lymphocryptovirus 

BHV-4: Bovin herpesvirus 4 

BMDCs: Bone marrow-derived dendritic cells 

BoHV-1:  Bovine herpesvirus 1 

BoHV-5:  Bovine herpesvirus 4 

BoHV-5:  Bovine herpesvirus 5 

Bonobo-HV: Bonobo herpesvirus 

bp: Base pair 

BPSV: Bovine papular stomatitis virus 

CaF-2:  Carp fin cell 

CCB:  Cyprinus carpio brain cell 
CCG:  Cyprinus carpio gill cell 
CCMV: Chimpanzee cytomegalovirus 

CCV: Channel catfish virus (= IcHV-1) 

CD: Cluster of differentiation 

cDNA: Complementary DNA 

CeHV-2:  Cercopithecine herpesvirus 2 

CeHV-9:  Cercopithecine herpesvirus 9 

CHV: Carp herpesvirus (= CyHV-1) 

CHX:  Cycloheximide 

cIL-10: Cellular Interleukin-10 

CMV: Cytomegalovirus 

CNGV: Carp nephritis and gill necrosis virus 

CNPV: Canarypox virus 

CPE:  Cytopathic effect 



Abbreviations 

 
 

CRF2: Class II cytokine receptor family 

CSIF: Cytokine synthesis inhibitory factor 

Ct:  Threshold cycle 

CXCL10: CXC chemokine ligand 10 

CyHV-1:  Cyprinid herpesvirus 1(= CHV) 

CyHV-2:  Cyprinid herpesvirus 2 

CyHV-3:  Cyprinid herpesvirus 3 

DC: Dendritic cells 

DC-SIGN: Dendritic Cell-Specific Intercellular adhesion 
molecule-3-Grabbing Non-integrin 

Del : Deleted 

DMEM:  Dulbecco’s modified essential medium 

DNA: Deoxyribonucleic acid 

dUTPase:  Deoxyuridine  triphosphate pyrophosphatase 

E:  Early 

EBV: Epstein-Barr virus (= HHV-4) 

EEDV: Epizootic epitheliotropic disease virus (= SalHV-3) 

EGFP:  Enhanced green fluorescent protein 

EHV-1: Quid herpesvirus 1 

EHV-2: Quid herpesvirus 2 

EHV-4: Quid herpesvirus 4 

ER: External repeats 

FBR: Foreign body reaction 

FCS: Fetal calf serum 

FHM:  Fathead minnow cell 

FV-4: Frog virus 4 (= RaHV-2) 

galK:  Galactokinase 

GaHV-1:  Gallid herpesvirus 1 

GaHV-2:  Gallid herpesvirus 2 

GaHV-3:  Gallid herpesvirus 3 

γ gene : Late gene 

G-CSF: Granulocyte colony-stimulating factor 

GFHNV: Goldfish hematopoietic necrosis virus 

GMCMV: Green monkey cytomegalovirus 

GM-CSF: Granulocyte-macrophage colony-stimulating factor 

gp:  Glycoprotein  

GPCR: G-protein couple receptor 

GPV : Goatpox virus 

HCMV: Human cytomegalovirus (= HHV-5) 

HHV-1:  Human herpesvirus 1 

HHV-2:  Human herpesvirus 2 

HHV-3:  Human herpesvirus 3 



Abbreviations 

 
 

HHV-4:  Human herpesvirus 4 

HHV-5:  Human herpesvirus 5 

HHV-6:  Human herpesvirus 6 

HHV-7:  Human herpesvirus 7 

HHV-8:  Human herpesvirus 8 

HPV: Herpesvirus salmonis  

HSV-1: Herpes simplex type 1 

HVA: Herpesvirus anguillae (= AngHV-1) 

IcHV-1: Ictalurid herpesvirus 1 

IcHV-2: Ictalurid herpesvirus 2 

IcmHV: Ictalurus melas herpesvirus (= IcHV-1) 

IE:  Immediate early 

IFN: Interferon 

IgA, G, M: Immunoglobulin A, G, M 

IL: Interleukin 

IL-10R: IL-10 receptor 

iNOS:  Inducible nitric oxide synthase 

IPNV: Infectious pancreatic necrosis virus 

IR: Internal repeats 

IVIS: in vivo bioluminescence imaging system 
Jak1: Janus kinase 1 

KF-1:  Koi fin cell 

KFC:  Koi fin cell 

KHV: Koi herpesvirus 

KHVD:  Koi herpesvirus disease 

L:  Late 

LAcmvIL-10: Latency associated cytomegalovirus IL-10 

LPS: Lipopolysaccharides 

LSDV: Lumpy skin disease virus 

LTHV: Lucké tumor herpesvirus (= RaHV-1) 

LUC:  Luciferase 

LTR: Left terminal repeats 

McHV-1:  Macacine herpesvirus 1 

McHV-4:  Macacine herpesvirus 4 

McHV-8:  Macacine herpesvirus 8 

MDDCs: Monocyte-derived dendritic cells 

MeHV-1: Meleagrid herpesvirus 1 

MEM: Minimum essential medium 

MHC class II B:  Major Histocompatibility Complex class II B 

MHC: Major histocompatibility complex 

MOI:  Multiplicity of infection 



Abbreviations 

 
 

mRNA: Messenger RNA 

MS:  Mass spectrometry 

MuHV-1: Murid herpesvirus 1 

MuHV-2: Murid herpesvirus 2 

MuHV-4: Murid herpesvirus 4 

NGF-2:  Epithelial-like cell line from fins of coloured carp 2 

NGF-3:  Epithelial-like cell line from fins of coloured carp 3  

NK cells: Natural killer cells 

OMCMV: Owl monkey cytomegalovirus 

OMV: Oncorhynchus masou virus 

ORF: Open reading frame 

ORFV: Orf virus 

OsHV-1: Ostreid herpesvirus 1 

OvHV-2:  Ovine herpesvirus 2 

PAA:  Phosphonoacetic acid 

PaHV-1: Panine herpesvirus 1 

PBMCs: Peripheral blood mononuclear cells 

PBS:  Phosphate buffered saline 

PCPV: Pseudocowpox virus 

PDCs: Plasmacytoid dendritic cells 

PeHV-1: Percid herpesvirus 1 

p.f.u.:  Plaque forming unit 

PGE2: Prostaglandin E2  

PHA: Phytohaemagglutinin 

PrV: Pseudorabies virus  

PsHV-1:  Psittacid herpesvirus 1 

RaHV-1:  Ranid herpesvirus 1 

RaHV-2:  Ranid herpesvirus 2 

RELP: Restriction fragment length polymorphism 

RhCMV: Rhesus cytomegalovirus 

RhLCV: Rhesus lymphocryptovirus 

RT-PCR: Reverse transcription PCR 

RT-qPCR:  Real-time quantitative PCR 

RTR: Right terminal repeats 

SaHV-2:  Saimiriine herpesvirus 2 

SalHV-1: Salmonid herpesvirus 1 

SalHV-2: Salmonid herpesvirus 2 

SalHV-3: Salmonid herpesvirus 3 

SD: Standard deviation 

SHV: Steelhead herpesvirus 

sIL10 R1: Soluble IL10 receptor 1 



Abbreviations 

 
 

SMCMV: Squirrel monkey cytomegalovirus 

SPV: Sheeppox virus 

STAT: Signal transduction and transcription 

SuHV-1:  Suid herpesvirus 1 

SVC: Spring viraemia of carp 

Th1: T helper 1 

TK:  Thymidine kinase 

TLEV: Tilapia larvae encephalitis virus 

TNFR:  Tumor necrosis factor receptor 

Tol/FL:  Silver carp fin cell 

TuHV-1:  Tupaiid herpesvirus 1 

Tyk2: Tyrosine kinase 2 

vIL-10: Viral IL-10 

VNTR:  Variable number of tandem repeats 

 



Table of contents 

 

Preamble ………………………………………………………………………………………… 1 

 

Introduction …………………………………………………………………………………….. 3 

 

1
st
 chapter:  5 

“The order Herpesvirales”  

 

1. Introduction 6 

2. Virus structure 6 

3. Genomic features 7 

4. Common biological properties 7 

5. Biological cycle 7 

5.1 Lytic infection 7 

5.2 Latent infection 9 

6. Classification of the order Herpesvirales 9 

6.1 The Herpesviridae family 10 

6.2 The Malacoherpesviridae family 10 

6.3 The Alloherpesviridae family 11 

7. References 12 

 

2
nd

 chapter:  16 

“Cyprinid herpesvirus 3: an interesting virus for applied and fundamental research” 

 

Abstract 17 

1. Introduction 18 

2. Characterization of CyHV-3 18 

2.1 General description 18 

2.2 In vitro replication 21 

2.3 Temperature restriction 21 

2.4 Geographical distribution 22 

2.5 Presence of CyHV-3 in natural environment 22 

3. Disease 23 

3.1 Disease characteristics 23 

3.2 Host range and susceptibility 24 

3.3 Pathogenesis 24 

3.4 Transmission 26 

3.5 Diagnosis 26 



Table of contents 

 

3.6 Vaccination 27 

4. Host-pathogen interactions 27 

4.1 Genetic resistance of carp strains to CyHV-3 27 

4.2 Immune response of carp against CyHV-3 28 

5. Conclusion 30 

6. Competing interests 31 

7. Author’s contributions 31 

8. Acknowledgments 31 

9. References 32 

 

3
rd

 chapter:  40 

“Interleukin-10s encoded by viruses: a remarkable example of independent acquisitions  

of a cellular gene by viruses and its subsequent evolution in the viral genome” 

 

Abstract 41 

1. Introduction 42 

2. Discovery of vIL-10s 42 

3. Genetic structure of IL-10 homologues 43 

4. Origin and evolution of vIL-10s 43 

5. Protein structure of IL-10 homologues 45 

6. Transcriptomic and proteomic expression of vIL-10 genes 46 

7. Ligand-receptor complexes formed by IL-10 homologues 47 

8. Biological activities of IL-10 homologues 48 

8.1 Biological activities of cIL-10 48 

8.2 Biological activities of vIL-10s 49 

9. Viral IL-10s as a topic of applied research 56 

10. Concluding remarks 57 

11. Acknowledgements 57 

12. References 58 

Supplementary material S1 70 

Supplementary material S2 71 

 

Objectives ………………………………………………………………………………………..  72 

 

Experimental section …………………………………………………………………………… 74 

 

 



Table of contents 

 

1
st
 chapter:  75 

“The IL-10 homologue encoded by cyprinid herpesvirus 3 is essential neither for viral 

replication in vitro nor for virulence in vivo” 

 

2
nd

 chapter:  95 

“Development of a Safe and Efficacious Attenuated Recombinant Vaccine against  

Cyprinid herpesvirus 3” 

 

Discussion and perspectives ……………………………………………………………………. 112 

 

Summary…………………………………………………………………………..……………... 119 

 

References ………………………………………………………………………………………... 122 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Preamble 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Preamble 

 2 

Preamble 

Common carp (Cyprinus carpio) is cultivated for human consumption worldwide. It is one of 

the most important freshwater species in aquaculture with a world production of 3.4 million metric 

tons per year (estimation from the FAO for 2010). While the common carp represents a cheap source 

of animal proteins, its coloured subspecies koi (Cyprinus carpio koi) is cultivated as an expensive pet 

fish for personal pleasure or worldwide competitive exhibitions. The price of individual collectable 

subjects fluctuates between 1 to 30 K euros, but can reach much higher prices. In the late 1990s, a 

highly contagious and virulent disease began to cause severe economic losses in these two carps 

industries worldwide. The causative agent of the disease was initially called koi herpesvirus (KHV). It 

has been renamed as cyprinid herpesvirus 3 (CyHV-3) in 2005 and classified in the Alloherpesviridae 

family of the Herpesvirales order. 

In addition to its economic importance, CyHV-3 has several qualities as a fundamental model 

of infection: (i) It is phylogenically distant from the vast majority of herpesviruses that have been 

studied so far. (ii) It can be studied in laboratories by infection of its natural host (homologous 

virus-host model). (iii) The sequence of its genome published in 2007 revealed a fascinating virus with 

unique properties in the Herpesvirales, such as an extremely large genome (295 Kb), a high number of 

genes which are not homologous to known viral sequences, and genes that are normally found 

exclusively in the Poxviridae. (iv) Interestingly, the sequencing of the CyHV-3 genome revealed 

several genes potentially encoding proteins involved in immune evasion mechanisms. Among these 

genes, ORF134 encodes a homologue of carp Interleukin 10 (IL-10). The identification of this ORF in 

the CyHV-3 genome represents an opportunity to study in vitro and in vivo the roles of a viral IL-10 

(vIL-10) homologue using a homologue virus-host model. The present thesis was devoted to the study 

of this viral gene. 

The structure of this manuscript is as follows. It starts with an introduction on the 

Herpesvirales order, on CyHV-3 and on the viral Interleukin-10 homologues encoded by viruses. 

While the first section is brief and general, the second and the third represent review manuscripts that 

have been published (in Veterinary research) or accepted for publication (in Journal of General 

Virology), respectively. After the introduction, the objectives of the thesis are briefly exposed. The 

results obtained during this thesis are then presented in two chapters. The first chapter has been 

published in Veterinary Research, while a manuscript including the results of the second chapter is 

under preparation for publication. In the last section of this manuscript, the main results are discussed 

and potential perspectives are presented. 
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Preamble 

 The introduction of this thesis is structured in three chapters. The first chapter presents a brief 

description of the order Herpesvirales. The general properties of the viruses belonging to this order 

and the families it contains are described. This section of the manuscript is an update and adapted 

version of a text used in most theses of the host lab on herpesviruses. The second chapter of this 

introduction summarized the knowledge on Cyprinid herpesvirus 3 (CyHV-3) available in the 

literature when this thesis was printed. It represents a review has been published in Veterinary research. 

Ping Ouyang is second author of this review. The third and last chapter of the introduction represents a 

review on viral homologues of Interleukin-10 encoded by viruses (vIL-10). Ping Ouyang is co-first 

author of this manuscript. 
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1. Introduction 

At the border of living and non-living, viruses are submicroscopic biological agents consisting 

of nucleic acid and protein shell which may be multilayered. They cannot replicate in the extracellular 

medium and reproduce as obligate intracellular parasites in the host organism. Since the description of 

the tobacco mosaic virus at the end of the 19th century, thousands of viruses were described in every 

ecosystem. They infect bacteria, plants and animals (Dimmock et al., 2007). The International 

Committee on Taxonomy of viruses (ICTV) developed universal systems for classifying viruses. In 

the current ICTV taxonomy, six orders have been established, the Caudovirales, the Herpesvirales, the 

Mononegavirales, the Nidovirales, the Picornavirales and the Tymovirales (King et al., 2012). 

Members of the order Herpesvirales are enveloped viruses with a linear double-stranded DNA 

(dsDNA) genome. They share an identical structure. A densely packed DNA core is contained in an 

icosahedral capsid. The capsid is embedded in a complex proteinaceous layer called the tegument. A 

lipid envelope containing numerous viral glycoproteins forms the outermost structure of the viral 

particle (McGeoch et al., 2008). Most of the members of the order Herpesvirales have been shown to 

realize two distinct phases in their life cycle: lytic replication characterized by a transcription program 

where immediate-early (IE), early (E), and late (L) genes are expressed successively; and latency, 

consisting of the maintenance of the viral genome as a non-integrated episome and the expression of a 

limited number of viral genes and microRNAs (Roizman & Pellet, 2007). Upon reactivation, latency 

reverses to a lytic replication. 

The origin of the order Herpesvirales has been estimated at several hundred million years ago 

(Davison, 2002). So far, approximately 135 members have been isolated from oyster, fish, amphibian, 

reptile, bird and mammal species, including human (Davison et al., 2009). Herpesviruses have mainly 

co-evolved with their host and in most cases are well adapted to them. This adaption is demonstrate 

that the ability of most herpesviruses to persist in the host species without inducing lethal infection. 

The order Herpesvirales contains three families, the Herpesviridae (comprising viruses 

infecting mammals, birds and reptiles), the Alloherpesviridae (comprising viruses infecting fish and 

amphibians) and the Malacoherpesviridae (comprising viruses infecting mollusks) families. Below, 

we will first provide a general and brief description of the structure, the genome, the common 

biological properties and the replication cycle of the members of the order Herpesvirales. Next, we 

will discribe briefly the biological specificities of the three families. 

2. Virus structure 

Every virus classified in the order Herpesvirales possesses an identical structure (Ackermann, 

2004). Their genome is protected by an icosahedral capsid with diameter of approximately 100 nm. 

The capsid is composed of 162 capsomers (150 hexons and 12 pentons) (Figure 1). This nucleocapsid 

is surrounded by an amorphous layer of proteins termed tegument, which contains proteins mainly 
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involved in gene expression regulation. Finally, a lipid envelope bearing viral glycoproteins is 

covering the elements listed above to form a spherical particle of approximately 150 to 300 nm in 

diameter (Figure 1). 

3. Genomic features 

Herpesvirus genome is a long dsDNA molecule, linear in the capsid, but circular once it 

penetrates the nucleus of the host cell (Roizman & Pellet, 2007). Depending of the virus species, the 

guanine plus cytosine (G+C) percentage varies from 31 to 75% while the genome length varies from 

120 to 295 kilo base pairs (kbp) (Aoki et al., 2007; Roizman & Pellet, 2007). The genome contains 

variable internal and terminal repeated sequences. Based on the arrangement of these sequences, 

herpesvirus genomes have been classified in 6 different groups (Figure 2) (Roizman & Pellet, 2007). 

All herpesvirus genomes contain at their termini conserved signals for packaging of the DNA into 

capsids (Roizman & Pellet, 2007). 

4. Common biological properties 

Herpesviruses seem to share 4 important biological properties (Ackermann, 2004). Firstly, 

they encode their own enzymes for nucleic acid synthesis. Secondly, both viral DNA replication and 

assembly of the nucleocapsid take place in the nucleus of the infected cell. Thirdly, production of 

progeny viral particles leads to the lysis of the infected cell. Finally, even if this not firmly 

demonstrated for the Alloherpesviridae and Malacoherpesviridae families, all studied herpesviruses 

are able to establish a latent infection in their natural host. 

5. Biological cycle 

Herpesviruses have two distinct phases in their life cycle: lytic and latent infection. The 

characterization of these two phases is based on the study of members of the Herpesviridae family. 

5.1 Lytic infection 

The herpesvirus multiplication cycle is illustrated in Figure 3. It starts with the virion 

attachment on the host cell surface mediated by the interaction of viral glycoproteins with their 

cellular receptors. For example, human herpesvirus 1 (HHV-1) first binds to the cells through 

interaction of glycoproteins gC and gB with some cellular proteoglycans such as heparan sulfate 

(Spear, 2004). A stronger attachment is then mediated by the interaction of gD to its specific cellular 

receptor (Spear, 2004). 

After fusion of the viral envelope with the plasma membrane (or eventually endocytic 

vesicles), the nucleocapsid and tegument proteins are delivered in the cytoplasm where microtubules 

bring the nucleocapsid surrounded by the tegument close to the nucleus (Figure 3) (Sodeik et al., 
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1997). The genome is then released and enters the nucleus through a pore of the nuclear membrane. 

As soon as the genome enters in the nucleus, the viral DNA circularizes prior to viral protein synthesis 

(Garber et al., 1993). This circularization is realized by direct ligation of single unpaired 3’ end 

nucleotides present at both ends of the genome (Davison, 1984). Tegument proteins migrate with 

genome into the nucleus where they regulate virus and cellular gene expression. 

Herpesvirus gene expression is characterized by a transcription program where 

immediate-early (IE or α), early (E or β), and late (L or γ) genes are expressed successively (Figures 3 

and 4) (Honess & Roizman, 1974; 1975; Jones & Roizman, 1979). IE gene expression is initiated by 

tegument proteins which interact with cellular transcriptional proteins, such as RNA polymerase II, to 

activate the transcription. IE genes encode mainly for transcription factors which inhibit IE gene 

expression and promote E gene expression. The maximum of E gene expression is usually observed 

between 4 and 8 hours post-infection (Figure 4). They are mainly coding for enzymes involved in 

nucleotide metabolism and viral DNA replication (Figure 3). Similarly as IE genes, E genes down 

regulate their own expression while stimulating the expression of L genes. Maximum L gene 

expression occurs after virus DNA replication (Figures 3 and 4). L genes are further divided in L1 (or 

γ1) and L2 (or γ2) subclasses. L1 gene expression is increased by viral DNA synthesis genes while L2 

gene expression starts only after the synthesis of the viral genome (Figure 4) (Wagner et al., 1998). 

Most of the L genes code for the proteins incorporated in mature virions; these proteins are called 

structural proteins. The structural proteome of a virus is defined as all the proteins which enter in the 

virion composition. Produced capsid proteins encoded by L genes are assembled in the nucleus to 

form the nucleocapsid containing newly synthesized viral DNA (Figure 3). 

The replication of the viral genome is initiated from one or several origins of replication. 

Specific viral proteins are involved in viral DNA synthesis through a rolling-circle mechanism 

(Ackermann, 2004; Jacob et al., 1979). This process generates concatemers consisting of complexe 

structure of high molecular weight made of several genomic units linked head-to-tail (Figure 3). A 

viral protein complex brings concatemers close to the portal complex of a capsid through which a 

single genomic unit is internalized and cleaved from the concatemer (Mettenleiter et al., 2009). 

Different models were proposed for the egress of the nucleocapsid from the nucleus to the 

extracellular space (Granzow et al., 2001; Johnson & Spear, 1982; Wild et al., 2005). In the 

envelopment-deenvelopment model (Figure 3), the temporary enveloped virus in the peri-nuclear 

space fuses with the external nuclear membrane to deliver the naked capsid in the cytoplasm. 

Tegument proteins are associated with the capsid before it buds into trans-golgi vesicles to form the 

envelope (Browne et al., 1996; Granzow et al., 2001; Masse et al., 1999; Smith, 1980). The virion is 

finally released from the cell by exocytosis or cell lysis (Figure 3) (Flint et al., 2000; Mettenleiter, 

2004; Mettenleiter et al., 2009). In the luminal model, the capsids bud in the internal nuclear 

membrane then migrate in the endoplasmic reticulum (ER). The enveloped virions are then (i) 

incorporated in a transport vesicle and delivered in the golgi apparatus (vesicular model) or  



Figure 5. Acquisition process of herpesvirus envelope. (A) Primary enveloped virions in the perinuclear
space. The electron-dense sharply bordered layer of tegument underlying the envelope and the absence of
envelope glycoprotein spikes is noteworthy. (B) After translocation into the cytosol, capsids of HSV-1, PrV
and BoHV-4 appear “naked”, whereas those of HCMV and KHV are covered with a visible layer of “inner”
tegument. (C) Secondary envelopment and (D) presence of enveloped virions within a cellular vesicle during
transport to the plasma membrane. The same stages can be observed for members of the Herpesviridae
family and KHV, a member of the Alloherpesviridae family. HSV-1: Herpes simplex type 1; PrV:
Pseudorabies virus; HCMV: Human cytomegalovirus; BHV-4: Bovin herpesvirus 4; KHV: Koi herpesvirus.
Bars represent 100 nm. Reproduced from Mettenleiter et al. (2009).
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(ii) reach the golgi apparatus through connexions between the latter and the ER (intra-cisternal model). 

Independently of these models, enveloped virions are released by exocytosis (Darlington & Moss, 

1968; Johnson & Spear, 1982). Recently, a new model was described for BoHV-1 where capsids 

present in the nucleus are able to reach the cytoplasm trough enlarged nuclear pore (Wild et al., 2005). 

The capsids, once in the cytoplasm, bud with golgi-derived vesicles before egress from the host cell by 

exocytosis.  

A recent study by electron microscopy on the morphogenesis of different herpesviruses 

belonging to the Herpesviridae and Alloherpesviridae families, concludes that the nucleocapsids 

follow the envelopment-deenvelopment model before being released in the extracellular space by 

exocytosis (Figure 5) (Mettenleiter et al., 2009). 

5.2 Latent infection 

Latency is observed in all members of the family Herpesviridae. It consists in the virus 

maintenance in the host cell without production of viral particles. The mechanisms that induce latency 

are still poorly understood (Roizman & Pellet, 2007). Latency is supposed to occur when the virus 

infected specific cell types. The virus can then persist in the host even after the onset of an adaptive 

immune response able to clear cells supporting a replicative infection. Only few viral genes are 

expressed during latency. During latency, the genome is maintained as a non integrated episome in the 

nucleus. When the latent infected cells divide (if they do so), the viral episome is replicated with the 

cellular genomic DNA. Copies of this episome are then distributed between daughter cells. The latent 

infection can be interrupted by exogenous stimuli and switched to lytic infection. Latency has been 

studied mainly in the family Herpesviridae. Regulation of latency seems to be mediated mainly by 

transcripts (LATs for latency associated transcripts) in alphaherpesviruses (Jones, 2003) while in beta- 

and gammaherpesviruses latency proteins are expressed (Ballestas & Kaye, 2001; Cardin et al., 2009; 

Lee et al., 1999). 

Recent studies described the presence of microRNAs (miRNA) in the genome of different 

herpesviruses of the Herpesviridae family (Pfeffer et al., 2005). Ever since, several studies 

demonstrated miRNA productions amongst the latency transcripts (alphaherpesvirus LATs). They 

seem to play an important role in cooperation with the beta- and gammaherpesvirus proteins during 

the viral biological cycle and essentially during the latency where they can modulate cell apoptosis 

and immune pathways, as well as the viral lytic cycle (Burnside et al., 2006; Cai et al., 2005; Lu et al., 

2008; Umbach et al., 2008; Wang et al., 2008). 

6. Classification of the order Herpesvirales 

The ICTV has classified under the order Herpesvirales viruses encoding the putative ATPase 

subunit of the terminase (a complex that is responsible for packaging virus DNA into progeny capsids) 
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(Davison, 1992; 2002; Waltzek et al., 2009). This protein is specific to herpesviruses; however, it is 

also conserved to a lesser degree in the T4-like bacteriophages of the family Myoviridae (Davison et 

al., 2009). The Herpesvirales order is subdivided in three families: the Herpesviridae, the 

Alloherpesviridae and the Malacoherpesviridae (Davison et al., 2009; Roizmann et al., 1992). 

6.1 The Herpesviridae family 

The family Herpesviridae is highly studied and is divided into three sub-families: Alpha-, 

Beta-, and Gammaherpesvirinae (Davison et al., 2009; Roizman & Pellet, 2007). It regroups 

herpesviruses infecting reptiles, birds and mammals, including humans. 

The alphaherpesviruses have a variable host range, a relatively short reproduction cycle, a 

rapid spread in culture, an efficient destruction of infected cells, and a capacity to establish latent 

infection in sensory neurons. As example, this subfamily contains the human herpesvirus 1 (HHV-1 or 

HSV-1) and 3 (HHV-3 or VZV), belonging to the genera Simplexvirus and Varicellovirus, 

respectively.  

In contrast to alphaherpesviruses, betaherpesviruses have a restricted host range. The 

reproductive cycle is relatively long, and the infection progresses slowly in cell culture. Infected cells 

frequently become enlarged (cytomegalia). Their latency is established mainly in secretory glands. As 

example, this subfamily contains the human herpesvirus 5 (HHV-5 or HCMV) and the murid 

herpesvirus 1 (MuHV-1 or MCHV), belonging to the genera Cytomegalovirus and the 

Muromegalovirus, respectively. 

Gammaherpesviruses have usually a host range restricted to the family or the order of their 

natural host. In vitro, all members replicate in lymphoblastic cells, and some also cause lytic infections 

in some types of epithelioid and fibroblastic cells. Viruses in this group are usually specific for either 

T or B lymphocytes. Latent virus is frequently demonstrated in lymphoid tissue.  

As example, this subfamily contains the human herpesvirus 4 (HHV-4 or EBV) and 8 (HHV-8 or 

KSHV), belonging to the genera Lymphocryptovirus and Rhadinovirus, respectively. 

6.2 The Malacoherpesviridae family 

Until recently, this family consisted in a single virus (Davison et al., 2005): the Ostreid 

herpesvirus 1 (OsHV-1) infecting the Japanese oyster (Crassostrea gigas). Its genome contains 207 kb 

and is composed of two unique regions (UL and US; 168 kb and 3 kb, respectively), each flanked by 

an inverted repeat (TRL/IRL and TRS/IRS of 7 kb and 10 kb, respectively). The presence of 124 ORFs 

are described whose 12 are duplicated in inverted repeats. Interestingly, among all these genes, 38 

belong to 12 families of related genes (Davison et al., 2005). Recently, a neurotropic herpesvirus 

infecting the gastropod abalone (Haliotis spp) was described (Savin et al., 2010). Based on the 

homology existing between Abalone Herpesvirus (AbHV) and OsHV-1, it has been proposed to 



Table 1. Herpesviruses of fish and amphibians (adapted from Hallon et al. 2011). 

Virus name 

(abbreviation) 
Clade 

Common name 

(abbreviation) 
Host(s) Disease 

Anguillid HV 1 

(AngHV-1) 
1 

HV anguillae 

(HVA) 

Japanese eel Anguilla japonica  

and European eel A. Anguilla 
Haemorrhages of skin, fins, gills, liver 

Cyprinid HV 1 
(CyHV-1) 

1 
HV cyprini, carp pox 
HV, carp HV(CHV) 

Common carp  
Cyprinus carpio 

High losses in fry- exophthalmia 
haemorrhages, survivors have papilloma 

Cyprinid HV 2 
(CyHV-2) 

1 

Goldfish 

hematopoietic 
necrosis virus  

(GFHNV) 

Goldfish  
Carassius auratus 

High mortality at all ages. Necrosis of 

hematopoietic tissue, spleen, pancreas, 

intestine 

Cyprinid HV 3 
(CyHV-3) 

1 

Koi HV (KHV),  

carp nephritis and gill 
necrosis virus 

(CNGV) 

Common carp 

Gill inflammation, hyperplasia, and 

necrosis, hematopoietic tissue necrosis. 

High mortality at all ages 

Ictalurid HV 1 
(IcHV-1) 

2 

Channel catfish virus 

(CCV), Channel 

catfish herpesvirus 

Channel catfish  
Ictalurus punctatus 

Kidney, liver and intestinal necrosis, 

haemorrhages, high mortality in young 

subjects  

Ictalurid HV 2 
(IcHV-2) 

2 
Ictalurus melas HV 

(IcmHV) 
Black bullhead  
Ameiurus melas 

Kidney necrosis, haemorrhages, high 
mortality at all ages 

Acipenserid HV 
1 (AciHV-1) 

2 White sturgeon HV 1 
White sturgeon  

Acipenser transmontanus 
diffuse dermatitis, high losses in juveniles 

Acipenserid HV 
2 (AciHV-2) 

2 White sturgeon HV 2 White sturgeon Epithelial hyperplasia 

Salmonid HV 1 
(SalHV-1) 

2 

HV salmonis (HPV) 

Steelhead herpesvirus 

(SHV) 

Rainbow trout  
Oncorhynchus mykiss 

Mild disease associated with low losses at 

10 °C. Adults: female shed virus in ovarian 

fluid. Asymptomatic infection 

Salmonid HV 2 

(SalHV-2) 
2 

Oncorhynchus masou 

virus (OMV) 

Cherry salmon O. masou, coho 
salmon O. kisutch, sockeye 

salmon O. nerka, coho salmon 

O. keta, rainbow trout, 

Viremia, external haemorrhages 

exophthalmia, hepatic necrosis. High 

mortality in young subjects. Survivors have 
oral papilloma. Infected female shed virus in 

ovarian fluid 

Salmonid HV 3 

(SalHV3-) 
2 

Epizootic 
epitheliotropic disease 

virus (EEDV) 

Lake trout Salvelinus 
namaycush, lake trout × brook 

trout S. fontinalis hybrids 

Epithelial hyperplasia, hypertrophy, 
haemorrhages on eye and jaw. High 

mortality in juveniles at 6–15 °C 

Gadid 

herpesvirus 1 
(GaHV-1) 

2 
Atlantic cod 

herpesvirus (ACHV) 

Atlantic cod  

Gadus morhua 

Hypertrophy of cells in gills. High mortality 

in adults. 

Ranid HV 1 
(RaHV-1) 

2 
Lucké tumor HV 

(LTHV) 
Leopard frog  
Rana pipiens 

Renal adenocarcinoma 

Ranid HV 2 

(RaHV-2) 
2 

Frog virus 4  

(FV-4) 
Leopard frog No known disease 

Pilchard HV 2  
Australian pilchard  

Sardinops sagax 
Gill inflammation associated with epithelial 
hyperplasia and hypertrophy. High mortality 

Tilapia HV 
Possible 

Herpesviridae 

Tilapia larvae 
encephalitis virus 

(TLEV) 

Blue tilapia  

Oreochromis aureus 
Encephalitis in larvae. High mortality 

Percid HV 1 

(PeHV-1) 
 

HV vitreum,  

walleye HV 

Walleye  

Stizostedion vitreum 
Diffuse epidermal hyperplasia 
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include the AbHV-1 in the Malacoherpesviridae family (Savin et al., 2010). Despite the lack of 

similarity with the capsid proteins encoded by other herpesviruses, electron microscopy analysis 

demonstrates that OsHV-1 and AbHV-1 have a capsid morphology comparable to that of HHV-1 and 

IcHV-1 (Davison et al., 2005; Savin et al., 2010). 

6.3 The Alloherpesviridae family 

The Alloherpesviridae encompasses viruses infecting fish and amphibians. So far, this family 

regroups 13 viruses infecting teleost fish, 2 viruses of chondrostean fish and 2 viruses infecting 

amphibians (Hanson et al., 2011) (Table 1). Phylogenetic studies öbased on the DNA polymerase and 

the terminase genes led the subdivision of the Alloherpesviridae family into two clades: the first clade 

comprises large linear dsDNA viruses (245-295 kb) as Anguillid and Cyprinid herpesviruses; the 

second clade comprises viruses with smaller genome (134-235 kb) as Ictalurid, Salmonid, Acipenserid 

and Ranid herpesviruses (Davison & Stow, 2005; Waltzek et al., 2009). The genomes of several 

Alloherpesviridae have been sequenced: Ictalurid herpesvirus 1 (IcHV-1), Cyprinid herpesvirus 3 

(CyHV-3), Anguillid herpesvirus 1 (AngHV-1); the Ranid herpesvirus 1 (RaHV-1) and 2 (RaHV-2). 

Based on these sequences, 12 conserved genes have been identified in the Alloherpesviridae family 

(Aoki et al., 2007; van Beurden et al., 2010). 

Even though Alloherpesviridae are distantly related to Herpesviridae, there are similarities in 

the way they infect, replicate and persist in the host (Table 1). (i) They display a high level of host 

specificity, causing disease in only one species or in closely related members of the same genus. (ii) 

Some alloherpesviruses have been evaluated for long-term latent infections (persistence of viral DNA 

in survivors without production of infectious particles). Latency has been suggested in CyHV-1, 

CyHV-3, SalHV-2 and IcHV-1 (Hanson et al., 2011). Much of our knowledge on the biology of 

Alloherpesviridae is derived from research on two models of infection: IcHV-1 for clade 2 and 

CyHV-3 for clade 1. CyHV-3 being the subject of this thesis, the remaining part of this introduction 

has been devoted to this virus. 
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Abstract 

Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae is the causative 

agent of a lethal, highly contagious and notifiable disease in common and koi carp. The economic 

importance of common and koi carp industries together with the rapid spread of CyHV-3 worldwide, 

explain why this virus became soon after its isolation in the 1990s a subject of applied research. In 

addition to its economic importance, an increasing number of fundamental studies demonstrated that 

CyHV-3 is an original and interesting subject for fundamental research. In this review, we summarized 

recent advances in CyHV-3 research with a special interest for studies related to host-virus interactions. 
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1. Introduction 

The common carp (Cyprinus carpio) is one of the oldest cultivated fish species. In China, 

culture of carp dates back to at least the 5th century BC, whereas in Europe, carp farming began during 

the Roman Empire [1]. Nowadays, common carp is one of the most economically valuable species in 

aquaculture: (i) it is one of the main cultivated fish for human consumption with a world production of 

3.4 million tons per year [2]; (ii) it is produced and stocked into fishing areas for angling purpose; and 

(iii) its colorful, ornamental varieties (koi carp) grown for personal pleasure and competitive 

exhibitions represent probably the most expensive market of individual freshwater fish with some 

prize-winners sold for 104-106 US dollars [3]. 

Herpesviruses infect a wide range of vertebrates and invertebrates [4]. However, the 

host-range of individual herpesvirus species is generally restricted revealing host-virus co-evolution. 

In aquaculture, herpesvirus infections have been associated with mass mortality of different fish 

species causing severe economic losses [5-7]. In the late 1990s, a new highly contagious and virulent 

disease began to cause severe economic losses in both koi and common carp industries. Soon after its 

first known occurrences reported in Israel, USA, and Germany [8, 9], the disease was described in 

various countries worldwide. The rapid spread of the disease was attributed to international fish trade 

and to koi shows around the world [10]. The causative agent of the disease was initially called koi 

herpesvirus (KHV) because of its morphological resemblance to viruses of the order Herpesvirales [9]. 

The virus was subsequently called carp interstitial nephritis and gill necrosis virus (CNGV) because of 

the associated lesions [11]. Finally, on the basis of genome homology with previously described 

cyprinid herpesviruses the virus was renamed cyprinid herpesvirus 3 (CyHV-3) [12]. 

Because of its worldwide spread and the economic losses it caused, CyHV-3 became rapidly a 

notifiable disease and a subject of application oriented research. However, an increasing number of 

recent studies have demonstrated that it is also an interesting subject for fundamental research. In this 

review, we summarized recent advances in CyHV-3 research with a special interest for those related to 

host-virus interactions. 

2. Characterization of CyHV-3 

2.1 General description 

2.1.1 Classification 

CyHV-3 is a member of genus Cyprinivirus, family Alloherpesviridae, order Herpesvirales 

(Figure 1a) [13]. The Alloherpesviridae is a newly designated family which regroups herpesviruses 

infecting fish and amphibians [14]. It is divided into four genera: Cyprinivirus, Ictalurivirus, 

Salmonivirus, and Batrachovirus [13]. The genus Cyprinivirus contains viruses that infect common 

carp (Cyprinid herpesvirus 1 and 3; CyHV-1 and CyHV-3), goldfish (Cyprinid herpesvirus 2; CyHV-2) 
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Figure 1. Phylogeny of the order Herpesvirales and the Alloherpesviridae family. (A) Cladogram 

depicting relationships among viruses in the order Herpesvirales, based on the conserved regions of the 

terminase gene. The Bayesian maximum likelihood tree was rooted using bacteriophages T4 and RB69. 

Numbers at each node represent the posterior probabilities (values > 90 are shown) of the Bayesian analysis. 

(B) Phylogenetic tree depicting the evolution of fish and amphibian herpesviruses, based on sequences of the 

DNA polymerase and terminase genes. The maximum likelihood tree was rooted with two mammalian 

herpesviruses (HHV-1 and HHV-8). Maximum likelihood values (> 80 are shown) and Bayesian values (> 90 

are shown) are indicated above and below each node, respectively. Branch lengths are based on the number 

of inferred substitutions, as indicated by the scale bar. AlHV-1: alcelaphine herpesvirus 1; AtHV-3: ateline 

herpesvirus 3; BoHV-1, -4, -5: bovine herpesvirus 1, 4, 5; CeHV-2, -9: cercopithecine herpesvirus 2, 9; 

CyHV-1, -2: cyprinid herpesvirus 1, 2; EHV-1, -4: equid herpesvirus 1, 4; GaHV-1, -2, -3: gallid herpesvirus 

1, 2, 3; HHV-1, -2, -3, -4, -5, -6, -7, -8: human herpesvirus 1, 2, 3, 4, 5, 6, 7, 8; IcHV-1: ictalurid herpesvirus 

1; McHV-1, -4, -8: macacine herpesvirus 1, 4, 8; MeHV-1: meleagrid herpesvirus 1; MuHV - 2, - 4: murid 

herpesvirus 2, 4; OsHV-1: ostreid herpesvirus 1; OvHV-2: ovine herpesvirus 2; PaHV-1: panine herpesvirus 

1; PsHV-1: psittacid herpesvirus 1; RaHV-1, -2: ranid herpesvirus 1, 2; SaHV - 2: saimiriine herpesvirus 2; 

SuHV-1: suid herpesvirus 1; TuHV-1: tupaiid herpesvirus 1. Reproduced with permission from Waltzek et al. 

[14]. 
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and freshwater eel (Anguillid herpesvirus 1; AngHV-1). Phylogenetic analyses revealed that the genus 

Cyprinivirus forms a clade distinct from the three other genera listed above (Figure 1b). Viruses of the 

Cyprinivirus genus possess the largest genomes (248–295 kb) in the order Herpesvirales. 

2.1.2 Morphology 

Like all members of the order Herpesvirales, CyHV-3 virions are composed of an icosahedral 

capsid containing the genome, a lipid envelope bearing viral glycoproteins and an amorphous layer of 

proteins termed tegument, which resides between the capsid and the envelope [15]. The diameter of 

CyHV-3 virions is 167–200 nm according to the infected cell type (Figure 2) [15]. Morphogenesis of 

CyHV-3 is also characteristic of the order Herpesvirales, with assembly of the nucleocapsid and 

acquisition of the lipid envelope (derived from host cell trans-golgi membrane) that take place in the 

nucleus and the cytosol of the host cell, respectively [9,15,16]. 

2.1.3 Genome 

The genome of CyHV-3 is a 295 kb, linear, double stranded DNA molecule consisting of a 

large central portion flanked by two 22 kb repeat regions, called the left and right repeats [18]. To date, 

this is the largest genome among all sequenced herpesviruses. The CyHV-3 genome has been cloned 

as a stable and infectious bacterial artificial chromosome (BAC), which can be used to produce 

CyHV-3 recombinants [19]. 

The CyHV-3 genome is predicted to contain 155 potential protein-coding open reading frames 

(ORFs), among which eight (ORF1-ORF8) are duplicated in terminal repeats [13]. Nine ORFs are 

characterized by the presence of introns [13]. CyHV-3 genome encodes five gene families: ORF2, 

tumor necrosis factor receptor (TNFR), ORF22, ORF25, and RING gene families [18]. The ORF25 

family consists of 6 paralogous sequences (ORF25, ORF26, ORF27, ORF65, ORF148 and ORF149) 

encoding potential type 1 membrane glycoproteins. Independently of the viral strain sequences, 

ORF26 is described as a pseudogene; while ORF27 has been characterized as pseudogene in 2 out of 3 

sequenced laboratory strains [18]. All non-fragmented members of this family (ORF25, ORF65, 

ORF148 and ORF149) are incorporated in mature virions, presumably in the envelope [20]. 

Interestingly, CyHV-3 genome encodes proteins potentially involved in immune evasion 

mechanisms such as, for example, G-protein coupled receptor (encoded by ORF16), TNFR 

homologues (encoded by ORF4 and ORF12) and an interleukine-10 (IL-10) homologue (encoded by 

ORF134) [18]. 

Among the family Alloherpesviridae, twelve ORFs (named core ORFs) are conserved in all 

sequenced viruses and were presumably inherited from a common ancestor [13]. The Cypriniviruses  

(CyHV-1, CyHV-2, and CyHV-3) possess 120 orthologous ORFs. Twenty one ORFs are unique to 

CyHV-3, including ORF134 encoding an IL-10 homolog [13]. The recently described second IL-10 



Figure 2. Electron microscopy examination of CyHV-3 virion. Bar represents 100 nm. Adapted with 

permission from Mettenleiter et al. [17]. 
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Figure 3. Schematic representation of CyHV-3 virion proteome. The viral composition of the envelope 

(circle), capsid (hexagon) and tegument is indicated. Membrane proteins of type 1, 2 and 3 are represented by 

triangles pointed inside, triangles pointed outside and rectangles, respectively. Other proteins are shown as 

squares. The different fillings indicate the relative abundance of proteins based on their emPAI (< 0.25, < 

0.50, < 1, < 3 and > 3). p: protein, gp: glycoprotein, ND: no data. Reproduced with permission from Michel et 

al. [20]. 
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homolog in the family Alloherpesviridae encoded by AngHV-1 does not seem to be an orthologue of 

the CyHV-3 ORF134 [21]. CyHV-3 shares 40 orthologous ORFs with AngHV-1 although the total 

number of ORFs shared by all CyHVs with AngHV-1 is estimated to be 55 [13]. This supports the 

phylogenetic conclusion that among the genus Cyprinivirus, CyHVs are more closely related to each 

other than to other members of the family Alloherpesviridae [14]. Interestingly, CyHV-3 also encodes 

genes with closest relatives in viral families such as Poxviridae and Iridoviridae [18, 22]. 

2.1.4 Genotypes 

Whole genome analysis of three CyHV-3 strains isolated in Israel (CyHV-3 I), Japan 

(CyHV-3 J) and United States (CyHV-3 U) revealed high sequence identity between the strains [18]. 

The relationships between these strains revealed that U and I strains are more closely related to each 

other and form one lineage (U/I), whereas J strain is more distinct and forms a second lineage (J) [18]. 

The existence of genetic differences between European lineage (including U and I genotypes) and 

Asian lineage (including J genotype) were later confirmed and suggests independent CyHV-3 

introductions in various geographical locations [23, 24]. Furthermore, Kurita et al. demonstrated that 

the Asian lineage contains only two variants (A1 and A2) while the European lineage has seven 

variants (E1–E7) [24]. Recently, a new intermediate genetic lineage of CyHV-3 including isolates 

from Indonesia has been suggested [25]. This hypothesis was later supported by analyses of 

multi-locus variable number of tandem repeats (VNTR). These analyses also suggested that 

genetically distinct viral strains can coexist in a same location following various introduction events 

[26]. Although previous study described presence of both CyHV-3 lineages in Europe [23], an 

European genotype of CyHV-3 has only been revealed recently in East and Southeast Asia [27]. 

Recently, Han et al. described polymorphism in DNA sequences encoding three envelope glycoprotein 

genes (ORF25, ORF65, and ORF116) among CyHV-3 strains from different geographical origins [28]. 

2.1.5 Proteome 

Different groups used mass spectrometry to identify CyHV-3 proteins and to study their 

interactions with cellular and viral proteins. The structural proteome of CyHV-3 was recently 

characterized by using liquid chromatography tandem mass spectrometry [20]. A total of 40 structural 

proteins, comprising 3 capsid, 13 envelope, 2 tegument, and 22 unclassified proteins, were described 

(Figure 3). The genome of CyHV-3 possesses 30 potential transmembrane-coding ORFs [18]. With 

the exception of ORF81, which encodes a type 3 membrane protein expressed on the CyHV-3 

envelope, no CyHV-3 structural proteins have been studied [20, 29]. ORF81 is thought to be one of 

the most immunogenic (major) membrane proteins of CyHV-3 [29]. Recently, Gotesman et al. using 

anti-CyHV-3 antibody-based purification coupled with mass spectrometry, identified 78 host proteins 

and five potential immunogenic viral proteins [30]. In another study, concentrated supernatant was 
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produced from CyHV-3 infected CCB cultures and analyzed by 2D-LC MS/MS in order to identify 

CyHV-3 secretome. Five viral and 46 cellular proteins were detected [31]. CyHV-3 ORF12 and 

ORF134 encoding respectively a soluble TNFR homologue and an IL-10 homologue, were among the 

most abundant secreted viral proteins [31]. 

2.2 In vitro replication 

CyHV-3 is widely cultivated in cell lines derived from common carp brain (CCB), gills (CCG) 

and fin (CaF-2) [32, 33]. Permissive cell lines have also been derived from koi fin: KF-1 [9], KFC 

[11], KCF-1 [34], NGF-2 and NGF-3 [16]. Non-carp cell lines, such as silver carp fin (Tol/FL) and 

goldfish fin (Au) were also described as permissive to CyHV-3 [35]. Oh et al. reported the expression 

of cytopathic effect (CPE) in cell line from fathead minnow (FHM) after inoculation with CyHV-3 

[36], but this observation was not confirmed by other studies [9, 35]. 

In vitro study showed that all annotated CyHV-3 ORFs are transcribed during CyHV-3 

replication [37]. Transcription of CyHV-3 genes starts as early as 1 h post-infection and viral DNA 

synthesis initiates as early as 4–8 h post-infection [37]. Similar to all other herpesviruses, most of 

CyHV-3 ORF transcripts can be classified into three temporal kinetic classes: immediate early (IE;     

n = 15 ORFs), early (E; n = 111 ORFs) and late (L; n = 22 ORFs). Seven ORFs are unclassified [37]. 

Fuchs et al. demonstrated that CyHV-3 ORFs that encode for three enzymes implicated in nucleotide 

metabolisms: thymidine kinase (ORF55), dUTPase (ORF123) and ribonucleotide reductase (ORF141) 

are nonessential for virus replication in vitro [38]. 

2.3 Temperature restriction 

Water temperature is one of the major environmental factors that influences the onset and 

severity of viral infection in fish [39]. This statement certainly applies to CyHV-3 as temperature was 

shown to affect drastically both viral replication in vitro and CyHV-3 disease in vivo. 

2.3.1 In vitro 

CyHV-3 replication in cell culture is restricted by temperature. Optimal viral growth in KF-1 

cell line was observed at temperatures between 15°C and 25°C. Virus propagation and virus gene 

transcription are gradually turned off when cells are moved from permissive temperature to the 

non-permissive temperature of 30°C [40, 41]. However, infected cells maintained for 30 days at 30°C 

preserve infectious virus, as demonstrated by viral replication when the cells are returned to 

permissive temperatures [40]. 
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2.3.2 In vivo 

CyHV-3 disease occurs naturally when water temperature is between 18°C and 28°C. Several 

studies demonstrated that transfer of recently infected fish (between 1 and 5 days post-infection (dpi)) 

to non-permissive low (≤ 13°C) or high temperatures (> 30°C) significantly reduces the mortality [11, 

42-44]. Water temperature was also shown to affect the onset of mortality: the first mortalities 

occurred between 5–8 and 14–21 dpi when the fish were kept between 23-28°C and 16-18°C, 

respectively [42,45]. 

2.4 Geographical distribution 

CyHV-3 was first isolated from infected koi originating from Israel and USA in 2000 [9]. 

Soon after, outbreaks of CyHV-3 occurred in many countries in Europe, Asia and Africa [10, 22]. 

Currently, only South America, Australia and northern Africa seem to be free of CyHV-3. The global 

and rapid spread of the virus is thought to be mainly due to the international trading of common and 

koi carp, but also to koi shows. 

2.5 Presence of CyHV-3 in natural environment 

In addition to its economic impact on common and koi carp industries, CyHV-3 has also a 

negative environmental impact by affecting wild populations of carp. In 2003, the first outbreak of 

CyHV-3 disease among wild carp occurred in the Yoshi river in Japan [46]. The virus then spread 

among several freshwater systems and caused mass mortalities in wild carp populations. In Lake Biwa, 

about 70% of carp population (more than 100 000 fish) died due to CyHV-3 infection in 2004 [46]. 

Mass mortalities of wild carp have been also described in angling waters in UK in 2003 [47], in New 

York and South Carolina, USA in 2004 [48, 49] and in Kawartha Lakes region, Ontario, Canada in 

2007 [50]. The monitoring of the distribution of CyHV-3 in rivers and lakes in Japan demonstrated 

that it can persist in the wild carp populations and can be subsequently transmitted to naïve fish [46, 

51, 52]. Studies performed in habitats with CyHV-3 history suggested that sediments [53] and aquatic 

invertebrates feeding by water filtration could represent potential reservoirs of CyHV-3 [54]. 

Moreover the viral DNA could be detected in water not only during the outbreak of the disease but 

also for at least 3 months after the end of mass mortality [51]. However, it has to be noted that these 

studies relied on the detection of viral genome and not CyHV-3 infectivity. Consequently further 

studies are required to determine whether these potential reservoirs of infectious virus could play a 

role in CyHV-3 epidemiology. 
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Figure 4. Some of the clinical signs observed during CyHV-3 infection. (A) Severe gill necrosis. (B) 

Hyperemia at the base of the caudal fin. (C) Herpetic skin lesions on the body (arrows) and fin erosion 

(arrowheads). Reproduced with permission from Michel et al. [22]. 
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3. Disease 

3.1 Disease characteristics 

CyHV-3 disease is seasonal, occurring when water temperature is between 18°C and 28°C. It 

is restricted to common and koi carp and their hybrids with other species [55]. It is highly contagious 

and extremely virulent with mortality rate that can reach 80 to 100%. Fish infected with CyHV-3 by 

immersion, injection or oral route and kept at 23-28°C die between 5 and 22 dpi with a peak of 

mortality between 8 and 12 dpi [9, 56, 57]. Gilad et al. suggested that loss of osmoregulation of the 

gills, gut and kidney contributes to mortality during acute infection with CyHV-3 [42]. Furthermore, 

CyHV-3 infected fish are more susceptible to secondary infections by bacterial, parasitic or fungal 

pathogens which may cause further mortality within the population. 

3.1.1 Clinical signs 

The first clinical signs appear at 2–3 dpi. Fish become lethargic, lie at the bottom of the tank 

with the dorsal fin folded and exhibit loss of appetite. In ponds, infected fish are usually gathering 

close to the water inlet or sides of the pond and gasp at the surface of water. Gill necrosis coupled with 

extensive discoloration and increased mucus secretion appear as early as 3 dpi. Depending on the stage 

of the infection, the skin exhibits different clinical signs, such as hyperemia, particularly at the base of 

the fins and on the abdomen; pale, irregular patches on the skin associated with mucus hypersecretion 

at the beginning of infection; peeling away of dead epithelium and lack of mucus cover in the later 

stage of infection; appearance of epidermis surface with a sandpaper-like texture; and herpetic lesions 

(Figure 4). In addition, fin erosion and bilateral enophthalmia (sunken eyes) are observed in the later 

stages of infection. Some fish show neurologic signs in the final stage of disease, when they become 

disoriented and lose equilibrium [9, 10, 58]. 

3.1.2 Histopathology 

The most important histopathological changes are observed in the gills. They involve erosion 

of primary lamellae, fusion of secondary lamellae and adhesion of gill filaments [58, 59]. Gills also 

exhibit hyperplasia, hypertrophy and/or nuclear degeneration of branchial epithelium and congestion 

of the blood vessels in the gill arch [15, 59]. Severe inflammation and gill necrosis resulting in the 

complete loss of lamellae can also be observed [31, 59]. In the kidney, the hematopoietic cells are the 

most affected ones [15]. However, a weak peritubular inflammatory infiltrate is evident in kidney as 

early as 2 dpi and increases with time. It is accompanied by blood vessel congestion and degeneration 

of the tubular epithelium in many nephrons [59]. In the spleen and liver, the most obviously infected 

cells are splenocytes and hepatocytes, respectively [15]. In the liver, mild inflammatory infiltrates are 

observed mainly in the parenchyma [59]. In the brain, focal meningeal and parameningeal 



Table 1. Organisms tested for CyHV-3 infection 

Common name (species) Detection of CyHV-3 

 

Detection of CyHV-3 

genome in naïve carp 

after cohabitation DNA Transcript Antigen 

Vertebrates     

Cyprinidae     

  Goldfish (Carassius auratus) Yes [62,68-70] Yes [68] Yes [69] Yes [68-70] 

  Ide (Leuciscus idus) Yes [62,63] NT NT NT 

  Grass carp (Ctenopharyngodon idella) Yes [62,64,70] NT NT Yes [64,70] 

  Silver carp (Hypophthalmichthys molitrix) Yes [64,70] NT NT Yes [64,70] 

  Prussian carp (Carassius gibelio) Yes [64,70]/ No 

[65] 

NT NT Yes [70]/No [65] 

  Crucian carp (Carassius carassius) Yes [64] NT NT NT 

  Tench (Tinca tinca) Yes [64,65,70] NT NT Yes [64,65,70] 

  Vimba (Vimba vimba) Yes [63,64] NT NT Yes [64] 

  Common bream (Abramis brama) Yes [64,65] NT NT Yes [64] 

  Common roach (Rutilus rutilus) Yes [64,65] NT NT Yes [64]/No [65] 

  Common dace (Leuciscus leuciscus) Yes [64,65] NT NT No [65] 

  Gudgeon (Gobio gobio) Yes [64,65] NT NT Yes [65] 

  Rudd (Scardinius erythrophthalmus) Yes [65] NT NT Yes [65] 

  European chub (Squalius cephalus) Yes[64]/No[65] NT NT NT 

  Common barbel (Barbus barbus) Yes [64] NT NT NT 

  Belica (Leucaspius delineatus) Yes [64] NT NT NT 

  Common nase (Chondrostoma nasus) Yes [64] NT NT NT 

Acipenseridae     

  Russian sturgeon (Acipenser 

gueldenstaedtii) 

Yes [66] NT NT NT 

  Atlantic sturgeon (Acipenser oxyrhynchus) Yes [66] NT NT NT 

Cobitidae     

  Spined loach (Cobitis taenia) Yes [64] NT NT NT 

Cottidae     

  European bullhead (Cottus gobio) Yes [64] NT NT NT 

Esocidae     

  Northern pike (Esox lucius) Yes [64,65] NT NT Yes [65] 

Gasterosteidae     

Three-spined stickleback (Gasterosteus 

aculeatus) 

Yes [65] NT NT No [65] 

Ictaluridae     

  Brown bullhead (Ameiurus nebulosus) Yes [65] NT NT No [65] 

Loricariidae     

  Ornamental catfish (Ancistrus sp.) Yes [62] NT NT NT 

Percidae     

  European perch (Perca fluviatilis) Yes [64,65] NT NT Yes [64]/No [65] 

  Ruffe (Gymnocephalus cernua) Yes[64]/No [65] NT NT Yes [64,65] 

Invertebrates     

  Swan mussels (Anodonta cygnea) Yes [54] NT NT NT 

  Scud (Gammarus pulex) Yes [54] NT NT NT 

NT- not tested. 
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inflammation is observed [59]. Analysis of brain from fish that showed clear neurologic signs revealed 

congestion of capillaries and small veins associated with edematous dissociation of nerve fibers in the 

valvula cerebelli and medulla oblongata [15]. In the skin, the number of goblet cells is reduced by 

50% in infected fish. Furthermore, the goblet cells appeared mostly slim and slender which suggests 

that mucus was released and had not been replenished. In addition, erosion of skin epidermis is 

frequently observed [60]. 

3.2 Host range and susceptibility 

CyHV-3 causes a symptomatic disease only in common and koi carp. Hybrids of koi × 

goldfish and koi × crucian carp are also affected by CyHV-3 disease, with mortality rate of 35% and 

91%, respectively [55]. Common carp × goldfish hybrids have also been reported to show some 

susceptibility to CyHV-3 infection; however, the mortality rate observed was rather limited (5%) [61]. 

PCR detection of CyHV-3 performed on cyprinid and non-cyprinid fish species, but also on freshwater 

mussels and crustaceans, suggested that these species could act as reservoirs of the virus (Table 1) [54, 

62-67]. Cohabitation experiments suggest that some of these fish species (goldfish, tench, vimba, 

common bream, common roach, European perch, ruffe, gudgeon, rudd, northern pike, silver carp and 

grass carp) can carry CyHV-3 asymptomatically and transmit it to naïve carp [64, 65, 68-70]. 

Consistent with this observation, in vitro studies showed that CyHV-3 can replicate and cause CPE in 

cell cultures derived not only from common and koi carp but also from silver carp and goldfish [35]. 

Recent studies provided increasing evidence that CyHV-3 can infect goldfish asymptomatically [68, 

69]. Finally, the World Organisation for Animal Health (OIE) listed four CyHV-3 susceptible species 

(Cyprinus carpio and its hybrids, goldfish, Russian sturgeon and Atlantic sturgeon) and two potential 

susceptible species (grass carp and ide) [71]. 

Carp of all ages, from juveniles upwards, are affected by CyHV-3, but younger fish (1-3 

months, 2.5-6 g) seem to be more susceptible to infection than mature fish (1 year, ≈230 g) [58]. Ito et 

al. suggested that carp larvae are not susceptible to CyHV-3 since larvae (3 days post-hatching) 

infected with virus showed no mortality whereas most of the carp juveniles (>13 days post-hatching) 

died after infection [72]. However, recent study using CyHV-3 recombinant strain expressing 

luciferase (LUC) as a reporter gene, demonstrates that carp larvae are sensitive and permissive to 

CyHV-3 infection immediately after hatching and that their sensitivity increases with the 

developmental stages [73]. 

3.3 Pathogenesis 

In early reports, it has been suggested that CyHV-3 may enter the host through infection of the 

gills based on detection of viral particles and viral genome in this organ as early as 1–2 dpi [42, 59]. 

However, more recent studies using in vivo bioluminescent imaging system demonstrated that 



Figure 5. The portal of entry of CyHV-3 in carp analysed by bioluminescence imaging. Two groups of 

fish (mean weight 10 g) were infected with a recombinant CyHV-3 strain expressing luciferase as a reporter 

gene either by bathing them in water containing the virus (Immersion, left column) or by feeding them with 

food pellets contaminated with the virus (Oral, right column). At the indicated time post-infection, six fish per 

group were analysed by bioluminescence IVIS. Each fish was analysed lying on its right and its left side. To 

analyze internal signals, fish were euthanized and dissected immediately after in vivo bioluminescence 

imaging. Dissected fish and isolated organs were analysed for ex vivo bioluminescence. The analysis of one 

fish is presented for each time point and inoculation mode. Pictures collected over the course of this 

experiment are presented with a standardized minimum and maximum threshold value for photon flux. rba, 

right branchial arches; lba, left branchial arches; ro, right operculum; lo, left operculum; p, pharynx; aw, 

abdominal wall; i, intestine. Reproduced with permission from Fournier et al. [57]. 
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according to epidemiological conditions CyHV-3 can enter carp either by skin (immersion in 

infectious water) or pharyngeal periodontal mucosa infection (ingestion of infectious materials) 

(Figure 5) [57, 74]. The epidermis of teleost fish is a living stratified squamous epithelium that is 

capable of mitotic division at all levels (even the outermost squamous layer). The scales are dermal 

structures and consequently are covered by the epidermis [74]. Removal of skin mucus and epidermal 

lesions facilitates the entry of virus into the host (Figure 6) [75]. After initial replication in the 

epidermis [74] the virus is spreading rapidly in infected fish as indicated by detection of CyHV-3 

DNA in almost all internal tissues as early as 24 h post-infection [42]. The tropism of CyHV-3 for 

white blood cells most probably explains such a rapid spread of the virus within the body [76]. Virus 

replication in organs such as the gills, skin and gut represents source of viral excretion into the water. 

Recently, pharyngeal periodontal mucosa has been shown to be the portal of entry of CyHV-3 after 

infection by the oral route using food pellets contaminated with the virus [57]. This model of 

inoculation led to the spreading of the infection to the various organs tested as well as resulted in 

clinical signs and mortality rate comparable to the infection by immersion [57]. 

All members of the family Herpesviridae exhibit 2 distinct phases in their biological cycle: 

lytic replication and latency. While lytic replication is associated with production of viral particles, 

latency consists in the maintenance of the viral genome as a nonintegrated episome and the expression 

of very few viral genes and microRNAs. Upon reactivation, latency is replaced by lytic replication. 

Even if latency has not been demonstrated conclusively in members of the Alloherpesviridae family, 

an increasing number of evidences support the existence of latent phase. These evidences related to 

CyHV-3 can be summarized as follows. (i) CyHV-3 DNA has been detected in the brain of fish that 

survived primary infection and showing no clinical signs at 64 dpi [42], and even 1 year post-infection 

[77]. (ii) CyHV-3 persisted in the wild population of common carp for at least 2 years after initial 

outbreak [46]. (iii) Finally, St-Hilaire et al. described, in fish that survived the primary infection, the 

induction of CyHV-3 reactivation by temperature stress several months after the initial exposure to the 

virus [43]. Increased level of viral DNA in gills without the appearance of disease symptoms has been 

detected after stress induced by netting fish that survived the primary infection and were kept at 20°C 

for 81 dpi [78]. Recent studies demonstrated that virus may become latent in white blood cells and 

other tissues, remains at very low copy numbers and can be reactivated by temperature stress [76, 79, 

80]. To date, the temperature-dependent reactivation of the disease which resulted in mortality of 

naïve cohabitant fish has been described after transferring the fish maintained at a low temperature to 

the higher, permissive temperature [43, 79]. These observations suggest that the temperature of the 

water could regulate the switch between latency and lytic replication and vice versa allowing the virus 

to persist in the host population throughout the seasons even when the temperature is non-permissive. 
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Figure 6. Effect of skin mucus removal on CyHV-3 binding to carp epidermal cells. Tail fin ventral lobes 

of carp were mock-treated or treated by rubbing with a soft tissue paper to remove epidermal mucus. 

Immediately after skin treatment, tail fin explants were harvested and inoculated ex vivo with a CyHV-3 

recombinant strain expressing luciferase as a reporter gene (106 PFU/mL of culture medium for 2 h). At the 

end of the 2 h inoculation period, a fragment of the fin was collected and processed for electron microscopy 

examination (EM analysis). The arrows indicate CyHV-3 particles bound to cells or cell debris. Twenty-four 

hours post-inoculation, duplicate tail explant cultures were analyzed by bioluminescence imaging (lower 

panels). Reproduced with permission from Raj et al. [75]. 
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3.4 Transmission 

To date, no evidence of CyHV-3 vertical transmission has been reported. Horizontal 

transmission of CyHV-3 occurs either by direct transmission (fish to fish) or vector based 

transmissions. Direct transmission can be by skin to skin contact of infected carp or cyprinid and 

non-cyprinid fish species that can carry CyHV-3 asymptomatically [64, 68] against naïve carp; or by 

cannibalistic and necrophagous behaviors of the carp [22, 57]. Several potential vectors could be 

involved in the vector based transmission of CyHV-3. Such vectors include fish droppings [81], 

plankton [82], aquatic invertebrates feeding by water filtration [54], piscivorous birds which could 

transfer the disease by moving sick fish from one pond to another [83], and finally the water being the 

major abiotic vector. Secretion of viral particles into the water either through shedding or together 

with sloughed epithelial cells has been documented [59]. Furthermore, the infectivity of CyHV-3 in 

water was shown to be conserved for at least 4 h [58], even if longer period could be observed 

depending on water composition (chemical and microbial) [84]. For example, the infectivity of 

CyHV-3 was drastically reduced after 3 days in environmental water, although it remained quite stable 

for more than 7 days in sterilized water [84]. 

3.5 Diagnosis 

Various CyHV-3 diagnostic methods have been developed. They are based on the detection of 

infectious particles, viral DNA, transcripts, or antigens. Virus isolation from infected fish tissues in 

cell culture was the first method developed [9, 11]. Although cell culture isolation is not as sensitive as 

PCR-based methods, it is the only technique able to detect infectious particles. Recently, Dong et al. 

isolated for the first time CyHV-3 virus from diseased koi in mainland China using a newly developed 

cell line from caudal fin of koi [34]. A complete set of molecular techniques for detection of viral 

DNA fragments has been developed, such as DNA hybridization, PCR, nested PCR, one-tube 

semi-nested PCR, semi-quantitative PCR, real-time TaqMan PCR, and loop-mediated isothermal 

amplification [22]. CyHV-3 genome can also be detected and quantified in environmental water by 

real-time TaqMan PCR after viral concentration [85]. Recently, a mRNA-specific RT-PCR assay for 

detection of replicating CyHV-3 in infected fish tissues and cell cultures has been described [86]. 

ELISA tests have been developed to detect specific anti-CyHV-3 antibodies in carp serum [22]. 

CyHV-3 has been also detected in tissues and touch imprints of organs from infected fish by 

immunohistochemistry and immunofluorescence assays, respectively [59]. Monoclonal antibodies 

against CyHV-3 ORF68 have been produced. They were proved to detect specifically CyHV-3 

without cross-reaction against CyHV-1 and CyHV-2 [87]. Finally, a CyHV-3-detection kit (The 

FASTest® Koi HV kit) that allows the detection of CyHV-3 in gill swabs in just 15 min has been 

developed [88]. 
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3.6 Vaccination 

Soon after the identification of CyHV-3 as the causative agent of koi herpesvirus disease 

(KHVD), an original protocol was developed to induce a protective adaptive immune response in carp 

[11]. This approach exploited the fact that CyHV-3 induces fatal infections only when temperature is 

between 18°C and 28°C. According to this protocol, healthy fingerlings are exposed to the virus by 

cohabitation with sick fish for 3–5 days at permissive temperature (22°C-23°C). After that the fish are 

transferred to ponds for 25–30 days at non-permissive water temperature (≈30°C). Despite its 

ingenuity, this protocol has several disadvantages. (i) Fish that are “vaccinated” with this protocol 

become latently infected by a virulent strain and are therefore likely to represent a potential source of 

CyHV-3 outbreaks if they later cohabitate with naïve carp. (ii) The increase of water temperature to 

non-permissive is costly and correlated with increasing susceptibility of the fish to secondary infection. 

(iii) Finally, after this procedure only 60% of immunized fish proved to be resistant to a CyHV-3 

challenge performed by cohabitation with infected fish [11]. 

Attenuated live vaccines appear to be the most appropriate for mass vaccination of carp. Live 

attenuated vaccine candidates have been produced by serial passages in cell culture of a pathogenic 

strain. A vaccine strain candidate was further attenuated by UV irradiation in order to increase random 

mutations throughout the genome [11, 89]. Currently, a live attenuated vaccine developed using this 

approach has been manufactured by KoVax Ltd. (Jerusalem, Israel) and is available for immersion 

vaccination of common and koi carp in Israel [90]. Protection against CyHV-3 is associated with 

elevation of specific antibodies against the virus [11, 89]. However, the duration of the protection 

conferred by the vaccine has not been established [90]. This vaccine has two major additional 

disadvantages: (i) the determinism of the attenuation is unknown; and consequently, reversions to a 

pathogenic phenotype cannot be excluded; (ii) the attenuated strain retains residual virulence that 

could be lethal for a portion of the vaccinated fish [91], particularly for small/young fish. 

An inactivated vaccine candidate was also described by Yasumoto et al. [92]. It consists of 

formalin-inactivated CyHV-3 trapped within a liposomal compartment. This vaccine can be used for 

oral immunization in fish food. Protection efficacy for carp was 70% [92]. 

4. Host-pathogen interactions 

4.1 Genetic resistance of carp strains to CyHV-3 

Genetic differences in resistance to CyHV-3 have been described among different carp strains 

and crossbreeds. Independent research groups demonstrated that resistance to CyHV-3 can be 

significantly increased by crossing of domesticated carp strains with wild carp strains. Shapira et al. 

reported that the most resistant carp crossbreed in their study (60% of survival) was that between the 

domesticated carp strain Dor-70 and the wild carp strain Sassan [93]. In comparison the survival rate 
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of domesticated carp strains Našice and Dor-70 as well as their crossbreed was much lower (8%, 27% 

and 17.7%, respectively) [93]. Recently, Piačková et al. demonstrated that most of Czech strains and 

crossbreeds which are genetically related to wild Amur carp were significantly more resistant to 

CyHV-3 infection than strains with no relation to Amur carp [94]. Carp genetic resistance to CyHV-3 

has been investigated using 96 carp families derived from diallelic crossing of two wild carp strains 

(Amur and Duna) and two domesticated Hungarian strains (Tat and HAKI 15) [95]. This study 

demonstrated that crossing with wild carp strains may result in higher resistance to CyHV-3. However, 

individual parents of the strains are also important since many of the families derived from the wild 

strains did not exhibit significantly higher resistance [95]. Recently, resistance to CyHV-3 has been 

also linked to the polymorphism of the MHC class II B genes [56] and carp IL-10 gene [96]. These 

findings support the hypothesis that the outcome of the disease can be controlled in some extent by 

genetic factors of the host, and consequently, that selection of resistant carp breeders is one of 

potential ways to reduce the negative impact of CyHV-3 on carp aquaculture. 

4.2 Immune response of carp against CyHV-3 

Knowledge on the immune mechanisms and immunological traits that can correlate with 

disease resistance in fish as well as on the immune evasion mechanisms expressed by CyHV-3, is 

essential for the development of prophylactic strategies (such as vaccination) as well as for the 

development of more resistant strains by the use of molecular marker assisted selection. The 

information related to these topics are summarized in this section. 

Perelberg et al. studied the kinetic of anti-CyHV-3 antibody expression in the serum of carp 

infected at different temperatures [91]. In fish that were infected and maintained at 24°C, antibody 

titers began to rise at 10 dpi and reached a peak around 20-40 dpi. It was shown that protection against 

CyHV-3 is proportional to the titer of specific antibodies produced during the primary infection. The 

level of antibodies decreased in the absence of antigenic re-exposure. At 280 dpi, the titer of 

anti-CyHV-3 antibodies of infected fish was only slightly higher or comparable to that of unexposed 

fish. Nevertheless, immunized fish, even those in which antibodies were no longer detectable were 

resistant to a lethal challenge; possibly because of the subsequent rapid response of B and T memory 

cells to antigen re-stimulation [91]. 

Recently, a transcriptomic study uncovered the wide array of immune-related genes involved 

in the anti-CyHV-3 immune response of carp [97]. The response of two carp lines with different 

resistance to CyHV-3 has been studied using DNA microarray and real-time PCR. Significantly higher 

expression of several immune-related genes including number of those which are involved in pathogen 

recognition, complement activation, MHC class I-restricted antigen presentation and development of 

adaptive mucosal immunity was noted in more resistant carp line. Further real-time PCR based 

analyses provided evidence for higher activation of CD8+ T cells in the more resistant carp line. Thus, 
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differences in resistance to CyHV-3 can be correlated with differentially expressed immune-related 

genes [97]. 

The anti-CyHV-3 immune response has been studied in the skin and the intestine of common 

carp [60, 98]. These studies revealed an up-regulation of pro-inflamatory cytokine IL-1β, the inducible 

nitric oxide synthase (iNOS) and activation of interferon class I pathways [60, 98]. In skin, CyHV-3 

infection leads to down-regulation of genes encoding several important components of the 

skin-mucosal barrier, including antimicrobial peptides (beta defensing 1 and 2), mucin 5B, and tight 

junction proteins (claudin 23 and 30). This probably contributes to changes in the skin bacterial flora 

and subsequent development of secondary bacterial infections [60]. Raj et al. demonstrated that skin 

mucus also acts as an innate immune barrier and inhibits CyHV-3 binding to epidermal cells at least 

partially by neutralisation of viral infectivity [75]. In vitro study demonstrated that CyHV-3 inhibits 

activity of stimulated macrophages and proliferative response of lymphocytes and that this effect is 

temperature dependent [99]. 

4.2.1 Interferon type I response 

Interferons (IFNs) are secreted mediators that play essential roles in the innate immune 

response against viruses. In vitro studies demonstrated that CyHV-3 inhibits IFN type I secretion in 

CCB cells [100]. Poly I:C stimulation of CCB cells prior to CyHV-3 infection activated the IFN type I 

response and reduced CyHV-3 spreading in the cell culture [100]. In vivo studies showed that CyHV-3 

induced a systemic IFN type I response in carp skin and intestine and that the magnitude of IFN type I 

expression is correlated with the virus load [60, 98]. 

Recently, Tomé et al. demonstrated that CyHV-3 ORF112 encodes a new Z-domain family 

protein which in vitro showed structural and functional properties similar to the poxvirus E3L inhibitor 

of interferon response [101]. This suggested that CyHV-3 may use similar mechanisms to inhibit 

interferon response as poxviruses. However, the potential function of ORF112 in virus pathogenesis in 

vivo has not been studied yet. 

4.2.2 The role of CyHV-3 IL-10 homologue 

CyHV-3 ORF134 encodes a viral homologue of cellular IL-10 [18]. Its expression product is a 

179 amino acid protein [102]. Common carp IL-10 and CyHV-3 IL-10 exhibit 26.9% identity (67.3% 

similarity) over a 156 amino acid overlap [103]. Transcriptomic analyses revealed that ORF134 is 

expressed as a spliced gene belonging to the early [37] or early-late class [31]. Proteomic analyses of 

CyHV-3 infected cell supernatant demonstrated that ORF134 expression product is one of the most 

abundant proteins of the CyHV-3 secretome [31]. In CyHV-3 infected carp, ORF134 is highly 

expressed during acute and reactivation phase, while is expressed on a low level during 

low-temperature induced persistent phase [102]. In vivo study using a zebrafish embryo model 
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suggested that CyHV-3 ORF134 encodes a functional IL-10 homologue [102]. Injection of mRNA 

encoding CyHV-3 IL-10 into zebrafish embryos increased the number of lysozyme-positive cells to a 

similar degree as observed with zebrafish IL-10 [102]. Moreover, down-regulation of the IL-10 

receptor long chain (IL-10R1) using a specific morpholino abrogated the increase of the number of 

lysozyme-positive cells after co-injection with either CyHV-3 IL-10 mRNA or zebrafish IL-10 mRNA, 

indicating that it functions via the IL-10 receptor [102]. 

Recently, a CyHV-3 strain deleted for ORF134 and a derived revertant strain were produced 

using BAC cloning technologies [31]. The recombinant ORF134 deleted strain replicated in vitro 

comparably to the parental and the revertant strains. Infection of fish by immersion in water containing 

the virus induced comparable mortality for the three virus genotypes tested (wild type, deleted and 

revertant). Quantification of viral DNA by real time TaqMan PCR and analysis of carp cytokines 

expression by RT-qPCR at different times post-infection did not reveal any significant difference 

between the groups of fish infected with the three virus genotypes. Moreover, histological examination 

of infected fish did not reveal significant differences between fish infected with the three genotypes. 

Altogether, these results demonstrated that the IL-10 homologue encoded by CyHV-3 is essential 

neither for viral replication in vitro nor for virulence in vivo [31]. 

5. Conclusions 

Since its first description in the late 1990s, CyHV-3 rapidly spread to different continents 

(Europa, Asia, North America, Africa) causing severe financial losses in the common carp and koi 

culture industries worldwide. In addition to its negative economical and societal impacts, CyHV-3 has 

also a negative environmental impact by affecting wild populations of carp. These reasons explain 

why CyHV-3 became rapidly a subject for applied science and is now listed as a notifiable disease by 

the OIE. In addition to its economic importance, recent studies demonstrated that CyHV-3 is also a 

very attractive and original subject of fundamental research: (i) it is phylogenetically distant from the 

vast majority of herpesviruses that have been studied so far (the latter belong to the family 

Herpesviridae), thereby providing an original field of research. (ii) It can be studied in laboratories by 

infection of its natural host (homologous virus-host model). (iii) The sequence of its genome published 

recently revealed a fascinating virus with unique properties in the Herpesvirales, such as an extremely 

large genome (295 Kb), a high number of genes which are not homologous to known viral sequences, 

and genes that are normally found exclusively in the Poxviridae [18]. (iv) Importantly, the CyHV-3 

genome revealed several genes encoding proteins potentially involved in immune evasion mechanisms. 

(v) Last but not least, the outcome of CyHV-3 infection is highly dependent on the temperature of the 

water in which the carp are maintained. 
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Abstract 

Many viruses have evolved strategies to deregulate the host immune system. These strategies 

include mechanisms to subvert or recruit the host cytokine network. Interleukin-10 (IL-10) is a 

pleiotropic cytokine that has both immunostimulatory and immunosuppressive properties. However, 

its key features relate mainly to its capacity to exert potent immunosuppressive effects. Several viruses 

have been shown to up regulate the expression of cellular IL-10 (cIL-10), with, in some cases, 

enhancement of infection by suppression of immune functions. Other viruses encode functional 

orthologues of cIL-10, called viral IL-10s (vIL-10s). The present review is devoted to these virokines. 

To date, vIL-10 orthologues have been reported for 12 members of the family Herpesviridae, two 

members of the family Alloherpesviridae, and seven members of the family Poxviridae. Study of vIL-

10s demonstrated several interesting aspects on the origin and the evolution of these viral genes; such 

as for example, the existence of multiple (potentially up to 9) independent gene acquisition events at 

different times during evolution, viral gene acquisition resulting from recombination with cellular 

genomic DNA or cDNA derived from cellular mRNA, and the evolution of cellular sequence in the 

viral genome to restrict the biological activities of the viral orthologues to those beneficial for the virus 

life cycle. In this review, various aspects of the vIL-10s described to date are reviewed, including their 

genetic organization, protein structure, origin, evolution, biological properties and potential in applied 

research. 

 

Key words: Cellular Interleukin-10 (cIL-10), Viral Interleukin 10 (vIL-10), IL-10 orthologues,  

Biological activities 
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1. Introduction 

For millions of years, viruses have been co-evolving with their hosts. During this process, they 

have had to deal with the most complex aspects of host physiology, often mimicking, hijacking or 

sabotaging host biological processes to their benefit. In this respect, many viruses have evolved 

strategies to deregulate the host immune response in order to avoid immune surveillance and 

elimination from the host. These strategies include mechanisms to deregulate the host cytokine 

network. 

The Interleukin (IL)-10 family of cytokines and the related Interferon (IFN) family of 

cytokines form the larger class II cytokine family (Ouyang et al., 2011). The IL-10 family of cytokines 

can be categorized into three subgroups, based primarily on biological functions: (i) IL-10 itself; (ii) 

the IL-20 subfamily cytokines composed of IL-19, IL-20, IL-22, IL-24 and IL-26; and (iii) the type III 

IFN group (also called IFN λs) (Ouyang et al., 2011; Pestka et al., 2004). 

IL-10 is a pleiotropic cytokine, with both immunostimulatory and immunosuppressive 

properties (Moore et al., 2001). However, its key features relate mainly to its capacity to exert potent 

effects in the latter category via several mechanisms. Various viruses have been shown to up-regulate 

the expression of cellular IL-10 (cIL-10), with, in some cases, an enhancement of infection by 

suppression of immune functions (Brady et al., 2003; Brockman et al., 2009; Díaz-San Segundo et al., 

2009; Yu et al., 2008). These studies suggest that cIL-10 expression during the course of infection 

might be beneficial for the pathogens concerned. 

Further supporting this conclusion, several viruses encode orthologues of cIL-10, called viral 

IL-10s (vIL-10s), that appear to have been acquired by viruses on multiple independent occasions 

from their host during evolution. This review is devoted to these virokines. Various aspects of vIL-10 

are described, including their genetic organization, protein structure, origin, evolution, biological 

properties in vitro and in vivo, and potential in applied research. 

2. Discovery of vIL-10s 

Cloning and sequencing of the human and mouse IL-10s lead to the identification of the first 

vIL-10 orthologue. It was discovered that the uncharacterized open reading frame (ORF) BCRF1 of 

Epstein-Barr virus (EBV; human herpesvirus 4) encodes a protein that exhibited high sequence 

identity (92.3%) with human IL-10 (Moore et al., 1990). Subsequently, various studies documented 

that BCRF1 possesses some of the specific biological activities of cIL-10, and it was therefore 

concluded that this ORF encodes a functional viral orthologue of human IL-10 (Hsu et al., 1990; Niiro 

et al., 1992). Ever since, the sequencing of an increasing number of viral genomes has revealed a 

growing list of vIL-10s. To date, vIL-10 orthologues have been reported for 12 members of the family 

Herpesviridae, two members of the family Alloherpesviridae, and seven members of the family 

Poxviridae (Table 1). 
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Figure 1. Schematic representation of the genomic intron/exon organization of human IL-10 (H.
sapiens, Genbank ID: NP_000563) and vIL-10s encoded by the viruses listed in Table 1. Boxes and
horizontal lines represent exons and introns, respectively. They are drawn to scale. The 5’- and 3’-UTRs of
human IL-10 are not shown. The homology existing between each human IL-10 exons and virus IL-10s were
investigated at the level of amino acid sequences using the accession numbers listed in Table 1 and the
FASTA Sequence Comparison program (http://fasta.bioch.virginia.edu/fasta_www2/index.cgi) using default
settings. Regions of vIL-10 DNA sequences encoding amino acid sequences homologous to human IL-10
protein domain encoded by each exon are drawn to scale using the following colour code: exon 1: red, exon
2: yellow exon 3: blue exon 4: green exon 5: orange Regions of vIL-10s for which no homology could be2: yellow, exon 3: blue, exon 4: green, exon 5: orange. Regions of vIL-10s for which no homology could be
detected are presented in grey. HCMV cmvIL-10 and LAcmvIL-10 represent transcripts of the HCMV
UL111A gene expressed during lytic and latent infections, respectively. The former retains the structure of
the gene consisting of three exons and two introns, and the latter retains only the first intron, resulting in an
in-frame stop codon 12 codons after the second exon.



Table 1. Features of vIL-10s 

Family 

Subfamily 

Genus 

Virus name Abbreviation Locus Accession 

number 

Exon 

/Intron 

Protein 

length 

(SP) 

Main host 

species 

Identity 

with host 

cIL-10 

References 

 

Herpesviridae 

Betaherpesvirinae 

Cytomegalovirus 

         

 Human cytomegalovirus HCMV UL111A/ 

cmvIL-10 
AAR31656 3/2 176 (25) Human 27.3% (Kotenko et al., 2000; 

Lockridge et al., 

2000) 
   UL111A/ 

LA cmvIL-10 

 

ACR49217 2/1 139 (24)  29.0% (Jenkins et al., 2004) 

 

 

 
 

 

Green monkey cytomegalovirus GMCMV UL111A (S) AEV80459 4/3 185 (26) Green 

monkey 

28.2% (Davison et al., 2013) 

Rhesus cytomegalovirus RhCMV U111A AAF59907 4/3 189 (31) Macaque 25.0% (Lockridge et al., 
2000) 

Baboon cytomegalovirus BaCMV vIL-10 (S) 

 

AAF63436 4/3 191 (33) Baboon 28.6% (Lockridge et al., 

2000) 

Owl monkey cytomegalovirus OMCMV UL111A (S) AEV80800 4/3 182 (21) Owl 

monkey 

30.3% (Davison et al., 2013) 

Squirrel monkey cytomegalovirus SMCMV UL111A (S) AEV80955 4/3 178 (18) Squirrel 

monkey 

31.5% (Davison et al., 2013) 

Gammaherpesvirinae 

Lymphocryptovirus 

         

 Epstein-Barr virus EBV BCRF1 CAD53385 1/0 170 (23) Human 92.3% (Arrand et al., 1981) 

Bonobo herpesvirus Bonobo-HV LOC100970108 (S) XP_003804206.1  1/0 169 (18) Bonobo 94.3%  

Rhesus lymphocryptovirus RhLCV BCRF1 (S) AAK95412 1/0 177 (29) Macaque 97.2% (Franken et al., 1996) 

Baboon lymphocryptovirus BaLCV vIL-10 (S) AAF23949 1/0 171 (24) Baboon 91.6%  

Macavirus          

 Ovine herpesvirus 2 OvHV-2 Ov2.5 AAX58040 5/4 182 (26) Sheep 49.6% (Meier-Trummer et 
al., 2009) 

Percavirus          

 Equid herpesvirus 2 EHV-2 ORF E7 (S) AAC13857 1/0 179 (18) Horse 90.4% (Telford et al., 1995) 

Alloherpesviridae 

Cyprinivirus 

         

 Cyprinid herpesvirus 3 CyHV-3 ORF134 ABG42961 2/1 179 (17) Common 
Carp 

26.9% (Aoki et al., 2007) 

 Anguillid herpesvirus 1 AngHV-1 ORF25 AFK25321 1/0 165 (19) European 

eel 

34.3% (van Beurden et al., 

2010) 
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Table 1. Features of vIL-10s. Exon number and protein length were determined based on the sequences available in the public databases. Signal 

peptides were predicted by using SignalP 4.0 (http://www.cbs.dtu.dk/services/SignalP/). Mature proteins (excluding signal peptide sequences) 

were compared using the FASTA sequence comparison program (http://fasta.bioch.virginia.edu/fasta_www2/). Protein sequence accession 

numbers for the hosts are as follows: Homo sapiens (human; NP_000563), Macaca mulatta (rhesus macaque; NP_001038192), Papio anubis 

(baboon; XP_003893246), Pan paniscus (bonobo; XP_003822966.1), Ovis aries (sheep; emb|CAG38358), Capra hircus (goat; ABI20513), Bos 

taurus (cow; NP_776513), Equus caballus (horse; NP_001075959), Cyprinus carpio (common carp; BAC76885), Anguilla anguilla (European eel; 

AEL99923). SP: signal peptide; * no IL-10 consensus sequence is available for passeriform birds, S: Viruses for which the only available data is 

the vIL-10 sequence. 
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Accession 

number 

Exon 

/Intron 

Protein 

length 

(SP) 

Main host 

species 

Identity 

with host 

cIL-10 

References 

 

Poxviridae 

Chordopoxivrinae 

Parapoxvirus 

         

 Orf virus ORFV ORF127  AAR98352 1/0 184 (22) Sheep/ 

Goat 

96.6% 

/97.3% 

(Delhon et al., 2004) 

 Bovine papular stomatitis virus BPSV ORF127 (S) AAR98483 1/0 185 (23) Cattle 94.4% (Delhon et al., 2004) 

 Pseudocowpox virus PCPV ORF127 (S) ADC53770 1/0 199 (23) Cattle 87.3% (Hautaniemi et al., 
2010) 

Capripoxvirus          

 Lumpy skin disease virus LSDV LSDV005 (S) AAK84966  1/0 170 (23) Cattle 45.7% (Tulman et al., 2001) 

 Sheeppox virus SPV SPPV_03 (S) NP_659579 1/0 168 (25) Sheep 47.9% (Tulman et al., 2002) 

 Goatpox virus GPV  GTPV_gp003 (S) YP_001293197 1/0 170 (27) Goat 49.6% (Tulman et al., 2002) 

Avipoxvirus          

 Canarypox virus CNPV CNPV018 (S) NP_955041 1/0 191 (20) Passeriform 
birds 

* (Tulman et al., 2004) 
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3. Genetic structure of IL-10 orthologues 

The basic structure of the human IL-10 gene consists of five protein-coding exons (I-V) 

encoding a spliced mRNA of 1629 bp (including untranslated regions) (Figure. 1) (Moore et al., 2001; 

Sabat, 2010). The first part of exon I and the last part of exon V encode the 5’- and 3’-untranslated 

regions, respectively. The remaining parts of exons I and V, together with exons II to IV, encode a 

single protein of 178 amino acid residues. The sizes of the exons are largely conserved among animal 

species. In contrast, the sizes of the introns show greater variation, and may be up to 1 kbp in length. 

The general intron-exon structure of cIL-10 is only found in ovine herpesvirus 2 (OvHV-2) 

although the introns are considerably shorter than those of its natural host, the sheep (Jayawardane et 

al., 2008). For the other vIL-10s, variations are observed in the number and positions of introns (Table 

1 and Figure. 1) and a large proportion of vIL-10s are intronless. 

Viral capture of host genes can result either from recombination between the viral genome and 

the host genome during viral replication in the nucleus (provided that the viral genome enters the 

nucleus during replication, as it is the case for herpesviruses but not poxviruses), or from 

recombination between the viral genome and a retrotranscript (cDNA) of mRNA (Odom et al., 2009; 

Shackelton & Holmes, 2004). The latter process requires reverse transcriptase activity, most likely 

derived from retrovirus co-infection of the host cell (Brunovskis & Kung, 1995; Isfort et al., 1992). 

Direct gene capture from the host genome results in preservation of the original cellular intron-exon 

structure, as in OvHV-2 (Jayawardane et al., 2008). Subsequent selective pressure could result in 

successive shortening or even loss of one or more introns, as exemplified by the vIL-10 variants not 

containing the full subset of exons. The intronless vIL-10 genes most likely represent gene capture via 

reverse transcription of cellular mRNA, but could theoretically also represent a final stage of intron 

loss from a gene originally captured from genomic DNA. The fact that all poxvirus vIL-10 genes are 

intronless probably reflects the cytoplasmic replication cycle of poxviruses, which may exclude the 

possibility of direct capture of host genes via recombination in the nucleus (Bratke & McLysaght, 

2008). 

4. Origin and evolution of vIL-10s 

Bioinformatical analyses were performed in the context of the present review, firstly to 

identify all viral sequences encoding IL-10 orthologues that are available in the public databases, 

secondly to determine whether these sequences are true vIL-10s or orthologues of cellular genes 

related to cIL-10. Methods and sequences used for these analyses are provided as supplementary 

material (S1). The viral sequences listed in Table 1 and the 134R gene encoded by Yaba-like disease 

virus were detected as viral sequences related to cIL-10 (Lee et al., 2001). Among the sequences listed 

in Table 1, a sequence highly homologous to EBV vIL-10 was found in the bonobo genome sequence. 

We assumed that this resulted from the sequencing of a contaminating herpesvirus, hereafter called 



Figure 2. Maximum likelihood phylogenetic tree for cIL-10s, vIL-10s (listed in Table 1), the 134R protein 

encoded by Yaba-like disease virus, and selected members of the IL-20 family of cytokines. Sequences and 

methods used are described in supplementary file S1. The tree was build using MEGA (JTT+ substitution 

model) and 100 bootstrap replicates. Numbers of nodes indicate bootstrap confidence, where >70%. Cellular 

IL-10 and vIL-10s are collapsed into a single branch. Scale: substitutions per site. 
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bonobo herpesvirus (bonobo-HV) (The rational that lead to this conclusion is described in the 

supplementary material S2). Figure 2 presents the phylogenetic analysis of all the viral sequences 

detected above, together with cIL-10 orthologues and representative members of the wider IL-10 

family of cytokines. Figure 2 demonstrates that the 134R protein from Yaba-like disease virus is most 

closely related to IL-24 proteins, although its exact position in the phylogenetic tree is not well defined 

in terms of bootstrap values. Further supporting the conclusion that the 134R protein is not an IL-10 

orthologue, Barlett et al. (2004) demonstrated that it signalled via the IL-20 receptor complex. Thus, it 

is clear that the 134R protein is not a true vIL-10, and it was therefore removed from further analyses. 

 Many of the vIL-10 genes are situated in orthologous locations in viral genomes, referred to 

here as positional orthology. Given that it is unlikely that gene capture would integrate cIL-10 into the 

same viral genome location on more than one occasion, positional orthology is assumed to represent 

ancient viral capture events in ancestral viruses. Four positionally orthologous sets of vIL-10 can be 

defined in the following viral genera: Cytomegalovirus, Lymphocryptovirus, Parapoxvirus and 

Capripoxvirus. All four of these sets cluster together in the Bayesian tree vIL-10s and the cIL-10s of a 

selection of their hosts (Figure 3). Based on Figure 3, it can be concluded that the positionally 

orthologous clade of vIL-10s of the genus Lymphocryptovirus (EBV/ baboon lymphocryptovirus 

[BaLCV]/ rhesus lymphocryptovirus [RhLCV]/ bonobo-HV) is nearest neighbour to a clade 

comprising the corresponding ape cIL-10s. This capture of cIL-10 by an ancestral lymphocryptovirus 

must therefore have taken place after the divergence of Old World primates from New World primates 

42 million years ago, since marmoset IL-10 is an outlier to both members of the genus 

Lymphocryptovirus and Old World primate lineages. The minimum date for this gene capture is more 

difficult to estimate, as the resolution of the tree does not make it possible to distinguish between it 

having occurred prior to the human-gorilla divergence, at 9 million years ago, or the ape-monkey 

divergence, at 29 million years ago. In the vIL-10s of members of the genus Cytomegalovirus (HCMV 

and others in that clade), an ancient capture event can again be inferred because of positional 

orthology. This event would have to have taken place before 42 million years ago, which is when the 

Old and New World monkey lineages diverged. Apart from HCMV cmvIL-10, the vIL-10s in the 

genus Cytomegalovirus clade have the same branching pattern as IL-10s of the hosts. The best 

explanation for the anomalous position of HCMV cmvIL-10 in this clade is that there has been 

particular selective pressure on HCMV. In this context, it is notable that the nearest relative of HCMV, 

chimpanzee cytomegalovirus (CCMV), lacks a vIL-10 gene, suggesting that some evolutionary 

pressure in the common ancestor of humans and chimpanzees resulted in the loss of this gene from 

CCMV and also its extensive modification in HCMV. Concerning CCMV, as there is only one 

reported sequence, even if unlikely, one cannot exclude the possibility that this gene has been lost 

during viral replication in cell culture. For the positionally orthologous vIL-10s of members of the 

genus Parapoxvirus (orf virus [ORFV]/ bovine papular stomatitis virus [BPSV]/ pseudocowpox virus 

[PCPV]), it is apparent that the ancestor of these proteins was captured prior to divergence of the 
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sheep and goat lineages at 7.3 million years ago. However, it is more difficult to specify a maximum 

date for this gene capture event, since the relationships of parapoxvirus vIL-10s to bovine and cervine 

IL-10 are poorly resolved. 

 The Bayesian tree does not help with the assessment of the vIL-10s of the fish viruses 

anguillid herpesvirus 1 (AngHV-1) and cyprinid herpesvirus 3 (CyHV-3), nor of OvHV-2, canarypox 

virus (CNPV) or the capripoxviruses (lumpy skin disease virus [LSDV]/ sheeppox virus [SPV]/ 

goatpox virus [GPV]). However, it seems unlikely that any of these vIL-10s represents a recent 

capture from the host. The capripoxvirus vIL-10s constitute a clade, but its point of divergence from 

the host sequences cannot be pinpointed in the same way as for the parapoxviruses. The only obvious 

example of a recent gene capture event for the origin of a vIL-10 is in equid herpesvirus 2 (EHV-2). 

Overall, based on positional orthology, amino acid sequence comparisons and the presumed 

modes of gene capture, at least eight, and possibly nine (assuming that AngHV-1 and CyHV-3 vIL-

10s represent independent acquisitions), different viral cIL-10 capture events can be discriminated. 

5. Protein structure of IL-10 orthologues 

Amino acid sequence conservation is rather low among the three subgroups of the IL-10 

family of cytokines (IL-10, IL-20 subfamily cytokines and type III IFN group) (Zdanov, 2004). In 

particular, type III IFNs are closer to type I IFNs than to the IL-10. For example, the amino acid 

sequence of IFN-λ3 (which belongs to the type III IFN group) is more similar to that of type I IFNs 

(exhibits 33% of similarity) than to the IL-10 (exhibits 23% of similarity) (Gad et al., 2009). Moreover, 

induction of gene expression and biological activities of type III IFNs are more similar to those 

described for type I IFNs (Ouyang et al., 2011). However, IFN-λ3 is structurally more closely related 

to the IL-10 family of cytokines, especially IL-22 (Gad et al., 2009) and has been shown to signal 

through the same IL-10R2 chain (Ouyang et al., 2011). 

Cellular IL-10s are well conserved among species (Lockridge et al., 2000; Moore et al., 2001). 

Indeed, the high level of conservation among cIL-10s contrasts with the variable (25-97.2%), and 

frequently low levels of identity observed between vIL-10s and their respective host IL-10s (Table 1). 

However, as illustrated in Figure 1 (colour code) the percentage of conservation is not distributed 

uniformly along vIL-10s. It is generally higher for amino acid regions corresponding to the regions 

encoded by cIL-10 exons 1 (with exception of the signal peptide region), 3 and 5. 

Independent of the level of identity between vIL-10s and cIL-10s, the former share many 

features with the latter. Firstly, cIL-10s and vIL-10s are secreted proteins. They are synthesized as 

precursors expressing a 17-33 residue hydrophobic signal peptide at the N terminus (Table 1). This 

peptide is cleaved during secretion (Kotenko & Pestka, 2001). Secondly, all cIL-10s encode two 

family signature motifs: L-[FILMV]-X3-[ILV]-X3-[FILMV]-X5-C-X5-[ILMV]-[ILMV]-X(3)-L-X2-

[IV]-[FILMV] and KA-X2-E-X-D-[ILV]-[FLY]-[FILMV]-X2-[ILMV]-[EKQZ] (Pinto et al., 2007; 
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Figure 4. Structure of cIL-10s and selected vIL-10s. a) Crystal structure of human IL-10 from the IL-

10/IL-10R1 complex (PDB ID: 1j7v (Josephson et al., 2001)). IL-10 protomers are depicted with helices 

rendered as cylinders. Helices are labelled. b) Ribbon diagram of the 1:2 IL-10/sIL-10R1 complex viewed 

perpendicular to the twofold axis of IL-10 (reproduced with permission from Josephson et al., 2001). c) to f) 

Superposition of host and viral IL-10s modeled using human IL-10 as template (PDB ID: 1j7v). c) Human 

IL-10 (green, PDB ID: 1j7v (Josephson et al., 2001)) and EBV vIL-10 (blue, PDB ID: 1Y6M (Yoon et al., 

2005)). d) Human IL-10 (green) and HCMV cmvIL-10 (brown, PDB ID: 1LQS (Jones et al., 2002)). e) 

European eel IL-10 (red) and AngHV1 vIL-10 (orange) (van Beurden et al., 2011). f) Common carp IL-10 
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orthologue published previously are shown at the top of each complex. 
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Zhang et al., 2005). These motifs, which are essential for the structure and the function of cIL-10s, are 

conserved to a large extent in vIL-10s. Thirdly, despite the variable sequence homology observed 

between cIL-10s and vIL-10s at the amino acid sequence level, their determined or predicted 

structures are highly conserved (Figure 4). The crystal structure of human IL-10 has been determined 

as free ligand (Walter & Nagabhushan, 1995; Yoon et al., 2006; Zdanov et al., 1995; Zdanov et al., 

1996) and as a binary complex bound to its soluble receptor (Josephson et al., 2001). These studies 

demonstrated that cIL-10, like all members of the IL-10 family of class II cytokines, possesses a 

characteristic α-helical fold consisting of six helices (A to F) and connecting loops (Figure 4a). It is 

secreted as a domain-swapped homodimer in which two adjacent non-covalently bounded peptides 

exchange helices E and F to form a twofold symmetric, V-shaped reciprocal dimer (Zdanov et al., 

1995). The crystal structures of EBV and HCMV cmvIL-10 have been determined (Jones et al., 2002; 

Yoon et al., 2005; Zdanov et al., 1997) (Figure 4c and d), and were proved to be similar to that of 

human IL-10 with exception that HCMV cmvIL-10 lacks helix B (Jones et al., 2002). Using the 

receptor-bound structure of human IL-10 as template (Josephson et al., 2001), the three-dimensional 

protein structures of the CyHV-3 and AngHV-1 vIL-10s and the cIL-10s of their respective host were 

predicted (van Beurden et al., 2011) (Figure 4e and f). These in silico analyses suggested that the vIL-

10s encoded by these two alloherpesviruses share the conserved structure described for cIL-10. 

6. Transcriptomic and proteomic expression of vIL-10 genes 

Expression of vIL-10 genes has been studied at the RNA and protein levels. Depending on the 

viral species, genes encoding vIL-10s have been shown to be transcribed during in vitro replication at 

early times for rhesus cytomegalovirus (RhCMV) (Lockridge et al., 2000), HCMV LAcmvIL-10 

(Jenkins et al., 2008a) and CyHV-3 (Ilouze et al., 2012), at early-late times for CyHV-3 (Ouyang et al., 

2013), or at late times for EBV (Hudson et al., 1985; Miyazaki et al., 1993; Touitou et al., 1996), 

HCMV cmvIL-10 (Chang et al., 2004) and AngHV-1 (van Beurden et al., 2013). 

The HCMV UL111A gene encodes a vIL-10 and has been shown to generate different 

transcripts during lytic and latent infections as a consequence of differential splicing (Kotenko et al., 

2000; Jenkins et al., 2004). HCMV cmvIL-10 is expressed during the productive phase of infection 

(Spencer et al., 2002; Chang et al., 2004), whereas LAcmvIL-10 has been reported to be expressed 

during both latent (Jenkins et al., 2004) and productive infections (Jenkins et al., 2008a). Both 

transcripts share the same initiation codon. However, as a result of the lack of splicing of the second 

intron, LAcmvIL-10 retains only the first two exons present in the lytic transcript (cmvIL-10), 

resulting in an in-frame stop codon 12 codons after the second exon. As a consequence, LAcmvIL-10 

encodes a truncated protein of 139 residues that shares its first 127 residues with the longer protein 

encoded by the cmvIL-10 transcript (Jenkins et al., 2004). Also, Lin et al. (2008) described five 
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cmvIL-10 isoforms resulting from alternative splicing during in vitro replication of HCMV (Lin et al., 

2008). 

EBV BCRF1 was classified as a late gene (Hudson et al., 1985), although it is expressed in B 

cells relatively early after infection (Jochum et al., 2012; Miyazaki et al., 1993). There is no evidence 

for BCRF1 transcription and protein secretion during in vitro latency. However, in in vivo studies, Xu 

et al. (2001) detected expression of BCRF1 in latently infected patients with NK/T-cell lymphoma 

(Xu et al., 2001). 

Expression of CyHV-3 ORF134, which encodes a vIL-10, has been detected in vivo during 

acute primary infection and subsequent reactivation phases. Expression during persistent infection at 

restrictive temperature was low or below the detection level (Sunarto et al., 2012). 

Secretion of vIL-10 in the extracellular compartment has been demonstrated for several 

viruses in cell culture: RhCMV (Lockridge et al., 2000), HCMV (cmvIL-10) (Chang et al., 2004), 

EBV (Touitou et al., 1996) and CyHV-3 (Ouyang et al., 2013). In vivo secretion has been 

demonstrated for RhCMV (Lockridge et al., 2000). 

The effect of vIL-10 on virus growth in vitro has been studied using recombinant strains 

containing knock-out or nonsense mutations. For all viruses tested, vIL-10 genes were shown to be 

non-essential for growth of HCMV (Dunn et al., 2003), RhCMV (Chang & Barry, 2010), EBV 

(Jochum et al., 2012), CyHV-3 (Ouyang et al., 2013) and ORFV (Fleming et al., 2007). 

7. Ligand-receptor complexes formed by IL-10 orthologues 

Cellular IL-10 acts through a specific cell surface receptor (IL-10R) complex, which is 

composed of two different class II cytokine receptor family (CRF2) subunits, IL-10R1 and IL-10R2 

(Moore et al., 2001; Zdanov, 2004). IL-10R1 is the high-affinity receptor subunit of cIL-10 and is 

expressed mainly on immune cells (Liu et al., 1994). Cellular IL-10 first binds to IL-10R1, which 

leads to changes of its conformation and subsequent association with the low-affinity receptor subunit 

IL-10R2 (Yoon et al., 2006). In contrast to IL-10R1, IL-10R2 has a broader expression pattern, being 

expressed on most immune and non-immune cells. However, IL-10R2 is unable to bind cIL-10 in the 

absence of IL-10R1 (Kotenko et al., 1997; Wolk et al., 2004). Binding of cIL-10 to the IL-10R 

complex activates a signalling pathway, which mainly acts through receptor-associated Janus kinase 1 

(Jak1, associated with IL-10R1), Tyrosine kinase 2 (Tyk2, associated with IL-10R2) and Signal 

transduction and transcription (STAT) factors, leading to initiation of transcription of the appropriate 

genes (Sabat et al., 2010). 

HCMV cmvIL-10 and EBV vIL-10 have been shown to bind to and signal through human IL-

10R1 (Jones et al., 2002; Yoon et al., 2005). The regions of the surfaces of the human IL-10 and vIL-

10 variants that make contact with the receptor are essentially the same. The binding affinity of 

HCMV cmvIL-10 (which exhibits only 27% sequence similarity with human IL-10) to soluble IL10R1 
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(sIL10 R1) is essentially similar to that of human IL-10 (Jones et al., 2002). Furthermore, HCMV 

cmvIL-10 induces phosphorylation of the transcription factor STAT3 in monocytes, indicating its 

ability to bind and signal through human IL-10R in a manner comparable to that of human IL-10 

(Jenkins et al., 2008b). The same authors blocked the ability of cmvIL-10 to down-regulate the MHC 

class II expression on monocytes by using neutralizing antibodies raised against human IL-10R 

(Jenkins et al., 2008b). None of the five cmvIL-10 isoforms resulting from alternative splicing during 

in vitro replication of HCMV induced phosphorylation of STAT 3 despite being able to bind to human 

IL-10R (Lin et al., 2008). In contrast to cmvIL-10, LAcmvIL-10 does not induce STAT3 

phosphorylation and retains the ability to reduce MHC class II expression on monocytes in the 

presence of neutralizing antibodies raised against human IL-10R (Jenkins et al., 2008b). These results 

suggest that LAcmvIL-10 does not bind to human IL-10R or acts through another receptor or binds to 

human IL-10R but in a different way as compared to cmvIL-10 and human IL-10. These variations 

most probably resulted from the fact that LAcmvIL-10 is a truncated protein that lacks C-terminal 

helices E and F. As a consequence LAcmvIL-10 lacks many of immunosuppressive functions (see 

below) that are known for cmvIL-10 (Jenkins et al., 2008b). 

The most prominent structural difference between human IL-10 and HCMV cmvIL-10 bound 

to sIL-10R1 is the ~40º interdomain angle, which forces a reorganization of the IL-10R1 subunits in 

the putative cell surface complex (Jones et al., 2002). The binding affinity of EBV vIL-10 (which has 

92% sequence identity to human IL-10) to cell surface IL-10R1 is approximately a thousand-fold 

lower than that of human IL-10 (Liu et al., 1997). This difference in receptor binding affinity is 

thought to be caused by subtle changes in the conformation and dynamics of two loop structures and 

the interdomain angle (Yoon et al., 2005), as well as by single amino acid substitutions (Ding et al., 

2000). 

Because the crystal structures of human IL-10 and EBV vIL-10 are very similar, the observed 

functional differences (described below) have been attributed to differences in binding affinity (Ding 

et al., 2001; Liu et al., 1997). Recently, the biological effect induced by CyHV-3 vIL-10 in zebrafish 

embryos was shown to be abrogated by down-regulation of IL-10R1 expression using a specific 

morpholino, suggesting that CyHV-3 vIL-10 functions also through IL-10R1 (Sunarto et al., 2012). 

8. Biological activities of IL-10 orthologues 

8.1 Biological activities of cIL-10 

Cellular IL-10 was first described as cytokine synthesis inhibitory factor (CSIF), an immune 

mediator that is produced by Th2 cell clones and has inhibitory effects on the synthesis of IL-2 and 

IFN-γ by Th1 cell clones (Fiorentino et al., 1989). Today, it is known that many different myeloid and 

lymphoid cells have the ability to produce IL-10 (Couper et al., 2008; Mosser & Zhang, 2008; Sabat et 

al., 2010), and that infection by a single pathogen species induces secretion of cIL-10 by more than 
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one cell population, depending on the type of pathogen, the infected tissue and the time point in the 

immune response (Sabat et al., 2010). 

Cellular IL-10 is a type II pleiotropic cytokine with both immunostimulatory and 

immunosuppressive properties (Moore et al., 2001). However, the key features of this cytokine relate 

to its capacity to exert potent immunosuppressive functions on several immune cell types (Moore et al., 

1993). It shows a clear, direct immunosuppressive effect on activated monocytes/macrophages, both 

by inhibition of the release of pro-inflammatory mediators (TNF-α, IL-1β, IL-6, IL-8, granulocyte 

colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF]) 

(de Waal Malefyt et al., 1991a; Fiorentino et al., 1991) and by enhancing the release of 

anti-inflammatory mediators (such as IL-1 receptor antagonist and soluble TNF-α receptor) (Hart et al., 

1996; Jenkins et al., 1994). Additionally, cIL-10 inhibits antigen presentation by down-regulation of 

the expression of MHC class I, MHC class II and B7-1/B7-2 co-stimulatory molecules (de Waal 

Malefyt et al., 1991b; Matsuda et al., 1994; Willems et al., 1994). It also affects dendritic cells (DCs) 

by preventing their differentiation from monocyte precursors, and their maturation (Allavena et al., 

1998; Demangel et al., 2002). Furthermore, cIL-10 hampers the development of Th1 immunity, both 

indirectly by inhibiting IL-12 synthesis by antigen presenting cells (APCs) and directly by inhibiting 

IL-2 and IFN-γ production by Th1 cells (D'Andrea et al., 1993; Fiorentino et al., 1991). Moreover, 

cIL-10 acts directly on Th2 cells and inhibits IL-4 and IL-5 synthesis (Del Prete et al., 1993). Cellular 

IL-10 has also immunosuppressive effect on neutrophilic and eosinophilic granulocytes by preventing 

the synthesis of lipopolysaccaride (LPS)-induced pro-inflammatory mediators (Cassatella et al., 1993; 

Takanaski et al., 1994). Thus, cIL-10 plays a key role in the inhibition of the pro-inflammatory 

responses. It is thought that the role of this inhibition is to protect tissues from the lesions that could 

result from exaggerated inflammation (Banchereau et al., 2012). 

Notably, apart from its immunosuppressive role, cIL-10 also shows a stimulatory effect on 

several types of immune cell. It may prevent apoptosis of B cells, enhancing their activation and 

contributes to immunoglobulin class switching (Go et al., 1990; Rousset et al., 1992). Cellular IL-10 

alone or in combination with other cytokines may also have a stimulatory effect on proliferation of, 

and cytokine production by, certain subsets of cytotoxic T cells (Rowbottom et al., 1999; Santin et al., 

2000), mast cells (Thompson-Snipes et al., 1991) and NK cells (Cai et al., 1999; Carson et al., 1995). 

8.2. Biological activities of vIL-10s 

The biological activities of vIL-10s have been studied mainly in vitro using recombinant 

proteins generated from bacterial or mammalian cell expression systems, supernatants from viral 

infected cultures, or, to a lesser extent, recombinant vIL-10 knock-out viruses. Only a restricted 

number of studies have addressed the roles of vIL-10s in vivo by comparing wild type and vIL-10 

knock-out viruses. These in vitro and in vivo studies are summarized below. In vitro studies are 
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presented according to the immune process affected by vIL-10s, while in vivo studies are organized 

per virus species studied. 

8.2.1 Biological activities of vIL-10s determined in vitro 

8.2.1.1 Inhibition of cytokine synthesis and leukocyte proliferation 

The hallmark activity of cIL-10 is the inhibition of cytokine production following 

pro-inflammatory signals. In vitro studies suggest that this activity is conserved among most viral 

orthologues. The studies supporting this conclusion are summarized below. 

HCMV cmvIL-10 inhibits gene expression and secretion of pro-inflammatory cytokines by 

LPS-stimulated peripheral blood mononuclear cells (PBMCs), monocytes, monocyte-derived dendritic 

cells (MDDCs) and plasmacytoid dendritic cells (PDCs) (Avdic et al., 2013; Chang et al., 2009; 

Chang et al., 2004; Jenkins et al., 2008b; Nachtwey & Spencer, 2008; Raftery et al., 2004; Spencer, 

2007; Spencer et al., 2002). Similarly, the orthologous RhCMV vIL-10 has been shown to inhibit 

production of pro-inflammatory cytokines by LPS-stimulated PBMCs and monocytes (Logsdon et al., 

2011; Spencer et al., 2002). In addition, both HCMV cmvIL-10 and RhCMV vIL-10 reduced IFN-γ 

production by PHA-stimulated human PBMCs, as well as human and rhesus PBMC proliferation 

(Spencer et al., 2002). HCMV cmvIL-10 secreted by HCMV-infected cells can directly suppress the 

synthesis of type I IFNs by plasmacytoid dendritic cells (PDCs) (Chang et al., 2009), demonstrating 

that HCMV cmvIL-10 can act in trans, since PDCs are highly resistant to infection by HCMV 

(Slobedman et al., 2009). HCMV cmvIL-10 has a marked impact on microglial cells, which play a 

role in host defense against HCMV brain infection. Pretreatment of microglial cells with recombinant 

HCMV cmvIL-10 prior to stimulation with HCMV significantly decreased the protein level of CXC 

chemokine ligand 10 (CXCL10), which is known to be involved in the recruitment of activated T 

lymphocytes in infected tissues (Cheeran et al., 2003). Very recent studies demonstrated that cmvIL-

10 influence monocyte polarization by induction of development of M2 alternatively activated 

monocytes type c (M2c). The M2c polarization of monocytes by cmvIL-10 resulted in up-regulation 

of the anti-inflammatory enzyme heme oxygenase 1 (HO-1), and this was shown to play an important 

role in viral IL-10-mediated suppression of pro-inflammatory cytokines by M2c monocytes (Avdic et 

al., 2013). Moreover, M2c monocyte polarization by cmvIL-10 reduces the ability to stimulate CD4+ 

T cell activation and proliferation (Avdic et al., 2013). 

In contrast to cmvIL-10, LAcmvIL-10 showed no inhibitory effect on IL-1α, IL-1β, IL-6 or 

TNF-α expression by LPS-stimulated MDDCs (Jenkins et al., 2008b). However, in another study, it 

has been shown to inhibit TNF-α production by THP-1 myeloid cells stimulated with LPS (Spencer et 

al., 2008). Finally, Avdic et al. (2011) demonstrated significantly higher levels of transcription and 

secretion of cytokines associated with DC formation, as well as an increase in the proportion of 
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myeloid DCs in CD34+ primary myeloid progenitor cells latently infected with HCMV deleted for the 

UL111A gene region, compared to parental virus or mock infection (Avdic et al., 2011). 

EBV vIL-10 inhibits pro-inflammatory cytokine production by activated cells of various types 

(de Waal Malefyt et al., 1991a; Hsu et al., 1990; Jochum et al., 2012; Salek-Ardakani et al., 2002b; 

Vieira et al., 1991). In addition, it reduces both the amount of IFN-γ mRNA (Niiro et al., 1992) and 

IFN-γ secretion (Salek-Ardakani et al., 2002b) in activated human PBMCs. Jochum et al., 2012 

demonstrated that human PBMCs infected with EBV deleted for BCRF1 produced significantly higher 

levels of the pro-inflammatory cytokines IFN-γ, IL-2, IL-6 and TNF-β, whereas levels of IL-1, IL-5, 

IL-8 and TNF-α were similar to those observed with the parental wild type strain. Interestingly, these 

authors also observed an increased production of human IL-10 by PBMCs infected with the BCRF1 

deleted strain. This observation suggests that vIL-10 could regulate human IL-10 expression. However, 

the observed effect could also have been an indirect consequence of the higher level of 

pro-inflammatory cytokines resulting from infection by the EBV vIL-10-deleted recombinant (Jochum 

et al., 2012). Finally, Brodeur and Spencer (2010) demonstrated that anti-human IL-10 antibodies bind 

to and neutralize the immunosuppressive activity of EBV vIL-10 but not HCMV cmvIL-10. This 

observation is consistent with the higher homology existing between EBV vIL-10 and human IL-10 

(92.3% of identity) compared to HCMV cmvIL-10/ human IL-10 (27.3% of identity). 

The inhibition of cytokine activities were also demonstrated for two viruses infecting sheep 

(OvHV2 and ORFV) using different in vitro systems. OvHV2 vIL-10 inhibited IL-8 production by 

LPS-stimulated ovine macrophages (Jayawardane et al., 2008) whereas ORFV vIL-10 inhibited TNF-

α and IL-8 production from LPS-stimulated ovine macrophages and ionophore/PMA stimulated 

keratinocytes, as well as IFN-γ and GM-CSF production by Con-A-stimulated PBMCs (Haig et al., 

2002a, b). However, ORFV vIL-10 knock-out virus showed no effect on infected keratinocyte IL-8 

and TNF-α production (Haig et al., 2002b). ORFV vIL-10 has also been shown to inhibit expression 

and secretion of TNF-α in LPS-activated mouse peritoneal macrophages (Imlach et al., 2002), to 

inhibit TNF-α and IL-1β in the human monocyte cell line THP-1 activated by LPS (Imlach et al., 2002; 

Wise et al., 2007), and to inhibit production of IL-8, IL-1β and TNF-α in LPS-stimulated ovine 

alveolar macrophages (Fleming et al., 2000). Furthermore, inhibition of IFN-γ production in PBMCs 

by ORFV vIL-10 was demonstrated (Fleming et al., 2000). Compared to human IL-10, ORFV vIL-10 

possesses reduced ability to impair THP-1 monocyte proliferation in the presence of LPS (Wise et al., 

2007). However, it would be interesting to compare the biological activities of ORFV vIL-10 to those 

of ovine IL-10. 

8.2.1.2 Deregulation of MHC and co-stimulatory molecule expression 

Studies of the vIL-10s encoded by HCMV and EBV have demonstrated their ability to 

deregulate MHC and co-stimulatory molecule expression. HCMV cmvIL-10 and RhCMV vIL-10 

reduced cell surface expression of classical MHC class I and class II molecules (Jaworowski et al., 
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2009; Jenkins et al., 2008b; Raftery et al., 2004; Spencer et al., 2002), but also increased expression of 

the non-classical MHC molecules HLA-DM and HLA-G on LPS-stimulated human MDDCs and 

monocytes, respectively (Raftery et al., 2004; Spencer et al., 2002). These observations suggest that 

HCMV cmvIL-10 could prevent antigen presentation to T cells through MHC class I molecule down-

regulation but could simultaneously protect MHC class I-negative cells from NK cell-mediated lysis 

through up-regulation of HLA-G (Rouas-Freiss et al., 1997). Although independent studies 

demonstrated the inhibitory effect of HCMV cmvIL-10 on MHC class I expression in different LPS-

stimulated cell types, Pepperl-Klindworth et al. (2006) suggested that HCMV cmvIL-10 secreted 

during the productive phase of HCMV infection has no direct impact on MHC class I-restricted 

antigen presentation on non-infected bystander cells in the context of viral infection (Pepperl-

Klindworth et al., 2006). HCMV cmvIL-10 has also been shown to inhibit LPS-induced enhancement 

of co-stimulatory molecules (CD40, CD80, CD86, B7-H1 and B7-DC) on the surface of MDDCs 

(Jenkins et al., 2008b; Raftery et al., 2004). LAcmvIL-10 reduces the expression of MHC class II 

molecules, but, in contrast to cmvIL-10, does not down-regulate expression of MHC class I molecules 

and co-stimulatory molecules (CD40, CD80, and CD86) on LPS-stimulated MDDCs (Jenkins et al., 

2008b). The reduction of cell surface MHC class II molecule expression by LAcmvIL-10 was 

comparable to the effect of cmvIL-10 both on immature myeloid progenitor cells and human 

monocytes (Jaworowski et al., 2009; Jenkins et al., 2008b). Jenkins et al. (2008b) suggested a possible 

mechanism for the reduction of MHC class II cell surface expression at the level of the transcriptional 

activity of CIITA, a gene that encodes a protein regulating the transcription of genes involved in the 

MHC class II biosynthesis pathway. The authors demonstrated that cmvIL-10, as well as LAcmvIL-10, 

significantly inhibited transcription of CIITA, and that this resulted in down-regulation of expression 

of HLA-DR α, β and invariant chain. In addition, both cmvIL-10 and LAcmvIL-10 may inhibit MHC 

class II surface expression acting at the post-translational level by blocking transport of MHC class II 

molecules to the cell surface (Jenkins et al., 2008b). In addition to the above-mentioned functional 

studies utilizing recombinant LAcmvIL-10, Cheung et al. (2009) demonstrated that CD34+ myeloid 

progenitor cells latently infected by an HCMV strain deleted for the UL111A gene expressed a higher 

level of surface MHC class II molecules compared to cells infected with the parental strain. Cells 

infected with the knock-out strain became recognizable by allogeneic and autologous CD4+ T cells 

(Cheung et al., 2009). 

EBV vIL-10 was shown to reduce both constitutive and IFN-γ- or IL-4-induced MHC class II 

cell surface expression on monocytes and macrophages (de Waal Malefyt et al., 1991b; Salek-

Ardakani et al., 2002a, b). This resulted in a decrease of antigen presentation by monocytes, and, as a 

consequence, a reduction of T cell proliferation (de Waal Malefyt et al., 1991b). EBV vIL-10 also 

inhibited the expression of adhesion molecule ICAM-1 and co-stimulatory molecules (CD80 and 

CD86) on monocytes and macrophages when added simultaneously with IFN-γ (Salek-Ardakani et al., 

2002a). Interestingly, EBV vIL-10 inhibited IFN-γ-induced MHC class I expression on monocytes and 
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macrophages only when it was added 2 h prior to the addition of IFN-γ, suggesting that it affects an 

early step in the IFN-γ signaling pathway (Salek-Ardakani et al., 2002a). 

8.2.1.3. Inhibition of DC 

Dendritic cells play key roles in immune responses. Viral IL-10s have been shown to affect 

their maturation, functionality and survival. HCMV cmvIL-10 inhibited LPS-induced pro-

inflammatory cytokine production by immature DCs (Chang et al., 2004; Raftery et al., 2008), but was 

also shown to have pronounced long-term effects on mature DCs. Although it enhanced the migration 

of mature DCs towards peripheral lymph nodes, it also reduced their production of cytokine (Chang et 

al., 2004). In addition, the inability of mature DCs to secrete IL-12 was maintained, even when they 

were restimulated by the activated T-cell signal CD40 ligand in the absence of cmvIL-10. Finally, 

cmvIL-10 induced endogenous cIL-10 expression in DCs, further increasing its modulatory effects 

(Chang et al., 2004). 

Raftery et al. (2004) demonstrated that HCMV cmvIL-10, in contrast to EBV vIL-10, had 

additional effects on DCs that could affect negatively their roles in immunity. Firstly, it inhibited cell-

surface expression of molecules involved in antigen presentation, co-stimulation and adhesion. 

Secondly, it increased apoptosis of LPS-stimulated immature DCs by blocking expression of the anti-

apoptotic, long form cellular FLIP protein. Thirdly, it induced a strong activation of STAT3 (a key 

mediator in cIL-10 transduction signal) in immature DCs. Fourthly, it up-regulated expression of DC-

SIGN and IDO on LPS-stimulated immature DCs (Raftery et al., 2004). DC-SIGN has been shown to 

play a role in DC infection with primary HCMV isolates (Halary et al., 2002), whereas synthesis of 

IDO by human DCs caused suppression of T cell responses (Hwu et al., 2000). In contrast to HCMV 

cmvIL-10, LAcmvIL-10 showed no inhibitory effect in LPS-stimulated immature DCs on the 

expression of pro-inflammatory cytokines, co-stimulatory molecules and the maturation marker CD83 

(Jenkins et al., 2008b). However, using a recombinant virus deleted for the UL111A gene region, 

Avdic et al. (2011) demonstrated that HCMV vIL-10 expressed during latency inhibits differentiation 

of latently infected myeloid progenitor cells toward a DC phenotype, suggesting that LAcmvIL-10 

may inhibit infected myeloid progenitors to differentiate into DCs, thereby limiting the presentation of 

latency-associated viral peptides by DCs (Avdic et al., 2011). 

Immature DCs exposed simultaneously to LPS and ORFV vIL-10 showed enhanced 

ovalbumin–FITC uptake and reduced IL-12 expression, indicating inhibition of maturation of DCs. 

Furthermore, ORFV vIL-10 inhibited the up-regulation of DC cell-surface markers of activation and 

maturation such as MHC class II, CD80, CD83 and CD86, and inhibited the capacity of DCs to 

activate CD4+ T cells (Chan et al., 2006). Similarly, ORFV vIL-10 inhibited maturation and 

expression of MHC class II, CD80 and CD86 in stimulated murine bone marrow-derived dendritic 

cells (BMDCs), and reduced their ability to present antigens (Lateef et al., 2003). 
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8.2.1.4. Other immunosuppressive properties 

 In addition to the main immunosuppressive properties described above, some studies suggest 

potential additional immunosuppressive effects for some vIL-10s. HCMV cmvIL-10 decreased matrix 

metalloproteinase activity and deregulated cell-to-cell or cell-matrix interactions of infected 

cytotrophoblasts and endothelial cells (Yamamoto-Tabata et al., 2004). EBV vIL-10 has been shown 

to impair some of the defense mechanisms of activated monocytes and macrophages. It inhibited 

production of the superoxide anion by PBMCs and monocytes (Niiro et al., 1992) and PGE2 

expression by LPS-stimulated monocytes (Niiro et al., 1994). Furthermore, EBV vIL-10 inhibits 

NK/NKT cell-mediated lysis of infected B cells through a direct effect on these cytotoxic cells and 

also through an indirect inhibitory effect on the CD4+ T cells that contribute to the microenvironment 

required for NK/NKT cytotoxicity (Jochum et al., 2012). 

8.2.1.5. Immunostimulatory properties 

 In addition to their immunosuppressive effects, some vIL-10s have retained at least some of 

the immunostimulatory properties of their cellular orthologues. HCMV cmvIL-10, but not LAcmvIL-

10, showed a strong stimulatory effect on proliferation of the human B cell lymphoma Daudi cell line 

(Spencer et al., 2008) and induced the production of human IL-10 (which is a growth factor for B 

lymphocytes) (Jaworowski et al., 2009; Spencer et al., 2008). Jaworowski et al. (2009) studied the 

effect of cmvIL-10 and LAcmvIL-10 on monocytes. They demonstrated that cmvIL-10 but not 

LAcmvIL-10 increases the expression of Fcγ receptors CD32 and CD64, as well as Fcγ-receptor-

mediated phagocytosis (Jaworowski et al., 2009). RhCMV vIL-10 has been shown to stimulate 

proliferation of TF-1/IL-10R1 cells, which are human erythroleukemic cells proliferating upon 

addition of human IL-10 to the media (Logsdon et al., 2011). 

EBV vIL-10 has also been shown to stimulate proliferation and differentiation of human B 

cells as well as immunoglobulin production (Defrance et al., 1992; Rousset et al., 1992; Stuart et al., 

1995). However, EBV vIL-10 lacks several of the other immunostimulatory functions expressed by 

cIL-10, such as co-stimulation of mouse thymocyte proliferation, mast cell proliferation and up-

regulation of MHC class II expression on B cells (Vieira et al., 1991). 

 The ability of the OvHV-2 and ORFV vIL-10s to stimulate cell proliferation to levels 

comparable to those obtained with ovine IL-10 has been demonstrated by independent studies. OvHV-

2 vIL-10 induced proliferation of murine mast cell line D-36 in conjunction with IL-4 (Jayawardane et 

al., 2008). ORFV vIL-10 has been shown to induce proliferation of murine thymocytes in the presence 

of IL-2 (Fleming et al., 1997), ovine mast cells stimulated with IL-3, murine mast cell line D-36 

stimulated with IL-4 (Haig et al., 2002b) and murine MC/9 mast cells stimulated with IL-3 and IL-4 

(Imlach et al., 2002). 
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8.2.2 Biological activities of vIL-10s determined in vivo 

Numerous molecular and in vitro studies suggest that, following capture, there has been 

adaptive evolution of vIL-10 through positive selection to retain the properties most beneficial for the 

viral life cycle. However, very few studies have addressed the role of vIL-10 in vivo by comparison of 

a wild type strain and derived deleted and revertant strains. This approach, which is essential to 

drawing conclusions on biological relevance in vivo, has been followed for only three viruses: 

RhCMV, ORFV and CyHV-3. 

Chang and Barry (2010) demonstrated that RhCMV vIL-10 has various effects on both the 

innate and the adaptive immune responses against RhCMV in infected rhesus macaques. They 

performed comparative infections with a wild type strain and a derived recombinant strain deleted for 

UL111A. Skin biopsies from macaques infected with the deleted strain exhibited a higher level of 

cellularity at the site of infection but contained a lower frequency of CD68+ macrophages. The latter 

observation suggests that RhCMV vIL-10 could contribute to the recruitment of permissive cells on 

viral replication sites. RhCMV vIL-10 was also shown to reduce trafficking of myeloid DCs to 

draining lymph nodes and to decrease priming of naïve CD4+ T cells (Chang & Barry, 2010). 

Although RhCMV vIL-10 has no effect on IgM production, it inhibited B cell differentiation and 

antibody isotype switching, resulting in a permanent deficit of circulating anti-RhCMV IgG. In 

addition, RhCMV vIL-10 delayed antibody maturation and attenuated the magnitude of anti-viral 

antibody titre (Chang & Barry, 2010). Finally, it was also shown to reduce the frequency of RhCMV-

specific effector T helper cells secreting IFN-γ or IL-2, and T cell proliferation (Chang & Barry, 2010).  

The activity of vIL-10 encoded by ORFV in vivo has been analyzed in its natural host, the 

sheep. A preliminary study revealed that the frequency of IFN-γ mRNA-expressing cells in skin 

lesions was higher in animals infected with the vIL-10 knock-out virus than in animals infected with 

the parental wild type virus (Fleming et al., 2000). Interestingly, after primary infection, smaller, less 

severe lesions were observed in animals infected with the vIL-10 knock-out virus than those observed 

in animals infected with the wild type parental or revertant strains (Fleming et al., 2007). 

Recently, the role of CyHV-3 vIL-10 was studied in vivo using an artificial zebrafish embryo 

model (Sunarto et al., 2012). It was shown that injection of CyHV-3 ORF134 mRNA into zebrafish 

embryos increased the number of lysozyme-positive cells to a degree similar to that of zebrafish IL-10 

mRNA (Sunarto et al., 2012). However, Ouyang et al. (Ouyang et al., 2013) demonstrated that CyHV-

3 vIL-10 does not significantly affect its virulence in common carp or the host innate immune 

response. Thus, infection of carp with ORF134-deleted, ORF134-revertant or wild type strains 

induced comparable levels of CyHV-3 disease (Ouyang et al., 2013). Moreover, quantification of viral 

load and real-time PCR investigating the expression of several carp inflammatory cytokines at various 

times post-infection did not revealed any significant differences between groups of fish infected with 

the three viral genotypes (Ouyang et al., 2013). Similarly, histological examination of the gills and the 
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kidneys of infected fish revealed no significant differences between fish infected with the ORF134-

deleted virus and those infected with the control parental or revertant strains (Ouyang et al., 2013). All 

together, the results demonstrated that CyHV-3 vIL-10 is essential for neither viral replication in vitro 

nor virulence in common carp. 

9. Viral IL-10s as a topic of applied research 

In addition to their importance in fundamental research, a large number of studies demonstrate 

a role for vIL-10s in applied research. A thorough description of this abundant literature is beyond the 

scope of this review. Here, we briefly describe the two main types of applied research developed on 

vIL-10s. These studies investigate the potential of vIL-10s as candidate antigens or target genes 

(production of attenuated recombinant vaccines) for the development of anti-viral vaccine or as an 

immunosuppressor to prevent immunopathologies. 

For vIL-10s that alter innate or adaptive immunity in vivo, vaccine-mediated neutralization of 

their function could contribute to inhibition of the establishment of a persistent infection in naïve 

subjects or even interrupt a pre-existing persistent infection. This theoretical possibility could apply to 

most vIL-10s that are quite divergent in sequence from the host IL-10. To address this concept using 

the RhCMV model (Yue & Barry, 2008), inactive RhCMV vIL-10 mutants were designed as antigen 

candidates and shown to induce the production of neutralizing antibodies specific to vIL-10 (not 

cross-reacting with host IL-10) (de Lemos Rieper et al., 2011; Logsdon et al., 2011). The ability of 

such an antigen candidate to interfere with persistent RhCMV infection (establishment or maintenance) 

has not yet been tested. However, a recent study on the immunogenicity of vIL-10 in RhCMV-infected 

rhesus macaques demonstrated that the serum of persistently infected animals contains high levels of 

vIL-10-neutralizing antibodies (Eberhardt et al., 2012). This observation suggests that vIL-10-based 

vaccines may not be able to interrupt an established persistent infection. Interestingly, development of 

antibodies against RhCMV vIL-10 in uninfected rhesus macaques immunized with plasmid vectors 

encoding for engineered, nonfunctional RhCMV vIL-10 variants resulted in reduction of RhCMV 

replication at the inoculation site and RhCMV shedding in bodily fluids during subcutaneous RhCMV 

challenge (Eberhardt et al., 2013). Alternatively, for vIL-10s playing a significant role in virulence, 

deleted recombinant strains could be produced as attenuated vaccines as suggested for RhCMV 

(Chang & Barry, 2010). 

The data presented in the previous section collectively indicate that vIL-10s, compared to cIL-

10, have a restricted bioactivity profile favouring immunosuppressive activities. Based on this profile, 

several independent groups have suggested exploiting vIL-10s as potential immunosuppressive agents. 

Studies performed in laboratory animal models support this concept. Researchers have demonstrated 

the potential of some vIL-10s to induce localized immunosuppression in order to favour long-term 

engraftment of transplanted tissues (EBV vIL-10) (Nast et al., 1997; Qin et al., 1996), reduce the 
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host’s foreign body reaction against implanted biomaterials (HCMV cmvIL-10) (van Putten et al., 

2009), or treat collagen-induced arthritis (EBV vIL-10) (Keravala et al., 2006; Kim et al., 2000; 

Lechman et al., 1999; Ma et al., 1998; Whalen et al., 1999).  

10. Concluding remarks 

Most viruses have been co-evolving with their hosts for millions of years. During this process, 

viruses and hosts have been acting as strong sources of selection pressure on each other. Thus, viruses 

have been constantly selecting individuals among the host population that have the most efficient 

immune systems, while the continual improvement of the immune system has been selecting viruses 

that have evolved strategies to control the host immune response. Fundamental studies in immunology 

have demonstrated the key roles of cIL-10 in the immune system. The various independent 

acquisitions of IL-10 orthologues by viruses belonging to different viral genera, subfamilies and even 

families further support the importance of cIL-10 in the immune system. After their capture by the 

viral genome, cellular sequences evolve through positive selection to retain properties that are the 

most beneficial for the virus, and, sometimes, to acquire novel properties. The vIL-10s illustrate this 

concept. In comparison to their cellular orthologues, vIL-10s have evolved towards a more restricted 

bioactivity profile consisting mainly, but not exclusively, of immunosuppressive activities. 

Interestingly, studies on HCMV cmvIL-10 and LAcmvIL-10 demonstrate that evolution of a captured 

IL-10 gene in the viral genome has led to the expression of two different transcripts that have specific 

biological activities adapted to the replication and latent phases. 
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Table S1. Sequences used to build trees
1 

 

1 
Sequences listed in Table 1 were also used to build the trees presented in Figure 3 and Figure 4. 

2 
Accession numbers for IL-19, IL-20, IL-22, IL-22B, IL-24, IL-26 and 134R are from SwissProt. Other 

accession numbers are from GenBank. 

 

Protein Host species  Accession number
2 

Fig. 3 Fig. 4 

IL-10 Xenopus Xenopus (Silurana) tropicalis ref|NP_001165400.1 X X 

Rock dove Columba livia gb|EMC81973.1 X X 

Chicken Gallus gallus ref|NP_001004414.2 X X 

Green seaturtle Chelonia mydas gb|EMP30816.1 X X 

Tasmanian devil Sarcophilus harrisii ref|XP_003767694.1 X X 

Opossum Monodelphis domestica ref|XP_003340215.1 X X 

Cat Felis catus ref|NP_001009209.1 X X 

Walrus Odobenus rosmarus 

divergens 

ref|XP_004417638.1 X X 

Red deer Cervus elaphus sp|P51746.1|IL10_CEREL X X 

Sheep Ovis aries emb|CAG38358.1 X X 

Goat Capra hircus gb|ABI20513.1 X X 

Cattle Bos taurus ref|NP_776513.1 X X 

Chinese hamster Cricetulus griseus ref|XP_003501267.1 X X 

Mouse Mus musculus ref|NP_034678.1 X X 

Rabbit Oryctolagus cuniculus gb|ABC41664.1 X X 

Marmoset Callithrix jacchus ref|XP_002760779.1 X X 

Human Homo sapiens ref|NP_000563.1 X X 

Chimpanzee Pan troglodytes ref|NP_001129092.2 X X 

Bonobo Pan paniscus ref|XP_003822966.1 X X 

Gorilla Gorilla gorilla gorilla ref|XP_004028338.1 X X 

Baboon Papio anubis ref|XP_003893246.1 X X 

Macaque Macaca mulatta ref|NP_001038192.1 X X 

Bottlenose dolphin Tursiops truncatus ref|XP_004312277.1 X X 

Pig Sus scrofa gb|ABP68816.1 X X 

Horse Equus caballus ref|NP_001075959.1 X X 

Myotis Myotis davidii gb|ELK37201.1 X X 

African elephant Loxodonta africana ref|XP_003410325.1 X X 

Chinese treeshrew Tupaia chinensis gb|ELW47753.1 X X 

Galago Otolemur garnettii ref|XP_003792257.1 X X 

Zebrafish Danio rerio ref|NP_001018621.2 X X 

Common carp Cyprinus carpio dbj|BAC76885.1 X X 

European eel Anguilla anguilla gb|AEL99923.1 X X 

IL-19 Human Homo sapiens IL19_HUMAN X  

Mouse Mus musculus IL19_MOUSE X  

IL-20 Human Homo sapiens IL20_HUMAN X  

Mouse Mus musculus IL20_MOUSE X  

IL-22 

 

IL-22B 

Human Homo sapiens IL22_HUMAN X  

Mouse 

Mouse 

Mus musculus 

Mus musculus 

IL22_MOUSE 

IL22B_MOUSE 

X 

X 

 

IL-24 Human Homo sapiens IL24_HUMAN X  

Mouse Mus musculus IL24_MOUSE X  

Rat Rattus norvegicus IL24_RAT X  

IL-26 Human Homo sapiens IL26_HUMAN X  

Protein Virus  Accession number Fig. 3 Fig. 4 

134R Yaba-like disease 

virus 

 Q9DHH9 X  

http://www.ncbi.nlm.nih.gov/protein/1708441?report=genbank&log$=protalign&blast_rank=1&RID=021K6K1C01R
http://www.ncbi.nlm.nih.gov/protein/395838720?report=genbank&log$=protalign&blast_rank=1&RID=01YY7K1001R
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Supplementary material S1 

Methods and sequences used to build the trees presented in Figure 3 and Figure 4. 

Methods 

The membership of the IL-10 protein family was defined according to Pfam (Punta et al., 2012) 

(http://pfam.sanger.ac.uk/family/IL10, PF00726). As well as the “true” IL-10 proteins, this protein 

family includes the related IL-19, IL-20, IL-22, IL-24 and IL-26 proteins. Protein sequences from the 

IL-10 family were loaded into MEGA (Tamura et al., 2011) and aligned using Muscle (Edgar, 2004). 

The best-fitting substitution model was derived and found to be the Jones-Taylor-Thornton model with 

a gamma distribution of rates among sites (JTT+Γ ). A maximum likelihood phylogenetic tree was 

then built using that model. Bayesian phylogenetic trees were built using BEAST (Drummond & 

Rambaut, 2007), run on the same substitution models until convergence. The tree prior was a 

speciating Yule model, and a relaxed exponential clock was found to be the best-fitting clock model, 

by comparison of different models using Bayes factors within BEAST. 
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Supplementary material S2 

Rational for considering the IL-10 orthologue found in the bonobo XP_003804206.1 

sequence as a sequence deriving from a contaminating bonobo herpesvirus 

 

The Pan paniscus vIL-10 sequence was found in the locus 

XP_003804206 http://www.ncbi.nlm.nih.gov/protein/397464698. A nucleotide alignment of the Pan 

paniscus unplaced genomic scaffold panpan1 scf1120388612767 (an almost 5kb DNA fragment, 

which harbours this vIL-10 gene) with the closely related Epstein-Barr virus suggesting that the whole 

scaffold is indeed viral. However, the viral sequence was too distant from EBV to represent a strain of 

this viral species. Most likely, this virus represents a bonobo lymphocryptovirus, probably the one for 

which a partial sequence of the DNA polymerase and glycoprotein B were published by Ehlers at al., 

2010. Indeed, searching of the DNA pol and gB sequence in the Pan paniscus ENA files, lead to the 

retrieve of another 4766 bp sequence (AJFE01005652.1: Pan paniscus 

cntg5853, http://www.ebi.ac.uk/ena/data/view/AJFE01005652&range=2-1842), which is 97% similar 

over >3kb to the pan paniscus lymphocryptovirus 1 described by Ehlers et al. (2010) (and ~88% to 

EBV). It is very likely that most of the sequences of this bonobo herpesvirus (with the exception of the 

vIL-10) were removed from the bonobo genome assembly, because they were mistakenly seen as a 

contamination by EBV which was used in the cell-line transformation. 
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http://www.ncbi.nlm.nih.gov/protein/397464698
http://www.ebi.ac.uk/ena/data/view/AJFE01005652&range=2-1842


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Objectives 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Objectives 

 73 

Objectives 

Cyprinid herpesvirus 3 is the etiological agent of an emerging and mortal disease in common 

(Cyprinus carpio carpio) and koi (Cyprinus carpio koi) carp. Since its emergence, in the late 1990s, 

this highly contagious and dreadful disease has caused severe economic losses in both common and 

koi carp culture industries worldwide. 

In addition to its economic importance, CyHV-3 has several qualities as a fundamental model 

of infection: (i) It is phylogenically distant from the vast majority of herpesviruses that have been 

studied so far. (ii) It can be studied in laboratories by infection of its natural host (homologous 

virus-host model). (iii) The sequence of its genome published in 2007 revealed a fascinating virus with 

unique properties in the Herpesvirales, such as an extremely large genome (295 Kb), a high number of 

genes which are not homologous to known viral sequences, and genes that are normally found 

exclusively in the Poxviridae. (iv) Interestingly, the sequencing of the CyHV-3 genome revealed 

several genes potentially encoding proteins involved in immune evasion mechanisms. Among these 

genes, ORF134 encodes an orthologue of carp Interleukin 10 (IL-10). 

IL-10 is a pleiotropic cytokine that has both immunostimulatory and immunosuppressive 

properties. However, its key features relate mainly to its capacity to exert potent immunosuppressive 

properties. Many viruses exploit the immunosuppressive properties of IL-10 to evade immune 

recognition either by up-regulation of cellular IL-10 or by expressing viral orthologues of cellular 

IL-10 called viral IL-10 (vIL-10). vIL-10s have been identified in several members of the Poxviridae 

family and the Herpesvirales order. The biological activities of various vIL-10s have been studied in 

vitro by using recombinant proteins and have demonstrated their broad immunosuppressive spectrum. 

Moreover, for few viruses (RhCMV and ORFV) encoding vIL-10s, it has been shown that deletion of 

the coding gene was associated with virus attenuation in vivo. 

In the present thesis, we took profit of the identification of a vIL-10 gene in the genome of 

CyHV-3 to study the roles of such a protein in the biology of the infection of an Alloherpesviridae 

family  member both in vitro and in vivo. 
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  Preamble 

For millions of years, viruses have been co-evolving with their hosts. During this co-evolution 

process, viruses have evolved elegant mechanisms to evade detection and destruction by the host 

immune system. One of the evasion strategies that have been adopted by large DNA viruses is to 

encode homologues of cytokines, chemokines and their receptors — molecules that have a crucial role 

in control of the immune response. 

Cellular Interleukine-10 (cIL-10) is a pleiotropic cytokine, with both immunostimulating and 

immunosuppressive properties; however, the key features of this cytokine relate mainly to its capacity 

to exert potent immunosuppressive functions through various mechanisms. Many viruses exploit the 

immunosuppressive properties of IL-10 to evade immune recognition either by up-regulation of host 

IL-10 or by expression of virally encoded IL-10 homologues. 

Virally encoded IL-10 homologues have been reported in several members of the Poxviridae 

family and the Herpesvirales order. Among the Herpesvirales order, vIL-10s have been described in 

members of the Herpesviridae (e.g. human cytomegalovirus [HCMV] and Epstein-Barr virus [EBV]) 

and more recently in the family Alloherpesviridae (Anguilid herpesvirus 1 [AngHV-1] and CyHV-3). 

While the role of vIL-10s has been demonstrated in the pathogenesis of only one member of family 

Poxviridae and Herpesviridae, respectively; this has not yet been investigated in the member of family 

Alloherpesviridae.  

In the present study, we investigated the roles of CyHV-3 ORF134 in the biology of the 

infection in vitro and in vivo. In vitro studies demonstrated that ORF134 is expressed as a spliced 

early-late gene and that its expression product is the second most abundant viral protein in the 

CyHV-3 secretome. Taking advantage of the recent BAC cloning of CyHV-3 as an infectious bacterial 

artificial chromosome (BAC), a strain deleted for ORF134 and a derived revertant strain were 

produced. Comparison of these strains demonstrated that ORF134 is essential neither for CyHV-3 

replication in vitro nor for virulence in vivo. 
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Abstract

Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae, is the causative agent of a lethal disease
in common and koi carp. CyHV-3 ORF134 encodes an interleukin-10 (IL-10) homologue. The present study was
devoted to this ORF. Transcriptomic analyses revealed that ORF134 is expressed as a spliced gene belonging to the
early-late class. Proteomic analyses of CyHV-3 infected cell supernatant demonstrated that the ORF134 expression
product is one of the most abundant proteins of the CyHV-3 secretome. To investigate the role of ORF134 in viral
replication in vitro and in virulence in vivo, a deleted strain and a derived revertant strain were produced using BAC
cloning technologies. The recombinant ORF134 deleted strain replicated in vitro comparably to the parental and
the revertant strains. Infection of fish by immersion in water containing the virus induced comparable CyHV-3
disease for the three virus genotypes tested (wild type, deleted and revertant). Quantification of viral DNA by real
time TaqMan PCR (in the gills and the kidney) and analysis of carp cytokine expression (in the spleen) by RT-qPCR
at different times post-infection did not revealed any significant difference between the groups of fish infected with
the three virus genotypes. Similarly, histological examination of the gills and the kidney of infected fish revealed no
significant differences between fish infected with ORF134 deleted virus versus fish infected with the control
parental or revertant strains. All together, the results of the present study demonstrate that the IL-10 homologue
encoded by CyHV-3 is essential neither for viral replication in vitro nor for virulence in common carp.

Introduction
Koi herpesvirus (KHV), also known as cyprinid herpes-
virus 3 (CyHV-3; species Cyprinid herpesvirus 3, genus
Cyprinivirus, family Alloherpesviridae, order Herpesvirales),
is the etiological agent of an emerging and mortal disease in
common (Cyprinus carpio carpio) and koi (Cyprinus carpio
koi) carp [1,2]. Since its emergence, in the late 1990s, this
highly contagious and dreadful disease has caused severe
economic losses in both common and koi carp culture
industries worldwide [3-5].
The genome of CyHV-3 comprises a linear double-

stranded DNA sequence of ~295 kbp [6], similar to that of
cyprinid herpesvirus 1 and 2 (CyHV-1 and CyHV-2) [7,8],
but larger than those of other members of the order

Herpesvirales which generally range from 125 to 240 kbp.
Phylogenetic analysis of the CyHV-3 genome sequence led
to its classification in the new family Alloherpesviridae
encompassing herpesviruses of fish and amphibians [9,10].
The CyHV-3 genome contains 155 potential protein-
coding open reading frames (ORFs), some of which have
relatives in other herpesviruses, and a few of which have
relatives in poxviruses, iridoviruses and other large DNA
viruses [6,8,11]. Interestingly, CyHV-3 genome encodes
proteins potentially involved in immune evasion mecha-
nisms such as, for example, TNF receptor homologues
(encoded by ORF4 and ORF12) and an IL-10 homologue
(encoded by ORF134) [6].
Cellular IL-10 has been described in a wide range of ver-

tebrate species, including fish [12,13]. It is a pleiotropic im-
munomodulatory cytokine with both immunostimulating
and immunosuppressive properties [14]; however, IL-10 is
generally described as an immunosuppressive cytokine. It
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inhibits expression of a large number of cytokines as, for
example, TNF-α, IFN-γ, IL-1β, IL-2, IL-3, IL-6, and MHC
class II [15-17]. Many viruses exploit the immunosuppres-
sive properties of IL-10 to evade immune recognition ei-
ther by up-regulation of host IL-10 or by expression of
virally encoded IL-10 homologues (vIL-10s) [14,18,19].
Virally encoded IL-10 homologues have been reported

in members of the Poxviridae family and the Herpesvirales
order [19-21]. Among the Herpesvirales order, vIL-10s
have been described in members of the Herpesviridae (e.g.
human cytomegalovirus [HCMV] and Epstein-Barr virus
[EBV]) and more recently in the family Alloherpesviridae
(Anguilid herpesvirus 1 [AngHV-1] and CyHV-3) [22].
While the role of vIL-10s has been demonstrated in the
pathogenesis of one Poxviridae and one Herpesviridae
[23-25]; this has not yet been investigated in the family
Alloherpesviridae. However, a very recent study suggested
that the IL-10 homologue encoded by CyHV-3 ORF134
could play a role in the pathogenesis. Firstly, it has been
demonstrated that this ORF is transcribed in infected fish
maintained at permissive and even restrictive temperature
[26]. Secondly, it has been shown that injection of CyHV-3
ORF134 mRNA into zebrafish embryos increased the
number of lysozyme-positive cells to a similar degree as
zebrafish IL-10 [26]; an effect that was inhibited by down
regulation of the IL-10 receptor long chain using a specific
morpholino [26].
The present study was devoted to CyHV-3 ORF134

encoding an IL-10 homologue. In vitro studies demon-
strated that ORF134 is expressed as a spliced early-late
gene and that its expression product is the second most
abundant viral protein in the CyHV-3 secretome. Taking
advantage of the recent BAC cloning of CyHV-3 as an
infectious bacterial artificial chromosome (BAC), a strain
deleted for ORF134 and a derived revertant strain were
produced. Comparison of these strains demonstrated
that ORF134 is essential neither for CyHV-3 replication
in vitro nor for virulence in common carp.

Materials and methods
Cells and viruses
Cyprinus carpio brain cells (CCB) were cultured in mini-
mum essential medium (MEM) (Invitrogen, Merelbeke,
Belgium) containing 4.5 g/L glucose (D-glucose mono-
hydrate; Merck, Darmstadt, Germany) and 10% fetal calf
serum (FCS). Cells were cultured at 25 °C in a humid at-
mosphere containing 5% CO2. The CyHV-3 FL strain
was isolated from the kidney of a fish that died from
CyHV-3 infection (CER, Marloie, Belgium) [27].

Determination of ORF134 kinetic class of transcription
These experiments were performed as described else-
where [28]. Briefly, monolayers of CCB cells in 24-well
plates were pre-incubated for 2 h before infection with

cycloheximide (CHX) (100 μg/mL) (Sigma-Aldrich, Saint
Louis, Missouri, USA) or phosphonoacetic acid (PAA)
(300 μg/mL) (Sigma-Aldrich), the inhibitors of de novo
protein synthesis or viral DNA polymerase, respectively.
After removal of the medium, cells were infected with
CyHV-3 FL strain at a multiplicity of infection (MOI) of
0.1 plaque forming unit (PFU) per cell in presence of in-
hibitors. After an incubation of 2 h, cells were overlaid
with fresh medium containing the inhibitors. At 6, 8 and
12 h after inoculation cells were harvested and treated
for RT-PCR analysis of gene expression (see below).
CyHV-3 ORF3 (immediate early [IE]), ORF55 (early [E])
and ORF78 (late [L]) were used as reference gene of the
three kinetic classes [29,30].

Transcriptional analysis by RT-PCR
Cytoplasmic RNA was isolated from cells using the
RNeasy Mini Kit (Qiagen, Venlo, Netherlands) with on
column DNase I digestion. cDNA was synthetized from
1 μg of RNA using iScript™ cDNA Synthesis Kit (Bio-
Rad, Nazareth Eke, Belgium). Finally, PCRs were
performed with the primers listed in Table 1 (see RT-
PCR column).

Production of concentrated cell supernatant
CCB cells were infected with CyHV-3 FL strain at a
MOI of 0.05 PFU per cell using serum free culture
medium. Cell supernatants were collected 72 h post-
inoculation and then submitted to two cycles of centrifu-
gation at 4 °C (clarification at 2000 g for 15 min followed
by pelleting of viral particles at 100 000 g for 2 h
through a 30% sucrose gradient). The supernatant was
then concentrated 25-fold by centrifugation (2000 g, 75
min, 4 °C) through an Amicon Ultra-15 centrifugal filter
unit (3K NMWL; Merck Millipore, Billerica Massachu-
setts, USA) and stored at −80 °C until use.

2D-LC MS/MS proteomic approach
Proteomic analyses were performed using 2D-LC MS/MS
workflow as described previously [31]. Briefly, proteins
were reduced at 4 °C for 1 h with 10 mM DTT and
alkylated by incubation with 25 mMiodoacetamide at 4 °C
for 1 h in the dark. Proteins were recovered through acet-
one precipitation and digested with trypsin at an enzyme:
substrate ratio of 1:50 in 50 mM NH4HCO3 overnight
at 37 °C. Tryptic peptides (25 μg) were analysed by
bidimensional (SCX-RP) chromatography and online MS/
MS, as described elsewhere [32], except that only 3 suc-
cessive salt plugs of 25, 100 and 800 mM NH4Cl were
used. Peptides were analyzed using the “peptide scan” op-
tion of an HCT ultra ion Trap (Bruker, Evere, Belgium),
consisting of a full-scan mass spectrometry (MS) and MS/
MS scan spectrum acquisitions in ultrascan mode (26 000
m/z sec-1). Peptide fragment mass spectra were acquired

Ouyang et al. Veterinary Research 2013, 44:53 Page 2 of 18
http://www.veterinaryresearch.org/content/44/1/53

78

_________________________________________________________________________________________________Experimental section: Chapter 1



Table 1 Primers and probes.

Targeted gene Primer/probe name Sequence (5’- 3’) Accession n°/ reference

Primers for PCR and RT-PCR PCR RT-PCR

CyHV-3 ORF3 ORF3InF ● TATGCCCACATGATGCTGTT DQ657948

ORF3InR ● CAGTCAGACCCTTCCTCTGC

CyHV-3 ORF55 ORF55InF ● AGCGCTACACCGAAGAGTCC

ORF55stopR ● TCACAGGATAGATATGTTACAAG

ORF55ATGF ● ATGGCTATGCTGGAACTGG

ORF55InR ● GGCGCACCCAGTAGATTATG

CyHV-3 ORF78 ORF78InF ● TGGACGACGAACACCCTTC

ORF78InR ● GGTAGAGGGTACAACCACG

CyHV-3 ORF132 ORF132InF ● GGATCCGTTTTCTGGGTCTG

ORF132InR ● CTCAATCCCTCACCGACCTC

CyHV-3 ORF133 ORF133InF ● GACGAGATCCCTATCCGCAG

ORF133InR ● GACCTCGGGTATGGTCGGTA

CyHV-3 ORF134 ORF134stopF ● TCAATGTTTGCGCTTGGTTTTC

ORF134ATGR ● ATGTTCCTTGCAGTGCTAC

ORF134InF ● GGTTTCTCTTTGTAGTTTTCCG

ORF134InR ● CACCCCAACTTTTGAGACAAC

ORF134outseqF ● GTCAACATGGACGAGCGTGA

ORF134outseqR ● GTGGGGATATCAAACACGCA

CyHV-3 ORF135 ORF135InF ● ACACCACCAACGAGACATGC

ORF135InR ● CTTTTCGGACCAGAAGACCG

Carp β-actin Actin-F ● ATGTACGTTGCCATCCAGGC M24113

Actin-R ● GCACCTGAACCTCTCATTGC

Primers for amplification of recombination cassettes

H1-galK-H2 cassette 134 galK F ATGTTCCTTGCAGTGCTACTAACCG Warming et al. [34]

CGACCATCTTCTTCGAGGCTCGGGG

CCTGTTGACAATTAATCATCGGCA

134 galK R TCAATGTTTGCGCTTGGTTTTCATG

TTCTTGACGTCTTTTGCGACCAGGA

TCAGCACTGTCCTGCTCCTT

H1-ORF134-H2 H1F GCTCATCAATCGCAGCAGCA DQ657948

cassette

H2R CAAGCCATTATCCTGTTGGG

Primers and probes for real-time TaqMan PCR quantification of CyHV-3 genome

CyHV-3 ORF89 KHV-86F GACGCCGGAGACCTTGTG AF411803

KHV-163R CGGGTTCTTATTTTTGTCCTTGTT

KHV-109P (6FAM)CTTCCTCTGCTCGGCGAGCACG(BHQ1)

Carp glucokinase CgGluc-162F ACTGCGAGTGGAGACACATGAT AF053332

CgGluc-230R TCAGGTGTGGAGCGGACAT

CgGluc-185P (6FAM)AAGCCAGTGTCAAAATGCTGCCCACT(BHQ1)

Primers for RT-qPCR analysis of carp gene expression

40S 40S-F CCGTGGGTGACATCGTTACA AB012087

40S-R TCAGGACATTGAACCTCACTGTCT
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in data-dependent AutoMS (2) mode with a scan range of
100–2,800 m/z, three averages, and 5 precursor ions se-
lected from the MS scan 300–1500 m/z. Precursors were
actively excluded within a 0.5 min window, and all singly
charged ions were excluded. Peptide peaks were detected
and deconvoluted automatically using Data Analysis 2.4
software (Bruker). Mass lists in the form of Mascot Gen-
eric Files were created automatically and used as the input
for Mascot MS/MS Ions searches of the NCBInr database
release 20120809 using an in-house Mascot 2.2 server
(Matrix Science). The default search parameters used
were: Taxonomy = Bony vertebrates or Cyprinivirus; En-
zyme = Trypsin; Maximum missed cleavages = 1; Fixed
modifications = Carbamidomethyl (C); Variable modifica-
tions = Oxidation (M); Peptide tolerance ± 1.2 Dalton
(Da); MS/MS tolerance ± 0.6 Da; Peptide charge = 2+ and
3+; Instrument = ESI-TRAP. All data were also searched
against the NCBI bony vertebrate database in order to de-
tect host proteins. Only proteins identified with p value
lower than 0.05 were considered, and single peptide iden-
tifications were systematically evaluated manually. In
addition, the emPAI [33] was calculated to estimate pro-
tein relative abundance in the culture supernatant.

Production of CyHV-3 ORF134 recombinants
CyHV-3 recombinants were produced using prokaryotic
recombination technologies (Figure 1). The FL BAC plas-
mid was used as parental plasmid [27]. In this plasmid, the
BAC cassette is inserted in ORF55 encoding thymidine
kinase (TK). ORF134 recombinant plasmids were pro-
duced using two-steps galactokinase gene (galK) positive/
negative selection in bacteria as described previously [34].
The first recombination process (galK positive selection)
consisted to replace ORF134 by galK resulting in the FL
BAC ORF134 Del galK plasmid. Recombination was
achieved using the H1-galK-H2 recombination cassette
(Figure 1b) which consisted of the galK gene flanked by

50-bp sequences homologous to CyHV-3 genome regions
flanking ORF134 deletion (Figure 1a). H1-galK-H2 recom-
bination cassette was produced by PCR (primers 134 galK
F and 134 galK R) using the pgalK vector as template.
Primer 134 galK F consisted of nucleotides 229836–
229885 (50bp) of CyHV-3 genome and 1–24 (24bp) of the
pgalK vector. Primer 134 galK R consisted of nucleotides
229262–229311 (50bp) of the CyHV-3 genome and nucle-
otides 1212–1231 (20bp) of the pgalK vector (Table 1).
The 50-bp sequences of the H1-galK-H2 corresponding to
CyHV-3 genome were used to target homologous recom-
bination in bacteria. The second recombination process
(galK negative selection) consisted to remove the galK
gene (FL BAC ORF134 Del plasmid) or to replace the galK
gene by CyHV-3 wild type ORF134 sequence (FL BAC
ORF134 Rev plasmid) (Figure 1). The FL BAC ORF134
Del plasmid was obtained by recombination with the H1-
H2 cassette (Figure 1b). This cassette was synthesized and
consisted of 200 bp of CyHV-3 genome upstream and
downstream of ORF134 deletion, respectively. The FL
BAC ORF134 Rev plasmid was produced by recombination
with the H1-ORF134-H2 cassette. This cassette was pro-
duced by PCR (primers H1F and H2R) using CyHV-3 FL
DNA as template corresponding to nucleotides 229057–
229076 and nucleotides 230056–230075 of CyHV-3 gen-
ome, respectively. To reconstitute infectious virus encoding
a wild type TK locus (removal of the BAC cassette), the
BAC plasmids (FL BAC, FL BAC ORF134 Del and FL BAC
ORF134 Rev) were co-transfected with the pGEMT-TK
plasmid (molecular ratio, 1:75) into CCB cells [27]. Plaque
negative for enhanced green fluorescent protein (EGFP)
expression (the BAC cassette encodes an EGFP expression
cassette) were picked and amplified.

Southern blotting
Southern blot analysis of recombinant viruses was
performed as described previously [27,35]. PCRs were

Table 1 Primers and probes. (Continued)

IL-1β IL-1β-F AAGGAGGCCAGTGGCTCTGT AJ245635

IL-1β-R CCTGAAGAAGAGGAGGCTGTCA

TNF-α1 and 2 TNF-α1 and 2-F GCTGTCTGCTTCACGCTCAA AJ311800

TNF-α1 and 2-R CCTTGGAAGTGACATTTGCTTTT

CXCa CXCa-F CTGGGATTCCTGACCATTGGT AJ421443

CXCa-R GTTGGCTCTCTGTTTCAATGCA

IL-10 IL-10-F CGCCAGCATAAAGAACTCGT AB110780

IL-10-R TGCCAAATACTGCTCGATGT

IFNγ-2 IFNγ-2-F TCTTGAGGAACCTGAGCAGAA AM168523

IFNγ-2-R TGTGCAAGTCTTTCCTTTGTAG

IL-6 IL-6M17-F CACATTGCTGTGAGGGTGAA AY102633

IL-6M17-R GCATCCATAGGCTTTCTGCT

Underlined: 50bp corresponding to CyHV-3 sequence.
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performed to produce ORF55 probe (primers ORF55InF
and ORF55stopR) and ORF134Del probe (primers
ORF134InF and ORF134InR) using the CyHV-3 FL gen-
ome as a template (Table 1).

Multi-step growth curves
Triplicate cultures of CCB cells were infected at a MOI
of 0.5 PFU per cell. After an incubation period of 2 h,
cells were washed with phosphate-buffered saline (PBS)
and then overlaid with Dulbecco’s modified essential
medium (DMEM, Invitrogen) containing 4.5 g of glu-
cose/liter and 10% FCS. Supernatant of infected cultures
was harvested at successive intervals after infection and
stored at −80 °C. The amount of infectious virus was de-
termined by plaque assay on CCB cells as described pre-
viously [35].

Fish
Common carp (Cyprinus carpio carpio) (CEFRA, University
of Liège, Belgium), were kept in 60-liter tanks at 24 °C.
Microbiological, parasitical and clinical examinations of the
fish just before the experiments demonstrated that these
fish were fully healthy.

CyHV-3 inoculation of carp
For viral inoculation mimicking natural infection, fish
were kept for 2 h in water containing CyHV-3. At the end
of the incubation period, fish were returned to larger
tanks. In some experiments, fish that survived the primary
infection were challenged 42 days after inoculation by co-
habitation with fish that were infected by immersion in
water containing 200 PFU/mL of the FL strain just before
their release into the tank to be challenged. Two freshly
infected fish were released per tank to be challenged. The
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animal study was accredited by the local ethics committee
of the University of Liège, Belgium (Laboratory accredit-
ation N°1610008, protocol N°810).

Quantification of virus genome copies in organs by real-
time TaqMan PCR
Virus genome quantitation was performed by real-time
TaqMan PCR as described elsewhere [36]. The primers
and the probes used are presented in Table 1. Two sets
of primers were used to amplify fragments of CyHV-3
ORF89 and carp glucokinase genes. The amplicons were
cloned into the pGEM-T Easy vector and the resulting
plasmids were used to generate standard curves by run-
ning reactions with 101 to 1010 plasmid molecules. DNA
was isolated using a DNA mini kit (Qiagen) from 25 mg
of organs stored at −80 °C in RNAlater® (Invitrogen).
The reaction mix contained 1 × iQSupermix (Bio-Rad),
200 nM of each primer, 400 nM of fluorescent probe
and 250 ng of DNA. The analyses were performed using
a C1000 Touch Thermal cycler (Bio-Rad). All real-time
TaqMan PCRs for CyHV-3 DNA were run with equal
amounts of DNA estimated by the real-time TaqMan
PCR performed on carp glucokinase gene.

Quantification of carp gene expression in spleen by RT-qPCR
Total RNA was isolated from spleens stored at −80 °C in
RNALater® (Ambion®, Invitrogen, Merelbeke, Belgium)
using TRI reagent® (Ambion®, Invitrogen), including DNase
I digestion and RNA purification using RNeasyMinElute
Cleanup Kit (Qiagen). cDNA was synthetized from 1 μg of
RNA using iScriptcDNA Synthesis Kit (Bio-Rad). The
primers used for RT-qPCR were described previously [37]
and are listed in Table 1. The RT-qPCR master-mix was
prepared as follows: 1 × IQ™ SYBR® Green Supermix (Bio-
Rad), 200 nM of each primer, 5 μL of 25 × diluted cDNA
and sterile water to a final volume of 25 μL. The amplifica-
tion program included an initial denaturation at 95 °C for
10 min, followed by 40 cycles with denaturation at 95 °C
for 15 s, annealing at 58 °C for 30 s and elongation at 72 °C
for 30 s. At the end, the dissociation stage was performed
(95 °C for for 10 s) and the melt curve was obtained by in-
creasing the temperature from 60 °C to 95 °C with a rate of
0.5 °C per 5 s. Fluorescence data from RT-qPCR experi-
ments were analyzed using the CFX96 real-time system
and exported to Microsoft Excel. The threshold cycle (Ct)
was determined using the Auto method for all runs. The
expression of analyzed genes was calculated using the
2-ΔΔCt method [38]. The 40S ribosomal protein S11 was
used as a reference gene.

Histological analysis
Organs from mock-infected or infected carp were fixed
in 4% buffered formalin and embedded in paraffin

blocks. Sections of 5 μm were stained with haematoxylin
and eosin prior to microscopic analysis [39].

Statistical analyses
Multi-step growth curves data expressed as mean titer ±
standard deviation (SD) were analyzed for significance of
differences (p< 0.05) using one-way ANOVA. The differ-
ences in mortality induced by the CyHV-3 strains tested
were analyzed using Kaplan and Meier survival analysis.
Significant differences (p< 0.05) in virus load between
fish infected with the different CyHV-3 strains at each
sampling point were assessed using one-way ANOVA
followed by Holm-Sidak test when data were normally
distributed, or with the non-parametric Kruskal–Wallis
test followed by Tukey test when they were not. Signifi-
cant differences (p< 0.05) in RT-qPCR gene expression
between CyHV-3 infected and mock-infected fish, as
well as between fish infected with different CyHV-3
strains at each sampling point were assessed using one-
way ANOVA followed by Holm-Sidak test in cases
where the data were normally distributed, or with the
non-parametric Kruskal–Wallis test followed by Dunn’s
test when they were not

Results
CyHV-3 ORF134 kinetic class of expression
Two independent studies have demonstrated that
CyHV-3 ORF134 is transcribed during viral replication
in vitro thereby meeting the criteria for being a gene
[26,29]. It has been predicted to contain an 84 bp intron
flanked by 2 exons encoding a 179 amino acid product
(GenBank accession number DQ657948). Here, we used
CHX and PAA to identify the transcriptional class of
ORF134 (Figure 2). This experiment revealed that
ORF134 expression is prevented by CHX and reduced
but not prevented by PAA treatments, suggesting that
ORF134 is an E-L gene. ORF3, ORF55 and ORF78 were
used as controls in this experiment; the results presented
in Figure 2 confirmed that they are IE, E and L genes,
respectively. The absence of contaminant viral DNA in
the mRNA preparations was confirmed by the absence
of a PCR product when the reverse transcriptase was
omitted from the reactions. Furthermore, the estimated
molecular size of the major ORF134 RT-PCR product
revealed that it was derived, from the amplification of
cDNA (540 bp) rather than from the viral genome (624
bp). This observation is consistent with the earlier de-
scription of the ORF134 as a spliced gene [40,41]. How-
ever, a minor product corresponding to the unspliced
transcript of ORF134 was also observed (see the faint
624 bp band in Figure 2). The classification of ORF134
as an E-L gene is consistent with the results published
recently by Ilouze et al. who concluded that ORF134 is
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an E gene [29]. It is also consistent with the E expression
reported for other vIL-10s [40,41].

CyHV-3 secretome
While two independent studies have previously shown
that ORF134 is transcribed during viral replication
[26,29], it is still to be determined whether ORF134 en-
codes a protein secreted from infected cells. To address
this question, concentrated supernatant was produced
from CyHV-3 infected CCB cultures and analyzed by
2D-LC MS/MS. Viral and cellular proteins identified by
this approach are listed in Table 2. This list was re-
stricted to proteins identified with p value lower than
0.05 as determined by the MASCOT program. Five viral
and 46 cellular proteins were detected. CyHV-3 ORF12
and ORF134 were amongst the most abundant proteins
in the sample as revealed by their relatively high emPAI
scores (1.49 and 1.02, respectively). Only two cellular
proteins had comparable scores (Beta-2-microglobulin
and FK506 binding protein 1A, with emPAI scores of

1.79 and 1.39, respectively). ORF12 encodes a soluble TNF
receptor superfamily homologue which, like ORF134, was
expected to be secreted from infected cells. Three unique
peptides covering 16% of the ORF134 sequence were se-
quenced (Figure 3a). These peptides were distributed
throughout ORF134 sequence (Figure 3b). The divergence
existing between CyHV-3 IL-10 and carp IL-10 excludes
the hypothesis that the peptides detected could be derived
from carp IL-10 rather than from CyHV-3 ORF134. In
addition to CyHV-3 ORF12 and ORF134, three additional
viral proteins (ORF52, ORF116 and ORF119) were
detected in the CyHV-3 secretome. All three proteins are
potential membrane proteins (Table 2). The presence
of these putative membrane proteins in the CyHV-3
secretome cannot be explained by remaining viral particles
in the prepared concentrated extracellular medium, as
none of these proteins is structural [31]. It is also unlikely
that the presence of these proteins reflects cell lysis
resulting from the viral infection. Indeed, in such a case, a
higher number of viral proteins would be expected, in

CyHV - 3 infected cells
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6 h 8 h 12 h 6 h 8 h 12 h 6 h 8 h 12 h

- actin

RT-PCR
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Figure 2 Determination of ORF134 kinetic class of transcription. CCB cells were infected with CyHV-3 FL strain, in absence (Untreated) or
presence of CHX or PAA as described in Materials and methods. At the indicated time post-infection, expression of IE ORF3, E ORF55, L ORF78,
ORF134 and carp β-actin was studied by a RT-PCR approach. On the left RT-PCR or PCR represent PCR products generated when the RT was
performed or omitted from the reactions, respectively. On the right, control PCR reactions were performed using genomic DNA as template
(Ctrl+) or no template (Ctrl-).
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Table 2 CyHV-3 and host proteins identified by 2D-LC MS/MS in the supernatant of CyHV-3 infected CCB cells.

Database Accession
number

Description Predicted MW
(kDa)

Mascot
score

No. of matching
spectra

emPAI

CyHV-3 proteins

Cyprinivirus gi|129560530 ORF12, TNF receptor superfamily homologue 19.2 671 14 1.49

gi|129560652 ORF134, Interleukin 10 homologue 14.8 304 6 1.02

gi|84181525 ORF116, predicted membrane glycoprotein 30.4 185 4 0.26

gi|84181523 ORF119, putative uncharacterized protein containing an
hydrophobic region

15.5 94 2 0.25

gi|129560569 ORF52, predicted membrane glycoprotein 39.2 44 1 0.10

Host proteins (species origin)

Bony
vertebrates

gi|122891218 Novel protein (zgc:103659) (Danio rerio) 51.7 410 13 0.42

gi|136429 Trypsin (Sus scrofa) 25.1 281 9 0.53

gi|297262447 Predicted keratin, type II cytoskeletal 1-like isoform 6
(Macaca mulatta)

65.3 268 3 0.12

gi|37590349 Enolase 1, alpha (D. rerio) 47.4 255 8 0.35

gi|326670662 Predicted collagen alpha-3(VI) chain-like (D. rerio) 11.3 227 8 0.17

gi|51949771 Fibronectin 1b (D. rerio) 279.3 213 8 0.08

gi|52218922 Pigment epithelium-derived factor precursor (D. rerio) 45.0 158 3 0.17

gi|416696 Beta-2-microglobulin (Cyprinus carpio) 13.5 152 8 1.79

gi|1351907 Serum albumin (Bos taurus) 71.2 149 11 0.36

gi|395744345 Predicted keratin, type II cytoskeletal 1 (Pongo abelii) 25.8 139 3 0.15

gi|229552 Albumin (B. taurus) 68.1 136 10 0.38

gi|63102189 Pgd protein (D. rerio) 53.7 134 4 0.14

gi|15718387 Gelatinase (Paralichthys olivaceus) 75.5 125 5 0.15

gi|1703244 Fructose-bisphosphate aldolase C (Carassius auratus) 39.8 124 4 0.20

gi|169154447 Fibronectin 1 (D. rerio) 275.6 117 5 0.05

gi|15149946 Procollagen type I alpha 1 chain (D. rerio) 49.4 117 5 0.34

gi|148726027 Cadherin 11, osteoblast (D. rerio) 88.9 112 5 0.13

gi|4885063 Fructose-bisphosphate aldolase C (Homo sapiens) 39.8 107 2 0.20

gi|28336 Mutant beta-actin (beta'-actin) (H. sapiens) 42.1 105 2 0.09

gi|28317 Unnamed protein product (H. sapiens) 59.7 104 3 0.13

gi|337758 Pre-serum amyloid P component (H. sapiens) 25.5 100 3 0.32

gi|223582 Histone H4 (H. sapiens) 11.2 99 5 0.84

gi|47971186 Carp C1q-like molecule (C. carpio) 20.3 98 2 0.19

gi|223061 Ubiquitin (Salmo sp.) 8.5 92 4 0.31

gi|27806751 Alpha-2-HS-glycoprotein precursor (B. taurus) 39.2 90 4 0.32

gi|47086029 Myristoylated alanine-rich C kinase substrate 2 (D. rerio) 21.0 86 2 0.18

gi|2133885 N-cadherin precursor (D. rerio) 87.4 80 3 0.09

gi|18859555 Wnt inhibitory factor 1 precursor (D. rerio) 43.2 79 3 0.09

gi|34595971 Prion-like protein 1 (C. carpio) 55.6 75 2 0.14

gi|208609649 Collagen type I alpha 3 (C. auratus) 137.7 75 1 0.03

gi|47085905 14-3-3 protein beta/alpha-B (D. rerio) 27.5 75 3 0.47

gi|6644111 Nucleoside diphosphate kinase-Z1 (D. rerio) 17.4 72 2 0.22

gi|16974825 Chain A, Solution Structure Of Calcium-Calmodulin N-
Terminal Domain (H. sapiens)

8.5 70 2 0.49

gi|41152406 FK506 binding protein 1A, 12kDa (D. rerio) 11.8 69 3 1.39
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particular the most abundant ones [31]. Several viral pro-
teins are expressed as two different forms, a membrane-
anchored form and a secreted form, the latter generated
by proteolytic cleavage of the former [42,43]. Further
experiments are required to determine whether this
phenomenon applies to the putative CyHV-3 membrane
proteins detected in the secretome.
The MS data presented above demonstrate that

CyHV-3 ORF134 encodes a protein that is abundantly

secreted in the extracellular medium by infected cells.
This observation is consistent with the hypothesis that
ORF134 may be a functional IL-10 homologue playing a
role in CyHV-3 pathogenesis [26].

Production and characterization of CyHV-3 ORF134
recombinant strains
In order to investigate subsequently the importance of
ORF134 in virus replication in vitro and pathogenesis

Table 2 CyHV-3 and host proteins identified by 2D-LC MS/MS in the supernatant of CyHV-3 infected CCB cells.
(Continued)

gi|189527793 Predicted neuroblast differentiation-associated protein
AHNAK (D. rerio)

642.1 65 2 0.01

gi|37492 Alpha-tubulin (H. sapiens) 50.8 65 2 0.07

gi|33989505 Tissue inhibitor of metalloproteinase 2b (D. rerio) 24.7 64 2 0.15

gi|8176557 Heart fatty acid binding protein (Anguilla japonica) 15.3 61 1 0.26

gi|37181 Tissue inhibitor of metalloproteinases,
Type-2 (H. sapiens)

21.4 59 2 0.18

gi|437972 Fibrillin-2 (H. sapiens) 334.8 59 1 0.01

gi|37367051 Osteopontin (D. rerio) 23.2 53 1 0.16

gi|45544646 Cold inducible RNA binding protein isoform 2 (D. rerio) 19.2 52 2 0.20

gi|51328294 Fstl1b protein (D. rerio) 39.6 50 1 0.09

gi|82245450 Triosephosphate isomerase B (D. rerio) 27.1 50 1 0.14

gi|34014734 Clusterin (D. rerio) 52.5 50 1 0.07

gi|47228578 Unnamed protein product (Tetraodon nigroviridis) 77.5 49 1 0.05

A

B

Accession 
number

Description Sequence
coverage

Peptide
sequence

Peptide
mascot score

GI 129560652
CyHV-3 
ORF134

16%

SEVDEIGDNLSR 80

KSEVDEIGDNLSR 52

DSCVYLIGQTPQLLR 50

CyHV-3 ORF134
Cyprinus carpio IL-10

CyHV-3 ORF134
Cyprinus carpio IL-10

CyHV-3 ORF134
Cyprinus carpio IL-10

CyHV-3 ORF134
Cyprinus carpio IL-10

Figure 3 Identification of CyHV-3 ORF134 by 2D-LC MS/MS in the supernatant of CyHV-3 infected CCB cells. (A) Data collected on
ORF134 through 2D-LC MS/MS analysis of cell culture supernatant. (B) Sequential alignment of CyHV-3 ORF134 and Cyprinus carpio IL-10.
Sequence coverage: detected peptides are presented in rectangles.
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Figure 4 Structural analysis of the FL BAC ORF134 recombinant plasmids and derived CyHV-3 recombinant strains. The CyHV-3 FL BAC,
FL BAC ORF134 Del and FL BAC ORF134 Rev plasmids and the genome of the FL BAC revertant, FL BAC revertant ORF134 Del and FL BAC
revertant ORF134 Rev strains were analyzed by SacI restriction (left panel) and further tested by southern blotting using probes corresponding to
ORF55 (central panel) and ORF134 (right panel). White-outlined black arrowheads and white arrows indicate restriction fragments containing
ORF55 and ORF134 loci, respectively. Marker sizes (MS) are indicated on the left.

ORF134
1255bp

731bp

kb MS

1

1.5

0.8
0.6

2

FL BAC

Figure 5 PCR analysis of the FL BAC ORF134 recombinant plasmids and derived CyHV-3 recombinant strains. The CyHV-3 FL BAC, FL BAC
ORF134 Del and FL BAC ORF134 Rev plasmids and the genome of the FL BAC revertant, FL BAC revertant ORF134 Del and FL BAC revertant
ORF134 Rev strains were analyzed by PCR using the forward primer ORF134outseqF and the reverse primer ORF134outseqR (Table 1). MS are
indicated on the left.
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in vivo, a CyHV-3 strain deleted for ORF134 (FL BAC
revertant ORF134 Del strain) and a revertant strain (FL
BAC revertant ORF134 Rev strain) were produced using
BAC cloning and prokaryotic recombination technolo-
gies as described in the Materials and methods (Figure 1).
The FL BAC plasmid was used as parental plasmid. A
wild type strain (FL BAC revertant strain) was also
reconstituted from the FL BAC plasmid. The molecular
structures of the recombinant strains produced were
confirmed by a combined SacI restriction endonuclease
and Southern blot approach targeting both ORF55 (the
BAC cassette is inserted into the ORF55 locus) and
ORF134 loci (Figure 4). In the three reconstituted
strains, the ORF55 probe led to a single band

corresponding to a 5.2 kb restriction fragment, demon-
strating the reversion of ORF55 to wild type sequence
(removal of the BAC cassette) [27]. In the FL BAC re-
vertant and the FL BAC revertant ORF134 Rev, the
ORF134Del probe led to a single band corresponding to
a 6.3 kb restriction fragment consistent with the se-
quence of this region (6333kb). The absence of signal for
the FL BAC revertant ORF134 Del demonstrated the de-
letion of ORF134. The molecular structure of the
recombinants and the absence of contamination between
strains was also controlled by PCR (Figure 5) and sequen-
cing of the regions used to target recombination (data not
shown). All approaches confirmed that the resulting
recombinants have the correct molecular structure. Fi-
nally, using a RT-PCR approach, we controlled the process
so that the deletion did not markedly affect the transcrip-
tion of the ORFs located upstream and downstream of
ORF134: ORF132, ORF133 and ORF135 (Figures 1a and 6).
In these experiments, transcription of ORF55 was used as
reference. For the three recombinants tested, transcripts of
602 bp, 264 bp, 238 bp and 293 bp were observed in
infected cells for ORF55, ORF132, ORF133 and ORF135,
respectively. No transcript was detected in mock-infected
cells. When RT was omitted from the reactions, the prod-
uct seen in infected cells was not detected, indicating that
this product did not result from amplification of contami-
nant viral DNA. The three strains tested led to comparable
signals for the four ORFs. Transcription analysis of ORF134
revealed that the FL BAC revertant and the FL BAC rever-
tant ORF134 Rev expressed this ORF comparably, while no
signal was detected for the FL BAC revertant ORF134 Del.
Together, the results presented above demonstrate that the
recombinants produced have the correct molecular struc-
ture and that the deletion of ORF134 has no marked polar
effect on neighbor genes.

PCR

378 bp

624 bp
540 bp

602 bp

238 bp

293 bp

264 bp

RT-PCR

ORF55
PCR

RT-PCR

ORF132
PCR

RT-PCR

ORF133
PCR

RT-PCR

ORF134
PCR

RT-PCR

ORF135
PCR

RT-PCR

-actin
PCR

Figure 6 Transcriptional analysis of CyHV-3 ORF134 genome
region. CCB cells were infected with the indicated recombinant
strains at a MOI of 0.5 PFU/cell. Twenty-four hours post-infection,
expression of CyHV-3 ORF55, ORF132, ORF133, ORF134, ORF135 and
carp β-actin was studied by the RT-PCR approach described in the
Materials and methods. On the left RT-PCR or PCR represent PCR
products generated when the RT was performed or omitted from
the reactions, respectively. On the right, control PCR reactions were
performed using genomic DNA as template (Ctrl+) or no
template (Ctrl-).
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Figure 7 Effect of ORF134 deletion on viral growth in vitro.
Replication kinetics of CyHV-3 ORF134 recombinant strains were
compared with those of the FL BAC revertant strain using a multi-
step growth assay (see Materials and methods). The data presented
are the means ± standard errors of triplicate measurements.
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Effect of ORF134 deletion on viral growth in vitro
In order to investigate the putative effects of the recom-
bination processes on viral growth in vitro, the FL BAC
revertant, the FL BAC revertant ORF134 Del and the FL
BAC revertant ORF134 Rev were compared using a
multi-step growth assay (Figure 7). All viruses tested
exhibited similar growth curves (P ≤ 0.05), leading to the
conclusion that ORF134 deletion does not affect viral
growth in vitro (Figure 7). This observation is consistent

with what has been reported for other vIL-10s [23,25].
Taken together, these results indicate that ORF134 is not
essential for CyHV-3 replication in vitro and suggest
that ORF134 exerts its biological functions in vivo.

Effect of ORF134 deletion on CyHV-3 pathogenesis
To investigate the importance of ORF134 in the patho-
genesis of CyHV-3 disease, naïve common carp were in-
oculated by immersion in water containing the FL BAC
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Figure 8 Cumulative survival rates of common carp infected with CyHV-3 recombinant strains. On day 0, common carp (n = 30 fish per
tank), with an average weight of 3.8 g ± 1.5 g (mean ± SD), were mock-inoculated (2 tanks, panel D) or inoculated (panels A-C) by immersion for
2 h in water containing 4 PFU/mL, 40 PFU/mL or 400 PFU/mL of the indicated CyHV-3 strains. On day 42 post-infection (arrow), surviving fish
were challenged by addition of two fish infected with the parental FL strain. Percentages of surviving carp are expressed according to
days post-infection.

FL BAC revertant

1 2 31 2 3 1 2 3 1 2 3

ORF55 

ORF134 424 bp

527 bp

FL BAC revertant
ORF134 Del

FL BAC revertant
ORF134 Rev Mock-infected

Figure 9 PCR detection and characterization of CyHV-3 genomes recovered from infected carp. The analyses reported in this figure are
the follow-up of the experiment described in Figure 8. Three mock-infected carp (selected randomly before the challenge) and three dead carp
from each of the groups infected with the FL BAC Revertant, FL BAC Revertant ORF134 Del and FL BAC Revertant ORF134 Rev strains were
dissected. DNA was extracted from the kidney. PCRs were performed with the ORF55InF/ORF55stopR and ORF134InF/ORF134InR pairs of primers
(Table 1). FL strain DNA and distilled water were used as positive (Ctrl+) and negative (Ctrl-) controls, respectively.
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revertant, FL BAC revertant ORF134 Del or FL BAC re-
vertant ORF134 Rev strains (Figure 8). The three strains
induced at comparable levels all the clinical signs associ-
ated with the disease, including apathy, folding of the
dorsal fin, hyperemia, increased mucus secretions, skin
lesions, suffocation, erratic swimming, and the loss of
equilibrium. The mortality rate and the kinetics of mor-
tality observed for the three strains were not significantly
different. At necropsy, similar lesions were observed for
the three strains including the discoloration of gill fila-
ments, herpetic skin lesions, and necrotic nephritis. To
control that the infection of all groups of fish was
performed with the correct viral strain and to exclude
any possibility of wild type virus spread among tanks,
PCR assays were performed on three randomly selected
dead fish from each infected group and three mock-
infected fish randomly selected (Figure 9). The PCR
results confirmed that each tank was infected with the
correct strain and demonstrated the absence of viral
spread between tanks. Next, to determine whether the
ORF134 deletion affects the adaptive immune response
developed by fish that survived primary infection; sur-
viving fish were challenged by co-habitation with fish
inoculated with the wild type FL strain (Figure 8). Inde-
pendently of the viral strain used for the primary infec-
tion, none of the challenged fish developed CyHV-3
disease (Figure 8). In contrast, CyHV-3 disease devel-
oped in the two tanks that were initially mock-infected.
Taken together, the results presented above suggest that
ORF134 deletion does not affect CyHV-3 pathogenicity
in common carp and the protective immune response
developed by surviving fish.
To further test these hypotheses, we investigated the

effect of ORF134 deletion on viral load (Figure 10) and
on cytokine expression (Figure 11) during CyHV-3 dis-
ease. Naïve common carp were inoculated by immersion
in water containing the FL BAC revertant, FL BAC re-
vertant ORF134 Del or FL BAC revertant ORF134 Rev
strains (Figure 10). At different times after inoculation
gill, kidney and spleen were collected from randomly se-
lected fish. Viral loads were analyzed in gill and kidney
by real-time TaqMan PCR (Figure 10) while cytokine ex-
pression was studied in spleen by RT-qPCR (Figure 11).
Real-time TaqMan PCR results demonstrated that fish

infected with the three viral strains had statistically com-
parable viral loads in the gills and the kidney throughout
the course of the experiment (Figure 10). Using the
approach described in Figure 9, PCR reactions were
performed on randomly selected fish demonstrated that
each tank was infected with the correct strain and con-
firmed the absence of viral spread between tanks (data
not shown). Together, these results suggested that
ORF134 deletion has no effect on viral load during pri-
mary acute infection.

The spleen is one of the organs in which CyHV-3 is the
most abundant during the course of acute infection [36]. It
is also considered as one of the major lymphoid organ in
teleost [44]. In order to study the effect of CyHV-3
ORF134 on the carp immune response, the kinetics of gene
expression of the cytokines IFN-γ2, TNFα1, TNFα2, IL-1β,
IL-6, CXCa and IL-10 were analyzed in spleen from fish
infected with FL BAC revertant, FL BAC revertant
ORF134 deleted and FL BAC revertant ORF134 Rev strains
(Figure 11). Samples were collected over a period of 2 to 8
days post-infection and analyzed by RT-qPCR. The kinetics
of expression of studied cytokines showed similar patterns
to those observed previously [37]. Taking mock-infected
fish as a reference, expression of several cytokines (IFN-γ2,
IL-1β, IL-6, and IL-10) was up-regulated as early as day 3
post-infection. The most pronounced up-regulation was
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Figure 10 Viral load in gill and kidney. Common carp (n = 36 fish
per tank), with an average weight of 10.7 g ± 3.2 g (mean ± SD),
were inoculated by immersion for 2 h in water containing 100 PFU/
mL of the indicated CyHV-3 strains. At different times post-
inoculation, six infected fish were randomly selected per tank,
euthanized and dissected. Six mock-infected fish were used as
negative controls. Gill, kidney and spleen were harvested and stored
in RNAlaterW at −80 °C. DNA was extracted from gill (panel A) and
kidney (panel B) and analyzed by real-time TaqMan PCR for
quantification of viral genome copies. The results are expressed as
the means ± SD of the data observed for the 6 fish analyzed per
time point. Spleen were treated for quantification of carp gene
expression by RT-qPCR (see Figure 11).
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observed for IL-1β and IFN-γ2. We observed a moderate
and late (day 6 and day 8 post-infection) up-regulation of
TNFα1 and TNFα2. The expression level of CXCa in
infected fish was comparable to mock-infected fish or even
down-regulated for some strains at some time points. Im-
portantly, the results presented in Figure 11 demonstrate
that there is almost no difference in the expression levels
of the cytokines studied between carp infected with three
virus strains. The only significant differences observed be-
tween virus strains were for IFN-γ2 at day 4 post-
inoculation and for IL-6 at day 8 post-inoculation. The
expression level of IFN-γ2 at day 4 post-inoculation was
significantly higher in fish infected with FL BAC revertant
ORF134 deleted as compared to FL BAC revertant and
FL BAC revertant ORF134 Rev strains. However, this

difference was rather small and was not observed for the
other sampling points, suggesting that it could reflect data
variation rather than the expression of ORF134 biological
activities. Supporting the latter hypothesis, the expression
level of IL-6 at day 8 post-inoculation was significantly
higher in the FL BAC revertant group as compared to the
FL BAC revertant ORF134 Rev group. The absence of
cross-contamination between tanks was controlled using
the approach described in Figure 9 (data not shown).
Together, these results suggested that ORF134 does not
significantly affect the carp immune response under the
experimental conditions used.
Finally, to investigate further the effect of ORF134 in

CyHV-3 pathogenesis, the lesions induced by the FL
BAC revertant, FL BAC revertant ORF134 Del and FL
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Figure 11 RT-qPCR analysis of cytokines. Kinetics of gene expression was measured in the spleen of mock-infected fish and fish infected with
CyHV-3 ORF134 recombinants (see legend of Figure 10). Gene expression was normalized relative to the expression of the S11 protein of the 40S
ribosomal subunit. Data are presented as mean ± SD (n = 6). Symbol (*) indicates statistical differences (p ≤ 0.05) observed between infected and
mock-infected fish. Symbol (a) indicates statistical differences (p ≤ 0.05) observed for a specific time point between groups of fish infected with
different CyHV-3 recombinants.
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BAC revertant ORF134 Rev strains were compared in
the gills and the kidney at various time points after in-
fection (Figures 12 and 13). Histopathological prepara-
tions were grouped according to the virus genotype used
for the infection and the time point of sampling. The
groups of slides were observed by two independent ex-
aminers using a double-blind test. The principal histo-
pathological changes were observed in gill filaments.
Gills from mock-infected fish exhibited a normal struc-
ture. However, a weak lymphocytic hyperplasia was ob-
served for the three mock-infected fish at the basis of the
secondary lamellae, leading to their fusion. Few eosino-
philic granulocytes were also observed along the primary
lamella. As early as 2 days post-infection, both examiners
were able to discriminate the three groups of infected fish
from the mock-infected group. For all three infected
groups, we observed congestion of the secondary lamellae,
infiltration of lymphocytes and histiocytes at the basis of
secondary lamellae further increasing their fusion. With
the exception of one fish from the FL BAC revertant

ORF134 Del group that exhibited weaker histopathological
changes (see Figure 12, Day 2), the two other fish from
this group expressed changes comparable to those ob-
served in the two other infected groups. The absence of
differences between the three viral groups was confirmed
at the latter time points. At day 4 post-infection, all fish
expressed comparable increased lymphocytic and
histocytic infiltrate at the basis of the secondary lamellae.
In some fish, an increase of eosinophilic granulocytes was
observed (FL BAC revertant: 2 out of 3 fish; FL BAC re-
vertant ORF134 Del: 2 out of 3 fish and FL BAC revertant
ORF134 Rev strains 1 out of 3 fish). In comparison to day
2 post-infection, the infiltrate was more pronounced and
the congestion was associated with edema of the second-
ary lamellae. The intensity of the lesions increased com-
parably in all three groups at latter time-points (Day 6 and
Day 8). The infiltrate mainly lymphocytic induced the fu-
sion of the lamellae on approximately 2/3 of their length.
The respiratory epithelium exhibited hyperplasia and ne-
crosis, associated in few cells with intranuclear inclusion

Mock-
infected

Day 2

FL BAC 
revertant

FL BAC 
revertant

ORF134 Del

FL BAC 
revertant

ORF134 Rev

Day 4 Day 6 Day 8

Figure 12 Histopathological characterization of the lesions induced by CyHV-3 ORF134 recombinants in the gills. Common carp (n = 20
fish per tank), with an average weight of 6 g ± 1.6 g (mean ± SD), were inoculated by immersion for 2 h in water containing 40 PFU/mL of the
FL BAC revertant, FL BAC revertant ORF134 Del or FL BAC revertant ORF134 Rev strains. At different times post-inoculation (2, 4, 6 and 8 days),
three infected fish were randomly selected per tank, euthanized and dissected. Three mock-infected fish were used as negative controls. Gills
(present figure) and kidney (see Figure 13) were collected and processed for histological examination. Slides corresponding to each sampling
point were grouped according to the viral strain used for the inoculation and were submitted to histopathological examinations by two
independent examiners using a double-blind test mode. The images in this figure are representative of the analysis of one selected fish per
group. Bar, 30 μm.
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bodies. Compared to day 6 post-infection, the infiltrate ob-
served on day 8 was slightly reduced while the edema and
the necrosis were increased. The lesions induced by the
three recombinant strains were also compared in the kid-
ney (Figure 13). The lesions observed in this organ were
less obvious than in the gills. On day 2 post-infection,
infected groups could not be differentiated from the
mock-infected one. The diversity and the abundance of
hematopoietic cells were normal. However, a slight in-
crease of eosinophilic cells was observed in nearly all
groups. Vacuolization of the epithelium was observed in
all preparations, and was considered to be a preparation
artifact. Starting on day 4 post-infection, both examiners
were able to discriminate the three infected groups from
the mock-infected one. However, they could not differenti-
ate the three infected groups. Comparable proliferation of
the hematopoietic cells, mainly lymphocytic and eosino-
philic, was observed in all infected groups. The prolifera-
tion increased further on day 6 and 8. Intranuclear
inclusion bodies were observed in a few hematopoietic
cells on days 6 and 8, and in few epithelial cells on day 8.
The absence of cross-contamination between tanks was
controlled using the approach described in Figure 9 (data
not shown).

Discussion
The present study was devoted to CyHV-3 ORF134,
which encodes a potential vIL-10. We confirmed that
ORF134 is transcribed as a spliced E-L gene (Figure 2).
We also demonstrated for the first time that it is one of
the most abundant proteins of the CyHV-3 secretome
(Table 1) and that ORF134 is essential neither for viral
replication in vitro nor for virulence in vivo. The latter
conclusion relied on the observations that an ORF134
deleted strain could not be differentiated from its paren-
tal and revertant strains based on induced clinical signs
and mortality rate (Figure 8), kinetic of viral load in gills
and kidney (Figure 10), kinetic of cytokine expression in
the spleen (Figure 11) and histological examination of
gill and kidney (Figure 12).
As described in the introduction, cellular IL-10 is a

pleiotropic immunomodulatory cytokine with both
immunostimulatory and immunosuppressive properties
[14]. Virally encoded IL-10 homologues have been
reported in several members of the Poxviridae family
and the Herpesvirales order [19-21]. Numerous molecu-
lar and in vitro studies suggest that there has been adap-
tive evolution of viral IL-10 following capture through
positive selection to retain properties most beneficial for

Mock-
infected

Day 2

FL BAC 
revertant

FL BAC 
revertant

ORF134 Del

FL BAC 
revertant

ORF134 Rev

Day 4 Day 6 Day 8

Figure 13 Histopathological characterization of the lesions induced by CyHV-3 ORF134 recombinants in the kidney. The fish infection
methods are described in the legend of Figure 12.
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the virus life cycle. However, very few studies have
addressed the role of viral IL-10 in vivo by comparison
of a wild type strain and derived deleted and revertant
strains. This approach, which is the only one that can
test the in vivo biological relevance of a gene, has been
performed for only two viruses: rhesus cytomegalovirus
(rhesus CMV) and Orf virus (ORFV) [23-25]. For both
viruses, deletion of viral IL-10 induced virus attenuation
and modulation of the host anti-viral innate immune
response.
The results of the present study demonstrate that the

IL-10 homologue encoded by CyHV-3 does not affect
significantly its virulence in common carp (Figure 8) or
the host innate immune response (Figure 11). However,
a recent study based on an in vivo artificial model sug-
gested that CyHV-3 ORF134 encodes a functional vIL-10
[26]. As IL-10 is known to induce a transient neutrophilia
and monocytosis in addition to T cell suppression [45],
these authors tested the in vivo functionality of CyHV-3
encoded IL-10 by injection of zebrafish embryos with
mRNA encoding CyHV-3 ORF134 and analysis by whole-
mount in situ hybridization (using a pan-leukocyte marker
lysozyme at 56 hours post-fertilization before development
of T cells). A slight but statistically significant increase in
the number of lysozyme positive cells was observed in em-
bryos injected with CyHV-3 ORF134 mRNA compared to
control embryos. The effect observed was inhibited by
down regulation of the IL-10 receptor long chain by a spe-
cific morpholino. These data suggested that CyHV-3
ORF134 encodes a functional vIL-10. Importantly, the
ORF134 sequence used in this study is identical to the se-
quence encoded by the CyHV-3 strain used in the present
study. Various hypotheses could explain the apparent
paradox between the functional effect reported by Sunarto
et al. and the lack of effect of deleting ORF134 described
in the present study [26].
Firstly, it is possible that the slight effect observed by

Sunarto et al. using optimal artificial conditions (over-
expression of ORF134, no inflammatory stimulation by
the viral infection, a rather immature host immune sys-
tem) has no significant biological relevance during a real
viral infection of carp. Secondly, it is possible that the role
of ORF134 is strictly restricted to latency and viral reacti-
vation. This hypothesis is inconsistent with the higher
level of ORF134 expression observed during acute infec-
tion compared to those observed during latency and re-
activation [26]. However, experiments are in progress to
determine whether ORF134 deletion affects viral load dur-
ing latency and/or the ability of the virus to reactivate and
to be excreted. Thirdly, it may be that ORF134 expression
product has a biological activity in zebrafish but not in
common carp. This hypothesis is related to the still un-
known origin of CyHV-3. Indeed, the rapid emergence of
CyHV-3 in the common and koi carp population during

the late 90s and the relatively low polymorphism existing
between CyHV-3 isolates suggest that CyHV-3 is the con-
sequence from a recent host-jump from a yet unidentified
fish species to common and koi carp. According to this
evolutionary scenario, it could be that ORF134 is func-
tional in the CyHV-3 original host species and closely re-
lated species but not in the recently colonized common
and koi carp species.
In conclusion, the present study addressed for the first

time the in vivo role of a vIL-10 encoded by a member
of the family Alloherpesviridae. It demonstrates that
CyHV-3 ORF134 does not contribute significantly to
viral growth in vitro or to virulence in vivo under the
conditions tested. However, it is possible that this pro-
tein is important under circumstances that were not re-
capitulated in the present laboratory setting.
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Preamble 

Koi herpesvirus (KHV), also known as cyprinid herpesvirus 3 (CyHV-3), is the etiological 

agent of an emerging and mortal disease in common (Cyprinus carpio carpio) and koi (Cyprinus 

carpio koi) carp. Since its emergence, in the late 1990s, this highly contagious and dreadful disease 

has caused severe economic losses in both common and koi carp culture industries worldwide [1]. 

The induction of herd immunity in fish farming is associated with key constraints. First, 

protective immunity should be induced early in life, i.e. as soon as the immune system is fully matured. 

The importance of inducing protective immunity as soon as possible in life is justified by the higher 

sensitivity of young fish to most diseases, by the aquaculture management (it is easier to vaccinate fish 

before they are distributed into nets or ponds) and by obvious economic reasons (in case of outbreak, 

the larger are the fish, the higher is the economic loss). Second, as a direct consequence of the former 

point, fish to be vaccinated are of a limited size (few centimetres) incompatible with handling and 

injection procedures. Finally, there is a strong constraint on the vaccine price that must be compatible 

with a positive “benefit – cost” balance. 

Attenuated vaccines appear to be the most appropriate for mass vaccination of carp. 

Attenuated anti-CyHV-3 vaccine candidates have been produced by serial passages in cell culture of a 

pathogenic strain. A vaccine strain candidate was further attenuated by UV irradiation in order to 

increase random mutations throughout the genome [2]. Currently, an attenuated vaccine developed 

using this approach has been manufactured by KoVax Ltd. (Jerusalem, Israel) [3]. This vaccine was 

available temporarily for immersion vaccination of common and koi carp weighing 100 g or more in 

USA (Novartis) [4]. However, after just a year, Novartis decided to stop the sale of this vaccine. This 

vaccine has two major disadvantages: (i) the determinism of the attenuation is unknown; and 

consequently, reversions to a pathogenic phenotype cannot be excluded; (ii) the attenuated strain 

retains residual virulence that could be lethal for a portion of the vaccinated fish [5], particularly for 

small/young fish. Consequently, there is still a need for a safe and efficacious attenuated vaccine 

against CyHV-3. 

The era of molecular biology is now allowing scientists to design idle attenuated replicating 

viral vaccines by targeting genes known to be involved in virulence and/or spreading and by causing 

to these genes defect that cannot be repaired by simple mutation. Recently, CyHV-3 genome has been 

cloned as an infectious bacterial artificial chromosome that can be mutated using prokaryotic 

recombination technologies [6]. While producing recombinant for ORF134, we unexpectedly obtained 

a clone deleted for ORF56 and ORF57 in addition to the expected ORF134 deletion. In comparison to 

its parental strain, this triple deleted recombinant (deleted for ORF56, 57 and 134) exhibited an 

attenuated phenotype and proved to be able to induce a protective immune response against a lethal 

challenge. Production of independent recombinants demonstrated that deletion of ORF56 and ORF57 

were responsible for the safety/efficacy profile observed for the triple deleted recombinant.  
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Abstract 

Cyprinid herpesvirus 3 is the causative agent of a lethal disease in common and koi carp. 

Since its emergence, it has caused severe economic losses worldwide creating the need for a vaccine. 

Taking advantage of the recent cloning of its genome as an infectious bacterial artificial chromosome 

(BAC), recombinant vaccine candidates were produced by deletion of a single gene. While producing 

such recombinant for open reading frame (ORF) 134, we unexpectedly obtained a clone additionally 

deleted for ORF56 and ORF57. Interestingly, this triple deleted recombinant exhibited an attenuated 

profile in vivo. To confirm that the triple deletion was indeed responsible for the phenotype observed 

and to determine the contribution of ORF134 deletion in the attenuation, a double ORF56-ORF57 

deleted recombinant and an independent triple ORF56-ORF57-ORF134 recombinant were produced 

and tested in vivo. These experiments demonstrated that ORF56-ORF57 deletion was responsible for 

the attenuation and that ORF134 deletion did neither contribute significantly to the attenuation nor 

influence the adaptive immune response induced by the infection. To further investigate the adaptive 

immune response induced by the ORF56-ORF57 deleted strain, fish previously vaccinated with this 

strain were challenged with a wild type strain expressing luciferase as a reporter gene. These results 

suggested that the vaccine strain candidate induces a protective immunity able to prevent the entry of 

the challenging virus into vaccinated fish cells. 

 
Key words: Cyprinid herpesvirus 3 (CyHV-3), attenuated vaccine, gene deletion. 
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Introduction 

In the late 1990s, a highly contagious and virulent disease began to cause important economic 

losses in both common carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) industries 

worldwide [1]. Common carp is a freshwater fish widely cultivated for human consumption with a 

continuous increase of its world production over the last 30 years. The world production of common 

carp was estimated around 3.4 million metric tons in 2010 (Food and Agriculture Organization of the 

United Nations). The other susceptible host koi, are ornamental, colourful fish which are grown for 

personal pleasure and competitive exhibitions [7]. Initially called Koi herpesvirus (KHV) according to 

its morphological resemblance to viruses belonging to the order Herpesvirales, the agent was then 

known as carp interstitial nephritis and gill necrosis virus (CNGV) because of the associated lesions 

[8]. Finally, it was renamed CyHV-3 based on the homology of its genome with those of previously 

described cyprinid herpesviruses [9]. The rapid spread of the virus has been attributed to the 

international fish trade and koi shows that occur all around the world. 

Soon after the identification of CyHV-3 as the causative agent of the disease, an original 

protocol was developed to induce a protective adaptive immune response in carp [8]. This approach 

exploited the fact that CyHV-3 induces fatal infections only when temperature is between 18°C and 

28°C. According to this protocol, healthy fish are exposed to the virus by cohabitation with sick fish 

for 3-5 days at permissive temperature (22°C-23°C). Following this period, the fish are transferred to 

ponds for 25-30 days at non-permissive water temperature (≈30°C). Challenge performed on the 

surviving fish showed partial protection (mortality rate of 39% compared to 82% for the control 

group). Despite its ingenuity, this procedure has several disadvantages as (i) it uses a pathogenic strain 

leading to a severe risk of spreading the virus among cultivated and wild carp population during, but 

also after, the acute infection, as fish that are protected may become latently infected and exhibit 

reactivation at a later stage; (ii) it induces a loss of 40% of the fish during the procedure and protection 

is nevertheless not optimal as mentioned above; (iii) the increase of water temperature and fish losses 

are very costly for the farmers [8]. 

Vaccination is the most appropriate way to protect fish against CyHV-3. Various attempts of 

vaccination against CyHV-3 were made using both inactivated and attenuated vaccine candidates. One 

trial using oral immunization with a formalin-inactivated virus entrapped into a liposome compartment 

showed partial protection against a lethal challenge [10]. Attenuated vaccine candidates have also been 

developed by serial passages of the CyHV-3 Israeli strain in cell cultures [2,5,8]. After more than 20 

passages, the attenuated strain was cloned and several clones were subsequently tested and submitted 

to UV irradiation to increase random mutations as well as decrease the risk of reversion to a 

pathogenic virus [2,5]. Currently, a live attenuated vaccine developed using this approach (Cavoy®) 

has been manufactured by KoVax Ltd. (Jerusalem, Israel) and is available for immersion vaccination 

of common and koi carp in USA (Norvartis Animal Health). This vaccine has three major 
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Figure 1. Molecular characterization of the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del 

galK strain. The indicated strains were analyzed by Sac I restriction (left panel) and by Southern blot using 

ORF55, ORF56-57 Del, ORF134 Del and pGEMT probes. Black and white arrowheads indicate fragments 

containing the ORF134 locus and ORF56-57 loci, respectively. Marker size (MS) are indicated on the left. 
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disadvantages: (i) the determinism of the attenuation is unknown, and consequently, reversions to a 

pathogenic phenotype cannot be excluded; (ii) the attenuated strain retains residual virulence that 

could be lethal for a proportion of the vaccinated fish (20-30% of mortality rate during the vaccination 

in some experiments) [5], particularly for small/young fish, what probably explains why the vaccine is 

restricted to carps weighing more than 100 g (Norvartis Animal Health); (iii) the level of protection 

against a lethal challenge does not reach 100% [5]. 

Another way to produce attenuated vaccine candidates consists to delete specific ORFs which 

may be responsible for virulence. Some trials were made using such method. Fuchs and collaborators 

(2011) generated recombinants deleted for viral enzymes involved in the metabolism of nucleotide by 

recombination using in vitro enhanced green fluorescent protein (EGFP) positive/negative selection. 

Three ORFs were targeted ORF55 (thymidine kinase; [TK]), ORF123 (deoxyuridine triphosphatase; 

dUTPase) and ORF141 (RNR subunit 1). The derived recombinants were replicating in vitro, 

demonstrating that these ORFs are non-essential, although deletion of ORF141 lead to smaller lysis 

plaques as well as a slower viral growth. Results from in vivo infection using ORF55 and ORF123 

deleted strains and their revertant strains showed inconsistent results and none deleted strain was 

simultaneously safe and efficacious [11]. In another study, Costes and collaborators (2008) produced a 

strain deleted for ORF16, encoding a potential GPCR and, by insertion and excision of the BAC 

cassette in ORF55, a TK truncated strain [6]. Both ORF55 truncated strain and ORF16 deleted strains 

showed partially attenuated phenotypes. Nevertheless, the level of attenuation was insufficient to 

propose these recombinants as vaccine candidates. 

Recently, CyHV-3 genome has been cloned as an infectious bacterial artificial chromosome 

that can be mutated using prokaryotic recombination technologies [6]. While producing recombinant 

for ORF134 using this method, we unexpectedly obtained a clone deleted for ORF56 and ORF57 in 

addition to the expected ORF134 deletion. In comparison to its parental strain, this triple deleted 

recombinant (deleted for ORF56, 57 and 134) exhibited an attenuated phenotype and proved to be able 

to induce a protective immune response against a lethal challenge. Production of independent 

recombinants demonstrated that deletion of ORF56 and ORF57 were responsible for the 

safety/efficacy profile observed for the triple deleted recombinant. 
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Results 

Molecular characterization of the FL BAC revertant ORF56-57 Del 
pGEMT ORF134 Del galK strain 

In the previous chapter, we produced a CyHV-3 recombinant strain that was deleted for 

ORF134 (encoding a viral IL-10). To reconstitute infectious viral particles, the FL BAC ORF134 Del 

galK plasmid was co-transfected with pGEMT-TK as described in the materials and methods. This 

procedure led to an abnormal restriction profile for one of the clones produced (Figure 1). Indeed, the 

fragment of 5.25 kb encompassing ORF55 (in which the BAC plasmid was inserted) was absent of the 

restriction profile. Southern Blot analysis using ORF55 probe demonstrated that the ORF55 fragment 

was shorter than expected (1.9 kb). Moreover, by using pGEMT vector as probe, we demonstrated that 

a pGEMT vector derived sequence was inserted in the genome of this strain. The sequencing of this 

region of the genome confirmed the insertion of a pGEMT vector derived sequence (2.52 kb) but also 

demonstrated that a large part of CyHV-3 genome sequence was deleted (2.75 kb) (Figure 1). The 

region deleted encompassed most of ORF56 as well as the beginning of ORF57 (Figure 2). The 

southern blot performed with the ORF56-57 Del probe confirmed the correct deletion and 

demonstrated that the deleted sequence was not translocated elsewhere in the genome (Figure 1). The 

insertion of a Sac I restriction site originating from pGEMT vector explains the restriction profile 

observed in Figure 1. The deletion of ORF134 gene can be visualized directly on the restriction profile 

and was confirmed using an ORF134 Del probe. All together, the results presented above demonstrate 

that the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK strain is deleted for three ORFs: 

ORF56, ORF57 and ORF134. 

Safety and efficacy profiles of FL BAC revertant ORF56-57 Del pGEMT 
ORF134 Del galK strain 

The results presented above demonstrated that the FL BAC revertant ORF134 Del galK strain 

is deleted for three ORFs: ORF56, 57 and ORF134 but is still able to replicate in vitro. Next, we 

investigated whether this combination of deletion could affect the virulence of this strain in vivo. 

Groups of 20 fish (average weight 7.19 g ± 3.40 g (mean ± SD), 6 months old) were infected by 

immersion for 2 h in water containing 4, 40, and 400 pfu/ml of the FL BAC revertant ORF56-57 Del 

pGEMT ORF134 Del galK strain or the FL BAC revertant strain used as control. A third group of fish 

was composed of mock-infected fish (Figure 3). Fish infected with the FL BAC revertant strain 

exhibited all clinical signs observed during CyHV-3 disease, beginning with folding of the dorsal fin, 

apathy and loss of appetite, hyperaemia, and later, skin and fin lesions. Independent of the dose tested, 

an important mortality was observed (with survival rate between 15 and 50%). In comparison to the 

wild type strain, the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK strain expressed an 

attenuated phenotype. Only few fish expressed mild clinical signs with the higher dose tested. These 
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Figure 3. Safety and efficacy profiles of the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK 

strain. The safety of the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK strain was tested on 

common carp (n=20, average weight 7.19 ±3.4 g (mean ± SD), 6 months old). The FL BAC revertant strain 

and mock-infection were used as positive and negative controls, respectively. Fish were infected by immersion 

for 2h in water containing 4, 40, 400 pfu/ml of the indicated strains. Six weeks post-infection, fish that 

survived the primary infection and mock-infected fish were challenged by cohabitation with fish infected with 

FL strain. Percentages of surviving carp are expressed according to days post primary infection. 
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signs included folding of the dorsal fin and localised hyperaemia of the skin, but most fish expressing 

the infection remained active and fed normally. These observations were later confirmed by the 

survival rate which was very high in all groups (95-100%; one fish died in the 400 pfu/ml vaccinated 

group). More importantly, fish started to recover from the infection as soon as 8 dpi corresponding to 

the peak of mortality in the group infected with the wild type parental strain. Surviving fish were 

further challenged by cohabitation with fish infected with the FL strain. While mock-infected fish 

were very sensitive to this challenge (85-100% of the fish dying from the infection within 20 days post 

challenge), fish previously infected with the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del 

galK strain at the dose of 40-400 pfu/ml did not express the disease and exhibited 100% survival. Fish 

that were initially inoculated at the dose of 4 pfu/ml showed partial protection (65% of survival rate) 

(Figure 3). 

Younger (small) fish have been shown to be more sensitive to CyHV-3 than older (large) fish. 

To further investigate the safety/efficacy phenotype of FL BAC revertant ORF56-57 Del pGEMT 

ORF134 Del galK strain, the experiment described in Figure 3 was reproduced with smaller fish 

(Figure 4). At the dose of 4 and 40 pfu/ml, neither clinical signs nor dead fish was observed. At the 

dose of 400 pfu/ml, few fish had minor and transient clinical signs (mainly consisting of skin 

hyperaemia) between days 5 and 8. However, one fish died at 9 days post vaccination. Fish infected 

with FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK strain, as well as mock-infected 

fish were divided in two groups of 15 fish. One group was challenged at 3 weeks post primary 

infection, while the second group was challenged at 6 weeks post primary infection. Challenges were 

performed by cohabitation with recently infected fish as described in the Materials and Methods. The 

results obtained after challenges at 3 and 6 weeks post primary infection led to comparable results 

(Figure 4). Infection performed at the dose of 4 pfu/ml did not induce a significant protection when 

compared to the mortality observed for mock-infected groups. At the dose of 40 pfu/ml, a partial 

protection (around 80% of survival rate) was observed while the dose of 400 pfu/ml induced full 

protection (100% survival) (Figure 4). 

Production and characterization of CyHV-3 double and triple deleted 
recombinants 

The FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK strain exhibits an 

attenuated phenotype. As demonstrated above, this strain is deleted for ORF56, ORF57 and ORF134. 

Based on previous study demonstrating that ORF134 is not essential for virulence in vivo (the first 

experimental chapter of the present thesis), these data suggested that the ORF56-57 deletion is 

responsible, on its own or in combination with ORF134 deletion, for the observed attenuated 

phenotype. However, as the full length genome sequencing of the strain was not performed, we cannot 

exclude the hypothesis that the phenotype observed is the consequence of additional undetected 

mutation(s). To exclude the latter hypothesis and to determine the respective roles of the ORF56-57 



100 100100
Survival rate (%)

Efficacy

Week 3 Week 6Safety

0

20

40

60

80

100

0 5 10 15 20

4 pfu/ml

40 pfu/ml

400 pfu/ml

0

20

40

60

80

100

42 47 52 57 62 67 72 77

4 pfu/ml

40 pfu/ml

400 pfu/ml

0

20

40

60

80

100

21 26 31 36 41 46 51 56

4 pfu/ml

40 pfu/ml

400pfu/ml

100100 100

( )

FL BAC revertant
ORF56-57 Del 

pGEMT
ORF134 Del galK

strain

n=30 n=15 n=15

Mock-infected

0

20

40

60

80

100

21 26 31 36 41 46 51 56

Mock

0

20

40

60

80

100

0 5 10 15 20

Mock

0

20

40

60

80

100

42 47 52 57 62 67 72 77

Mock

n=30 n=15 n=15

Days post primary infection

Challenge
with FL strain

Challenge
with FL strain

Primary infection

Figure 4. Safety and efficacy profiles of the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del
galK strain in small fish. The safety of the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK
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400 pfu/ml. Surviving fish and mock-infected fish were challenged at 3 and 6 weeks post primary infection
by cohabitation with fish infected with the FL strain. Percentages of surviving carp are expressed according to
days post primary infection.
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deletion and the ORF134 deletion in the attenuation observed, two independent recombinants were 

produced: one carrying the ORF56-57 deletion (double deleted recombinant) and one carrying the 

ORF56-57 deletion and the ORF134 deletion (triple deleted recombinant). These recombinants were 

produced using the strategy described in Figure 5. FL BAC revertant as well as FL BAC excised 

infectious forms were reconstituted from the FL BAC ORF56-57 Del plasmid and the FL BAC 

ORF56-57 Del ORF134 Del plasmid. 

All strains were characterized by restriction fragment length polymorphism (RFLP) and 

southern blot analysis (Figure 6). Due to removal of the ORF56-57 Del sequence (2.75 kb), the 

ORF55 fragment was shorter (2.5 kb) as revealed by the ORF55 probe. Presence or absence of the 

BAC sequence (172 bp) allowed the discrimination between FL BAC excised and FL BAC revertant 

strains, respectively. Southern blot using ORF56-57 Del and ORF134 Del probes (corresponding to 

the deletions) demonstrated the absence of the deleted sequences in the recombinants (Figure 6). 

Finally, genome regions encompassing the mutated loci and the regions used to target recombinations 

were amplified by PCR and sequenced (data not shown). All analyses confirmed that the recombinants 

produced had the correct molecular structure. 

Safety and efficacy profile of double and triple deleted recombinants 

Groups of 30 fish were infected by immersion for 2 h in water containing 4, 40 and 400 

pfu/ml of the FL BAC revertant ORF56-57 Del strain and FL BAC revertant ORF56-57 Del ORF134 

Del strain (hereafter called double and triple deleted infected fish, respectively). A group of fish was 

infected with the FL BAC revertant strain used as a positive control for virulence (hereafter called 

wild type infected fish), while mock-infected fish were used as negative control (Figure 7A). For both 

the double and the triple deleted recombinants, the course of infection was similar to what we 

observed for the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK strain (Figure 3 and 4). 

Survival rate observed in wild type infected fish was between 40-47% depending of the dose used. In 

contrast, nearly all fish infected with the double and the triple deleted recombinants survived the 

infection. Indeed, only a single fish infected with the higher dose of the tripe deleted recombinant died 

as a consequence of the infection. These results demonstrated the key role of the ORF56-57 deletion in 

the safety profile observed for the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK strain. 

Fish infected with the double and the triple deleted recombinants, as well as mock-infected 

fish were divided in two groups of 15 fish. One group was challenged at 3 weeks post primary 

infection, while the second group was challenged at 6 weeks post primary infection. Challenges were 

performed by cohabitation with recently infected fish as described in the Materials and Methods. 

Results obtained after challenges at 3 and 6 weeks post primary infection led to comparable results. 

Nearly all fish vaccinated at the dose of 40 and 400 pfu/ml were protected against this lethal challenge 

(only 2 dead fish out of 119 fish challenged) whereas only 2 mock-infected fish survived out of 60 



FL BAC plasmid

Recombination with
ORF56-57 Del galK

Recombination with
ORF134 Del galK
cassette

O
R

F
55

O
R

F
56

-5
7

O
R

F
13

4

FL BAC

g
cassette

Recombination with 
ORF134 Del cassette

FL BAC
ORF134 Del galK
plasmid

Co-transfection
with pGEMT-TK FL BAC t t WT WT WT

Trunc WT WT

ORF56-57 Del galK
plasmid

Recombination with
ORF56-57 Del 
cassette

Recombination with
ORF56-57 Del galK
cassette

FL BAC
ORF134 Del
plasmid Transfection in cells

expressing Cre

with pGEMT TK

FL BAC excised
strain

FL BAC revertant
strain

WT Del WT

Trunc Del WT

FL BAC 
ORF56-57 Del 
plasmid

FL BAC
ORF56-57 Del galK
ORF134 Del
plasmid

Recombination with
ORF56 57 D l

Transfection in cells
expressing Cre

Co-transfection
with pGEMT-TK FL BAC revertant

ORF56-57 Del strain

FL BAC excised
ORF56-57 Del strain

WT Del Del
FL BAC 
ORF56-57 Del  
ORF134 Del
plasmid

ORF56-57 Del 
cassette

Transfection in cells
expressing Cre

Co-transfection
with pGEMT-TK

FL BAC revertant
ORF56-57 Del 
ORF134 Del 
strain

FL BAC excised
ORF56-57 Del

Trunc Del Del

CCB eukaryotic cellsBacteria

ORF56-57 Del
ORF134 Del 
strain
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ith ORF56 57 D l lK tt i b th FL BAC l id d FL BAC ORF134 D l l id Th lKwith ORF56-57 Del galK cassette in both FL BAC plasmid and FL BAC ORF134 Del plasmid. The galK
gene was then removed by homologous recombination with a synthetic DNA sequence corresponding to
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challenged fish. Protection observed for fish infected at the dose of 4 pfu/ml was partial as observed in 

previous experiments. All these experiments performed with the FL BAC revertant forms of the 

double and triple deleted recombinants were reproduced with the FL BAC excised forms. These 

experiments confirmed the results obtained (Figure 7B). 

The results of the experiments presented above demonstrated that the ORF56-57 deletion 

explains the safety/efficacy phenotype observed for the FL BAC revertant ORF56-57 Del pGEMT 

ORF134 Del galK strain. They also demonstrated that the additional deletion of ORF134 and/or 

truncation of ORF55 do not improve the safety/efficacy profile. 

Characterization of the immune protection conferred by the FL BAC 
revertant ORF56-57 Del strain using in vivo imaging system 

Most vaccines confer an immune protection able to reduce, but not to block completely, viral 

replication in the vaccinated subject. Consequently, most vaccines confer a clinical protection but do 

not confer an absolute resistance (sterile immunity). In this last section, we investigated by using in 

vivo imaging system (IVIS), the ability of the immune response induced by the FL BAC revertant 

ORF56-57 Del strain to inhibit the infection by a challenger wild type virus expressing luciferase 

under control of the HCMV IE promoter (Figure 8). Fish were infected by immersion for 2 h in water 

containing 40 and 400 pfu/ml of the FL BAC revertant ORF56-57 Del strain. Mock-infected fish were 

used as control. The course of infection was similar to what we observed before. Six weeks after the 

primary infection, fish were challenged by immersion in water containing the FL BAC revertant 136 

LUC. At different times post challenge, fish were analyzed by IVIS for detection of bioluminescence 

revealing infection (sensitivity and/or permissiveness of host cells). As early as two days post 

infection, most naïve fish (5 out of 6) that were challenged with the FL BAC revertant 136 LUC were 

detected as positive for bioluminescence revealing viral infection. On day 4 and 8 post-challenge, all 

fish tested were positive and expressed a signal increasing with time post-challenge. In contrast, fish 

immunized against the FL BAC revertant ORF56-57 Del strain prior to the challenge expressed no 

significant level of bioluminescence with exception of one fish on day 2 (immunized at the dose of 40 

pfu/ml). All together, these data suggest that the FL BAC revertant ORF56-57 Del strain has some 

potential as a vaccine strain candidate. 
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Figure 6. Molecular characterization of double and triple deleted recombinants. The indicated 

strains were analyzed by Sac I restriction (first panel) and by Southern blot using ORF55, ORF56-

57 Del and ORF134 Del probes. Black and white arrowheads indicate fragments containing 

ORF134 locus and ORF56-57 loci respectively. Marker size (MS) are indicated on the left. 
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Figure 7. Safety and efficacy of double and triple deleted recombinants. Panels A and B present the
testing of TK revertant and TK truncated recombinants, respectively. The safety of the indicated
recombinants were tested on common carp (n=30, average weight 3.77 ± 1.97 g (mean ± SD ), 7 months
old). The FL BAC revertant strain and mock-infection were used as positive and negative controls,
respectively. Fish were infected by immersion for 2 h in water containing 4, 40, 400 pfu/ml. Surviving fish
and mock-infected fish were challenged at 3 and 6 weeks post primary infection by cohabitation with fishand mock-infected fish were challenged at 3 and 6 weeks post primary infection by cohabitation with fish
infected with the FL strain. Percentages of surviving carp are expressed according to days post primary
infection.
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Discussion 

CyHV-3 is a highly pathogenic virus causing devastating losses in cultured and wild common 

carp populations, and in ornamental koi carp. Due to the economic losses caused to aquaculture and 

the rapid spread of the virus worldwide, researches in the field were rapidly oriented to the 

development of diagnostic and prophylactic tools [1]. Vaccination is likely to be the most efficacious 

way to reduce spreading of viral infections and to protect fish from its deleterious effects. Attenuated 

vaccines seem to be particularly adapted for vaccination of carp against CyHV-3. Firstly, attenuated 

vaccines stimulate both humoral and cellular immune responses, the latter is known to be of particular 

importance for immune protection against viral diseases. Secondly, an attenuated vaccine is usually 

easy to produce, requires lower vaccine dose to induce immune protection and is frequently active 

after a single dose. These features make them well adapted for mass vaccination [12]. Thirdly, 

immunity raised by an attenuated vaccine is usually long-lasting [5]. A CyHV-3 attenuated vaccine 

was developed using attenuation through serial passages in vitro and UV irradiation to induce random 

mutations [2,5,8]. The determinism of its attenuation is unknown and consequently the risk of 

reversion cannot be evaluated or excluded. The present study was devoted to the rational development 

of a recombinant attenuated vaccine against CyHV-3. 

The publication of the CyHV-3 complete genome [13] (recently updated and compared to 

sequences of other members of the genus Cyprinivirus ; family Alloherpesviridae ; order 

Herpesvirales [14]), combined with its recent cloning as a BAC, allowed the production of 

recombinants deleted for targeted genes [6]. During the production of recombinant strain deleted for 

ORF134 encoding an IL-10 homologue [15], an additional double deletion (ORF56-57) occurred 

during the process of removal of the BAC cassette. Interestingly, this triple deleted recombinant 

(deleted for ORF56, ORF57 and ORF134 and possibly undetected mutations) replicated efficiently in 

vitro, exhibited an attenuated profile in vivo and induced an immune protection against a lethal 

challenge (Figure 3). This observation was the starting point of the present study. Based on a rational 

approach, various recombinant strains were produced to unravel the determinism of the attenuation of 

this strain. 

As the single deletion of ORF134 was shown to have no effect on the virulence of CyHV-3 in 

vivo [15], the double deletion (ORF56-57) was supposed to be responsible for the severe attenuation 

observed for the FL BAC ORF56-57 Del pGEMT ORF134 Del galK. Nevertheless, the deletion of 

ORF134 encoding an IL-10 homologue could contribute to the observed attenuated phenotype. 

Moreover, we could not exclude the unlikely hypothesis that the triple deleted recombinant encoded 

undetected additional mutations that could have been responsible for the attenuated phenotype. To 

confirm that the double ORF56-57 deletion was indeed responsible for the phenotype observed and to 

determine the contribution of ORF134 deletion in the attenuation, a double ORF56-57 deleted 

recombinant and an independent triple ORF56-57/ORF134 deleted recombinant were produced and 
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Figure 8. Immune protection conferred by the FL BAC revertant ORF56-57 Del strain as revealed by IVIS. Common carp 

(n=20, average weight 13.82 ± 5.00 g (mean ± SD), 9 months old) were infected by immersion for 2 h in water containing 40 or 

400 pfu/ml of the FL BAC revertant ORF56-57 Del strain or were mock-infected. None of the fish died from this primary 

infection. At 6 weeks post primary infection, fish were challenged by immersion for 2 h in water containing 200 pfu/ml of the FL 

BAC revertant 136 LUC strain. At the indicated time post challenge, fish (n=6) were analysed by IVIS. The upper part of the 

figure presents representative pictures obtained for each group and time point. The lower part presents the average radiance (+ 

SD) measured on the entire fish body surface per group and time point, as well as the individual measures obtained. Differences 

with p-value lower than 1 % are marked (**). 
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tested in vivo (Figures 5 to 7). These experiments revealed that ORF134 deletion did neither contribute 

significantly to the attenuation observed nor influence the adaptive immune response induced by the 

infection. Importantly, these experiments demonstrated that ORF56-57 deletion was responsible for 

the attenuation observed. Moreover, the comparison of the FL BAC excised and revertant forms 

(respectively encoding a truncated or revertant ORF55 locus) of the double and triple deleted 

recombinants also revealed that truncation of ORF55 did not improve the safety and/or efficacy of the 

strains (Figure 7, compare sections A and B). Notably, the partial attenuation due to truncation of 

ORF55 in a wild type FL background observed previously could not be reproduced in these 

experiments. This discrepancy is likely due to the fact that, in contrast to the quoted study, we used 

fish in exponential growth phase and thereby containing a large proportion of dividing cells expressing 

high level of cellular TK. Other differences in experimental procedures (we used common carps 

instead of koi carps, infection by immersion instead of infection by IP injection) [6] could also explain 

the differences observed. 

Taking into account all the recombinants deleted for ORF56-57 produced, about 420 fish with 

an average weight lower than 10 g were infected with 3 different doses (4, 40 and 400 pfu/ml by 

immersion). Out of these 420 fish, only two fish died after infection demonstrating the safety of the 

vaccine candidate (all mortalities reported). Concerning the efficacy, fish vaccinated at 40-400 pfu/ml 

and challenged with the FL strain showed very high level of protection, only 4 fish died out of 280 fish 

challenged. Experiment performed on very small fish further demonstrated the safety conferred by 

deletion of the ORF56-57 loci (Figure 4). Compared to the CyHV-3 attenuated vaccine available in 

USA (produced by KoVax Ltd, Israel), these results are very promising. Indeed, safety and efficacy of 

this vaccine are much lower than the vaccine candidate developed in the present study. Firstly, this 

vaccine has been tested at doses of 100-200 pfu/fish by IP and 10-40 pfu/ml by immersion and already 

raised safety concerns at these relatively low doses (the vaccine can be lethal for up to 30% of 

vaccinated fish weighting less than 50 g). This probably explains why this vaccine was initially 

registrated for fish weighing more than 100 g (Norvartis Animal Health). However, very recently after 

just a year on the market, Novartis decided to stop the distribution of this vaccine officially for 

marketing reasons. In addition to safety issues, this vaccine exhibited efficacy performance below 

those observed in the present work; indeed, the KoVax vaccine was never reported to confer full 

protection [2,5,8]. 

The candidate vaccine developed in the present study presents the major advantage to be the 

product of a rational genetic deletion rather than the result of random mutations. The consequences to 

precisely know the genetic origin of attenuation can be seen at several levels. The development of an 

attenuated vaccine in aquaculture is restricted by major safety concerns as these vaccines are usually 

released directly into the water [12]. Knowledge of the gene deleted and the type of mutation 

performed to invalidate the gene is crucial to estimate the risk of reversion to a pathogenic genotype. 

The vaccine candidate developed in this work fulfills this requirement. While point mutations acquired 
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by serial passages in cell cultures are likely to be reversed, reversion of the deletion performed in our 

vaccine candidate is impossible. 

 The precise knowledge of the genetic deletions present in our vaccine candidate allows the 

parallel development of diagnostic tools allowing the differentiation between infected and vaccinated 

animals based on genetic, antigenic and/or serologic assays. Another advantage of the vaccine 

candidate developed in this work, is that it has the potential to be used as vector for expression of key 

protective antigens of other pathogens. The expression cassette encoding these antigens will have to be 

inserted in place of the ORF56-57 deletion performed. As CyHV-3 has been shown to infect carp but 

also other species of cyprinid fish, it could in theory be used as an expression vector in all sensitive 

species. For example, spring viraemia of carp (SVC) is caused by a rhabdovirus responsible for 

mortalities in cyprinid species and against which no vaccine is available. As vaccination using 

glycoprotein G in delivery system such as DNA or vector based vaccine are frequent and efficacious 

in this viral family [16,17], the SVC could be a potential future candidate for vaccine development 

using CyHV-3 as a vector. 

 Orthologues of ORF57 have been reported in three viral species infecting fish (CyHV-1 and 2, 

AngHV-1) [14], two of them are responsible for severe diseases in their respective hosts. Indeed, 

CyHV-2, also known as goldfish haematopoietic necrosis virus, is responsible for a severe disease 

initially reported in goldfish (Carassius auratus auratus) [18], but recently emerging in gibel carp 

(Carassius auratus gibelio) [19]. In addition, AngHV-1 that infects European and Japanese eel 

(Anguilla anguilla and Anguilla japonica) is responsible for mortalities up to 30% in cultured and wild 

eel populations [20]. An additional homologue of ORF57 has also been described in a more distant 

viral species: the crocodilepox virus, an unclassified member of the subfamily Chordopoxvirinae of 

the family Poxviridae [21]; what suggests an ancestral origin of the gene. Consequently, putative other 

homologues of ORF57 are likely to be reported in the future. The basis of the present work identifies 

ORF57 as a first choice gene candidate to be deleted in order to produce attenuated vaccine for viruses 

encoding an ORF57 homologue. 

 In conclusion, the present work established the basis for further investigations on the use of 

ORF56-57 deleted CyHV-3 recombinants as attenuated vaccine against CyHV-3. The perspectives of 

the present study are related to both applied and fundamental sciences; they can be divided into four 

main topics: (i) to further investigate which ORF contribute to the attenuation observed: ORF56 and/ 

or ORF57? (ii) to further investigate the potential of the FL BAC revertant ORF56-57 Del strain as an 

anti-CyHV-3 vaccine candidate; (iii) to investigate the potential of this vaccine candidate as an 

expression vector for vaccination against heterologous pathogenic agents; and (ᴠ) as a subject of 

fundamental research to study the roles of ORF56 and/ or ORF57 in CyHV-3 infection. 

  



Table 1. Primers and probes 

Probe/cassette name Primer name Sequence (5’- 3’) 

Coordinates 

according to 

DQ657948 

Primers for Southern blot analysis 

CyHV-3 ORF55 ORF55InF AGCGCTACACCGAAGAGTCC 95990-96009 

ORF55stopR TCACAGGATAGATATGTTACAAG 96516-96494 

CyHV-3 ORF 56-57 Del probe ORF56-57Pr5F GGTACAAGACGGCCTGCTG 97247-97265 

ORF56-57Pr9R GCCAGCACGTAGAGCTTGTG  99686-99667 

CyHV-3 ORF134 Del probe ORF134InF GGTTTCTCTTTGTAGTTTTCCG 229362-229383 

ORF134InR CACCCCAACTTTTGAGACAAC 229795-229765 

galK probe galKF2 AGGTGAGGAACTAAACCCAG        

galKR2 GATAAAGCTGCTGCAATACG  

Primers for amplification of recombination cassettes 

ORF 134 Del galK cassette ORF134 galK F ATGTTCCTTGCAGTGCTACTAACCGCG

ACCATCTTCTTCGAGGCTCGGGG 

CCTGTTGACAATTAATCATCGGCA 

229791-229840 

ORF134 galK R TCAATGTTTGCGCTTGGTTTTCATGTTC

TTGACGTCTTTTGCGACCAGGA 

TCAGCACTGTCCTGCTCCTT 

229217-229266 

ORF 56-57 Del galK cassette ORF56-57 galK F GTCCCTCGACAGCCCCAGCCCGCACA

GCAGTCGCCACTCTTCCCTGTTGA 

TCAGCACTGTCCTGCTCCTT 

96951-97000 

ORF56-57 galK R AACCCGTACACGACGCGCTCAAGCAG

CTTGATCTTGACGACGTCGTGCAC 

CCTGTTGACAATTAATCATCGGCA 

99800-99751 

Underlined: 50bp corresponding to CyHV-3 sequence 

Italic: sequence corresponding to galK gene 
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Materials and Methods 

Cells and viruses 

Cyprinus carpio brain (CCB) cells [22] were cultured in minimum essential medium 

(Invitrogen) containing 4.5 g/liter glucose (D-glucose monohydrate; Merck) and 10% fetal calf serum. 

The cells were cultured at 25°C in a humid atmosphere containing 5% CO2. The CyHV-3 FL strain 

was isolated from the kidney of a fish that died from CyHV-3 infection (CER, Marloie, Belgium) and 

was previously used to produce the FL BAC plasmid [6]. The FL BAC revertant 136 LUC virus 

expressing luciferase as a reporter gene has been described earlier [23]. 

Fish 

Common carp (Cyprinus carpio) (CEFRA, University of Liège, Belgium), were kept in 60 L 

tanks at 24°C. Water parameters were checked weekly. Microbiological, parasitical and clinical 

examinations of the fish just before the experiments demonstrated that they were fully healthy. 

Inoculation of fish 

After a period of acclimation of 2 weeks, primary infection was done by immersion of fish in 

1-2 liters (depending on fish size) of water containing the virus (infectious doses of 4, 40 or 400 

plaque forming unit [pfu]/ml) for 2 h. At the end of the incubation period, the fish were returned to 60 

L tanks and then observed daily for clinical signs and mortality. Challenge of survival fish was 

performed at 21 days and/or 42 days post primary infection by cohabitation with infected fish. Two 

fish, freshly infected by immersion for 2 h in water containing 200 pfu/ml of the FL strain, were 

released in each tank to be challenged. The animal study was accredited by the local ethics committee 

of the University of Liège, Belgium (Laboratory accreditation N°1610008, protocol N°1059). 

Production of double and triple deleted recombinants 

Recombinants were produced using BAC cloning and prokaryotic recombination technologies. 

The different recombinant plasmids were produced using a two-step galactokinase (galK) 

positive/negative selection in bacteria as described previously [24]. The primers used are described in 

Table 1. Production of double and triple deleted recombinants encoding the accidental deletion of 

ORF56-57 observed in the FL BAC revertant ORF56-57 Del pGEMT ORF134 Del galK strain 

(Figure 2) was done by using FL BAC plasmid and FL BAC ORF134 Del plasmid as parental 

plasmids, respectively; and following the strategy described in Figure 5 [15]. The first recombination 

process consisted to replace ORF56-57 by a galK gene (positive selection) resulting in the FL BAC 

ORF56-57 Del galK and FL BAC ORF56-57 Del galK ORF134 Del plasmids. Recombination was 

performed using the ORF56-57 Del galK recombination cassette consisting of the galK gene flanked 
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by 50 base pair (bp) sequences homologous to CyHV-3 genome regions flanking ORF56-57 deletion. 

The ORF56-57 Del galK recombination cassette was produced by PCR (primers 56-57 galK F and 

56-57 galK R) using the pgalK vector as template. Primer 56-57 galK F consisted of nucleotides 

96951-97000 (50 bp) of CyHV-3 genome and nucleotides 1212-1231 (20 bp) of the pgalK vector. 

Primer 56-57 galK R consisted of nucleotides 99751-99800 (50 bp) of the CyHV-3 genome and 

nucleotides 1-24 (24 bp) of the pgalK vector. The 50 bp sequences of the ORF56-57Del galK 

corresponding to CyHV-3 genome were used to target homologous recombination in bacteria. The 

second recombination process (galK negative selection) consisted to remove the galK gene through 

recombination with the ORF56-57 Del cassette leading to the production of the FL BAC ORF56-57 

Del and the FL BAC ORF56-57 Del ORF134 Del plasmids. The ORF56-57 Del cassette consisted of 

250 bp upstream (coordinates 96751-97000) and 249 bp downstream (99751-100000 with deletion of 

base 99760) of ORF56-57 deletion. To reconstitute infectious virus, the BAC plasmids (FL BAC, FL 

BAC ORF56-57 Del, FL BAC ORF56-57 Del ORF134 Del) were co-transfected into CCB cells using 

Polyethylenimine (ratio 3 µg of Polyethylenimine for 1 µg of DNA) either with the pGEMT-TK 

plasmid or with pEFIN3 NLS Cre (Molecular ratio 1:75) [6]. Transfection with pGEMT-TK plasmid 

induced recombination upstream and downstream the BAC cassette leading to its complete removal 

and consequently reversion to a wild type TK locus (FL BAC revertant strains). Transfection with 

pEFIN3 NLS Cre induced expression of a nuclear Cre recombinase and cre-loxP-mediated excision of 

the BAC cassette. Viruses reconstituted (FL BAC excised strains) by this procedure express a 

truncated TK locus due to the BAC sequence left (172 bp) in this locus. Plaques negative for EGFP 

expression (the BAC cassette encodes an EGFP expression cassette) were picked and amplified.  

Genetic characterization of recombinants 

RFLP were performed using Sac I digestion on 2.5µg of viral DNA. Digested DNA samples 

were then submitted to migration for18 hours (50 V – 500 mA). Southern blot analyses were then 

performed as described elsewhere (Markine-Goriaynoff et al., 2004) using several probes. Viral DNA 

was also submitted to PCR analysis and sequencing of targeted regions. 

Bioluminescence imaging 

Imaging of firefly (Photinus pyralis) LUC was performed using an “in vivo imaging system” 

(IVIS) (IVIS®spectrum, Xenogen, USA) as described previously [23,25]. For in vivo analysis, fish 

were anesthetized with benzocaine (50 mg/L of water). Ten minutes before bioluminescence analysis, 

D-luciferin (150 mg/kg body weight) (Xenogen, USA) was administrated by intraperitoneal injection. 

Each fish was analyzed lying on its left and right side. All the images presented in this study were 

acquired using a field view of 15 cm, a 1 min exposure time, a binning factor of 4 and a f/stop of 1. 

Relative intensities of transmitted light from bioluminescence were represented as a pseudocolor 
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image ranging from violet (least intense) to red (most intense). Corresponding grey-scale photographs 

and color luciferase images were superimposed using the Living Image analysis software (Xenogen, 

USA).  For quantitative comparisons, the Living Image software (Caliper Life Sciences) was used to 

obtain the total flux (p.s-1) over each region of interest.  

Statistical analyses 

The differences in mortality induced by the CyHV-3 strains tested were analyzed using 

Kaplan and Meier survival analysis. Log-transformed bioluminescence data were analyzed using two-

ways analysis of variance. Fish groups, days after challenge and the interaction between these 2 

factors were tested. Results are presented as least-square means and standard errors, and p-values 

lower than 0.05 and 0.01 were reported as significant (*) and very significant (**), respectively. 
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Discussion and perspectives 

Herpesviruses are double-stranded DNA viruses identified in a wide variety of animals, 

ranging from oyster to human. They are able to establish persistent and productive infections in 

immunocompetent hosts despite provoking an efficient immune response. One of the most fascinating 

strategies is the acquisition of host immunomodulatory genes, to be used against the host during the 

course of the infection. One of the best examples of such a gene that has been acquired independently 

by several herpesvirus from their respective hosts is the pleiotropic cytokine Interleukin-10 (IL-10). 

Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae, is the causative 

agent of a lethal disease in common carp and koi. Because of its economic importance and its 

numerous original biological properties, CyHV-3 became rapidly a very interesting subject for applied 

and fundamental research. However, to date, there is little information on the roles of individual 

CyHV-3 genes in the biology of CyHV-3 infection or in its pathogenesis. Moreover, there is a lack of 

safe and efficacious vaccine for the control of CyHV-3 disease. 

In 2007, the whole genome of CyHV-3 has been sequenced by Aoki et al. (2007). CyHV-3 

genomes are predicted to contain 155 unique, functional protein-coding genes of which eight are 

duplicated in the terminal repeat (Aoki et al., 2007; Davison et al., 2013). This achievement was a 

major milestone towards the study of the roles of CyHV-3 genes in pathogenesis. An additional 

breakthrough was the cloning of the CyHV-3 genome as a stable and infectious bacterial artificial 

chromosome (BAC), which can be used to produce CyHV-3 recombinants (Costes et al., 2008). These 

advances provided crucial tools to study the roles of individual CyHV-3 genes. Interestingly, CyHV-3 

genome encodes several proteins that could be involved in immune evasion processes, such as, ORF4 

and ORF12, which are both predicted to encode for tumor necrosis factor receptor (TNFR) 

orthologues; ORF16, which encodes for a potential G-protein couple receptor (GPCR); and ORF134, 

which encodes for an IL-10 orthologue (Aoki et al., 2007). The initial goal of this thesis was to study 

the roles of ORF134 in the biology of CyHV-3 infection in vitro and in vivo. 

Virally encoded IL-10 orthologues have been identified in several members of the Poxviridae 

family and the Herpesvirales order (Hughes, 2002; Kotenko SV, 2001; Slobedman et al., 2009). Up to 

date, viral IL-10 orthologues (vIL-10s) have been reported for 12 members of the Herpesviridae 

family, for 2 members of the Alloherpesviridae family, and for 7 members of the Poxviridae family. 

However, the biology functional of vIL-10s have been described in vitro only in 4 members of 

Herpesviridae family (Human cytomegalovirus [HCMV], Rhesus cytomegalovirus [RhCMV], Human 

HV 4 [EBV], Ovine HV 2 [OvHV2]) and in 1 member of Poxviridae family (Orf virus [ORFV]). This 

has not yet been investigated for members of the Alloherpesviridae family. Even more restrictive, the 

role of vIL-10s has been investigated in the pathogenesis for only one member of the Herpesviridae 

family (RhCMV) and one member of the Poxviridae family (ORFV) (Chang & Barry, 2010; 

Eberhardt et al., 2012; Fleming et al., 2007). In the first experimental chapter of the present thesis, we 
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described for the first time the roles of a vIL-10 encoded by a member of Alloherpesviridae family in 

the biology of the infection in vitro and in vivo. 

In vitro, transcriptomic analysis demonstrated that CyHV-3 ORF134 is expressed as a spliced 

E-L gene. This observation is consistent with the results published by Ilouze et al. who concluded that 

ORF134 is an E gene (Ilouze et al., 2012). It is also consistent with the results reported for other 

vIL-10s which are expressed as E [HCMV (Jenkins et al., 2008; Lockridge et al., 2000); RhCMV 

(Lockridge et al., 2000)] or L [EBV (Hudson et al., 1985; Miyazaki et al., 1993; Touitou et al., 1996); 

HCMV (Chang et al., 2004); AngHV-1 (van Beurden et al., 2013)] genes. The expression product of 

ORF134 is an abundant secreted protein in the supernatant of CyHV-3 infected cells. It is synthesized 

as a precursor expressing a 17 amino acids (aa) hydrophilic signal peptide at the N-terminus (Signal 

peptide was predicted using the signalP 4.0 prediction server 

[http://www.cbs.dtu.dk/services/SignalP/]). This peptide is cleaved during secretion (Kotenko SV, 

2001). It is consistent with the results published for other secreted vIL-10s [HCMV (Chang et al., 

2004); EBV (Touitou et al., 1996)]. The expression product of ORF134 could act as a functional vIL-

10 homologue able to deregulate the immune response of the infected host. This hypothesis is further 

supported by a recent publication addressing the biological activity of CyHV-3 ORF134 in zebrafish 

using an artificial model (Sunarto et al., 2012). However, the results of the present study demonstrated 

that ORF134 is essential neither for viral replication in vitro nor for virulence in vivo. In vitro, multi-

step growth assay results revealed that ORF134 is not essential for CyHV-3 replication in vitro. This 

observation is consistent with the results published for HCMV (Dunn et al., 2003), RhCMV (Chang & 

Barry, 2010) and ORFV (Fleming et al., 1997). In vivo, we took advantage of the “CyHV-3 – carp” 

model of infection to investigate the role of ORF134 vIL-10 in the biology of CyHV-3 infection in its 

natural host. For viral inoculation, we mimicked natural infection using immersion in infectious water 

containing a broad range of virus concentration (ranging from 4 to 400 pfu/ml). Study of viral entry 

into fish demonstrated that the lowest dose tested (4 pfu/ml) is insufficient to induce an initial 

synchronous infection of all fish (Costes et al., 2009). Consequently, the infection performed with this 

lowest dose implicates the spread of the virus within the tank from primary infected fish to cohabitant 

fish that were initially not infected during inoculation. However, none of the doses tested, revealed a 

significant difference between wild type, ORF134 deleted recombinant and a derived revertant strain 

despite the different read-outs performed. 

In mammals, the biological activities of vIL-10s have been studied mainly in vitro using 

recombinant proteins generated from bacterial or mammalian cell expression systems, supernatants 

from viral infected cultures or, to a lesser extent, recombinant vIL-10 knock-out viruses (Chapter 3, 

Introduction). vIL-10s have been showed have a broad immunosuppressive  spectrum, ranging from a 

reduction of proinflammatory responses and decreased expression of MHC class I and II genes 

(Spencer et al., 2002), to inhibition of dendritic cells (DC) maturation, functionality and survival 

(Chang et al., 2009; Slobedman et al., 2009). Immunostimulatory properties also have been 

http://www.cbs.dtu.dk/services/SignalP/
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demonstrated in some vIL-10s (Jaworowski et al., 2009; Logsdon et al., 2011; Spencer et al., 2008). 

In vivo, RhCMV vIL-10 modulated macrophage infiltration into infected tissue, altered kinetics and 

magnitude of antiviral antibody response and dampened T cell responses after stimulation with viral 

antigens (Chang & Barry, 2010). Fleming et al. observed smaller and less severe lesions in sheep after 

primary infection infected with the vIL-10 knock-out virus than those observed in sheep infected with 

the wild type parental or revertant strains (Fleming et al., 2007). 

CyHV-3 vIL-10 is the second most abundant protein secreted in the supernatant. It is essential 

neither for viral replication in vitro nor for virulence in vivo. While the present study was not able to 

incriminate a role for ORF134 neither during in vitro nor in vivo infection, it is still possible that this 

ORF plays a role that could not be revealed with the experimental setting used. Firstly, it could be 

possible that ORF134 has a role during the latent infection. However, in CyHV-3 infected carp, 

ORF134 is highly expressed during acute and reactivation phases, while it is only expressed at a low 

level during low-temperature induced persistent phase (Sunarto et al., 2012). Secondly, it could be 

possible that ORF134 has immunomodulatory functions other than those tested in the present study. 

CyHV-3 diseases outbreaks usually induced mortality rate between 60-100%. The high 

mortality induced by CyHV-3 together with its rapid spread explains why soon after its discovery it 

became an interesting subject for applied science. Many researchers tried to find a proper method to 

control this lethal disease. Based on the restriction of its replication by temperature, immunization 

against CyHV-3 was achieved by co-habitation with sick fish for 3-5 days at permissive temperature 

(22-23°C) and subsequently transferring the exposed carp to a non-permissive temperature (30°C). 

Challenge performed on the surviving fish showed partial protection (mortality rate of 39% compare 

to 82% for the control group). The disadvantages of this method have been discussed previously 

(Chapter 2, Experimental section). Vaccination is the best method to control CyHV-3 disease. 

Recently, a live attenuated vaccine developed by in vitro serial passages and treatment with UV 

irradiation has been manufactured by KoVax Ltd. (Jerusalem, Israel) and is available for immersion 

vaccination of common and koi carp in Israel (Israel:KoVax, 2012; Perelberg et al., 2005; Ronen et al., 

2003). This vaccine has several disadvantages. Firstly, the determinism of the attenuation is unknown 

and it seems insufficient for vaccination of highly sensitive small fish. This explains why the 

temporary commercialization of this vaccine in the USA was restricted to fish weighing more than 100 

g (Norvartis Animal Health). Secondly, the duration of the protection conferred by the vaccine has not 

been established. Thirdly, the protection level of this vaccine never reaches 100% (about 80%). In the 

second study, we developed a good attenuated candidate vaccine by deletion of specific ORFs. 

Since we succeeded to cloning CyHV-3 genome as an infection artificial chromosome (BAC) 

in 2008, we produced several recombinants deleted for specific ORFs. None of the selected ORFs 

induced sufficient attenuation when tested in vivo. However, during the production of a recombinant 

deleted for ORF134 (Chapter 1, Experimental section), an additional unexpected mutation was 

obtained. This strain which was deleted for ORF56-57 and ORF134 exhibited a highly attenuated 
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phenotype even when it was tested on young carp as small as 1 g. To identify the determinism of the 

attenuation of this strain, ORF56-57 double deleted recombinants and independent ORF56-57-134 

triple deleted recombinants were produced and tested in vivo. The obtained results demonstrated that 

the ORF56-57 deletion that occurred unexpectedly in the mutant strain is responsible for the highly 

attenuation observed. Moreover, we confirmed that the FL BAC ORF56-57 Del strain can induce a 

protective immune response as demonstrated by challenge with a wild type strain expressing luciferase 

as a reporter gene. All together these results demonstrated that the CyHV-3 ORF56-57 Del strain is a 

good candidate vaccine. 

In this study, the component(s) of the adaptive immune system conferring protection 

following vaccination with the FL BAC ORF56-57 Del strain was not investigated. However, previous 

work on attenuated CyHV-3 vaccine has showed good correlation between levels of protection 

induced and the level of specific antibodies against CyHV-3. Nevertheless, immunized fish, even 

those in which antibodies were no longer detectable were resistant to a lethal challenge; possibly 

because of the subsequent rapid response of B and T memory cells to antigen re-stimulation (Perelberg 

et al., 2008). Antibodies from CyHV-3 vaccinated fish also showed high neutralization against 

CyHV-3 antigens in vitro by using neutralizing assays (Perelberg et al., 2008). This study suggests 

that neutralizing antibodies are likely to play a key role in the immune protection induced by 

attenuated vaccines against CyHV-3. We observed sterile protection in the skin by using IVIS at 2-8 

days post challenge with the FL BAC revertant 136 LUC strain (Chapter 2, Experimental section). 

Components of the carp mucosal immune response, including immunoglobulins could be responsible 

for this apparent sterile protection. However, the exact immune mechanisms involved in the protection 

induced by CyHV-3 ORF56-57 Del strain still need be further investigate in the future.  

Deletion of ORF56 and ORF57 induces a strong attenuation in vivo without preventing viral 

replication in vitro. Further studies are required to determine whether deletions of ORF56 and/or 

ORF57 are responsible for the safety/efficacy profile. CyHV-3 ORF56 is a 2571 bp ORF encoding a 

856 amino acid product, while ORF57 encode a 473 amino acid product abundantly present in 

CyHV-3 virions (Michel et al., 2010). In the ORF56-57 Del strain, most of ORF56 has been deleted 

with only the last 296 bp left. Taking into account alternative ATG, the residual sequence of ORF56 

would only lead to the expression of the last 77 aa of the original protein. There is high chance that 

such a truncated protein does not yield to a functional protein. In contrast, the deletion of ORF57 was 

compatible with the expression of a truncated protein encompassing the last 333 aa of the original 

protein. To determine whether such truncated protein was expressed, CyHV-3 ORF56-57 Del virions 

were purified and analyzed by 2D-LC-MS/MS (Michel et al., 2010). pORF57 was detected in the FL 

BAC excised strain, but not in the FL BAC excised double deleted strain and FL BAC excised triple 

deleted strain (data not shown). The obtained results demonstrated that the remaining sequence of 

ORF57 does not encode a truncated protein. In order to investigate whether the ORF56-57 deletion 

affects the structure of CyHV-3 virion, semi-purified viral particles of FL BAC excised strain, FL 
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BAC excised double deleted strain, FL BAC excised triple deleted strain were submitted to electron 

microscopy examination. The double deleted, the triple deleted and the wild type virions exhibited 

structure that could not be discriminated (data not shown). 

Compared to human and domestic animals, immunization of fish against diseases still has 

limited applications. One of the reasons explaining this lacuna is the immunization method. 

Immunization of fish by injectable vaccines is effective but not yet practical on a large scale. For this 

reason many researchers concentrated on development of oral immunization. This method has been 

used against bacterial diseases such as vibriosis, columnaris, furunculosis, and red mouth (Anderson, 

1974; Romalde et al., 2004), as well as some viral diseases, such as infectious pancreatic necrosis 

virus (IPNV) (de las Heras et al., 2010). However, the administration of the antigens by the oral route 

is complicated by problems related to preparation and/or distribution.  In contrast to injection and oral 

immunization, immersion vaccination has at least two advantages: (і) it is fast, thousands of fish can 

be vaccinated in few hours; (іi) it is easy to perform, the vaccine is directly dropped into the tanks. The 

ORF56-57 Del strain that we produced in the second experimental chapter can be used to vaccinate 

fish by immersion. 

This vaccine candidate developed has several advantages. (і) It is simple to use, the fish just 

need to be immersed into the solution vaccine for two hours; (іі) it is safe, even for fish as small as 1 g 

at the dose of 400 pfu/mL (high dose); (ііі) it is efficacious, vaccination performed at 40 pfu/mL 

induced 100% survival; (iv) experiments performed by Dr M. Boutier demonstrated that the vaccine 

strain has a reduced ability to spread from vaccinated fish to naïve cohabitant (data not shown); (v) the 

determinism of the attenuation is known and the risk of reversion can be excluded. 

To determine precisely which ORF contribute to the attenuation of ORF56-57 Del strain. 

Deletion of ORF56 or ORF57 will be produced by using BAC cloning technologies. To exclude the 

potential polar effect of the deletion, we will also produce antibodies against ORF56 and ORF57 by 

using DNA immunization as described elsewhere (Lemaire et al., 2011). In order to study the 

properties of the vaccine candidate to replicate into vaccinated fish, we plan to produce a FL BAC 

revertant ORF56-57 Del strain expressing LUC gene as a reporter. By using IVIS analysis, this strain 

will allow us to study the tropism of the vaccine strain compared to a wild type strain (also encoding a 

LUC cassette). Moreover, it will also allow us to study the portal of entry of the vaccine and its 

putative spreading to naïve cohabitant fish. Once the vaccine candidate will be fully characterized, we 

plan to test its potential as an expression vector by developing recombinant derived strain expressing 

glycoprotein G of spring viraemia of carp (SVC) as a transgene. 

The perspectives of the present work are also fundamental. We plan to unravel the roles of 

ORF56 and/ or ORF57 in the biology of CyHV-3 infection both in vitro and in vivo. When studying 

the structural proteome of the ORF56-57 double deleted strain (data not shown), we discovered an 

interesting link between ORF57 and ORF34. Indeed, the absence of pORF57 in the structural 

proteome systematically led to the absence of pORF34. This ORF encodes an unclassified structural 
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protein (Michel et al., 2010), without any predicted transmembrane domain but with a predicted signal 

peptide (Davison et al., 2013). The study of the interaction between pORF57 and pORF34, as well as 

potential additional modifications in the structural proteome, could reveal interesting clues about the 

role of pORF57 in the viral morphogenesis, and perhaps an unexpected role of pORF34 in the 

observed attenuated phenotype. 

In conclusion, in the present thesis we addressed for the first time the role of a viral IL-10 

encoded by a member of the Alloherpesviridae family both in vitro and in vivo. During the course of 

this first study, an unexpected event was discovered and became the beginning of the work for the 

second experimental chapter. The characterization of a triple deleted recombinant obtained by chance 

lead to the identification of the ORF56-57 loci as perfect candidate loci for production of attenuated 

recombinant CyHV-3 vaccines. This thesis illustrates the fact that while science must always be 

rational and critical, part of its progress relies on chance. 
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Summary 

The common carp is one of the most important freshwater fish species in aquaculture, and its 

colourful subspecies koi is grown for personal pleasure and competitive exhibitions. Both two 

subspecies are economically important. In the late 1990s, a highly contagious and lethal pathogen 

called koi herpesvirus (KHV) or cyprinid herpesvirus 3 (CyHV-3) began to cause severe financial 

losses in these two carp industries worldwide. In 2005, CyHV-3 has been classified in the 

Alloherpesviridae family of the order Herpesvirales. Because of its economic importance and its 

numerous original biological properties, CyHV-3 became rapidly an attractive subject for applied and 

fundamental research. However, to date, there is a little information on the roles of individual CyHV-3 

genes in the biology of CyHV-3 infection or its pathogenesis. Moreover, there is a lack of safe and 

efficacious vaccine for the control of CyHV-3 disease. The goal of this thesis was to study the roles of 

CyHV-3 ORF134 encoding an IL-10 homologue in the biology of the infection. 

CyHV-3 ORF134 has been predicted to contain an 84 bp intron flanked by 2 exons encoding 

together a 179 amino acid product. Transcriptomic analyses reveal that ORF134 is expressed as a 

spliced early-late gene. The identification of the CyHV-3 secretome was achieved using 2D-LC 

MS/MS proteomic approach. This method led to the identification of 5 viral and 46 cellular proteins in 

concentrated infected cell culture supernatant. CyHV-3 ORF12 and ORF134 were amongst the most 

abundant proteins detected. To investigate the roles of ORF134 in the biological of the infection, a 

strain deleted for ORF134 and a derived revertant strain were produced by using BAC cloning and 

prokaryotic recombination technologies. Comparison of these strains demonstrated that CyHV-3 

ORF134 does not contribute significantly to viral growth in vitro or to virulence in vivo in the present 

laboratory setting. The present study addressed for the first time the in vivo role of a vIL-10 encoded 

by a member of the family Alloherpesviridae. This study has been published in Veterinary Research. 

During the course of the first study, we obtained an unexpected recombination event while we 

were reconstituting infectious virus from mutated BAC plasmids. To generate a revertant ORF134 Del 

galK strain, CCB cells were co-transfected with the FL BAC ORF134 Del galK plasmid and the 

pGEMT-TK vector to remove the BAC cassette inserted in the ORF55 locus (encoding thymidine 

kinase). One of the clones obtained had an unexpected recombination leading to the deletion of 

ORF56 and ORF57 in addition to the expected deletion of ORF134. Unexpectedly, this triple deleted 

strain replicated efficiently in vitro, exhibited an attenuated phenotype in vivo and was proved to 

confer in a dose dependent manner an immune protection against a lethal challenge. The goal of the 

second experimental chapter was to investigate the role of the ORF56-57 and ORF134 deletions in the 

observed safety/efficacy profile of the triple deleted recombinant. To reach this goal, a collection of 

recombinant strains were produced using BAC cloning technologies, characterized and tested in vivo 

for their safety/efficacy profile. The results obtained demonstrated that the ORF56-57 deletion is 

responsible for the phenotype observed and that ORF134 deletion does not contribute to this 
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phenotype significantly. Finally, the immune protection conferred by ORF56-57 deleted recombinant 

was investigated by challenging immunized fish with a wild type strain expressing luciferase as a 

reporter gene. In vivo imaging system (IVIS) analyses of immunized and challenged fish demonstrated 

that the immune response induced by the ORF56-57 deleted strain was able to prevent subclinical 

infection of the challenge strain. 

In conclusion, the present thesis addressed both fundamental and applied aspects of CyHV-3. 

For the first time, it investigated in vivo the roles of a viral IL-10 homologue encoded by a member of 

the family Alloherpesviridae. Importantly, it identified the ORF56-57 loci as target for production of 

safe and efficacious attenuated recombinant vaccines. 
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