ABOUT FREQUENCIES OF LETTERS IN GENERALIZED
AUTOMATIC SEQUENCES

S. NICOLAY, M. RIGO

ABSTRACT. We present some asymptotic results about the frequency of
a letter appearing in a generalized unidimensional automatic sequence.
Next, we study multidimensional generalized automatic sequences and
the corresponding frequencies.

1. INTRODUCTION

An infinite sequence which is the image under a letter-to-letter morphism
of the fixed point of a prolongable morphism p is said to be morphic. If all
images under p of letters have same length k£ > 2 then the sequence is said
to be k-automatic. In the seminal paper [2] A. Cobham shows that if the
frequency of a symbol appearing in a k-automatic sequence exists then it is
rational. Extended results about the frequency of a symbol appearing in a
k-automatic sequence have been obtained recently in [10]. For a morphic
sequence, a criterion for the existence of the frequency of a letter has been
obtained in [14], and if this frequency exists then it is an algebraic number
(see for instance [1, Theorem 8.4.5]).

Here, we consider generalized automatic sequences as introduced in [12,
13]. We say that a sequence (z,,)nen is S-automatic if it can be constructed
as follows. In all this paper, we consider an abstract numeration system S =
(L, X, <) consisting of an infinite regular language L over the totally ordered
alphabet (X, <). Enumerating the words of L by increasing genealogical
ordering (also called radix order) gives a one-to-one correspondence valg
between L and N. Otherwise stated, valg(w) = n if w is the (n + 1)th
word in the ordered language L (for an introduction to abstract numeration
systems, see for instance [7]). In this paper, M = (Q, qo, %, 0, F') will always
refer to the minimal automaton of L (for details about automata theory, we
refer to [3]). As usual, @ is the finite set of states of M, ¢q is its initial
state, d : Q x ¥ — (@ is the transition function and F C @ is the set of
final states. The transition function can be extended to § : Q x ¥X* — @ by
d(q,e) = q and (q,ow) = 0(6(q,0),w), where ¢ is the empty word, ¢ € Q
and w € ¥*. We will denote by A = (Q’, ¢, %,d", T, 7) a given deterministic
finite automaton with output (DFAO) where Q', q)), 0’ are defined as in M,
T" is the output alphabet and 7 : ) — I is the output function of A. Using
the terminology of [1], given a word w € ¥* the output of A for the input w
is denoted f4(w) or simply f(w) and is defined by

fa(w) = 7(8'(q), w)).
To shorten notation, we often write q.w or ¢’.w instead of §(¢, w) and 6’(¢’, w)

respectively. A sequence (z,)neny € 'Y is said to be S-automatic, if it can
1
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be constructed as follows,
Ty = f A(wn)

where w,, € L is the word such that valg(w,) = n. Otherwise stated, the
n-th symbol of (z,,)nen is obtained as the output of A fed with the (n+1)-st
word of L, n > 0. So an S-automatic sequence is completely determined
by the abstract numeration system S = (L,%,<) and a DFAO A. It is
shown in [13] that the set of generalized automatic sequences and the set
of morphic sequences are the same. Moreover, if the language L is equal
to {0,...,k — 1}*, k > 2, then a sequence is S-automatic for the abstract
numeration system built over L and the usual ordering of the digits if and
only if it is k-automatic [2]. Let a € T and = = (2, )nen be an infinite word
over I', the function counting the number of a’s among the first n symbols
of , n > 1, is denoted by

n—1
m(n,a,z) = #{i € [0,n— 1] |z = a} = Y _ 1a(xs),
1=0

where 1,(z;) = 1 if and only if x; = a. If the limit
lim (n,a,x)
n—oo n

exists then its value d(a, ) is called the frequency of a.

Our main result for unidimensional S-automatic sequences (Theorem 2)
explains the asymptotic behaviour of the function m(n, a, z) under some nat-
ural hypothesis developed later. To obtain these results, we follow basically
the same scheme as in [6] (in fact, this allows us to present the main differ-
ences with [6] and to avoid some technical developments) where the sum-
matory function of a function satisfying an additive property, f(o1---op) =
Zle f (o), is investigated. But notice that if the sequence is S-automatic,
the function 1,(z;) = 14(fa(w;)) related to the summatory function 7(n, a, )
does not have such an additive property: 1,(f4(o1 - 0%)) is not necessarily
equal to Z?:l 1.(fa(oi)).

This paper is organized in the following way. In Section 2, we present the
working hypothesis, we state the results for unidimensional S-automatic se-
quences and spectral properties of incidence matrices related to M. Sections
3 and 4 are devoted respectively to the proof of Theorem 2 and its corollary.
In Section 5, we introduce the frequency of an m-dimensional automatic
sequence. By enumerating m-tuples of words in genealogical ordering, we
can view this m-dimensional sequence as a unidimensional one. It is inter-
esting to notice that we produce a new enumeration of N™ analogous to the
primitive recursive enumeration of Peano. It is therefore sufficient to show
that the two notions of frequency for m-dimensional and unidimensional se-
quences coincide. In order to obtain the existence of a frequency, we develop
a sufficient framework to be able to apply the same construction as Peyriere
n [11]. In the last section, we show that the frequency of a letter appearing
in a sequence is independent of the total ordering of the alphabet. (This
result has to be mentioned because it is well-known that recognizability of
a set of integers usually depends on the ordering of the alphabet, see [7].)
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2. WORKING HYPOTHESIS AND CONSEQUENCES

Let us be more precise. We assume that the set X of infinite words over
> is equipped with the usual distance ¢ defined as follows. Let v = vgvy - - -
and w = wowy - - - be in ¥¥. If v # w then we set t(v, w) = 27% where i is the
smallest integer such that v; # w;. Otherwise, v = w and we set ¢(v, w) = 0.
This notion can be extended to X*° = ¥* U X* by adding an extra symbol
¢ to the alphabet ¥. Namely, if v belongs to ¥* then consider the word v(“
belonging to the metric space (X U {(})“. In this setting, we can therefore
speak of converging sequences of (finite or infinite) words. In this paper, we
consider converging sequences of words in L and we introduce the following
notation

Loo = {w e 2| 3(w™)eny € LV : lim 0™ = w}.

li
n—oo
Recall from the first section that the automata M and A are given. We
denote by L, the language accepted by M from state ¢, i.e.,
L,={weX"|iq,w)eF}.

We set u,(n) = #(L,NE") and v,4(n) = #(L,NXS"). We assume that the
states of @ (resp. Q') are ordered as follows

Q={w<q < <g}and Q ={g <q < <}
Therefore, we order Q x Q" by

(90,90) < (q1,90) < -+ < (ar, ) < (q0,q1) < -+ < (qr, q5)-
When dealing with vectors and matrices whose elements are indexed by @,

Q' or Q x @', we will implicitly use these orderings. Let P be the product
automaton defined by

P=(QxQ (q,9) % A)

where the transition function A is such that

A((Qa q/)’ J) = (5(% U)v 5/((1,’ J))
Let M (resp. A, P) be the incidence matrix of M (resp. A, P), i.e.,

My, q; = #{o € X | 6(qi,0) = g5}
(A and P being defined in the same way). As stated above, we use the
orderings of @, Q' and Q x Q' to order the elements of those incidence
matrices. In order to relate the eigenvalues of M to the growth of the
language L, we assume that M is trim (i.e., it is accessible — any state can
be reached from the initial state, and coaccessible — any state can reach
a final state, [3]) and that A is accessible and complete. Therefore the
functions § and A could be partial but ¢’ is a total function. By definition
of M and P, we have

S
1) > Pasaan) = Moy 0<0j<r 0<k<s.
=0
We will consider the following hypothesis:

(H) The matrix P has only one dominating eigenvalue A > 1 (i.e., if
v # X is an eigenvalue of P, then |y| < \).
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Remark 1. Assuming (H) is a usual consideration in the framework of sub-
stitutive sequences and a large class of S-automatic sequences fulfills (H).
Indeed, primitive substitutions have been widely studied [4]. (A substitu-
tion ¢ : I' — I'" is primitive if there exists k such that for any v,y € T, 7/
appears in ¢¥(v).) In this case, the matrix associated with the substitution
is primitive and Perron’s theorem is used (see for instance [9]). In particular,
any pure morphic sequence generated by a primitive substitution is clearly
a special case of S-automatic sequence satisfying (H).

As for Perron’s theorem in the substitutive case, adopting (H) gives us
various asymptotic estimates like, for instance, the expression of u,(n) as
Py(n)A" 4+ o(A\") for some polynomial P,. Without (H), we would have
to deal with several dominating eigenvalues of same modulus which can
compensate each other.

Finally let us notice that (H) is also considered in [8] for representing
real numbers in abstract numeration systems.

We can now state our main two results for unidimensional automatic
sequences.

Theorem 2. Let S = (L,%, <) be an abstract numeration system and let
T = (2p)neny € 'Y be an S-automatic sequence generated by a DFAO A
such that (H) is satisfied. For every a € T, there exists a bounded function
G, : L — R such that

w(.000) = ¥+ 07

where W € L is such that vals(W) = N. Moreover, if (Wp)nen € LN
tends to a limit w € Lo then Go(Wy) also tends to a limit Go(w) =
limyy, ., Go(W),) and the function w — G(w) is continuous on L.

Definition 3. Let h: RT — RT be defined by

log y — log v, (n)
h(y) =n+
(@) log vgy(n + 1) —log vgy(n)

for vgo(n) <y <vg(n+1), neN.

Roughly speaking, {h(valg(w))} gives the relative position of w amongst the
words of length |w| inside L.

Corollary 4. With the setting of Theorem 2 and with the function h defined
above, one has

)= 3600 +0 ()

where G, : R — R is a Lipschitz continuous periodic function of period 1.

Example 5. We use notation of Theorem 2. Consider the numeration
system S = (L,{a,b,c},a < b < ¢) where L is the language over {a,b,c}
of the words u or uc where u € {a,b}*. The corresponding trim minimal
automaton M is depicted in Figure 1 together with the DFAO A used to
built the S-automatic sequence x. This example is inspired from the one
given in [14]. We want an example where the frequency does not exist.
Indeed, if the frequency of a € I' exists then G,(w) = d(a,z) for all w € L
and the function G, is clearly periodic.
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FIGURE 1. A trim minimal automaton M and a DFAO A.

One can easily check that the product automaton P has the same struc-
ture as A except that the loop on state 3 has to be removed. Therefore
the corresponding matrix P has only 0 and 2 as eigenvalues (both of alge-
braic multiplicity 2) and (H) is satisfied. Feeding A with the words of L in
genealogical ordering:

e<a<b<c<aa<ab<ac<ba<bb<be<aaa < aab < aac
< aba < abb < abc < baa < bab < bac < bba < bbb < bbc < ...

gives the sequence x = 0123113223113113223223---. Let n > 2. For this
numeration system,

valg(a”) =32"1 =2 and valg(ba" ') =9.2""% - 2;

if i, := valg(a™) then the factor z;, ---2; ;3902 = (113)2" 7 2 and if j, ==
on—2

valg(ba™"') then wj, -z, 13902 = (223) 1. Furthermore, we have

m(i2,1,2) =1 and for n > 3,
(i, 1,2) = w(in_1,1,2) +2"% and  7(jp_1,1,2) = 7(in, 1, 2).
It follows easily that (i, 1,2) =2""! — 1 and

3 noco n—oe 9

lim

n—0o0

in
So d(1,z) does not exist. The sequence (a™)pen (resp. (ba™)nen) converges
to a¥ € Lo (resp. ba” € L) and Gp(a™) (resp. Gp(ba™)) converges to
Gi(a¥) = 1/3 (resp. G1(ba®) = 4/9). Figure 2 gives an approximation
of the graph of Gj, the dash lines have equation y = 1/3 and y = 4/9
respectively. On the left, we have plotted points (n,w(n,1,x)/n) and on the
right, points (h(n), 7(n,1,z)/n) with h given in Definition 3. The periodicity

S S
0. 44 044 - s &
0.42) 0.42f . It 7%
: S |

0 47 5} 164 V7 8 9
0.38| i 0.38 T i
0.36| i 0.36
i s i
0.34f 0.34 . ¥ s!
L S S S S .

FIGURE 2. Graph of G1 (W) for valg(1¥) < 2000.
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of Gy follows from the fact that valg(b" 'c) + 1 = valg(a"*!) and thus the
sequences (G1(b"'c))pen and (Gp(a™1)),en converge to the same limit
1/3.

Let us now make some comments about the eigenvalues of M and P.

Remark 6. Any eigenvalue of M is also an eigenvalue of P. Indeed, if the
vector T of size r is such that M 2 = a2’ then by formula (1) the vector
:@ obtained as s consecutive copies of T is such that Psz)) = oz:?s)> . In
particular, this shows that the geometric multiplicity of any eigenvalue of
M is less than or equal to the corresponding one of P.

Proposition 7. The spectral radii of M and P are equal.

Proof. Assume first that M and P are irreducible matrices. It is well-known
(see for instance [5, Chap. XIII]) that the spectral radius rx of a square
matrix X of size n + 1 is given by

_ (XY
rx = max min
¥>00<isn Yy,
where notation like 5 > 0 is interpreted component-wise and y; denotes the
ith component of . To stick to our notation introduced earlier, vectors
related to M (resp. P) are indexed by states (resp. pairs of states). If %/ is
such a vector then one of its components is denoted by (7)% or simply yq,
— .

(resp. () (gs.q;) OF SIMPLY Y(g;,q7))-

It is therefore sufficient to show that for any vector ¢ > 0 in R"!, there

—
exists a vector d > 0 in RCTDEHD guch that
—

(M), : (P d)gq)

(2) min < min
9€Q ¢4 (0.0)€QxQ"  d(g.q

and conversely, that for any vector ¢ > 0 in ROTDEFTD - there exists a
—
vector d > 0 in R™*! such that

P g
(3) min w < min
(¢.0)€QXQ"  C(q,q) €Q  dq

Indeed (2) and (3) imply respectively that rps < rp and rp < rj;.

. — : r41 -~ (r+1)(s+1)

For a given vector ¢ > 0 belonging to R"™", let us define d € R

such that dy 4 := ¢4 for all (¢,¢') € Q@ x Q. With these two vectors and
using (1), we have

T T S T S
Z Mgq.Cqp = Z (Z P(q,q’),(qk7q2)> Cq = Z Z P(q,Q’)7(q;c,q2)d(qk7q2)
k=0 k=0 \/=0 k=0 ¢=0

for any (q,q’) € @ x Q. This relation implies (2). For the second inequality,

i < (r+1)(s+1) ~ r+1
given a vector ¢ > 0 of R , we can define a vector d € R"™™* by
setting for all ¢ € Q,

= Imax .
dg q’e%’ Clq,q)
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For such a vector, we have

- I8 S

min (PC)(q,q/) _ min )
(@.0)€@xQ"  C(g,q) (2:4)€Q%Q" C(q,q") 1 =0 10 (ot

T S
< min < (qq (qr,q) >qu-

! 4
(0:4")€Q*Q" C(q,q") 1= o\
—0

Since © does not depend on the state ¢’, the minimum is reached for a state
q such that ¢, o = dy and inequality (3) follows.

If M or P is reducible then the result still holds. If a matrix X is reducible,
we can construct a sequence (X, )men of irreducible matrices converging to
X as m goes to +oo by replacing zero entries of X with terms of the form
a/m, a being a constant. If the property holds for each matrix of the
sequence (X, )men, it also holds for X. When adding such terms a/m to
entries of P or M, we just have to be careful that the modified matrices
M,, and P, still satisfy (1). If P(g;.4,).(a5.q)) 18 zero and replaced by 1/m,
then 1/m is added to Mg, 4.y and to Py, 1) (4,4, for all b # k. Moreover, if
My, 4;) 1s zero and replaced by (s+1)/m then 1/m is added to Py, 41 (4;.4,)
for all k,¢ € {0,...,s}. O

As a consequence of Remark 6 and Proposition 7, the following result is
then obvious.

Corollary 8. Under Hypothesis (H), M has only one dominating eigen-
value equal to the one of P.

Remark 9. Without Hypothesis (H), if we assume that M has only one
dominating eigenvalue A then P has naturally A as eigenvalue but it could
also have other eigenvalues of maximal modulus. Indeed, let us consider the
following example given by the automata M, A and P represented in Figure

3. In this situation, it is easy to show that the golden ratio 7 = 1*—2‘/5 is the

a@ b
~QL. 0

OO UNAE:
ab

FIGURE 3. The automata M, A and P.

2in /3 hin/3

dominating eigenvalue of M. But P has 7, —7, e as eigenvalues

of modulus 7.
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Under Hypothesis (H), for any ¢ € ), we can write
uy(n) = Fy(n)A" +o(A")

for (possibly zero) polynomials P,. Moreover, we can assume that Py, is
non-zero and that deg Py, = d > 0. We can therefore split () into three
subsets

Q1 ={q | ug(n) = Py(n)A" + o(X"), deg Py = d},
Q2 = {q | ug(n) = P;(n)A\"+0o(\"),deg P, = d—1} and Q3 = Q\ (Q1UQ2).

3. PROOF OF THEOREM 2

In what follows, we are only interested in a given letter a € I". So we do
not write this letter in the forthcoming notation. For any (q,q¢’) € Q x @',
we define

Foq(n) == Z La(7(8' (¢, w))).
weLyg
|lw|=n

Clearly, if n > 0 then
(4) Foq(n) = Z Foogq.o(n—1).
oeY
We set .
Fy(n) = (Fgpq(n),..., Fy g (n)" € N'H!
and g S —_—
F(n) = (FyT(n),...,Fy"(n)" € NOTDEH,
From (4), it is obvious that for n > 1, we have

F(n) = P?(n —1)
and thus, ?(n) = P"?(O). Moreover, Fy, 4(0) = 1,(7(¢)) ug(0). If we set
U(n) = (ugy(n), ..., ug,(n))"

then F,;(O) = 1,(7(¢"))W(0). The matrix P" can be written as a block
matrix

P = (P,
Y92/ 0<k<s

where each block is a square matrix of size r 4+ 1. Clearly,

(7 q;,qg>qi7qj = (P") (gi). (a0

counts the number of words w of length n such that A((g;,q;,),w) = (g5, q;)
and since (M")g, 4; is the number of words v of length n such that d(g;,v) =
q; then, as in formula (1),

S
(5) Z(Pé;i)q;)q.q.:<M">%qj, 0<ij<r, 0<k<s
4]

Let ¢’ € @', we have

S

= > n) &’ n
Fy(n) = P Fy(0) = Y 1a(r(a) Py, W(0).
=0 i

Therefore, we have obtained the following result.
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Lemma 10. For any state ¢’ € Q’, there exists a constant Cy such that
- —
Fy(n) < Cy u(n)

where the inequality is interpreted component-wise.

Proof. This is a consequence of our last computation and (5). O

Let A = A1, Ag, ..., At be the eigenvalues of P. With Hypothesis (H), we
— —

have A > |Ag| > -+ > |\¢|. Since F'(n) = P" F(0), from the general theory
of matrix recurrences [5], we deduce easily that

for polynomials R( ) I q € Q is a state such that lim, .o A™™"u,(n) # 0

then uy(n) = Py(n ))\" + o(A\") and from Lemma 10 we obtain that for such

a state ¢, deg R((I 3,

that
(6) Fyq(n) = Dy guq(n) + (’)(uq(n)n_l).

Proof of Theorem 2. Let W = Wy ---W,, be a word belonging to L (for all
i, W; € ¥), N = valg(W) and x be the morphic sequence generated by
S =(L,%,<) and A. We now turn our attention to 7(N,a,z). One has

ﬂ(N,G,&J) = Z 1a(f(w)) = Z la(f(w)) + Z 1a(f(w))

< deg P, and there exists a real constant D, » > 0 such

weL weL weL
w<W |w|<|W| |w|=|W|,w<W
W]-1

= L(r(@)ug©@) + > > > L(r(d(gp.0w)))

k=1 UGEwELqOo—
|lw|=k—1

W]

Y Y L@@ W Wieiow)

k=1 o€X welgy.wy..wj_,o

W =Wk
W|-1
= la(T( uqo Z Z 90.0,q(-0 —-1)
k=1 oc€X
W]
+Z Z qu.Wl“'kalU,qé.Wl"'kalo'(’W’ _k)
k=1 o€Xx
o<Wy

By introducing two new coefficients, we can replace the summation over the
alphabet 3 with a sum over the states. We set

Yoo = #{o € X[ A(q, 90),0) = (¢,4)},  (¢,¢) €@ x Q'
and for (¢,¢') € Q@ x Q',1 < i <|W]|,
Boq i(W) =#{oc <W; | A((qo-W1 -+ Wi_10,q0.W1 -+ Wi_10) = (¢,¢)}-
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Therefore, we obtain
Wi-1
m(N,a,z) = 1a(T(Q6)) Uygy (0) + Z Z 7q7q/Fq7Q'(k -1)
k=1 (q,¢")€Q%Q’
W]

+>0 Y Bugk(W)E (W] —k)
k=1 (q,q")eQxQ’
= 14(7(g0)) g (0)
W
D S O SCPET PRCOEULERS
(g,9)€EQXQ’" k=2
+ﬁq,q’,1(W)Fq,q’(’W’ - 1))
Let us set
aq,q/vi(W) = ﬁq,q’,i(w) + (1 - 11(1'))%1761/7 1<i< ‘W|
S0,
144

T(N,a,2) = La(r(@) ue(0) + Y D agg k(W) Fog (W] k).
(9,4)€Q*Q" k=1

N~

::Sq’q/

We need some asymptotic information about F, (N — n). We proceed
exactly as in [6] and for the sake of completeness we recall the main facts
of this paper. We introduce an increasing continuous function g : R — R¥
by

(1) gln+) =ven) v +1)* for0<z<1 andneN.

This function has the property g(n) = v, (n) for all n € N. Notice that the
inverse function of g is the function 4 : Rt — R* introduced in Definition
3. By Hypothesis (H) vg,(n) = > ) ug(¢) can be written as vg,(n) =
T(n)A" 4+ o(A™) for a polynomial T of degree d = deg P,,. Furthermore, we
have

d 1
®) M:A$<1+x—+o<—2>> for z € R
g(n) n n
and limg_, % = 1. From all this and (6), we compute the following
asymptotic expansion
(9) Foq (N —n) _
9(N)
A (fy—dfg 2+ %+ 0 (;;—Z)) for g€ Q1 and n = o(vVN)
A" f—]\i—i—(’)(%)) for g € Q2 and n = o(N)
O(ﬁ) forge @3 andn <N

where f, and g, can be computed from the two leading coefficients of the

polynomials 7", P, and R((Jl). (Actually, we have the same kind of asymptotic
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expansion for F, » and u,.) Having at our disposal all the needed asymptotic
information, we can consider again S, ,. Technically, we would have to split
summation at indices of order o(y/|W]) and o(|WW]), but we will omit this,
since the contribution to the error term is negligible compared to the other

error terms.
If ¢ € Q1, then

W]

_ (L)
Sq,qf—guwr)fql; sk (WA +0< - )

If ¢ belongs to Q2 U Q3 then

)

If we set
W]
MUBSES Z fqzaq,q’,k(W))‘ik’
(0,4)€Q*Q" k=1
q€Q1
then
w
(¥.a.) =g Whu(w) + 0 (2770 )
where we recall that valg(W) = N. Notice that since the agq 1’s are

bounded, the function ¥ extends to a continuous function on £ by ¥(w) =
limy ., ¥(W). To conclude the proof, one can proceed exactly as in [6].
Since the function g depends only on the abstract system S, we have

— e = Y (W) + == Z(W) + O(]W[™)

g((W) W]
with the same functions Y and Z as in [6]. To obtain the expected result,
we set G(W) =¥ (W)/Y(W). O

4. PROOF OF COROLLARY 4

First we introduce essential words, then we give the proof of the corollary
and finally we give an example illustrating the concepts involved in the
proof. Consider all the strongly connected components C1,...,Cy of M. To
each Cj, j = 1,...,k, corresponds an irreducible matrix M; of dominating
eigenvalue A; > 1. (We say that \; is the dominating eigenvalue of C;.)
Thanks to Corollary 8, if A; = A, then A; is the unique eigenvalue of M of
modulus A and the matrix M is primitive. Otherwise, we would have other
eigenvalues of modulus A which contradict our Hypothesis (H).

A path in M is essential if starting from the initial state qq it goes through
a maximal number « of strongly connected components having A > 1 as
dominating eigenvalue. Since M is trim, it is clear that
a—lAn a—lAn‘

ug(n) <n and vy (n) <n

A word w € ¥* is essential if the path p,, in M starting from the initial
state and corresponding to the reading of w is the prefix of an essential path
¢ and if p,, ends before or inside the first strongly connected component
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encountered on ¢ having \ as dominating eigenvalue. Otherwise the word is
said to be inessential. Consequently, if a word «x is inessential then

(10) lim S

n—oo pA—1lAR

Furthermore, if u is inessential, so is uv, for any u,v € X*.

Remark 11. Let v be an essential word and v be a prefix of infinitely
many words in L. Then there exist words z and Z such that |vz| = [vZ]
and vz, vz € L. Indeed, if the matrix associated with a strongly connected
component is primitive, then there exists Ny such that for all n > Ny,
there exists a path of length n connecting any two states of the component
[9, Theorem 4.5.8]. This result is enough to obtain a suffix z having the
expected properties for any long enough suffix Z.

Proof of Corollary 4. From Theorem 2, we know that

7(N,a,z) = NGo(W) + (’)<£>
W]
where valg(W) = N. Again, the proof is based on the one in [6] but here,
since we do not have additive functions, we will have to consider other
inequalities. Let w € Lo, be such that the sequence (vi)ren € LY converges
to w. We denote by valy(w) the real number represented by the infinite
word w (see [8] for details),

. valg(vg)
valoow) = i~ lon)

First we prove that G, (w) := limy ., G4 (W) does not depend on w € L
but depends only on vals(w). Let (vg)ren and (vk)gen be two sequences of
words in L converging respectively to w and w such that val (w) = vals (@).

Assume first that infinitely many words in at least one of the sequences
(v )ken or (Uk)ken are essential. Thanks to Remark 11 we may furthermore
assume that |vi| = |vg| for all £ > 0. We have

(11)  valg(0k)Ga(vg) — vals(vg)Ga(vg) +O<Vals(vk)|z—;|Vals(v~k)>

= Y Lu(f(w)) < valg(dk) — valg(vs)
v <w<vg

and dividing this by g(|vk|) and letting & tends to oo we get G, (w) = Go(W).

Assume now that w has a shortest prefix y of length £ > 1 which is inessen-
tial (therefore any prefix of w longer than ¢ is inessential and only finitely
many elements in (vg)ren are essential). Consider the lexicographical order-
ing of L. Let ' (resp. w”) be the largest (resp. smallest) infinite word
in L, whose prefixes are essential and which is less (resp. greater) than w.
At least one of the two words w’ or w” exists. Assume that w’ exists, the
arguments are similar for w”. Let T, (w) = Pref,{z € L | W' < 2z < w},
where we denote by Pref,,(X) the set of prefixes of length n of the words in
the set X. From the definition of y, Pref,_;(w’) = Prefy_;(w). Obviously,
for n > ¢, any element in T},(w) distinct from Pref, (w') is inessential. Con-
sequently, any word w = ps in T),(w) having a shortest inessential prefix p
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of length k + 1 has a common prefix of length k with w’, £ < k+1 < n and
thanks to (10), the number of the admissible suffixes s of length n — k — 1 is
in O((n —k —1)272A"=#=1)_ Therefore, there exists a constant K such that

n—~_
; T,
(w) <K 210‘72)\@ and  lim #Tn(w) = 0.

noo pa—l\n

i—
From [8], we have valy(w) = vale (w'). Let w in L N'YX™ having y as prefix.
With the same arguments about the asymptotic behaviour of #7,(w), if
n tends to infinity then |r(valg(w),a,z)/valg(w) — G4(w')| tends to zero.
Therefore, one can replace w with w’ and consider the first case.

To show that G,(logy valo(w)) := F(w) can be written as a function of
{h(N)}, the Lipschitz continuity of G, and its periodicity, one can proceed
as in [6] using inequality (11). O

Example 12. We focus here on essential words, other computational details
are mainly the same as in Example 5. Clearly words over {a,b}* are essential

ab@ @ab

]

FIGURE 4. A trim minimal automaton M and a DFAO A.

but not words containing c or d. The words x = ac and y = ad are inessential
and it is obvious that the length of any word in L having = (resp. y) as prefix
is even (resp. odd). So it is not possible to obtain a property similar to the
one given in Remark 11 and to consider two sequences of words (zvg)ren
and (yuk)gen in L such that |zvg| = |yvg| for all k. For this numeration
system,

valg(a") = 2" —n—2, valg(ab" ') = 3.2"—2n—3, valg(ba" 1) = 3.2"—n—3
and for n even, valg(ac"!) = 3.2" —n—4 = valg(adc”~?). We are interested

in 7(N,1,2). Amongst the words of length i > 1, 2¢~! words belong to
af{a,b}* (only these words contribute to the letter 1), so

Sz
Gi(a¥) = lim ==—— = —.
(") ) valg(a™) 4

In the same way, between a™ and ab™ !, 2"~! words belong to a{a,b}* and

the same constatation holds for the words between a” and ba™ !, so

D L |
n—00 Valg(ab"_l) 3

These computations show once again that the frequency of 1 does not exist.

Let us now illustrate the case of inessential prefixes. For N,, = valg(ac?®1),
we will show that

= Gl(baw).

. ‘l(l ny 17'Z.) 1
1 SNy T W\ __ w .
lim N, =3 = G1(ab”) = G1(ba”)
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i
$

z:zz?'-'ii‘i‘“‘“‘/\ MA
FERAAAN

0.24

f—-'"“""

FIGURE 5. Graph of G1 (W) for valg(IW') < 5084.

Indeed, with the notation of the previous proof, if w = ac® then w’ = ab®.
The number of words in L between ab?"~! and ac?”~! is exactly #7T,(w) =
2n. Then, there exists C), € O(#7T,(w)) such that

T(Np,1,2)  w(valg(ab®1),1,z) N Cn
N, N, N,
m(valg(ab®™ 1), 1,2) valg(ab®~ 1) C,
valg(ab®"—1) N, + N, -
—G1(ab®) —1 —0

We can therefore replace w with w’ or w” when dealing with G, a € T.

5. FREQUENCY OF MULTIDIMENSIONAL SEQUENCES

For the sake of simplicity, we restrict mainly ourselves to the case of
bidimensional sequences. Let (z; ;); jen be a bidimensional sequence over T
If a € T', we denote the function counting the number of a’s by

ma(n,a,x) = #{(i,j) € [0,n —1] x [0,n — 1] | z; ; = a}.
Multidimensional automatic sequences have been considered in [15] and are
also presented in [1]. Generalization to abstract numeration systems are
considered in [13]. If S = (L, X, <) is an abstract numeration system, then
we consider the alphabet ¥ = ¥ U {$} where the symbol $ does not belong
to X. If x and y are two words over X then we define

s [ (§Pluly ), fu) < ol
(u,v) -—{ (u, $14I=10ly) | if Ju| > |u).

If A=(Q q),3g x Xg,0",T',7) is a DFAO over the alphabet Xg x Xg then
the element z; ; of the bidimensional S-automatic sequence generated by A
is given by

7(9' (4o, [valg' (8), valg' (7)*))-
With this definition, it is therefore quite natural to be interested in the
following limit

7T2(TL, a, (L‘)

(12) lim -

n—oo n

To obtain such kind of information, we first show how the sequence (; ;) jen
can be roughly seen as a unidimensional one.
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If L is a regular language over the alphabet ¥ = {07 < -+ < 0} then
the language

L® = {(u,v)* | u,v € L}
is a regular language over ¥g x ¥g. Indeed, since the set of regular languages

is closed under inverse morphism, intersection and complementation [3] then
the language

L® = [pr{($"L) Np; '(3°L) N (g x E6)*] \ (3,8)(Ss x )"
is regular, where
p1 o Bg x N5 — Xg ¢ (u,v) — v and pp 1 B x g — 35 : (u,v) — v
are the canonical projection morphisms. If we assume that $ is less than o

for all ¢ € ¥ then the alphabet Xg x g can be lexicographically ordered
using the total ordering $ < o1 < -+ < oy of Xg:

($,%) < ($,01) < -+ < ($,0k) < (01,%) <+ < (Ok,0%).

Using this ordering of g x Xg, the words of L(® can be genealogically
ordered. Let (7,5) € N2 and u,v € L be such that valg(u) = i and valg(v) =
j. We denote by
Pr) (27 j)?

or simply p(i,7) if the context is clear, the position of the word (u,v)
within the genealogically ordered language L(?). (Remember that positions
are counted from zero.) The reader familiar with the Peano function (see
for instance [16]) will not be surprised by our developments. The function
p(i,7) is just another way of enumerating the elements of N2.

In the following, we will be interested only in the number of words in
language L, so we simply write u(n) and v(n) instead of ug,(n) and vy, (n)
respectively.

$

Example 13. Consider the language L = {b,ab}*{a, e} of the words which
do not contain the factor aa. The first words of the language are

0{1 2|3 4 51| 6 7 8 9 10| 11
ela blab ba bb|aba abb bab bba bbb | abab

The following table lists the first value of p(i, j).

7 —
0 1 2 3 4 b 6 7 8 9 10
0 1 2 9 10 11 | 36 37 38 39 40
V(O):: 3 4 5 12 13 14 | 41 42 43 44 45
6 7 8 15 16 17 | 46 47 48 49 50
20

<
—~

—_
~

I

18 19 21 22 23|51 52 53 bH4 55
24 25 26 27 28 29|56 57 58 59 60
30 31 32 33 34 35|61 62 63 64 65
66 67 68 69 YO T1 72 73 T4 75 76
78 79 80 81 82 83 8 8 8 &7
8 8 90 91 92 93 94 95 96 97 98
99 100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119 120

<
—~
©
SN—
I
O © 00T T W N O .

—_
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Indeed, we have in the ordered language L(?)

(g,¢) < ($,a) < ($,0) < (a,9) < (a,a) < (a,b) < (b,$) < (b,a) < (b,b) < ($$,aa) < --- .

Enumerating the pairs (7, j) with increasing values of the function p coincides
with enumerating the words of L(®) in genealogical ordering. Since the
number of words (u,v)® of length exactly n in L) is

2u(n)v(n — 1) +u(n)? = v(n)? — v(n — 1)
|ul#[v] m
then
(13) {(,9) | p(i,4) < v(n)*} = [0,v(n) = 1] x [0,v(n) - 1].

It is an easy exercise to obtain a formula for computing p(i, 7). Let us set
M = max(i, j). There exists a unique integer n such that

vin) <M <v(n+1)
and

[ v(n)?+iun+1)+5—v(n) , if i < v(n);
pli7) = { v(n)2 +v(n)u(n+1)+ (i —vn)v(n+1)+j , if i > v(n).

Conversely, let us define k1 : N — N and k5 : N — N such that, for all k € N
p(k1(k), k2(k)) = k. For each k, there exists a unique n such that

v(n)? <k <v(n+1)?
and we set T}, = v(n)? + v(n)u(n + 1). If k > T}, then
k—=T,=iv(n+1)4+j, with0<j<v(n+1),
k1(k) =i+ v(n) and ko(k) = j. Otherwise k < T, and we have
k—v(n)? =iu(n+1)+7j with0<j<u(n+1),
k1(k) =1 and ka(k) = j + v(n).
Remark 14. In the case of an m-dimensional sequence, m > 2, we can
define in the same way a language L™ over the totally ordered alphabet
(3g)™ and a function p; ) : N™ — N counting positions of the elements of
LM Due to the genealogical ordering of this latter language, the formula
obtained previously can be extended as follows. There exists a unique n
such that v(n) < max(iq,...,in) < v(n +1). If max(iy,...,in-1) < v(n)
then
prm) (11, yim) = V()™ + prom-1 (i1, ... im—1) u(n + 1) + iy, — v(n).
Otherwise,
prom ity yim) = V()™ +v()™  u(n +1)
+ (prom=v (i1, - ime1) — v(R)™ 1) V(0 + 1) + im.
Let us consider back case m = 2 and set
Wa(n, 2, a) = #{(i,j) € N*| p(i,j) <n and z; ; = a}.
In view of (13), we clearly have

(14) Wg(v(t)2,m, a) = ma(v(t), z,a)
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for any ¢ € N. The sequence y = (Zy,(n)ko(n))neN i a unidimensional
automatic sequence generated by the regular language L(®) and the DFAO
A. If the matrix P associated with L(® and A is such that (H) is satisfied
then the limit

lim WQ(nv a, y)

n—00 n

exists and is denoted by d. Our aim is now to show (under some hypotheses)
that the sequence (m2(n,a,x)/n?),en is converging. If it is converging, it
converges to the same limit d. Indeed, from (14), we know that a subse-
quence of this sequence is converging to d. Since a and x are given, we will
omit them in notation ma(n).

To obtain the convergence of (m2(n)/n?)nen, we shall assume in what
follows that

e the incidence matrix P of the product automaton P constructed on
the minimal automaton of L(?) and on the DFAO A is primitive (in
particular, notice that (H) will therefore be satisfied),

e the language L is a prefix language, i.e., if wo € L, w € ¥*, 0 € ¥
then w € L.

Our task is now to present the right setting in which the same kind of
construction as in [11] can be applied. We define a function S : Lx L — 2E%F
in the following way. Let (u,v) € L x L.

o If u,v # ¢ then
S(u,v) = {(uo,vr) € LX L | 0,7 € 3},

e if u =¢, v # € then

S(u,v) ={(o,v7) € Lx L|o,7T € X}U{(e,vr) € Lx L| 1€ X},

o if u#¢e, v=c then

S(u,v) ={(uo,7) € Lx L|o,7 € L} U{(uo,e) e Lx L |0 € X},

e u,v = ¢ then

S(u,v) ={(o,7) € Lx L|o,7 € XU{e}}.

This function can naturally be extended to 2L‘XL. Using S, for any j €
N, any finite set of N2 can be included into S7(E) for some minimal set
E € 2I%L (we have a one-to-one correspondence between N? and L x L
through the use of the numeration system). This fact is a consequence of
the definition of S and is enlightened by the following example. Moreover,

since L is a prefix language, for each (u,v) € L x L there exists a unique
(z,y) € L x L such that (u,v) € S(z,y).
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Example 15. Consider the same language as in Example 13. We represent
a partition of N? = L x L in terms of sets of the form S(u,v),

u |[v —
l e a b ab ba bb aba abb
8 . . . . . .

a S(e,e) - | S(g,a) | Se,b) - | S(e,ab)

ab || - S(a,e) - | S(a,a) | S(a,b) - | S(a,ad)
ba || - . . . . . .
bb || - S(b,e) - | S(b,a) | S(b,b) - | S(b,ab)

aba . . . . . . .

abb || - S(abye) - | S(ab,a) | S(ab,b) - |S(ab,ab)

For instance, if we want a partition with sets of the form S2(u,v), then we
have S?(e,¢) = ({&,a,...,bb} N L)?, S*(a,e) = S(ab,e) US(ab,a) U S(ab,b)
and S%(a,a) = S(ab,ab). In particular, it is easy to show that for u,v # ¢,
we have

S"(u,v) = {(vwy,vwa) € L x L | wy,we € ¥"}, Vn € N.

Remark 16. Since L is a prefix language, then it is also the case for L)
and all states of the trim minimal automaton of L) are therefore final.
Therefore, we avoid words “without output”.

Assume that P has ¢ states denoted {q1,...,q:} with ¢ as initial state.
Let (i,5) € N2. To this pair corresponds a pair w = (Valgl(i), vadgl(j))$ and
therefore a state of P obtained by reading w in P starting from ¢;. This
state is denoted q; ;). Let E be a finite set of N2. To this set corresponds a
row vector xg of size t such that its kth component is given by

(xe)k = #{(,7) € E'| 445 = a}-
Using Remark 16, the following relations are therefore obvious

XS(uv) = X{wo)} and  Xsn(uw) = X{@w)} " V.
Since P is primitive, there exists a unique eigenvector £ such that the sum
of its components is 1, having the following property

V(u,v) € L x L: %—»{, if n — oo.
Let E be a finite set of N, If we denote by OE the elements in E having a
neighbour not in F, then with the same reasoning as in [11], we can obtain

that \

XE 5' <c <#_3E>

#E #E
for some positive constants C' and h. Consequently, the limit (12) exists and
equals the algebraic number d. Indeed, consider E = [0,n — 1] x [0,n — 1]
and in the vector xg sum together all the components corresponding to
states with a same output in the DFAO A. Doing this, you will replace the
frequency vector of the states reached in P with the frequency vector of the
letters of output alphabet I.
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6. REMARK ON THE ORDERING

Let us make some comments about the independence of the frequency
with respect to the total ordering of the alphabet.

Remark 17. Assume that an automatic sequence x is generated by a nu-
meration system S = (L, X, <) and a DFAO A satisfying assumption (H).
If we consider another total ordering of ¥, say <, then obviously (H) is
still satisfied. Indeed, the ordering does not appear in the definition of the
incidence matrices. Considering the numeration system S = (L, %, <) in-
stead of S = (L, 3, <) affects the sequence x by permuting the elements of x
within the range {v(n),...,v(n)+u(n+1)—1}. Considering the automata
M and A given in Figure 3, if a < b the first words of L are

€ <a<aa<ba<aaa < aba < baa < aaaa < aaba < abaa < baaa < baba
giving rise to the output sequence
x< = 1]2|35(226|33344] - - - .
If b < a then
€ <a <ba < aa < baa < aba < aaa < baba < baaa < abaa < aaba < aaaa

giving rise to the output sequence
x< = 1]2]53|622|44333] - - - .

Under assumption (H), the frequency of a letter a exists for both sequences
T and x~. But since,

VneN, w(v(n),a,z<)=mn(v(n),a,z<)

the converging sequences (7(n,a,z<)/n)pen and (w(n,a,z<)/n)yen have a
common infinite subsequence. So the two sequences are converging to the
same limit, i.e., the frequency is independent of the ordering of the alphabet.
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