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Abstract—Recently, machine learning models have been ap-
plied to neuroimaging data, allowing to make predictions about a
variable of interest based on the pattern of activation or anatomy
over a set of voxels. These pattern recognition based methods
present undeniable assets over classical (univariate) techniques,
by providing predictions for unseen data, as well as the weights
of each voxel in the model. However, the obtained weight map
cannot be thresholded to perform regionally specific inference,
leading to a difficult localization of the variable of interest. In
this work, we provide local averages of the weights according
to regions defined by anatomical or functional atlases (e.g.
Brodmann atlas). These averages can then be ranked, thereby
providing a sorted list of regions that can be (to a certain extent)
compared with univariate results. Furthermore, we defined a
“ranking distance”, allowing for the quantitative comparison
between localized patterns. These concepts are illustrated with
two datasets.

Index Terms—machine learning; fMRI; pattern localization;
ranking; pattern comparison

I. INTRODUCTION

For the last few years, machine learning models have been
applied to neuroimaging data [1], allowing to make predictions
about a variable of interest based on the pattern of activation
or anatomy over a set of voxels. In addition, they might lead
to an increased sensitivity to detect the presence of a particular
mental representation compared to univariate methods such as
the General Linear Model (GLM, [2]). Application of these
methods made it possible to decode the category of an object
[3] seen by the subject . They also allowed classification of
patients and healthy controls [4], [5] and could therefore be
used as a diagnostic tool due to their ability to predict the
class of an unseen sample.

The main disadvantage of multivariate machine learning
models is that local inference with respect to the brain
neuroanatomy is complex: although linear models generate
weights for each voxel, the model predictions are based on
the whole pattern and therefore one cannot threshold the
weights to make regional statistical inferences as in univariate
analysis. In the present work, we developed a methodology
based on a labelled anatomical template (e.g. AAL [6] or
Brodmann) to display a regionally smoothed version of the
model weights and compute a ranking of the regions according
to their contribution to the predictive model. Furthermore, we
defined a “ranking distance”, which allows the quantitative
comparison of patterns in terms of their localization.

These concepts are illustrated using two datasets: (1) the
mental imagery of gait in healthy controls and Parkinsonian
patients [7] and (2) structural images from aged healthy con-
trols acquired in different centres (IXI dataset1). Using these
datasets, we aimed at investigating the following questions:
What is the overlap between the ranking obtained from the
regionally averaged weights and univariate results? and Do
regression models built from data acquired in different centres
provide similar patterns in terms of their localization?

II. MATERIAL

A. Dataset 1: Parkinson’s disease

The material considered in this work is the same as in
[7]. Therefore, only a brief description of the population and
experimental design will be provided.

In total, 29 subjects participated in the study: 14 patients
(7 males; mean age: 65.1 ± 9.5 years) diagnosed with IPD
with different degrees of severity of gait disturbances and 15
controls matched for age (63.8 6 ± 8.1 years) and gender (7
males). Written informed consents for this research protocol
approved by the local ethics committee were obtained from
all participants.

Before fMRI, the subjects were asked to walk comfortably
and then briskly on a 25m path. After gait evaluation, they
were trained to mentally rehearse themselves walking on the
path.

All subjects then underwent an fMRI session comprising
three tasks: mental imagery of standing on the path (STAND),
walking at a comfortable pace along the path (COMF) and
walking briskly along the path (BRISK). The COMF and
BRISK conditions were self-paced, subjects indicating when
they had completed each trial by a key press, while each trial
of the STAND condition was constrained by the duration of
the previous COMF trial.

fMRI data preprocessing and univariate analysis were per-
formed using SPM82. Functional images were realigned and
co-registered to the structural image before normalisation
using DARTEL [8]. Finally, smoothing was applied using a
8mm FWHM Gaussian kernel. A General Linear Model then
summarized the time series from each subject by modelling

1IXI - Information eXtraction from Images, funded by EPSRC
GR/S21533/02, http://www.brain-development.org/

2www.fil.ion.ucl.ac.uk/spm



each condition by a boxcar function convoluted with a canoni-
cal haemodynamic response function. In the end, three images
per subject were considered for further analysis: the parametric
maps of STAND, COMF and BRISK representing the BOLD
signal activity associated with each condition.

B. Dataset 2: Age regression

The IXI dataset was used to perform age regression. More
specifically, as in [9], the older subjects (from 60 to 90
years old) were selected for regression based on the scalar
momentum features resulting from the normalization [10],
[11].

We used a subset of the data by randomly selecting 54
subjects that were acquired in centre 1, and 54 subjects
acquired in centre 2. Please note that there is no significant
difference between the two populations in terms of age.

III. METHODS

A. Pattern discrimination

For dataset 1, classification was performed using binary
SVM [12]. Model performance was then assessed in terms
of the balanced and class accuracies, as well as Positive
Predictive Values (PPV). The regression of dataset 2 was
based on a Relevance Vector Machine (RVM) [13] and as-
sessed in terms of mean squared error (MSE) and correlation
between the targets and predictions. In both cases, a leave-
one-subject-out cross-validation was performed to compute
model performance, its significance being assessed by a non-
parametric testing using 1000 random permutations of the
training labels. All machine learning based modelling steps
have been performed in PRoNTo [9]3.

B. Pattern localization

From the linear models leading to a significant classification
(or regression), weight maps were built. The weights were
then locally averaged based on labelled atlases of regions (here
using the AAL): for each region, we computed its “normalized
weight” as the average of the weights (in absolute value) of
the voxels comprised in that region.

NWROI =

∑
v∈ROI |Wv|
mROI

(1)

with v representing the index of a voxel in the weight image,
Wv its weight and mROI , the number of voxels in region ROI.

Weights that do not correspond to any labelled region are
pooled into an additional region, referred to as others.

Similar to a principal component analysis, the labelled
regions can then be ranked according to the percentage of
the total normalized weights that they explain. This results in
a sorted list of regions, that can then be compared (to a certain
extent) with univariate results.

The labelled regions used to localize the patterns were
defined by the AAL atlas from the WFU-PickAtlas [14]

3Please note that PRoNTo does not provide SVR or RVM classification,
which is the reason why the classification and the regression are not based
on the same machine.

toolbox in SPM. The 117 regions from this manually generated
atlas are illustrated in Figure 1.

Fig. 1. AAL atlas. Views of the 117 labelled regions defined in the AAL atlas
(in green and blue). In total, the brain has been parcelled into 117 labelled
regions of interest. The additional “others” region comprises all voxels in
grey.

C. Pattern comparison

The rankings obtained from different patterns could be
quantitatively compared using a measure of distance, inspired
from the field of web search [15]. It is computed as:

dr(f1, f2) =
2

N ∗ (N − 1)

N∑
i=1

N∑
j=1

If1,f2(i, j) (2)

where

If1,f2(i, j) =

{
1 if f1(i) < f1(j) and f2(i) > f2(j)

0 otherwise

with dr(f1, f2), the ranking distance between the models f1
and f2 and N , the number of elements in the ranking, which
corresponds to the number of regions in the atlas in the present
case (i.e. 117 labelled regions). The values of dr range from 0
(exactly the same rankings) to 1 (exactly opposite rankings).

Using permutations, we were able to associate a p-value to
the obtained distance, thereby providing significance of dr.
More specifically, the labels were permuted before training,
enabling the building of “permuted” weights maps, and hence
“permuted” rankings. The null hypothesis here is that the
labels do not contain any information about the location of
the variable of interest, such that the ranking obtained from
the model using the permuted labels is random. If the ranking
distance between two patterns is significantly small (or large),
those two patterns are then significantly (dis-) similar in terms
of their localization.

IV. RESULTS

A. Localizing the pattern of Parkinson’s Disease

Based on [7], we built the COMF versus STAND com-
parison for the control and patient groups separately. The
different conditions were also combined to compare the two
groups (see Table I). The pattern leading to the only significant
discrimination between groups was then localized.

Using the ranking of the normalized weights, we can then
compare the univariate results based on the same data [7] to
the top 10 (arbitrarily fixed for illustration) of the regions
list. This is illustrated in Figure 2 for the three considered



Fig. 2. Univariate and multivariate results The table on the left presents the univariate results of [7]. The table on the right presents the top 10 ranked
regions according to the normalized weights. Any anatomical overlap between the top regions from the univariate and multivariate results for the control
(CTRL, blue) or patient (IPD, green) group, or for their comparison (CTRL>IPD, red) is represented by a coloured frame. L (left), R (right) and Bi (left and
right) correspond to the lateralization of the considered region.

TABLE I
BALANCED ACCURACY (IN %) FOR THE IPD VS. CTRL CLASSIFICATION

FOR EACH COMBINATION OF THE THREE TASKS (ROWS). “ALL”
REPRESENTS THE COMBINATION OF THE THREE TASKS. SIGNIFICANT

CLASSIFICATION RESULTS ARE DISPLAYED IN BOLD (p-VALUE COMPUTED
FROM 1000 PERMUTATIONS).

Condition Accuracy
STAND 14.3

COMF 58.3

BRISK 59.0

STAND+COMF 36.3

STAND+BRISK 36.7

COMF+BRISK 62.3
All 42.9

models. We observe a good overlap between the univariate and
multivariate lists of regions, although the nature of the models
is different, and the involved comparisons are not exactly the
same (COMF> STAND in univariate, COMF+BRISK versus
STAND in multivariate). This result suggests that the three
multivariate models correctly identified the pattern of neuronal
activity underlying the considered discriminations (COMF vs
STAND, or CTRL vs IPD) and was not based on noise in
the data. This is particularly interesting for the comparison
between CTRL and IPD, since the univariate results reported
only a few significant areas, and the performance of the clas-
sification is quite low (although significantly above chance).

B. Comparing patterns across acquisition centres

Here, we investigated the differences in patterns between
the two different centres. If the two centres were leading to
similar patterns generated from the regression based on the
subjects’ age, the ranking distance between the two patterns
should be (significantly) small. On the other hand, using a mix

of data from the two centres in each regression model (half
from centre 1, half from centre 2) should lead to a decrease in
the ranking distance between patterns since the variability due
to the centre is distributed equivalently in the two patterns.

We therefore built four regression models comprising each
54 subjects: centre1, centre2, mix1 (first half of the 54
subjects from each centre: 27 + 27) and mix2 (second half
of the 54 subjects from each centre). The age regression led
to significant results (1000 permutations), with correlations
(MSE) of 0.45, 0.63, 0.43 and 0.65 (21.16, 20.77, 26.90,
16.19), respectively for each model.

Anatomically labelled (AAL atlas) regions were then ranked
for each model, allowing the computation of the ranking
distance between the two centres, as well as for the two
mixes. As illustrated on Figure 3, the null hypothesis could
not be rejected for the comparison between the two centres
(dr = 0.3495, p = 0.8518) nor for the comparison between
mixes (dr = 0.2741, p = 0.0686). However, there is a clear
decrease in the ranking distance when mixing the two centres
(result close to significance), suggesting that the patterns are
more similar in terms of localization than when considering
different centres independently4.

V. DISCUSSION

In this work, we proposed a methodology to ease the
interpretation of multivariate patterns obtained from machine
learning based modelling. Although the local average of the
weights is a simple approach, it allows to rank the regions in
terms of their contribution to the model. To validate the pro-
posed methodology, the top ranked regions were qualitatively

4This result was replicated by using other mixes of the subjects: subjects
with even identifiers from centre 1 and uneven identifiers from centre 2, and
conversely for the other mix. The ranking distance was dr = 0.2840, which
is also smaller than when comparing the two centres.



Fig. 3. Ranking distance A between centres, B when mixing the data from the two centres. The null distributions of the ranking distance are represented by
histograms (in blue and green, respectively). The distance between patterns when considering the original labels are represented by red stars. In both cases,
the null hypothesis cannot be rejected (p > 0.05).

compared to previous univariate results. The ranking of the
regions might lead to an easier interpretation of the weights,
as well as a way of checking that the model correctly identified
the variable of interest to perform the classification/regression.
The developed methodology could be applied to any map: the
results of sparse models in the voxel space, of multi-kernel
machines, of accuracy map from the searchlight approach [16]
or using the “source” pattern instead of the weight map [17].

Furthermore, models are usually compared in terms of
performance (accuracy, area under the ROC curve, . . . ) or
in terms of model evidence, i.e. the trade-off between model
fitting and model complexity. In this work, we presented an
approach to compare patterns in terms of their localization.
This could be particularly useful to answer neuroscientific
and/or clinical questions such as: Does these two centres lead
to the same models in terms of pattern localization? The
results from the IXI dataset showed that training on a mix
of images from different centres led to more similar patterns
than when training on data acquired in different centres. This
result therefore favours the use of multi-centric data when
building classifiers aimed for computer-aided diagnosis tools,
for example.

VI. CONCLUSION

The present work investigated pattern localization, as well
as quantitative pattern comparison using two datasets5. The
preliminary results show that the developed methodology
seems promising, although more work is needed.

REFERENCES

[1] F. Pereira, T. Mitchell, and M. Botvinick, “Machine learning classifiers
and fmri: a tutorial overview.” Neuroimage, vol. 45, pp. S199–S209,
2009.

[2] K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny, Statistical
Parametric Mapping: the analysis of functional brain images, K. Friston,
J. Ashburner, S. Kiebel, T. Nichols, and W. Penny, Eds. London:
Elsevier Academic Press, 2007.

5This work will be distributed in PRoNTo (Pattern Recognition for Neu-
roimaging Toolbox), a user-friendly toolbox, making machine learning models
available to every neuroscientist [9].

[3] D. D. Cox and R. L. Savoy, “Functional magnetic resonance imaging
(fMRI) ’brain reading’: detecting and classifying distributed patterns of
fMRI activity in human visual cortex,” Neuroimage, vol. 19, pp. 261–
270, 2003.

[4] S. Klöppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill, J. D.
Rohrer, N. C. Fox, C. R. Jack, J. Ashburner, and R. S. J. Frackowiak,
“Automatic classification of MR scans in Alzheimer’s disease.” Brain,
vol. 131, pp. 681–689, 2008.

[5] C. Phillips, M.-A. Bruno, P. Maquet, M. Boly, Q. Noirhomme,
C. Schnakers, A. Vanhaudenhuyse, M. Bonjean, R. Hustinx, G. Moonen,
A. Luxen, and S. Laureys, “‘Relevance vector machine’ consciousness
classifier applied to cerebral metabolism of vegetative and locked-in
patients,” Neuroimage, vol. 56, pp. 797–808, 2011.

[6] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello,
O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, “Automated anatom-
ical labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain,” NeuroImage, vol. 15,
pp. 273–289, 2002.

[7] J. Cremers, K. D’Ostilio, J. Stamatakis, V. Delvaux, and G. Garraux,
“Brain activation pattern related to gait disturbances in Parkinson’s
disease,” Mov. Disord., vol. 27, pp. 1498–1505, 2012.

[8] J. Ashburner, “A fast diffeomorphic image registration algorithm,”
NeuroImage, vol. 38, pp. 95 – 113, 2007.

[9] J. Schrouff, M. J. Rosa, J. Rondina, A. Marquand, C. Chu, J. Ashburner,
C. Phillips, J. Richiardi, and J. Mourão-Miranda, “PRoNTo: Pattern
Recognition for Neuroimaging Toolbox,” Neuroinformatics, pp. 1–19,
2013.

[10] J. Ashburner and K. Friston, “Computing average shaped tissue proba-
bility templates,” NeuroImage, vol. 45, pp. 333–341, 2009.

[11] ——, “Diffeomorphic registration using geodesic shooting and Gauss-
Newton optimisation,” NeuroImage, vol. 55, pp. 954–967, 2011.

[12] C. Burges, “A tutorial on support vector machines for pattern recog-
nition.” Data Mining and Knowledge Discovery, vol. 2, pp. 121–167,
1998.

[13] M. E. Tipping, “Sparse bayesian learning and the relevance vector
machine,” Journal of Machine Learning Research, vol. 1, pp. 211–244,
2001.

[14] J. A. Maldjian, P. J. Laurienti, J. B. Burdette, and R. A. Kraft, “An
automated method for neuroanatomic and cytoarchitectonic atlas-based
interrogation of fMRI data sets.” NeuroImage, vol. 19, pp. 1233–1239,
2003.

[15] R. Lempel and S. Moran, “Rank-stability and rank-similarity of link-
based web ranking algorithms in authority-connected graphs,” Informa-
tion Retrieval, vol. 8, pp. 245–264, 2005.

[16] N. Kriegeskorte, R. Goebel, and P. Bandettini, “Information-based
functional brain mapping,” PNAS, vol. 103, pp. 3863–3868, 2006.

[17] F. Biessmann, S. Dähne, F. C. Meinecke, B. Blankertz, K. Görgen, K.-
R. Müller, and S. Haufe, “On the interpretability of linear multivariate
neuroimaging analyses: Filters, patterns and their relationship,” in 2nd
NIPS Workshop on Machine Learning and Interpretation in NeuroImag-
ing, 2012.


