

Genetics of mastitis in the Walloon Region of Belgium

C. Bastin^{1*}, J. Vandenplas^{1,2}, A. Lainé¹, and N. Gengler¹

¹Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium ²National Fund for Scientific Research, Brussels, Belgium

64th EAAP Annual Meeting , Nantes, France, August 26th – 30th 2013

Background

Mastitis = inflammation of the mammary gland

Most frequent and costly disease in dairy cattle

discarded milk, veterinary costs, welfare issues, decreased milk yield, increased culling rate, etc.

Reducing mastitis incidence?

- Improved management practices
- Genetic selection:
 - inclusion of health traits in the breeding goal for more than 30 years in Nordic countries
 - direct selection based on clinical mastitis records
 - indirect selection based on correlated traits (e.g. SCS)

Halasa et al., 2007, Vet.Q. 29:18-31 Heringstad et al., 2000, Livest. Prod. Sci, 64:95-106

Background

In the Walloon Region of Belgium

- Genetic selection for udder health based on somatic cell score (SCS):
 - weighted random regression test-day model to better relate observed SCS to mastitis infection likelihood

Mayeres & Gengler, 2003, Interbull Bull., 31:92-95

- Recently, mastitis data collection started:
 - voluntary recording by dairy farmers in a limited number of farms
 - management tools
 - interest for genetic selection?
 by preliminary study

Objectives

- I. Estimate genetic parameters for various mastitis traits
- 2. Estimate genetic correlations between these traits and milk, fat, and protein yields, SCS, and lactoferrin content

Mastitis data: edits

- Edits on herds:
 - recording period > 180 d
 - no. of mastitis/no. of cows over the period > 5%
- Edits on cows within herds:
 - $\cdot\,$ cows in lactation I to 5
 - lactation started after the beginning of the recording period
 - lactation length > 100 d
- Edits on mastitis data:
 - 2 mastitis occurring within 7 d considered as the same event

3808 mastitis in 92 herds ⇒ 2001 mastitis in 37 herds

Mastitis data: edits

- Edits on herds:
 - recording period > 180 d
 - no. of mastitis/no. of cows over the period > 5%
- Edits on cows within herds:
 - $\cdot\,$ cows in lactation I to 5
 - lactation started after the beginning of the recording period
 - lactation length > 100 d
- Edits on mastitis data:
 - 2 mastitis occurring within 7 d considered as the same event

Final data set: 5566 lactations from 3427 cows in 37 herds

No. of mastitis data over days in milk

Mastitis data

8

Mastitis traits

MAS	at least one mastitis case from 10 d before calving to 10 d before the next calving (0/1)
early_MAS	at least one mastitis case from 10 d before calving to 50 d after calving (0/1)
late_MAS	at least one mastitis case from 51 days after calving to 10 d before the next calving (0/1)
NMAS	no. of mastitis cases during the lactation

Mastitis data

Trait	Ν	Frequency
MAS	5566	23%
early_MAS	5566	9 %
late_MAS	5566	17%

NMAS	0	1	2	3	4	5	> 5
Ν	4292	847	267	83	45	20	12

Other traits

- ► 305-d milk (MY), fat (FY) and protein (PY) yields
 - estimated using modified best prediction

Gillon et al., 2010, Proc. of 37th ICAR meeting

- Average SCS over the lactation (LSCS)
- Average lactoferrin content over the lactation (LLF)
 - predicted by mid-infrared spectrometry

Soyeurt et al., 2012, Animal, 6:1830-1838

- lactoferrin = iron-binding glycoprotein present in milk, important host defence molecule
- lactoferrin level in mastitic milk >>> normal milk

Kawai et al., 1999, J. Vet. Med. Sci. 65:319–323 Hagiwara et al.,2003, Vet. Res. Comm. 23: 391–398

Other traits: data

- ► 305-d milk (MY), fat (FY) and protein (PY) yields
- Average SCS over the lactation (LSCS)
- Average lactoferrin content over the lactation (LLF)

Trait	Ν	Mean	Std
MY	5566	8198	1949
FY	5566	317	71
PY	5566	270	60
LSCS	4896	3.14	1.30
LLF	3217	186	53

Model

- 3 multi-trait linear models
 - 4 mastitis traits
 - 4 mastitis traits + LSCS + LLF
 - 4 mastitis traits + MY + FY + PY
- ► Fixed effects:
 - herd (37), year x season of calving (28), age at calving x lactation (12)
- Random effects:
 - permanent environment, genetic additive
- Variance components estimated using GIBBSF90
 - 200,000 samples with burn-in of 20,000

Misztal et al., 2013

every 20th samples to compute estimates

Trait	MAS	early_MAS	late_MAS	NMAS
MAS	0.09 (0.02)	0.70 (0.12)	0.98 (0.01)	0.99 (0.01)
early_MAS		0.04 (0.01)	0.53 (0.17)	0.73 (0.11)
late_MAS			0.08 (0.02)	0.96 (0.02)
NMAS				0.08 (0.02)

Heritabilities in the range of previous studies

Heringstad et al., 2000, Livest. Prod. Sci, 64:95-106 Urioste et al., 2012, J. Dairy Sci., 95:3428-3434 Mrode et al., 2012, J. Dairy Sci., 95:4618-4628

Trait	MAS	early_MAS	late_MAS	NMAS
MAS	0.09 (0.02)	0.70 (0.12)	0.98 (0.01)	0.99 (0.01)
early_MAS		0.04 (0.01)	0.53 (0.17)	0.73 (0.11)
late_MAS			0.08 (0.02)	0.96 (0.02)
NMAS				0.08 (0.02)

MAS, late_MAS and NMAS are similar traits while early_MAS seems to be a different trait

Negussie et al.,2008, J. Dairy Sci., 91:1189-1197 Mrode et al., 2012, J. Dairy Sci., 95:4618-4628

Trait	h²	Genetic correlation with:				
		MAS	early_MAS	late_MAS	NMAS	
MY	0.23 (0.03)	0.16 (0.13)	0.15 (0.17)	0.26 (0.12)	0.24 (0.13)	
FY	0.22 (0.03)	0.10 (0.14)	0.08 (0.17)	0.19 (0.13)	0.16 (0.14)	
ΡΥ	0.24 (0.03)	0.16 (0.13)	0.15 (0.17)	0.25 (0.12)	0.23 (0.13)	
LSCS	0.20 (0.03)	0.59 (0.11)	0.44 (0.18)	0.61 (0.11)	0.64 (0.10)	
LLF	0.3 (0.03)	0.18 (0.15)	0.02 (0.16)	0.23 (0.16)	0.29 (0.14)	

Trait	h²	Genetic correlation with:				
		MAS	early_MAS	late_MAS	NMAS	
MY	0.23 (0.03)	0.16 (0.13)	0.15 (0.17)	0.26 (0.12)	0.24 (0.13)	
FY	0.22 (0.03)	0.10 (0.14)	0.08 (0.17)	0.19 (0.13)	0.16 (0.14)	
ΡΥ	0.24 (0.03)	0.16 (0.13)	0.15 (0.17)	0.25 (0.12)	0.23 (0.13)	
LSCS	0.20 (0.03)	0.59 (0.11)	0.44 (0.18)	0.61 (0.11)	0.64 (0.10)	
LLF	0.3 (0.03)	0.18 (0.15)	0.02 (0.16)	0.23 (0.16)	0.29 (0.14)	

Moderate positive correlation with LSCS

Heringstad et al., 2000, Livest. Prod. Sci, 64:95-106 Koeck et al., 2012, J. Dairy Sci., 95:432-439

Trait	h²	Genetic correlation with:				
		MAS	early_MAS	late_MAS	NMAS	
MY	0.23 (0.03)	0.16 (0.13)	0.15 (0.17)	0.26 (0.12)	0.24 (0.13)	
FY	0.22 (0.03)	0.10 (0.14)	0.08 (0.17)	0.19 (0.13)	0.16 (0.14)	
ΡΥ	0.24 (0.03)	0.16 (0.13)	0.15 (0.17)	0.25 (0.12)	0.23 (0.13)	
LSCS	0.20 (0.03)	0.59 (0.11)	0.44 (0.18)	0.61 (0.11)	0.64 (0.10)	
LLF	0.3 (0.03)	0.18 (0.15)	0.02 (0.16)	0.23 (0.16)	0.29 (0.14)	

Unfavorable correlations with production traits

Heringstad et al., 2000, Livest. Prod. Sci, 64:95-106 Vallimont et al., 2009, J. Dairy Sci., 92:3402-3410

Trait	h²	Genetic correlation with:				
		MAS	early_MAS	late_MAS	NMAS	
MY	0.23 (0.03)	0.16 (0.13)	0.15 (0.17)	0.26 (0.12)	0.24 (0.13)	
FY	0.22 (0.03)	0.10 (0.14)	0.08 (0.17)	0.19 (0.13)	0.16 (0.14)	
ΡΥ	0.24 (0.03)	0.16 (0.13)	0.15 (0.17)	0.25 (0.12)	0.23 (0.13)	
LSCS	0.20 (0.03)	0.59 (0.11)	0.44 (0.18)	0.61 (0.11)	0.64 (0.10)	
LLF	0.3 I (0.03)	0.18 (0.15)	0.02 (0.16)	0.23 (0.16)	0.29 (0.14)	

Correlations with LLF positive, in the same range than for MY

Conclusions

- Preliminary study on a limited no. of records
 § first results in line with the literature
 § recording of mastitis by farmers further encouraged
 Genetic parameters for mastitis:
 § heritability from 0.04 to 0.09
 § correlations among traits moderate to high
 Unfavorable correlations with production (0.08 to 0.26)
 - LSCS and LLF as indicators traits for mastitis?
 - Image: moderate positive correlation with LSCS (0.44 to 0.64)
 - ♦ lower correlation with LLF (0.02 to 0.29)
 - Alternative SCS and lactoferrin traits might be more informative than lactation average

Further investigations

- Alternative SCS and lactoferrin traits?
 - \Rightarrow based on the pattern over the lactation
 - SCC peak, SD of SCS over the lactation, average SCS in early lactation, residuals of SCS from RRM, etc.
 - s account for both aspects of lactoferrin:
 - generally, lactoferrin content 777 in case of mastitis
 - a certain level of lactoferrin required to prevent infection
- Other indicators traits?
 - e.g., type traits, milk composition and chemical properties, mid-infrared spectra

Thank you for your attention!

- Public Service of Wallonia (SPW DGARNE; project NovaUdderHealth, D31-1273)
- National Fund for Scientific Research (FNRS; project COMPOMILK 2.4604.11)

The authors acknowledge the Faculty of Veterinary Medicine – ULg and the Walloon Breeding Association, partners of the LAECEA project (supported by the SPW - DGARNE), (for providing mastitis data.

Corresponding author's email: catherine.bastin@ulg.ac.be