

Comparison of 3 emerging optical NDI techniques on complex shaped composite structures based on carbon fiber

Marc GEORGES

Laboratoire Laser et Contrôles Non Destructifs Centre Spatial de Liège – Université de Liège 4031 Angleur (Liège) - BELGIUM

The Space Center of Liege

Optics for Space

Simulated space environment testing Large chambers with optical benches

+c mposites Yutz, October 1, 2013

Development of optical Space instrumentation

Development of Advanced Technologies

- Vacuum-Cryogeny
- Quality insurance
- Thermal Design
- Signal Processing
- Spaceborne Electronics
- Smart sensors
- Surface processing
- Optical Design
- Optical Metrology
- Non Destructive Testing

The Laser & NDT Lab

Research in laser and optical metrology and NDT for aerospace

Dimensional measurement

- Fringe projection
- Digital Image Correlation

Deformation measurement

- Holography
- Speckle interferometry
- Shearography

Thermography

- Pulsed + Lock-in
- Vibrothermography (ULg)

Combined Speckle-Thermography

Laser Ultrasonics

+c mposites Yutz, October 1, 2013

Motivation of the study

- Efficient Composite Technologies for Aircraft Components (ECOTAC) – Wallonia DG06 – Marshall plan
- Phase 1: benchmarking (2011-2012)
 - Study emerging laser/optical NDT techniques
 - Complex shape aeronautical structures in CFRP

Partners for NDT

Shearography with heating

Thermography : Optical Pulse Thermography (OPT)

Surface observation of thermal wave and its effect on internal defect

> $t \approx \frac{z^2}{z}$ α

The observation time *t* is related to the defect depth (α : thermal diffusion coefficient)

- Thermography : OPT
 - Pulse Phase Thermography (PPT)

f basse (n petit) t grand z profond

+c mposites Yutz, October 1, 2013

f=0,0125 Hz

f=0,25 Hz

8

Thermography : Modulated halogen + lock-in
– Optical Lock-in Thermography (OLT)

- Vibrothermography
 - Ultrasound lock-in Thermography (ULT)
 - Ultrasound Burst Thermography (UBT)

Thermography investigations

CTA Montreal

-Cooled cameras -640x512 **CTA Spain**

GEL-MIVIM / VisioOImage (Québec)

- Uncooled camera -Jenoptik LWIR -640x480

Laser Ultrasounds

Generation of ultrasound by laser Thermoelastic effect Detection of ultrasound by laser Interferometric probe (with laser) and Two-Wave Mixing

✓ No couplant – No water

- ✓ Signal independent of geometry
- Economically interesting for curved parts (see. EADS-Lockheed Martin publications)

Equipements used

CTA Montreal

- Generation : pulsed CO2 laser (10.6 µm)
- Detection : pulsed YAG laser (1064 nm)
- Probe TWM
- repetition rate : 100 Hz
- Laser Spot : 2 mm
- Scanning step : 0,5 mm
- manufacturer TECNAR

+c mposites Yutz, October 1, 2013

Samples

Monolithic samples Calibrated defects (teflon inserts, flashbreaker,...)

Sample 1 by Laser Ultrasound

• Sample 2 : Comparison

• Sample 3 : Comparison

• Sample 4 : Thermography - Shearography

• Sample 4 : Thermography - Shearography

• Sample 4

CTA Montréal

Sample 4 : Laser <u>Ultrasound</u>

Comparison

		Thermography	Shearography	Laser UT	
	Depth	1,5 mm	> 1,5 mm	>>> 1,5 mm	
	Dimensions	3-4 mm	3-4 mm	2 mm	
	Interpretation	+	-	++	/
	Measurement	Qualitative	Qualitative	Quantitative	
	Depth assessment	-	-	++	/
	Set-up	+	+	- (scanning)	
	Cost	\$\$	\$	\$\$\$\$	
	Calibrated Defects are made of teflon to represent delaminations for UT technique No fast conclusion !				

NDT techniques must be envisaged in complementarity

Discussion - 1

- Laser Ultrasound shows high potential
 - Develop this technique in Phase 2 of ECOTAC project
 - Purchase of generation and detection equipments
 - Study combination of both segments
 - Implement robot-arm for scanning complex parts (2014)

Discussion - 2

- Thermography and Shearography
 - High potential (full-field no scanning)
 - Suffer from interpretation
- New projects have started
 - Dimensioning of defects by NDI techniques
 - Thermography Shearography
 - Scientific collaboration between CTA (Montreal) and CSL
 - Academic projects (Ulg,...)
 - Industrial projects (under evaluation)
 - New post-processing applied to shearography for easier interpretation
 - Dé-Composit project
 - Wallonia, DG06 (Cwality program)
 - Optrion S.A.

New developments

Shearography : automated detection

New developments

Shearography : ease of interpretation

Temporal sequence shows various defects at different instants Heat wave travelling through the sample

New post-processing provides

- A single image
- With all defects
- Same visibility of defects independent of depth

The Future

- R&D of optical-laser NDT-NDI techniques
- Composite thermo-mechanical characterization (dilatation, etc...)
- Collaboration with research center and industries
 - Materials
 - Simulation
 - NDT-NDI
- Lectures
- Service to industry
- Maybe with you?

Thanks for your attention !

mgeorges@ulg.ac.be www.csl.ulg.ac.be