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Abstract. We present some asymptotic results about the frequency of
a letter appearing in a generalized unidimensional automatic sequence.
Next, we study multidimensional generalized automatic sequences and
the corresponding frequencies.

1. Introduction

An infinite sequence which is the image under a letter-to-letter morphism
of the fixed point of a prolongable morphism µ is said to be morphic. If all
images under µ of letters have same length k ≥ 2 then the sequence is said
to be k-automatic. In the seminal paper [2] A. Cobham shows that if the
frequency of a symbol appearing in a k-automatic sequence exists then it is
rational. Extended results about the frequency of a symbol appearing in a
k-automatic sequence have been obtained recently in [10]. For a morphic
sequence, a criterion for the existence of the frequency of a letter has been
obtained in [14], and if this frequency exists then it is an algebraic number
(see for instance [1, Theorem 8.4.5]).

Here, we consider generalized automatic sequences as introduced in [12,
13]. We say that a sequence (xn)n∈N is S-automatic if it can be constructed
as follows. In all this paper, we consider an abstract numeration system S =
(L,Σ, <) consisting of an infinite regular language L over the totally ordered
alphabet (Σ, <). Enumerating the words of L by increasing genealogical
ordering (also called radix order) gives a one-to-one correspondence valS
between L and N. Otherwise stated, valS(w) = n if w is the (n + 1)th
word in the ordered language L (for an introduction to abstract numeration
systems, see for instance [7]). In this paper, M = (Q, q0,Σ, δ, F ) will always
refer to the minimal automaton of L (for details about automata theory, we
refer to [3]). As usual, Q is the finite set of states of M, q0 is its initial
state, δ : Q × Σ → Q is the transition function and F ⊆ Q is the set of
final states. The transition function can be extended to δ : Q × Σ∗ → Q by
δ(q, ε) = q and δ(q, σw) = δ(δ(q, σ), w), where ε is the empty word, q ∈ Q
and w ∈ Σ∗. We will denote by A = (Q′, q′0,Σ, δ′,Γ, τ) a given deterministic
finite automaton with output (DFAO) where Q′, q′0, δ

′ are defined as in M,
Γ is the output alphabet and τ : Q → Γ is the output function of A. Using
the terminology of [1], given a word w ∈ Σ∗ the output of A for the input w
is denoted fA(w) or simply f(w) and is defined by

fA(w) := τ(δ′(q′0, w)).

To shorten notation, we often write q.w or q ′.w instead of δ(q, w) and δ′(q′, w)
respectively. A sequence (xn)n∈N ∈ ΓN is said to be S-automatic, if it can
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be constructed as follows,

xn = fA(wn)

where wn ∈ L is the word such that valS(wn) = n. Otherwise stated, the
n-th symbol of (xn)n∈N is obtained as the output of A fed with the (n+1)-st
word of L, n ≥ 0. So an S-automatic sequence is completely determined
by the abstract numeration system S = (L,Σ, <) and a DFAO A. It is
shown in [13] that the set of generalized automatic sequences and the set
of morphic sequences are the same. Moreover, if the language L is equal
to {0, . . . , k − 1}∗, k ≥ 2, then a sequence is S-automatic for the abstract
numeration system built over L and the usual ordering of the digits if and
only if it is k-automatic [2]. Let a ∈ Γ and x = (xn)n∈N be an infinite word
over Γ, the function counting the number of a’s among the first n symbols
of x, n ≥ 1, is denoted by

π(n, a, x) = #{i ∈ [0, n − 1] | xi = a} =

n−1∑

i=0

1a(xi),

where 1a(xi) = 1 if and only if xi = a. If the limit

lim
n→∞

π(n, a, x)

n

exists then its value d(a, x) is called the frequency of a.
Our main result for unidimensional S-automatic sequences (Theorem 2)

explains the asymptotic behaviour of the function π(n, a, x) under some nat-
ural hypothesis developed later. To obtain these results, we follow basically
the same scheme as in [6] (in fact, this allows us to present the main differ-
ences with [6] and to avoid some technical developments) where the sum-
matory function of a function satisfying an additive property, f(σ1 · · · σk) =∑k

i=1 f(σi), is investigated. But notice that if the sequence is S-automatic,
the function 1a(xi) = 1a(fA(wi)) related to the summatory function π(n, a, x)
does not have such an additive property: 1a(fA(σ1 · · · σk)) is not necessarily

equal to
∑k

i=1 1a(fA(σi)).
This paper is organized in the following way. In Section 2, we present the

working hypothesis, we state the results for unidimensional S-automatic se-
quences and spectral properties of incidence matrices related to M. Sections
3 and 4 are devoted respectively to the proof of Theorem 2 and its corollary.
In Section 5, we introduce the frequency of an m-dimensional automatic
sequence. By enumerating m-tuples of words in genealogical ordering, we
can view this m-dimensional sequence as a unidimensional one. It is inter-
esting to notice that we produce a new enumeration of N

m analogous to the
primitive recursive enumeration of Peano. It is therefore sufficient to show
that the two notions of frequency for m-dimensional and unidimensional se-
quences coincide. In order to obtain the existence of a frequency, we develop
a sufficient framework to be able to apply the same construction as Peyrière
in [11]. In the last section, we show that the frequency of a letter appearing
in a sequence is independent of the total ordering of the alphabet. (This
result has to be mentioned because it is well-known that recognizability of
a set of integers usually depends on the ordering of the alphabet, see [7].)
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2. Working hypothesis and consequences

Let us be more precise. We assume that the set Σω of infinite words over
Σ is equipped with the usual distance t defined as follows. Let v = v0v1 · · ·
and w = w0w1 · · · be in Σω. If v 6= w then we set t(v, w) = 2−i where i is the
smallest integer such that vi 6= wi. Otherwise, v = w and we set t(v, w) = 0.
This notion can be extended to Σ∞ = Σω ∪ Σ∗ by adding an extra symbol
ζ to the alphabet Σ. Namely, if v belongs to Σ∗ then consider the word vζω

belonging to the metric space (Σ ∪ {ζ})ω. In this setting, we can therefore
speak of converging sequences of (finite or infinite) words. In this paper, we
consider converging sequences of words in L and we introduce the following
notation

L∞ = {w ∈ Σω | ∃(w(n))n∈N ∈ LN : lim
n→∞

w(n) = w}.

Recall from the first section that the automata M and A are given. We
denote by Lq the language accepted by M from state q, i.e.,

Lq = {w ∈ Σ∗ | δ(q, w) ∈ F}.
We set uq(n) = #(Lq ∩Σn) and vq(n) = #(Lq ∩Σ≤n). We assume that the
states of Q (resp. Q′) are ordered as follows

Q = {q0 < q1 < · · · < qr} and Q′ = {q′0 < q′1 < · · · < q′s}.
Therefore, we order Q × Q′ by

(q0, q
′
0) < (q1, q

′
0) < · · · < (qr, q

′
0) < (q0, q

′
1) < · · · < (qr, q

′
s).

When dealing with vectors and matrices whose elements are indexed by Q,
Q′ or Q × Q′, we will implicitly use these orderings. Let P be the product
automaton defined by

P = (Q × Q′, (q0, q
′
0),Σ,∆)

where the transition function ∆ is such that

∆((q, q′), σ) = (δ(q, σ), δ′(q′, σ)).

Let M (resp. A, P ) be the incidence matrix of M (resp. A, P), i.e.,

Mqi,qj
= #{σ ∈ Σ | δ(qi, σ) = qj}

(A and P being defined in the same way). As stated above, we use the
orderings of Q, Q′ and Q × Q′ to order the elements of those incidence
matrices. In order to relate the eigenvalues of M to the growth of the
language L, we assume that M is trim (i.e., it is accessible — any state can
be reached from the initial state, and coaccessible — any state can reach
a final state, [3]) and that A is accessible and complete. Therefore the
functions δ and ∆ could be partial but δ ′ is a total function. By definition
of M and P , we have

(1)
s∑

`=0

P(qi,q′k),(qj ,q′
`
) = Mqi,qj

, 0 ≤ i, j ≤ r, 0 ≤ k ≤ s.

We will consider the following hypothesis:

(H) The matrix P has only one dominating eigenvalue λ > 1 (i.e., if
γ 6= λ is an eigenvalue of P , then |γ| < λ).



4 S. NICOLAY, M. RIGO

Remark 1. Assuming (H) is a usual consideration in the framework of sub-
stitutive sequences and a large class of S-automatic sequences fulfills (H).
Indeed, primitive substitutions have been widely studied [4]. (A substitu-
tion φ : Γ → Γ+ is primitive if there exists k such that for any γ, γ ′ ∈ Γ, γ′

appears in φk(γ).) In this case, the matrix associated with the substitution
is primitive and Perron’s theorem is used (see for instance [9]). In particular,
any pure morphic sequence generated by a primitive substitution is clearly
a special case of S-automatic sequence satisfying (H).

As for Perron’s theorem in the substitutive case, adopting (H) gives us
various asymptotic estimates like, for instance, the expression of uq(n) as
Pq(n)λn + o(λn) for some polynomial Pq. Without (H), we would have
to deal with several dominating eigenvalues of same modulus which can
compensate each other.

Finally let us notice that (H) is also considered in [8] for representing
real numbers in abstract numeration systems.

We can now state our main two results for unidimensional automatic
sequences.

Theorem 2. Let S = (L,Σ, <) be an abstract numeration system and let

x = (xn)n∈N ∈ ΓN be an S-automatic sequence generated by a DFAO A
such that (H) is satisfied. For every a ∈ Γ, there exists a bounded function

Ga : L → R such that

π(N, a, x) = N Ga(W ) + O
(

N

|W |

)

where W ∈ L is such that valS(W ) = N . Moreover, if (Wn)n∈N ∈ LN

tends to a limit ω ∈ L∞ then Ga(Wn) also tends to a limit Ga(ω) :=
limWn→ω Ga(Wn) and the function ω 7→ G(ω) is continuous on L∞.

Definition 3. Let h : R
+ → R

+ be defined by

h(y) = n +
log y − log vq0(n)

log vq0(n + 1) − log vq0(n)
for vq0(n) ≤ y ≤ vq0(n + 1), n ∈ N.

Roughly speaking, {h(valS(w))} gives the relative position of w amongst the
words of length |w| inside L.

Corollary 4. With the setting of Theorem 2 and with the function h defined

above, one has

π(N, a, x) = N Ga(h(N)) + O
(

N

|W |

)

where Ga : R → R is a Lipschitz continuous periodic function of period 1.

Example 5. We use notation of Theorem 2. Consider the numeration
system S = (L, {a, b, c}, a < b < c) where L is the language over {a, b, c}
of the words u or uc where u ∈ {a, b}∗. The corresponding trim minimal
automaton M is depicted in Figure 1 together with the DFAO A used to
built the S-automatic sequence x. This example is inspired from the one
given in [14]. We want an example where the frequency does not exist.
Indeed, if the frequency of a ∈ Γ exists then Ga(ω) = d(a, x) for all ω ∈ L∞
and the function Ga is clearly periodic.
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Figure 1. A trim minimal automaton M and a DFAO A.

One can easily check that the product automaton P has the same struc-
ture as A except that the loop on state 3 has to be removed. Therefore
the corresponding matrix P has only 0 and 2 as eigenvalues (both of alge-
braic multiplicity 2) and (H) is satisfied. Feeding A with the words of L in
genealogical ordering:

ε < a < b < c < aa < ab < ac < ba < bb < bc < aaa < aab < aac

< aba < abb < abc < baa < bab < bac < bba < bbb < bbc < . . .

gives the sequence x = 0123113223113113223223 · · · . Let n ≥ 2. For this
numeration system,

valS(an) = 3.2n−1 − 2 and valS(ban−1) = 9.2n−2 − 2;

if in := valS(an) then the factor xin · · · xin+3.2n−2 = (113)2
n−2

2 and if jn :=

valS(ban−1) then xjn · · · xjn+3.2n−2 = (223)2
n−2

1. Furthermore, we have
π(i2, 1, x) = 1 and for n ≥ 3,

π(in, 1, x) = π(in−1, 1, x) + 2n−2 and π(jn−1, 1, x) = π(in, 1, x).

It follows easily that π(in, 1, x) = 2n−1 − 1 and

lim
n→∞

π(in, 1, x)

in
=

1

3
but lim

n→∞
π(jn, 1, x)

jn
= lim

n→∞
π(in+1, 1, x)

jn
=

4

9
.

So d(1, x) does not exist. The sequence (an)n∈N (resp. (ban)n∈N) converges
to aω ∈ L∞ (resp. baω ∈ L∞) and G1(a

n) (resp. G1(ba
n)) converges to

G1(a
ω) = 1/3 (resp. G1(ba

ω) = 4/9). Figure 2 gives an approximation
of the graph of G1, the dash lines have equation y = 1/3 and y = 4/9
respectively. On the left, we have plotted points (n, π(n, 1, x)/n) and on the
right, points (h(n), π(n, 1, x)/n) with h given in Definition 3. The periodicity
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Figure 2. Graph of G1(W ) for valS(W ) ≤ 2000.
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of G1 follows from the fact that valS(bn−1c) + 1 = valS(an+1) and thus the
sequences (G1(b

n−1c))n∈N and (G1(a
n+1))n∈N converge to the same limit

1/3.

Let us now make some comments about the eigenvalues of M and P .

Remark 6. Any eigenvalue of M is also an eigenvalue of P . Indeed, if the
vector −→x of size r is such that M−→x = α−→x then by formula (1) the vector
−−→x(s) obtained as s consecutive copies of −→x is such that P−−→x(s) = α−−→x(s). In
particular, this shows that the geometric multiplicity of any eigenvalue of
M is less than or equal to the corresponding one of P .

Proposition 7. The spectral radii of M and P are equal.

Proof. Assume first that M and P are irreducible matrices. It is well-known
(see for instance [5, Chap. XIII]) that the spectral radius rX of a square
matrix X of size n + 1 is given by

rX = max−→y >0
min

0≤i≤n

(X−→y )i
yi

where notation like −→y > 0 is interpreted component-wise and yi denotes the
ith component of −→y . To stick to our notation introduced earlier, vectors
related to M (resp. P ) are indexed by states (resp. pairs of states). If −→y is
such a vector then one of its components is denoted by (−→y )qi

or simply yqi

(resp. (−→y )(qi,q′j)
or simply y(qi,q′j)

).

It is therefore sufficient to show that for any vector −→c > 0 in R
r+1, there

exists a vector
−→
d > 0 in R

(r+1)(s+1) such that

(2) min
q∈Q

(M−→c )q
cq

≤ min
(q,q′)∈Q×Q′

(P
−→
d )(q,q′)

d(q,q′)
,

and conversely, that for any vector −→c > 0 in R
(r+1)(s+1), there exists a

vector
−→
d > 0 in R

r+1 such that

(3) min
(q,q′)∈Q×Q′

(P−→c )(q,q′)

c(q,q′)
≤ min

q∈Q

(M
−→
d )q

dq
.

Indeed (2) and (3) imply respectively that rM ≤ rP and rP ≤ rM .

For a given vector −→c > 0 belonging to R
r+1, let us define

−→
d ∈ R

(r+1)(s+1)

such that d(q,q′) := cq for all (q, q′) ∈ Q × Q′. With these two vectors and
using (1), we have

r∑

k=0

Mq,qk
cqk

=

r∑

k=0

(
s∑

`=0

P(q,q′),(qk,q′
`
)

)
cqk

=

r∑

k=0

s∑

`=0

P(q,q′),(qk,q′
`
)d(qk,q′

`
)

for any (q, q′) ∈ Q×Q′. This relation implies (2). For the second inequality,

given a vector −→c > 0 of R
(r+1)(s+1), we can define a vector

−→
d ∈ R

r+1 by
setting for all q ∈ Q,

dq := max
q′∈Q′

c(q,q′).
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For such a vector, we have

min
(q,q′)∈Q×Q′

(P−→c )(q,q′)

c(q,q′)
= min

(q,q′)∈Q×Q′

1

c(q,q′)

r∑

k=0

s∑

`=0

P(q,q′),(qk,q′
`
)c(qk,q′

`
)

≤ min
(q,q′)∈Q×Q′

1

c(q,q′)

r∑

k=0

( s∑

`=0

P(q,q′),(qk,q′
`
)

)
dqk

︸ ︷︷ ︸
:=Θ

.

Since Θ does not depend on the state q ′, the minimum is reached for a state
q such that cq,q′ = dq and inequality (3) follows.

If M or P is reducible then the result still holds. If a matrix X is reducible,
we can construct a sequence (Xm)m∈N of irreducible matrices converging to
X as m goes to +∞ by replacing zero entries of X with terms of the form
α/m, α being a constant. If the property holds for each matrix of the
sequence (Xm)m∈N, it also holds for X. When adding such terms α/m to
entries of P or M , we just have to be careful that the modified matrices
Mm and Pm still satisfy (1). If P(qi,q′k),(qj ,q′

`
) is zero and replaced by 1/m,

then 1/m is added to M(qi,qj) and to P(qi,q′h),(qj ,q′
`
) for all h 6= k. Moreover, if

M(qi,qj) is zero and replaced by (s+1)/m then 1/m is added to P(qi,q′k),(qj ,q′
`
)

for all k, ` ∈ {0, . . . , s}. �

As a consequence of Remark 6 and Proposition 7, the following result is
then obvious.

Corollary 8. Under Hypothesis (H), M has only one dominating eigen-

value equal to the one of P .

Remark 9. Without Hypothesis (H), if we assume that M has only one
dominating eigenvalue λ then P has naturally λ as eigenvalue but it could
also have other eigenvalues of maximal modulus. Indeed, let us consider the
following example given by the automata M, A and P represented in Figure

3. In this situation, it is easy to show that the golden ratio τ = 1+
√

5
2 is the

a

b
a

b
a

a,b

a,b
a,b

5

6

41

a,b

a,b 23
a b

a b
a

b

a a

b
a

a

b

a
b

a
a
a

Figure 3. The automata M, A and P.

dominating eigenvalue of M. But P has τ,−τ, τe2iπ/3, τe4iπ/3 as eigenvalues
of modulus τ .
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Under Hypothesis (H), for any q ∈ Q, we can write

uq(n) = Pq(n)λn + o(λn)

for (possibly zero) polynomials Pq. Moreover, we can assume that Pq0 is
non-zero and that deg Pq0 = d ≥ 0. We can therefore split Q into three
subsets

Q1 = {q | uq(n) = Pq(n)λn + o(λn),deg Pq = d},
Q2 = {q | uq(n) = Pq(n)λn +o(λn),deg Pq = d−1} and Q3 = Q\ (Q1∪Q2).

3. Proof of Theorem 2

In what follows, we are only interested in a given letter a ∈ Γ. So we do
not write this letter in the forthcoming notation. For any (q, q ′) ∈ Q × Q′,
we define

Fq,q′(n) :=
∑

w∈Lq

|w|=n

1a(τ(δ′(q′, w))).

Clearly, if n > 0 then

(4) Fq,q′(n) =
∑

σ∈Σ

Fq.σ,q′.σ(n − 1).

We set −→
Fq′(n) = (Fq0,q′(n), . . . , Fqr ,q′(n))T ∈ N

r+1

and −→
F (n) = (

−→
Fq′0

T (n), . . . ,
−→
Fq′s

T (n))T ∈ N
(r+1)(s+1).

From (4), it is obvious that for n ≥ 1, we have
−→
F (n) = P

−→
F (n − 1)

and thus,
−→
F (n) = P n−→F (0). Moreover, Fq,q′(0) = 1a(τ(q′))uq(0). If we set

−→u (n) = (uq0(n), . . . ,uqr(n))T

then
−→
Fq′(0) = 1a(τ(q′))−→u (0). The matrix P n can be written as a block

matrix

P n =
(
P

(n)
q′
k
,q′

`

)
0≤k,`≤s

where each block is a square matrix of size r + 1. Clearly,
(
P

(n)
q′
k
,q′

`

)
qi,qj

:= (P n)(qi,q′k),(qj ,q′
`
)

counts the number of words w of length n such that ∆((qi, q
′
k), w) = (qj, q

′
`)

and since (Mn)qi,qj
is the number of words v of length n such that δ(qi, v) =

qj then, as in formula (1),

(5)
s∑

`=0

(
P

(n)
q′
k
,q′

`

)
qi,qj

= (Mn)qi,qj
, 0 ≤ i, j ≤ r, 0 ≤ k ≤ s.

Let q′ ∈ Q′, we have

−→
Fq′(n) =

s∑

i=0

P
(n)
q′i,q

′

−→
Fq′i

(0) =

s∑

i=0

1a(τ(q′i))P
(n)
q′i,q

′

−→u (0).

Therefore, we have obtained the following result.
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Lemma 10. For any state q′ ∈ Q′, there exists a constant Cq′ such that

−→
Fq′(n) ≤ Cq′

−→u (n)

where the inequality is interpreted component-wise.

Proof. This is a consequence of our last computation and (5). �

Let λ = λ1, λ2, . . . , λt be the eigenvalues of P . With Hypothesis (H), we

have λ > |λ2| ≥ · · · ≥ |λt|. Since
−→
F (n) = P n−→F (0), from the general theory

of matrix recurrences [5], we deduce easily that

Fq,q′(n) =
t∑

`=1

R
(`)
q,q′(n)λn

`

for polynomials R
(`)
q,q′. If q ∈ Q is a state such that limn→∞ λ−nuq(n) 6= 0

then uq(n) = Pq(n)λn + o(λn) and from Lemma 10 we obtain that for such

a state q, deg R
(1)
q,q′ ≤ deg Pq and there exists a real constant Dq,q′ ≥ 0 such

that

(6) Fq,q′(n) = Dq,q′uq(n) + O(uq(n)n−1).

Proof of Theorem 2. Let W = W1 · · ·Wm be a word belonging to L (for all
i, Wi ∈ Σ), N = valS(W ) and x be the morphic sequence generated by
S = (L,Σ, <) and A. We now turn our attention to π(N, a, x). One has

π(N, a, x) =
∑

w∈L
w<W

1a(f(w)) =
∑

w∈L
|w|<|W |

1a(f(w)) +
∑

w∈L
|w|=|W |,w<W

1a(f(w))

= 1a(τ(q′0))uq0(0) +

|W |−1∑

k=1

∑

σ∈Σ

∑

w∈Lq0.σ

|w|=k−1

1a(τ(δ′(q′0.σ, w)))

+

|W |∑

k=1

∑

σ∈Σ
σ<Wk

∑

w∈Lq0.W1···Wk−1σ

|w|=|W |−k

1a(τ(δ′(q′0.W1 · · ·Wk−1σ,w)))

= 1a(τ(q′0))uq0(0) +

|W |−1∑

k=1

∑

σ∈Σ

Fq0.σ,q′0.σ(k − 1)

+

|W |∑

k=1

∑

σ∈Σ
σ<Wk

Fq0.W1···Wk−1σ,q′0.W1···Wk−1σ(|W | − k).

By introducing two new coefficients, we can replace the summation over the
alphabet Σ with a sum over the states. We set

γq,q′ = #{σ ∈ Σ | ∆((q0, q
′
0), σ) = (q, q′)}, (q, q′) ∈ Q × Q′

and for (q, q′) ∈ Q × Q′, 1 ≤ i ≤ |W |,
βq,q′,i(W ) = #{σ < Wi | ∆((q0.W1 · · ·Wi−1σ, q′0.W1 · · ·Wi−1σ) = (q, q′)}.
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Therefore, we obtain

π(N, a, x) = 1a(τ(q′0))uq0(0) +

|W |−1∑

k=1

∑

(q,q′)∈Q×Q′

γq,q′Fq,q′(k − 1)

+

|W |∑

k=1

∑

(q,q′)∈Q×Q′

βq,q′,k(W )Fq,q′(|W | − k)

= 1a(τ(q′0))uq0(0)

+
∑

(q,q′)∈Q×Q′

( |W |∑

k=2

(γq,q′ + βq,q′,k(W ))Fq,q′(|W | − k)

+βq,q′,1(W )Fq,q′(|W | − 1)

)
.

Let us set

αq,q′,i(W ) = βq,q′,i(W ) + (1 − 11(i))γq,q′ , 1 ≤ i ≤ |W |
so,

π(N, a, x) = 1a(τ(q′0))uq0(0) +
∑

(q,q′)∈Q×Q′

|W |∑

k=1

αq,q′,k(W )Fq,q′(|W | − k)

︸ ︷︷ ︸
:=Sq,q′

.

We need some asymptotic information about Fq,q′(N − n). We proceed
exactly as in [6] and for the sake of completeness we recall the main facts
of this paper. We introduce an increasing continuous function g : R+ → R+

by

(7) g(n + x) = vq0(n)1−xvq0(n + 1)x for 0 ≤ x ≤ 1 and n ∈ N.

This function has the property g(n) = vq0(n) for all n ∈ N. Notice that the
inverse function of g is the function h : R

+ → R
+ introduced in Definition

3. By Hypothesis (H) vq0(n) =
∑n

`=0 uq0(`) can be written as vq0(n) =
T (n)λn + o(λn) for a polynomial T of degree d = deg Pq0 . Furthermore, we
have

(8)
g(n + x)

g(n)
= λx

(
1 +

xd

n
+ O

(
1

n2

))
for x ∈ R

and limx→∞
g(x)

T (x)λx = 1. From all this and (6), we compute the following

asymptotic expansion

(9)
Fq,q′(N − n)

g(N)
=





λ−n
(
fq − dfq

n
N +

gq

N + O
(

n2

N2

))
for q ∈ Q1 and n = o(

√
N)

λ−n
(

fq

N + O
(

n
N2

))
for q ∈ Q2 and n = o(N)

O
(

1
N2λn

)
for q ∈ Q3 and n ≤ N

where fq and gq can be computed from the two leading coefficients of the

polynomials T , Pq and R
(1)
q . (Actually, we have the same kind of asymptotic
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expansion for Fq,q′ and uq.) Having at our disposal all the needed asymptotic
information, we can consider again Sq,q′. Technically, we would have to split

summation at indices of order o(
√

|W |) and o(|W |), but we will omit this,
since the contribution to the error term is negligible compared to the other
error terms.

If q ∈ Q1, then

Sq,q′ = g(|W |)fq

|W |∑

k=1

αq,q′,k(W )λ−k + O
(

g(|W |)
|W |

)
.

If q belongs to Q2 ∪ Q3 then

Sq,q′ = O
(

g(|W |)
|W |

)
.

If we set

Ψ(W ) =
∑

(q,q′)∈Q×Q′

q∈Q1

fq

|W |∑

k=1

αq,q′,k(W )λ−k,

then

π(N, a, x) = g(|W |)Ψ(W ) + O
(

g(|W |)
|W |

)

where we recall that valS(W ) = N . Notice that since the αq,q′,k’s are
bounded, the function Ψ extends to a continuous function on L∞ by Ψ(ω) =
limW→ω Ψ(W ). To conclude the proof, one can proceed exactly as in [6].
Since the function g depends only on the abstract system S, we have

valS(W )

g(|W |) = Y (W ) +
1

|W |Z(W ) + O(|W |−2)

with the same functions Y and Z as in [6]. To obtain the expected result,
we set G(W ) = Ψ(W )/Y (W ). �

4. Proof of Corollary 4

First we introduce essential words, then we give the proof of the corollary
and finally we give an example illustrating the concepts involved in the
proof. Consider all the strongly connected components C1, . . . , Ck of M. To
each Cj, j = 1, . . . , k, corresponds an irreducible matrix Mj of dominating
eigenvalue λj ≥ 1. (We say that λj is the dominating eigenvalue of Cj.)
Thanks to Corollary 8, if λj = λ, then λj is the unique eigenvalue of Mj of
modulus λ and the matrix Mj is primitive. Otherwise, we would have other
eigenvalues of modulus λ which contradict our Hypothesis (H).

A path in M is essential if starting from the initial state q0 it goes through
a maximal number α of strongly connected components having λ > 1 as
dominating eigenvalue. Since M is trim, it is clear that

uq0(n) � nα−1λn and vq0(n) � nα−1λn.

A word w ∈ Σ∗ is essential if the path pw in M starting from the initial
state and corresponding to the reading of w is the prefix of an essential path
e and if pw ends before or inside the first strongly connected component
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encountered on e having λ as dominating eigenvalue. Otherwise the word is
said to be inessential. Consequently, if a word x is inessential then

(10) lim
n→∞

uq0.x(n)

nα−1λn
= 0.

Furthermore, if u is inessential, so is uv, for any u, v ∈ Σ∗.

Remark 11. Let v be an essential word and ṽ be a prefix of infinitely
many words in L. Then there exist words z and z̃ such that |vz| = |ṽz̃|
and vz, ṽz̃ ∈ L. Indeed, if the matrix associated with a strongly connected
component is primitive, then there exists N0 such that for all n ≥ N0,
there exists a path of length n connecting any two states of the component
[9, Theorem 4.5.8]. This result is enough to obtain a suffix z having the
expected properties for any long enough suffix z̃.

Proof of Corollary 4. From Theorem 2, we know that

π(N, a, x) = NGa(W ) + O
(

N

|W |

)

where valS(W ) = N . Again, the proof is based on the one in [6] but here,
since we do not have additive functions, we will have to consider other
inequalities. Let ω ∈ L∞ be such that the sequence (vk)k∈N ∈ LN converges
to ω. We denote by val∞(ω) the real number represented by the infinite
word ω (see [8] for details),

val∞(ω) = lim
k→∞

valS(vk)

g(|vk|)
.

First we prove that Ga(ω) := limW→ω Ga(W ) does not depend on ω ∈ L∞
but depends only on val∞(ω). Let (vk)k∈N and (ṽk)k∈N be two sequences of
words in L converging respectively to ω and ω̃ such that val∞(ω) = val∞(ω̃).

Assume first that infinitely many words in at least one of the sequences
(vk)k∈N or (ṽk)k∈N are essential. Thanks to Remark 11 we may furthermore
assume that |vk| = |ṽk| for all k ≥ 0. We have

(11) valS(ṽk)Ga(ṽk) − valS(vk)Ga(vk) + O
(

valS(vk) + valS(ṽk)

|vk|

)

=
∑

vk≤w<fvk

1a(f(w)) ≤ valS(ṽk) − valS(vk)

and dividing this by g(|vk|) and letting k tends to ∞ we get Ga(ω) = Ga(ω̃).
Assume now that ω has a shortest prefix y of length ` ≥ 1 which is inessen-

tial (therefore any prefix of ω longer than ` is inessential and only finitely
many elements in (vk)k∈N are essential). Consider the lexicographical order-
ing of L∞. Let ω′ (resp. ω′′) be the largest (resp. smallest) infinite word
in L∞ whose prefixes are essential and which is less (resp. greater) than ω.
At least one of the two words ω′ or ω′′ exists. Assume that ω′ exists, the
arguments are similar for ω′′. Let Tn(ω) = Prefn{z ∈ L∞ | ω′ < z < ω},
where we denote by Prefn(X) the set of prefixes of length n of the words in
the set X. From the definition of y, Pref `−1(ω

′) = Pref`−1(ω). Obviously,
for n ≥ `, any element in Tn(ω) distinct from Prefn(ω′) is inessential. Con-
sequently, any word w = ps in Tn(ω) having a shortest inessential prefix p
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of length k + 1 has a common prefix of length k with ω ′, ` ≤ k + 1 ≤ n and
thanks to (10), the number of the admissible suffixes s of length n− k− 1 is
in O((n− k− 1)α−2λn−k−1). Therefore, there exists a constant K such that

#Tn(ω) ≤ K
n−∑̀

i=0

iα−2λi and lim
n→∞

#Tn(ω)

nα−1λn
= 0.

From [8], we have val∞(ω) = val∞(ω′). Let w in L ∩ Σn having y as prefix.
With the same arguments about the asymptotic behaviour of #Tn(ω), if
n tends to infinity then |π(valS(w), a, x)/valS(w) − Ga(ω

′)| tends to zero.
Therefore, one can replace ω with ω′ and consider the first case.

To show that Ga(logλ val∞(ω)) := F (ω) can be written as a function of
{h(N)}, the Lipschitz continuity of Ga and its periodicity, one can proceed
as in [6] using inequality (11). �

Example 12. We focus here on essential words, other computational details
are mainly the same as in Example 5. Clearly words over {a, b}∗ are essential

a,b
c

c
c

d

2

3

0 1

a,b a,b
ab

a,b,c,d

c,d
c,d c,d

Figure 4. A trim minimal automaton M and a DFAO A.

but not words containing c or d. The words x = ac and y = ad are inessential
and it is obvious that the length of any word in L having x (resp. y) as prefix
is even (resp. odd). So it is not possible to obtain a property similar to the
one given in Remark 11 and to consider two sequences of words (xvk)k∈N

and (yṽk)k∈N in L such that |xvk| = |yṽk| for all k. For this numeration
system,

valS(an) = 2n+1−n−2, valS(abn−1) = 3.2n−2n−3, valS(ban−1) = 3.2n−n−3

and for n even, valS(acn−1) = 3.2n−n−4 = valS(adcn−2). We are interested
in π(N, 1, x). Amongst the words of length i ≥ 1, 2i−1 words belong to
a{a, b}∗ (only these words contribute to the letter 1), so

G1(a
ω) = lim

n→∞

∑n−1
i=1 2i−1

valS(an)
=

1

4
.

In the same way, between an and abn−1, 2n−1 words belong to a{a, b}∗ and
the same constatation holds for the words between an and ban−1, so

G1(abω) = lim
n→∞

∑n−1
i=1 2i−1 + 2n−1

valS(abn−1)
=

1

3
= G1(ba

ω).

These computations show once again that the frequency of 1 does not exist.
Let us now illustrate the case of inessential prefixes. For Nn = valS(ac2n−1),
we will show that

lim
n→∞

π(Nn, 1, x)

Nn
=

1

3
= G1(abω) = G1(ba

ω).
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4 5 6 7 8 9

0.24

0.26

0.28

0.32

0.34

Figure 5. Graph of G1(W ) for valS(W ) ≤ 5084.

Indeed, with the notation of the previous proof, if ω = acω then ω′ = abω.
The number of words in L between ab2n−1 and ac2n−1 is exactly #Tn(ω) =
2n. Then, there exists Cn ∈ O(#Tn(ω)) such that

π(Nn, 1, x)

Nn
=

π(valS(ab2n−1), 1, x)

Nn
+

Cn

Nn

=
π(valS(ab2n−1), 1, x)

valS(ab2n−1)︸ ︷︷ ︸
→G1(abω)

valS(ab2n−1)

Nn︸ ︷︷ ︸
→1

+
Cn

Nn︸︷︷︸
→0

.

We can therefore replace ω with ω′ or ω′′ when dealing with Ga, a ∈ Γ.

5. Frequency of multidimensional sequences

For the sake of simplicity, we restrict mainly ourselves to the case of
bidimensional sequences. Let (xi,j)i,j∈N be a bidimensional sequence over Γ.
If a ∈ Γ, we denote the function counting the number of a’s by

π2(n, a, x) = #{(i, j) ∈ [0, n − 1] × [0, n − 1] | xi,j = a}.
Multidimensional automatic sequences have been considered in [15] and are
also presented in [1]. Generalization to abstract numeration systems are
considered in [13]. If S = (L,Σ, <) is an abstract numeration system, then
we consider the alphabet Σ$ = Σ∪ {$} where the symbol $ does not belong
to Σ. If x and y are two words over Σ then we define

(u, v)$ :=

{
($|v|−|u|u, v), if |u| ≤ |v|;
(u, $|u|−|v|v), if |u| > |v|.

If A = (Q′, q′0,Σ$ × Σ$, δ
′,Γ, τ) is a DFAO over the alphabet Σ$ × Σ$ then

the element xi,j of the bidimensional S-automatic sequence generated by A
is given by

τ(δ′(q′0, [val
−1
S (i), val−1

S (j)]$)).

With this definition, it is therefore quite natural to be interested in the
following limit

(12) lim
n→∞

π2(n, a, x)

n2
.

To obtain such kind of information, we first show how the sequence (xi,j)i,j∈N

can be roughly seen as a unidimensional one.
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If L is a regular language over the alphabet Σ = {σ1 < · · · < σk} then
the language

L(2) = {(u, v)$ | u, v ∈ L}
is a regular language over Σ$×Σ$. Indeed, since the set of regular languages
is closed under inverse morphism, intersection and complementation [3] then
the language

L(2) =
[
p−1
1 ($∗L) ∩ p−1

2 ($∗L) ∩ (Σ$ × Σ$)
∗] \ ($, $)(Σ$ × Σ$)

∗

is regular, where

p1 : Σ∗
$ × Σ∗

$ → Σ∗
$ : (u, v) 7→ u and p2 : Σ∗

$ × Σ∗
$ → Σ∗

$ : (u, v) 7→ v

are the canonical projection morphisms. If we assume that $ is less than σ
for all σ ∈ Σ then the alphabet Σ$ × Σ$ can be lexicographically ordered
using the total ordering $ < σ1 < · · · < σk of Σ$:

($, $) < ($, σ1) < · · · < ($, σk) < (σ1, $) < · · · < (σk, σk).

Using this ordering of Σ$ × Σ$, the words of L(2) can be genealogically
ordered. Let (i, j) ∈ N

2 and u, v ∈ L be such that valS(u) = i and valS(v) =
j. We denote by

ρL(2)(i, j),

or simply ρ(i, j) if the context is clear, the position of the word (u, v)$

within the genealogically ordered language L(2). (Remember that positions
are counted from zero.) The reader familiar with the Peano function (see
for instance [16]) will not be surprised by our developments. The function
ρ(i, j) is just another way of enumerating the elements of N

2.
In the following, we will be interested only in the number of words in

language L, so we simply write u(n) and v(n) instead of uq0(n) and vq0(n)
respectively.

Example 13. Consider the language L = {b, ab}∗{a, ε} of the words which
do not contain the factor aa. The first words of the language are

0 1 2 3 4 5 6 7 8 9 10 11
ε a b ab ba bb aba abb bab bba bbb abab . . .

The following table lists the first value of ρ(i, j).

i j →
↓ 0 1 2 3 4 5 6 7 8 9 10
0 0 1 2 9 10 11 36 37 38 39 40

v(0) = 1 3 4 5 12 13 14 41 42 43 44 45
2 6 7 8 15 16 17 46 47 48 49 50

v(1) = 3 18 19 20 21 22 23 51 52 53 54 55
4 24 25 26 27 28 29 56 57 58 59 60
5 30 31 32 33 34 35 61 62 63 64 65

v(2) = 6 66 67 68 69 70 71 72 73 74 75 76
7 77 78 79 80 81 82 83 84 85 86 87
8 88 89 90 91 92 93 94 95 96 97 98
9 99 100 101 102 103 104 105 106 107 108 109

10 110 111 112 113 114 115 116 117 118 119 120
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Indeed, we have in the ordered language L(2)

(ε, ε) < ($, a) < ($, b) < (a, $) < (a, a) < (a, b) < (b, $) < (b, a) < (b, b) < ($$, aa) < · · · .

Enumerating the pairs (i, j) with increasing values of the function ρ coincides

with enumerating the words of L(2) in genealogical ordering. Since the
number of words (u, v)$ of length exactly n in L(2) is

2u(n)v(n − 1)︸ ︷︷ ︸
|u|6=|v|

+u(n)2︸ ︷︷ ︸
|u|=|v|

= v(n)2 − v(n − 1)2

then

(13) {(i, j) | ρ(i, j) < v(n)2} = [0,v(n) − 1] × [0,v(n) − 1].

It is an easy exercise to obtain a formula for computing ρ(i, j). Let us set
M = max(i, j). There exists a unique integer n such that

v(n) ≤ M < v(n + 1)

and

ρ(i, j) =

{
v(n)2 + iu(n + 1) + j − v(n) , if i < v(n);
v(n)2 + v(n)u(n + 1) + (i − v(n))v(n + 1) + j , if i ≥ v(n).

Conversely, let us define κ1 : N → N and κ2 : N → N such that, for all k ∈ N

ρ(κ1(k), κ2(k)) = k. For each k, there exists a unique n such that

v(n)2 ≤ k < v(n + 1)2

and we set Tn = v(n)2 + v(n)u(n + 1). If k ≥ Tn then

k − Tn = iv(n + 1) + j, with 0 ≤ j < v(n + 1),

κ1(k) = i + v(n) and κ2(k) = j. Otherwise k < Tn and we have

k − v(n)2 = iu(n + 1) + j, with 0 ≤ j < u(n + 1),

κ1(k) = i and κ2(k) = j + v(n).

Remark 14. In the case of an m-dimensional sequence, m ≥ 2, we can
define in the same way a language L(m) over the totally ordered alphabet
(Σ$)

m and a function ρL(m) : N
m → N counting positions of the elements of

L(m). Due to the genealogical ordering of this latter language, the formula
obtained previously can be extended as follows. There exists a unique n
such that v(n) ≤ max(i1, . . . , im) < v(n + 1). If max(i1, . . . , im−1) < v(n)
then

ρL(m)(i1, . . . , im) = v(n)m + ρL(m−1)(i1, . . . , im−1)u(n + 1) + im − v(n).

Otherwise,

ρL(m)(i1, . . . , im) = v(n)m + v(n)m−1 u(n + 1)

+
(
ρL(m−1)(i1, . . . , im−1) − v(n)m−1

)
v(n + 1) + im.

Let us consider back case m = 2 and set

W2(n, x, a) = #{(i, j) ∈ N
2 | ρ(i, j) < n and xi,j = a}.

In view of (13), we clearly have

(14) W2(v(t)2, x, a) = π2(v(t), x, a)
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for any t ∈ N. The sequence y = (xκ1(n),κ2(n))n∈N is a unidimensional

automatic sequence generated by the regular language L(2) and the DFAO
A. If the matrix P associated with L(2) and A is such that (H) is satisfied
then the limit

lim
n→∞

W2(n, a, y)

n

exists and is denoted by d. Our aim is now to show (under some hypotheses)
that the sequence (π2(n, a, x)/n2)n∈N is converging. If it is converging, it
converges to the same limit d. Indeed, from (14), we know that a subse-
quence of this sequence is converging to d. Since a and x are given, we will
omit them in notation π2(n).

To obtain the convergence of (π2(n)/n2)n∈N, we shall assume in what
follows that

• the incidence matrix P of the product automaton P constructed on
the minimal automaton of L(2) and on the DFAO A is primitive (in
particular, notice that (H) will therefore be satisfied),

• the language L is a prefix language, i.e., if wσ ∈ L, w ∈ Σ∗, σ ∈ Σ
then w ∈ L.

Our task is now to present the right setting in which the same kind of
construction as in [11] can be applied. We define a function S : L×L → 2L×L

in the following way. Let (u, v) ∈ L × L.

• If u, v 6= ε then

S(u, v) = {(uσ, vτ) ∈ L × L | σ, τ ∈ Σ},

• if u = ε, v 6= ε then

S(u, v) = {(σ, vτ) ∈ L × L | σ, τ ∈ Σ} ∪ {(ε, vτ) ∈ L × L | τ ∈ Σ},

• if u 6= ε, v = ε then

S(u, v) = {(uσ, τ) ∈ L × L | σ, τ ∈ Σ} ∪ {(uσ, ε) ∈ L × L | σ ∈ Σ},

• u, v = ε then

S(u, v) = {(σ, τ) ∈ L × L | σ, τ ∈ Σ ∪ {ε}}.

This function can naturally be extended to 2L×L. Using S, for any j ∈
N, any finite set of N

2 can be included into Sj(E) for some minimal set
E ∈ 2L×L (we have a one-to-one correspondence between N

2 and L × L
through the use of the numeration system). This fact is a consequence of
the definition of S and is enlightened by the following example. Moreover,
since L is a prefix language, for each (u, v) ∈ L × L there exists a unique
(x, y) ∈ L × L such that (u, v) ∈ S(x, y).
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Example 15. Consider the same language as in Example 13. We represent
a partition of N

2 = L × L in terms of sets of the form S(u, v),

u v →
↓ ε a b ab ba bb aba abb · · ·
ε · · · · · · · ·
a · S(ε, ε) · S(ε, a) S(ε, b) · S(ε, ab) ·
b · · · · · · · ·
ab · S(a, ε) · S(a, a) S(a, b) · S(a, ab) ·
ba · · · · · · · ·
bb · S(b, ε) · S(b, a) S(b, b) · S(b, ab) ·
aba · · · · · · · ·
abb · S(ab, ε) · S(ab, a) S(ab, b) · S(ab, ab) ·
...

...
. . .

For instance, if we want a partition with sets of the form S 2(u, v), then we
have S2(ε, ε) = ({ε, a, . . . , bb} ∩ L)2, S2(a, ε) = S(ab, ε) ∪ S(ab, a) ∪ S(ab, b)
and S2(a, a) = S(ab, ab). In particular, it is easy to show that for u, v 6= ε,
we have

Sn(u, v) = {(uw1, vw2) ∈ L × L | w1, w2 ∈ Σn}, ∀n ∈ N.

Remark 16. Since L is a prefix language, then it is also the case for L(2)

and all states of the trim minimal automaton of L(2) are therefore final.
Therefore, we avoid words “without output”.

Assume that P has t states denoted {q1, . . . , qt} with q1 as initial state.

Let (i, j) ∈ N
2. To this pair corresponds a pair w = (val−1

S (i), val−1
S (j))$ and

therefore a state of P obtained by reading w in P starting from q1. This
state is denoted q(i,j). Let E be a finite set of N

2. To this set corresponds a
row vector χE of size t such that its kth component is given by

(χE)k = #{(i, j) ∈ E | q(i,j) = qk}.
Using Remark 16, the following relations are therefore obvious

χS(u,v) = χ{(u,v)}P and χSn(u,v) = χ{(u,v)}P
n, ∀n.

Since P is primitive, there exists a unique eigenvector ξ such that the sum
of its components is 1, having the following property

∀(u, v) ∈ L × L :
χSn(u,v)

#Sn(u, v)
→ ξ, if n → ∞.

Let E be a finite set of N
2. If we denote by ∂E the elements in E having a

neighbour not in E, then with the same reasoning as in [11], we can obtain
that ∣∣∣∣

χE

#E
− ξ

∣∣∣∣ ≤ C

(
#∂E

#E

)h

for some positive constants C and h. Consequently, the limit (12) exists and
equals the algebraic number d. Indeed, consider E = [0, n − 1] × [0, n − 1]
and in the vector χE sum together all the components corresponding to
states with a same output in the DFAO A. Doing this, you will replace the
frequency vector of the states reached in P with the frequency vector of the
letters of output alphabet Γ.
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6. Remark on the ordering

Let us make some comments about the independence of the frequency
with respect to the total ordering of the alphabet.

Remark 17. Assume that an automatic sequence x is generated by a nu-
meration system S = (L,Σ, <) and a DFAO A satisfying assumption (H).
If we consider another total ordering of Σ, say ≺, then obviously (H) is
still satisfied. Indeed, the ordering does not appear in the definition of the
incidence matrices. Considering the numeration system S = (L,Σ,≺) in-
stead of S = (L,Σ, <) affects the sequence x by permuting the elements of x
within the range {v(n), . . . ,v(n)+u(n+1)−1}. Considering the automata
M and A given in Figure 3, if a < b the first words of L are

ε < a < aa < ba < aaa < aba < baa < aaaa < aaba < abaa < baaa < baba

giving rise to the output sequence

x< = 1|2|35|226|33344| · · · .

If b ≺ a then

ε ≺ a ≺ ba ≺ aa ≺ baa ≺ aba ≺ aaa ≺ baba ≺ baaa ≺ abaa ≺ aaba ≺ aaaa

giving rise to the output sequence

x≺ = 1|2|53|622|44333| · · · .

Under assumption (H), the frequency of a letter a exists for both sequences
x< and x≺. But since,

∀n ∈ N, π(v(n), a, x<) = π(v(n), a, x≺)

the converging sequences (π(n, a, x<)/n)n∈N and (π(n, a, x≺)/n)n∈N have a
common infinite subsequence. So the two sequences are converging to the
same limit, i.e., the frequency is independent of the ordering of the alphabet.
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