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Summary

Understanding underlying mechanisms of common diseases is one of the major goals of current research in
medicine. As most of these disorders are linked to genetic factors, identification of the associated variants
forms an excellent strategy towards the elucidation of molecular and cellular dysfunctions, and in fine could
lead to better personalised diagnostics and treatments.

Genome-Wide Association Studies (gwas) aim to discover variants spread over the genome that could
lead, in isolation or in combination, to a particular trait or an unfortunate phenotype such as a disease.
The basic idea behind these studies is to statistically analyse the genetic differences between groups of
healthy (controls) and diseased (cases) individuals. Advances in genetic marker technology indeed allow for
dense genotyping of hundreds of thousands of Single Nucleotide Polymorphisms (snps) per individual. This
allows to characterise representative samples composed of several hundreds to several thousands of cases
and controls, each one characterised by up to a million of genetic markers sampling the genomic variations
among these individuals.

The standard approach to genome wide association studies is based on univariate hypothesis tests. In
this approach each genetic marker is analysed in isolation from the others, in order to assess its potential
association with the studied phenotype, in practice by the computation of so-called p-values based on some
statistical assumptions about the data-generation mechanism. Because of the very high ratio between the
large number of snps genotyped and the limited number of individuals, multiple-testing corrections need to
be applied when carrying out these analyses, leading to reduced statistical power.

While this standard approach has been at the basis of many novel loci unravelled in the last years
for several complex diseases, it has several intrinsic limitations. A first limitation is that this approach
does not directly account for correlations among the explanatory variables. A second intrinsic limitation
of gwas is that they can’t account for genetic interactions, i.e. causal effects that are only observed when
specific combinations of mutations and/or non-mutations are present at the same time. The third limitation
of univariate approaches is that they do not directly allow to assess the genetic risk, since many of the
identified markers (with similarly small p-values) actually account for the same underlying causal factor:
exploiting their information to predict the genetic risk is hence far from straightforward.

Within bioinformatics, machine learning has actually become one of the major potential sources of
progress. As a matter of fact, biology has become nowadays one of the main drivers of research in ma-
chine learning, and is by itself already a very competitive research field.

Among the subfields of machine learning, supervised learning and its extensions such as semi-supervised
learning, stand out as the most mature and at the same time most rapidly evolving area of research. Within
this context, the purpose of this thesis was to study the application of random forest types of methods to
genome wide association studies, with the twofold goal of (i) inferring predictive models able to asses disease
risk and (ii) to identify causal mutations explaining the phenotype. The choice of this family of methods was
originally motivated by the fact that these methods are a priori well suited for that kind of analysis due to
some of their interesting properties. They are indeed able to deal efficiently with very large amounts of data
without relying on strong assumptions about the underlying mechanisms linking genetic and environmental
factors to phenotypes, and they can also provide interpretable information, in the form of scorings and/or



rankings of snps so as to help in the identification of causal genetic loci.
In the first part of this manuscript, we analyse the state-of-the art in the application field of genome

wide association studies and in supervised machine learning, and subsequently describe in details the three
tree-based ensemble methods that we have implemented and applied in our research; in Part II, we report
our empirical investigations, in three successive steps, namely i.) a preliminary study on simulated datasets
yielding controlled conditions with known ground-truth and allowing for a first sanity check of the T-Trees
methods, in ideal conditions; ii.) a detailed study on a given real-life dataset concerning Crohn’s disease,
where we try to understand the main features of the three different algorithms in terms of predictive accuracy
and capability of identification of relevant genetic information, and their sensitivity with respect to various
kinds of quality control procedures and algorithmic parameters; iii.) a systematic replication study, where
we confirm, on 7 different datasets from the Wellcome Trust Case Control Consortium, the main outcomes of
our study on the Crohn’s disease, while using default parameter settings.
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Chapter 1

Introduction
In this chapter we successively discuss the motivations of our research, present the overall approach used

to work, and then outline the structure of the rest of this manuscript and conclude by stating our personal
contributions and by providing an annotated list of our publications.

1.1 Motivations

Understanding underlying mechanisms of common diseases, such as cancer, cardiovascular diseases, inflam-
matory and allergy disorders, is one of the major goals of current research in medicine. As most of these
disorders are linked to genetic factors, identification of the associated variants forms an excellent strategy
towards the elucidation of molecular and cellular dysfunctions, and in fine could lead to better personalized
diagnostics and treatments.

Genome-Wide Association Studies (gwas) aim to discover variants spread over the genome that could
lead, in isolation or in combination, to a particular trait or an unfortunate phenotype such as a disease
[Man10, TKTJ11, LCVK11, Wel07]. The basic idea behind these studies is to statistically analyze the
genetic differences between two populations: a group of healthy individuals (the controls) versus a group of
sick ones (the cases). Advances in genetic marker technology indeed allow for dense genotyping of hundred
of thousands of Single Nucleotide Polymorphisms (snps) per individual. This allows to characterize, at an
acceptable cost, representative samples composed of several hundreds to several thousands of cases and
controls, each one characterized by up to a million of genetic markers sampling the genomic variations
among these individuals.

In addition to the genetic measurements and the binary case/control classification, the individuals may
also be characterized by additional information, such as for example, additional phenotypes refining their
biological condition, and a multitude of environmental factors that may interact with genetic ones and often
significantly impact disease status. Furthermore, meta-datasets may be constructed by merging information
from several independent studies about the same or related diseases [B+08, T+12b, S+12].

The very high practical importance of all theses studies, and the rapidly growing amount and complexity
of the data generated by all these experiments raise many interesting questions for their analysis, and hence
foster intensive research on the development of novel bioinformatics and statistical methodologies to help
extracting in a more effective way the relevant information from these datasets.

The standard approach to genome wide association studies is based on univariate hypothesis tests. In
this approach each genetic marker is analyzed in isolation from the others, in order to assess its potential
association with the studied phenotype, in practice by the computation of so-called p-values based on
some statistical assumptions about the data-generation mechanism [Bal06, M+08, BCB04]. Because of
the very high p/n ratio in gwas (here p denotes the number of explanatory variables, i.e. the number
of snps genotyped, while n denotes the sample size, i.e. the number of individuals used as cases and
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controls), multiple-testing corrections need to be applied when carrying out these analyses, leading to
reduced statistical power.

While this standard approach has been at the basis of many novel loci unravelled in the last years for
several complex diseases, it has several intrinsic limitations.

A first limitation is that this approach does not directly account for correlations among the explanatory
variables, while in the context of gwas this correlation is often very strong, in particular due to the fact that
genetic mutations are transmitted from parents to children through a combination of chromosome replication
and cross-over, which leads to a high probability that mutations that are closely located on a dna strand are
inherited in combination, hence leading to strong correlations among closely located genetic markers. Apart
from this unavoidable physical correlation, correlations among different markers may also appear as artefacts
induced by the experiment design (sample selection, experimental batches, imputations of missing variables)
routinely found in the datasets used for gwas. The net result is that p-value based marker rankings need to
be carefully analyzed by hand and subsequently experimentally replicated and validated before they can be
confirmed as pin-pointing to genuine causal effects. This situation led to a recurring difficulty in reproducing
findings published in the literature and made the scientific community become extremely cautious [INTCI01]
and demanding on the soundness of the statistical approaches used in gwas.

A second intrinsic limitation with the univariate approaches to gwas is that they can’t account for genetic
interactions, i.e. causal effects that are only observed when specific combinations of mutations and/or non-
mutations are present at the same time. Even though opinions are divided [HGV08, ZHSL12], such potential
epistatic effects should however be taken into account in order to increase the power of the statistical analyses.
Furthermore, it is not unlikely that many genetic factors are in some way coupled with environmental factors,
and taking these couplings systematically into account is as well beyond the capabilities of simple univariate
approaches.

The third limitation of univariate approaches is that they do not directly allow to assess the genetic risk,
since many of the identified markers (with similarly small p-values) actually account for the same underlying
causal factor: exploiting their information to predict the genetic risk is hence far from straightforward, even
more so if we want to take into account potential gene-gene or gene-environment interactions.

Since the mid-eighties, the field of machine learning has emerged at the intersection of algorithmics and
statistics. The overall goal of the field is to design and theoretically characterize algorithms to extract in
a reproducible way relevant information from observational data. The field is driven by a large diversity of
applications, such as text mining [FS06], image analysis [MGW09, MGW07], extraction of knowledge from the
internet [CMFF10], analyzing data from experimental sciences such as astronomy [B+09], earth monitoring
[K+11], high energy physics [P+12b], and - last but not least - biology and medicine [MAW10]. Within
bioinformatics, machine learning has actually become one of the major potential sources of progress, as
one can contemplate from the growing number of conferences and journals that focus on the application of
machine learning to biology. As a matter of fact, biology has become nowadays one of the main drivers of
research in machine learning, and is by itself already a very competitive research field.

Among the subfields of machine learning, supervised learning and its extensions such as semi-supervised
learning, stand out as the most mature and at the same time most rapidly evolving area of research: the
general statistical theory underlying the analysis of supervised learning algorithms has been established
at the end of the last century [PRMN04, Vap98a], and in the meantime several powerful paradigms have
been developed allowing to leverage supervised learning to a very broad class of problems. Among these
supervised learning methods, both kernel-based models [lS02] and tree-based models stand out. In particular,
random forest types of methods [Bre01, GEW06], have been shown to provide state-of-the-art results in
many applications (e.g., image analysis, bioinformatics, reinforcement learning, etc.), specially in terms of
their excellent accuracy vs computational complexity compromise.

Within the above context, the subject of this thesis was defined a few years ago, in the establishment
of a collaboration between the research unit in Systems and Modeling of the Department of Electrical
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Engineering and Computer Science, on the one hand, and the research unit in Animal Genomics of the
Faculty of Veterinarian Medicine, on the other hand. These groups were and still are respectively active
in machine learning, and specifically in tree-based supervised learning, and in genome wide association
studies, and specifically the study of complex genetic diseases.

The purpose of our work was to study the application of random forest types of methods to genome wide
association studies, with the twofold goal of (i) inferring predictive models able to asses disease risk and (ii)
to identify causal mutations explaining the phenotype. The choice of this family of methods was originally
motivated by the fact that these methods are a priori well suited for that kind of analysis due to some of
their interesting properties. They are indeed able to deal efficiently with very large amounts of data without
relying on strong assumptions about the underlying mechanisms linking genetic and environmental factors
to phenotypes, and they can also provide interpretable information, in the form of scorings and/or rankings
of snps so as to help in the identification of causal genetic loci.

1.2 Approach to research

Given the limitations of the standard approach discussed in the preceding section, and the acknowledged
capability of tree-based methods to handle complex problems in a very flexible way, it is of interest to
investigate whether and how these methods could be used in order to improve on univariate approaches in
the context of gwas.

To carry out this investigation, we have worked during our thesis along the following work plan:

• We have started our work by implementing our own software for supervised learning with ensembles of
trees; to do so we have been inspired by the experience in the Systems and Modeling team, but we have
developed our own software from scratch in order to facilitate later adaptations and benchmarkings.

• At the onset of our thesis, we have participated in some GWAS carried out in the companion group
of animal genetics, to become familiar with the nature of the datasets, and most importantly with the
quality control and other preprocessings needed prior to statistical analysis.

• We then have applied standard random forest types of algorithms to some synthetic and real-life
datasets, in order to gain some first hands-on experience. This also led to some improvements in our
software implementation, so as to make it sufficiently efficient (memory, cpu time, adaptation to grid
environment) to handle very big datasets.

• In order to cope with the correlation structure implied by linkage disequilibrium, we have designed
a novel tree-based ensemble method called T-Trees and tested it on synthetic data. The method is
based on the segmentation of the vector of snps into blocks of fixed size along the genome, and then
uses the snps inside each block in a homogenous way by first selecting at each tree node a block
and then jointly exploiting the snps inside this block to create a split. We found that it yields both
improved predictive accuracy and a better precision in the detection of causal loci.

• Finally, we have carried out a systematic large-scale empirical investigation based on state-of-the-
art and publicly available gwas datasets about several human diseases. This study allowed us to
better understand the features of tree-based ensemble methods in real-life conditions, in particular by
identifying the role played by the interaction of rare variants with some pathological behaviors of the
score measures used for tree induction. We also assess in this study the effect of quality control on the
apparent predictive power of the induced classifiers, by comparing results according to different quality
control procedures. The results found in this study should help other machine learning researchers
to more effectively analyze their results when using complex black-box procedures such as tree-based
ensemble methods, and at the same time help biologists to gain confidence in these results.



4 CHAPTER 1. INTRODUCTION

1.3 Organization of the manuscript

The main body of the manuscript is divided in two parts.
In part 1, we start by describing the state-of-the-art in genome wide association studies (Chapter 2),

and then provide in Chapter 3 the required background in supervised machine learning. Chapter 4 gives a
precise description of the algorithms that we have developed and applied in this work.

In part 2, we present our experimental results. We start, in Chapter 5 by analyzing the behavior of
standard random-forest types of methods and our proposed method called T-Trees on synthetic datasets,
where the ground truth is known, and where we can easily vary experimental conditions (noise level, number
of samples etc.) In chapter 6, we then provide detailed results on the real-life Crohn’s disease (cd) dataset
from the wtccc [Wel07], and link our results with the scientific literature. Chapter 7 complements our empirical
study by investigating the six remaining datasets related to other diseases provided by the wtccc. Some
complementary simulations results are collected in the appendices.

Finally, we conclude by discussing in a retrospective way our findings and by suggesting future directions
of research.

1.4 List of publications

In [BGHW08a, BGHW08b], we started to tackle the problem of correlated descriptors in gwas by considering
two different representations of the input data: the raw genotypes described by a few thousand to a few
hundred thousand discrete variables each one describing a single nucleotide polymorphism and, on the
other hand, haplotype block contents represented by the combination of 10 to 100 adjacent genotypes. The
blocks were defined by the HapMap hotspot lists. We adapted the Random Forests to exploit those blocks
and compared the results with the use of raw genotypes in terms of predictive power and localization of
causal loci. The adaptation consisted in modifying the splitting rule based on estimation of the conditional
probability that the observed haplotype is drawn from the population of cases (reps. controls) reaching
the current node (assuming class conditional independence of the snps in the block). That methodology
was applied on simulated datasets with one or two interacting causal mutations. We obtained marginally
superior results with our adaptation of the state-of-the-art tree-based method than their direct application
to the raw genotype data. That first contribution opened the path we followed in the present thesis.

Also, at the beginning of my PhD, I had the opportunity to develop a graphical interface allowing biologists
to annotate images and perform different measurements while extracting subimages used as inputs for tree-
based automatic image classification. That work lead to a publication [G+08b] related to the effectiveness
of inhaled doxycycline to prevent allergen-induced inflammation in a mouse model of asthma.

An article [BLGW13] presenting the core results of this thesis, namely the T-Trees algorithms, and its
application to seven real gwas datasets is under preparation and will be submitted to a journal. In this
paper, the capabilities of various tree-based ensemble methods to assess disease risk and to localize causal
mutations are evaluated. We are also preparing a short technical note to be submitted to a bioinformatics
journal, where we present our findings about the impact of the normalisation of the splitting-criterion used in
random forests methods and their bias towards markers with small minor allele frequencies (appendix A.1).
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Chapter 2

Genome-Wide Association Studies

Contents
2.1 dna : 3 letters for 3 billions bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 snp : 3 letters (again) for 3 values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Genome-wide associations studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Thanks to linkage disequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 GWAS : how ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Quality controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Single-locus test of association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 A bit further . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Humans are unique but genetically 99% equal. The remaining 1% of genetic differences participate in
their rich diversity. Deoxyribonucleic acid (dna) depicts the essential information needed for building up a
human living from the biological point of view. This genetic material can be seen as a linear code underlying
the development, the functioning and the reproduction of organisms. Nevertheless, some coding errors may
occur which, unfortunately, could cause dysfunction at many levels and eventually lead to diseases. The aim
of genome-wide association studies is to locate genetic differences between two sub-populations that are
responsible of the differences of one or several phenotypes observed between these sub-populations, and in
particular that are related to complex genetic diseases.

This chapter first aims at providing a gentle introduction to the field of genome-wide association studies
to non specialists. On the way, we will also present and discuss the current state-of-the-art in terms of
statistical analysis techniques commonly used in this context.
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2.1 dna : 3 letters for 3 billions bases

All humans have a sequence of roughly 3 billion dna bases spread over their 23 pairs of chromosomes. dna
sequences can be viewed as a code containing genetic instructions.

From the informatics viewpoint, dna is essentially a very long linear string built over an alphabet of four
different letters defined by chemical bases (or nucleotides) : A, C, T, G. Almost every cell of an organism
contains two copies of this dna string and this information is transmitted in a quite reliable way from one
cell to its daughters, and from one individual to its off-springs (actually exactly one half from both parents).
Indeed, the genetic machinery responsible of dna replication is quite robust, and thanks to coding redundancy
and error-correction mechanisms, the genetic information encoded by dna strands is normally reproduced
with great fidelity.

However, during the replication process, errors may occur over time and survive in the offspring (cell
lines and/or sub-populations), for example by changing one base to another at some positions in the code,
or by yielding multiple copies of some dna subsequence. If we screen the genetic material of a sample of
individuals of a population, at a position where such a mutation phenomenon occurred in the past, we will
therefore observe that some individuals (typically a large majority of them) are holding the original genetic
material, the so-called wild type, while others (typically a small minority) hold the mutant variant.

Among the various types of mutations that may occur, we focus in this thesis on point-wise mutations
characterized by the change of a single letter (a replacement, a deletion, or an insertion) in the dna string.
The resulting genetic variability is called Single Nucleotide Polymorphism (snp) and its alternate forms
observed in the population are called alleles; in most of the cases, an snp is characterized by only two
alleles which translate into three different combinations for diploid organisms.

snps are the most abundant source of genetic variation (aside from structural variations) within the
human genome, notably because many of these appear in non-coding regions. (this is the redundant code
defining the mapping between dna strings and protein sequences). From recent genetic surveys, it is known
that these snps occur approximately once every 100 to 300 base-pairs on the average. The International
HapMap Project [The03] has studied these variations and has identified about ten million snps (where the
rarer snp allele has a frequency of at least 1%) in three sub-populations of humans (Europeans, Africans
and East Asians). In the continuity, the 1000 Genomes Project [G+10] sequenced the genomes of more than
1000 people to obtain a more detailed and comprehensive catalogue of human genetic variation. The 1000
Genomes data are available to the scientific community. They can be used, for example, to impute genotypes
not directly typed thus avoiding important genotyping costs.

Since genetic material is transmitted in a way such that nearby bases are transmitted together with
a high probability, because of the mechanics of dna replication and re-combination, when two individuals
share the same alleles at a snp locus, it is likely that they also share the same material in the nearby areas
of the dna string. Therefore, even if snps only describe a very small part of the dna of an individual, they are
expected to provide a significant amount of information about their genetic differences. Hence, studying the
correlations between snps and phenotypes may help to identify genetic regions where mutations occurred
that are functionally related to the phenotype variability. For the same reason snps may potentially be used
to predict phenotypes and in particular genetic disease risks.

2.2 snp : 3 letters (again) for 3 values

Polymorphisms are what make every one of us unique from the genetic point of view. Most of these have
no known effect and may be of little or no importance while some of them influence physical appearance,
disease risk or drug response. snps are involved in the early steps of development. Depending of their nature
and location in the genome, they can change the encoded amino acids (non synonymous) or can be silent
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(synonymous) or just occur in noncoding regions [Sha09]. Thus they can influence more or less one trait,
e.g., they may impact the encoding of mrnas responsible for proteins synthesis (figure 2.1). At the surface,
they influence together with environmental factors our general phenotype : the way we look, the hair and
eyes color, our weight, size etc. Below the surface, they also may impact how our individual cells will grow,
replicate and interact with the others (which may be less obvious to directly observe). Nevertheless, small
variations in the dna sequence can also lead to undesirable effects such as diseases. Mutations can indeed
be the starting point of cascades leading to an unexpected and possibly counter-productive trait.
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Figure 2.1 One way for a mutation to influence phenotype.

Most of the snps are biallelic, giving rise, in diploid organisms such as humans, to 3 types of observed
genotypes describing how many mutant variants are collected by this individual at a given position. Thus,
a genotype can take 3 values : 0, 1 or 2. A value of 0 means that no mutation has been observed, the two
alleles are of the wild type. In that case we say that the SNP is homozygous wild. A value of 1 means that
one mutation is observed at that position, one wild allele on one of the chromosomes and one mutant allele
on the other chromosome, also called the heterozygous. Finally, 2 represents the case where the two alleles
are mutants and is called a homozygous mutant genotype.

Figure 2.2 illustrates these ideas: the right-most part shows part of the dna inherited by a child from
its two parents, by depicting a chromosome pair around five nucleotides; the two central parts show the
corresponding dna of the corresponding chromosomes of its two parents; finally the left-most part shows
the content of the corresponding wild-type chromosome of the reference population. In green, mutations are
highlighted, yielding eventually the genotype of the child and its encoding in orange.

Note that sometimes that representation is not the exact one being used; one can indeed decide to code
these values by using any specific allele as a reference (most of the time, the mutant allele is the one that
is less frequent in a reference population).

2.3 Genome-wide associations studies

Snps have the potential to help identify the multiple genes associated with many phenotypes. Of course,
snps generally do not directly cause an illness but they can help us to identify genomic regions potentially
containing mutations causally affecting the biology of the studied phenotype and they could hence help us to
evaluate the risk that someone will develop a disease. Identification of causal mutations will provide better
diagnostic information that will allow for early diagnosis, prevention and better treatment of human diseases.
In the following, we will indifferently use the word ”phenotype” to refer to the trait under study which can be
a disease or any observable characteristic also called a trait (such as morphology, development, biochemical
or physiological properties, behavior...). The phenotype can be qualitative (e.g., disease status) or quantitative
(e.g., treatment response status). Analyzing dna can help to understand what is happening beyond the genetic
code, in other words, what are the underlying molecular mechanisms leading to a given phenotype. Genome-
wide association studies are designed for that purpose. However, as those genetic variations are transmitted
through generations, they also are directly related to ancestry and family relations among individuals.
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Figure 2.2 Mother and father chromosomes dna differ from reference dna at one locus (a/g mutation, in green); the
mother in addition differs at a second locus (g/a mutation in green). The child’s genotype is obtained by
combining these variations resulting from the inherited chromosome pair (in orange).

Unlike monogenic Mendelian diseases, a disease is said to be complex when multiple interacting genes
and environmental factors are responsible for the phenotype. These complex diseases are not caused in a
deterministic way by a single genetic mutation; rather they must have an intricate molecular architecture
and may therefore be influenced by a potentially large number of genetic and environmental factors which
may act in additive, complementary and/or more complex ways. Most of the time, in that case, it has been
observed that each individual genetic variant only makes a very small contribution to the overall heritability
of the disease. Since complex diseases are intrinsically related to the perturbation of a complex biological
sub-system, this may explain the dispersed association among individual genetic variations and disease
phenotype, as well as a rather high sensitivity to environmental factors. In addition to this dispersive effect,
it may be the case that part of the heritability of genetic risks towards complex diseases can only be explained
by conditional effects, i.e. effects which imply a conjunction of genetic and environmental factors. It might
be the case that a multitude of such dispersed and/or conjunctive effects in the end is responsible of the fact
that most of these complex diseases are not rare in the population.

When performing a genome-wide association study, the main questions we are trying to answer are the
following:

• How many genetic variants are involved ?

• Where are these genetic variations located on the genome ? Do they appear in exons or introns ?
Which genes do these changes affect ?

• What is the type and biological consequence of each alteration ? Which allele is protective and which
one is causative ?

• What are the functional consequences of these changes ?

• how often such mutations occur (allele frequency, mutation rate) ?

• Are these variants more important than environmental factors ?

• Are there any interactions between the genetic and environmental effects ?

• Can we infer the disease risk, or more generally predict a phenotype, based on genetic factors alone
or in combination with environmental ones ?



10 CHAPTER 2. GENOME-WIDE ASSOCIATION STUDIES

Typically, to carry out such a study one disposes of a cohort of a few hundred to several thousand
individuals, a fraction of them (typically about 50%) having a certain phenotype which are called cases,
and the rest of them being individuals representative of the genetic variation in the studied population and
who do not present the studied phenotype which are called controls. This is schematically represented at
Figure 2.3.

FREQUENCY
COMPARISONS 

CASES CONTROLS

Figure 2.3 Overall principle of a genome-wide association study: step 1 (top) consists in collecting a cohort of cases
and controls (experiment design); step 2 (middle) consists in extracting DNA from the individuals and
carrying out measurements to characterize their genetic variations (e.g. genotyping at snp loci); step 3
(bottom) consists in analyzing the resulting dataset so as to identify significant associations among groups
of snps and phenotype and to determine risk prediction models (statistical inference).

2.3.1 Thanks to linkage disequilibrium

Advances in genotyping technologies allow for genome-wide association studies. In a short time, hundreds of
thousands (and even more) snps spread over the whole genome can be genotyped for large sets of individuals
at low cost. Denser genotyped variations over the whole genome should allow to detect causative dna regions
even if the biologically causative mutation is not directly observed, indeed, those variants are known to be
strongly correlated. Thus, the chances of finding an snp ”linked” with the causal one are highly increased
(indirect association vs. direct association. See Figure 2.4).

Causal
mutation

Linkage
disequilibrium

(a) (b)

Figure 2.4 We talk about direct association (a) when the causal mutation is directly genotyped. On the other hand, if
only variations in ld with the causal mutation are genotyped then we talk about indirect association (b).

That “link” is also called the linkage disequilibrium (ld). It denotes the nonrandom association of alleles
at two or more loci. One way of measuring ld between two variants is to compute a simple statistic for a
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pair of snps. Doing so for each pair of snps will generate a matrix of values from which ld patterns can be
deduced.

The International HapMap Project [The03] investigated ld patterns across the entire human genome. They
started by gathering anonymized samples from four different populations: 90 Yoruba (30 parent-offspring
trios) from Ibadan (Nigeria); 90 individuals (30 parent-offspring trios) of European ancestry from Utah, 45
unrelated Han Chinese from Beijing and 45 unrelated Japanese from Tokyo. Their findings pointed out that
there exist hotspots of recombination in the genome which drive the observed ld patterns. They observed
blocks of high ld separated by sharp breakdown of ld corresponding to hotspots.

Those blocks of high ld are also referred to as haplotype blocks. The term haplotype is a contraction of
haploid genotype. Haplotypes are the combinations of alleles at different positions along the same chromo-
some that are transmitted together. It may be much more informative to analyze them simultaneously instead
of independently. These haplotypes have a particular structure which provides information on evolution
history. According to the International HapMap Project, we now know that chromosomes are structured
in many blocks, i.e., haplotype blocks within which there is a limited haplotype diversity (where little to
no recombination events occured) separated by small regions of high haplotype diversity. This structure is
population dependent.

Technically, the main benefit of those low haplotype diversity regions is that only a few markers need
to be genotyped to capture the whole haplotype information. Selecting the minimal number of snps that
uniquely identify common haplotypes is called haplotype tagging. That property has driven the current gwas
in selecting the right amount of markers along the genome in order to capture a maximum of the variations
present in the population under study. However, being focused on common variations, a direct (and maybe
not so desirable) consequence is that the possible presence of rarer mutations may be missed and their
potential implications underestimated.

To explain the notion of linkage disequilibrium, let us consider two snps, the first has alleles A and
B, and the second has alleles C and D. In a given population, let us suppose that the marginal allele
frequencies are fA, fB = 1 − fA, fC and fD = 1 − fC , respectively. We define a haplotype as being a
particular combination of the alleles of these two snps on one chromosome at variant sites and denote the
haplotype (joint) frequencies as fAC , fBC , fAD and fBD .

A B Total
C fAC = fAfC+D fBC = fBfC−D fC
D fAD = fAfD−D fBD = fBfD+D fD

Total fA fB

Table 2.1 In this table, D represents the departure from the uncorrelated state in which the joint frequencies is equal
to the product of the marginal frequencies. When D is equal to 0 the two snps are said to be in linkage
equilibrium (le).

The situation can be summarized in Table 2.1 where the standard coefficient D of LD between the two
loci is defined by:

DAC = fAC − fAfC . (2.1)

Equation 2.1 expresses that the expected haplotype frequency in the absence of LD is the product of
the marginal frequencies. DAC represents the departure from the uncorrelated state. Simple algebraic
rearrangement shows that:

DAC = −DBC = −DAD = DBD. (2.2)

DAC = 0 would suggest independence of the two snps but could also simply reflect a low marginal frequency
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of one of the alleles. Also, the sign of D is sensitive to the allele code which can be chosen arbitrarily. To
circumvent those two drawbacks, two derived LD statistics which both are frequency normalized and always
positive are more commonly used:

|D′| =

 −DAC

min(fAfC ,fBfD) if DAC < 0,

DAC

min(fAfD,fBfC) if DAC > 0,
(2.3)

|D′| ranges from 0 to 1, 0 means linkage equilibrium, a value of 1 corresponds to complete ld (the two
loci are not separated by recombination, i.e. at most three of the four possible haplotypes are present in the
population) but does not necessary indicates that one locus can predict the other with high accuracy.

r2 =
D2

AC

fAfBfCfD
. (2.4)

The r2 is the squared Pearson correlation coefficient, a value of one corresponds to perfect ld for which
at most two haplotypes are possibly present. In other words, knowing the allele at one locus allows to
predict the allele at the other one.

From these metrics, it is possible to compute a matrix of ld. Figure 2.5 shows an example of observable
patterns in a small chromosome 1 region in the Hapmap ceu population. It allows to visually detect blocks
of snps in high ld clearly separated by ld breakdown.

Figure 2.5 An example of ld pattern in the Hapmap ceu population, on chromosome 1 (67.68..68.18Mb) region. The
different pairwise values of D′ are represented by different intensity of red. We clearly see “triangles” of
higher ld depicting the haplotype block structure in that region.

2.4 GWAS : how ?

A genome-wide association study is driven by the following steps (see also Figure 2.3):

1. Choosing and collecting samples: maybe the most difficult part of a GWAS, collecting samples isn’t
easy at all. Cases may sometimes be rare and for some diseases, getting dna samples is delicate. An
accurate definition of the trait under study is required to minimize the heterogeneity of the underlying
causal factors and increase the power of the study. Another major difficulty arises from matching case
and control populations in order to avoid (or at least minimize) sample stratification.

2. Genotyping: using recent technologies allows now for genotyping massive amounts of markers at low
cost. Genotyping arrays now provide up to one million common snps which currently approximately
costs 400$ (and that cost will continue to decrease over time, while the number of variants assayed
will increase). For that task, two main manufacturers (Affymetrix and Illumina) respectively provide
hybridization-based and enzyme-based genotyping technology. In the end, these genotyping arrays
allow to measure allele intensities at several locations in the genome from which genotypes can be
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deduced. For further information concerning genotyping arrays, we refer the reader to [K+03] and
[S+06].

3. Quality controls: due to the previous steps, it is necessary to check the quality of the resulting data.
Those quality control methods (qc) will be further discussed in Section 2.4.1.

4. Statistical analysis: there are two main approaches, the single-locus analysis where each variant is
tested in turn and the multi-locus approaches where haplotypes, gene-gene (and possibly higher-order)
interactions can be considered. Basically, this step consists in frequency or similarity comparisons
between the cases and the controls. These tests are presented in Sections 2.4.2 and 2.4.3.

5. Replication: once some loci have been identified as being statistically associated to the studied
phenotype, replication allows to validate or invalidate those results. The replication study is often
carried by the use of a different genotyping platform, which may help to remove spurious associations
due to technical artefacts.

2.4.1 Quality controls

Once the data have been collected and the genotypes assayed, we want to avoid confounding of signal with
something that is not linked to the trait under study. Many quality control (qc) procedures exist to reduce the
risk of false-positive and false-negative findings. Basically, those qc procedures can be based on samples
or markers. In the following, the main qc procedures used in practice are discussed. For further reading we
suggest the recently published tutorial from the genomics group of the eMERGE [T+11].

Sample-based QC

• Sample mix-ups and plating errors: it is possible that during the preparation, some samples are mixed
up on the plate. It can be messy and sometimes two or more samples are inverted on the array (usually
composed of 96 wells). One way of detecting such errors is to check the sex recorded when collecting
information about the samples and the one that can be estimated using the X chromosome. E.g., a
female with a low heterozygosity rate across the X chromosome markers is probably a good indication
of sample mix-up. Also, by mistake, if two samples are placed in the same well it will produce an
excess of heterozygosity (on the other hand, low heterozygosity indicates inbreeding).

• Low-quality dna samples: quality and concentration of the collected dna may vary from one sample
to another, especially when the cases and the controls are not collected and extracted in the same
place which can introduce spurious association. Even on the same plate, it is inevitable to observe
variations in the quality and concentration, bad quality and/or low concentration samples often lead to
failure of signal amplification causing genotypes to be uncallable which results in missing genotypes.
In that case, individuals with an insufficient overall call rate should be removed from the study.

• Plate effects: it is also required to check if there are no differences in genotyping frequency between
plates. Especially in the situation where cases and controls are typed on different plates, such
differences will cause confounding. A common practice is to evenly distribute cases and controls
across plates. When it is not possible, a comparison of allele and/or genotype frequencies between
one plate against the others will help identify significant differences and allow to discard samples
from a study.

• Population stratification: one source of spurious associations is the presence of individuals coming
from different ancestral and demographic history. Especially when cases and controls strongly differ
regarding these features. It has been clearly observed that many markers carry such an information
and demographic information can thus be confounded with disease status. In order to avoid associating
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that kind of markers to the disease, the first thing that can be done is to remove the outliers from
the population under study. Most of the time, using principal component analysis and the addition
of known and various ancestry (such as HapMap) genotypes allow for the identification of population
structure and permit to confront the collected samples provenance informations to known populations.
It has been observed that only two principal components are sufficient to separate clusters of different
ancestry individuals. Another approach consists in calculating a genetic distance between pairs of
individuals and using the resulting distance matrix to cluster the individuals. Similarly, duplicate
and related samples can be identified using the same genetic distance; an abnormally small distance
between a pair of individuals would indicate sample duplication and/or relatedness.

Marker-based QC

• Call-rate and Allele Frequency: unfortunately, genotyping platforms are not 100% reliable and could
cause some uncertainty for many reasons. When the genotype calling1 algorithm is not able to
determine the genotype at a given position for a given sample, this measurement is normally considered
as missing. If a few genotypes are missing, it is not so problematic, since snps with missing values
can be removed without loosing too much information and if the genotyping is dense enough we could
hope that another snp in ld with the missing one has been correctly genotyped.
At each locus, for each sample, the genotyping technique measures the intensity of allele a and b.
For all the individuals, each genotype can be summarized by a genotype cluster plot (Figure 2.6)
which are used for the determination of genotypes. In other words, the analysis of allele intensities
is used to determine the genotype at that given locus. Poor quality genotype cluster plots lead to
poor confidence in genotype calling, which can lead to a missing genotype or calling errors. Many
algorithms are used to this end, we refer the interested reader to [VSKZ09] for a detailed comparison of
genotype calling algorithms, to [M+10] which highlights the potential inconsistencies between calling
algorithms that can impact downstream analyses and to [L+10] for a proposal of a statistic to evaluate
the imputation reliability. Most of these calling algorithms outputs a confidence score for each snp,
when that score is too low, the corresponding genotype is considered as missing.
Depending on the study, marker with an overall high missing rate should be removed from the study.
Otherwise, they can be imputed by predicted values that are based on the observed genotypes at
neighboring snps. To this end, softwares such as IMPUTE2 [HDM09] exists. Basically, the imputation
process exploits the missing genotype surrounding ld structure and the associated known haplotypes
to “guess” what would be the genotype. These algorithms relies on a reference haplotype panel (such
as the HapMap samples).
Another common practice is to remove snps with a low minor allele frequency (maf). Such variables
are difficult to study as they require large sample size to gain sufficient statistical power. However,
[M+09] suggests that part of the missing heritability could be explained by such rare and recent
variations.

• Hardy-Weinberg Equilibrium: the Hardy-Weinberg equilibrium (HWE) principle states that genotype
frequencies at any locus are a simple function of allele frequencies (in the absence of migration,
mutation, natural selection and assortative mating). In other words, at a given locus, where the alleles
A and B are observed, respectively, at frequencies fA = p and fB = q = 1−p, the following genotype
frequencies are expected:

fAA = p2, (2.5)
fBB = q2, (2.6)
fAB = 2pq. (2.7)

1The genotype calling is the transformation of the allele intensities outputted by the genotyping platform into genotypes.
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Figure 2.6 Genotype cluster plot: the green dots are clearly pointing out bb genotyped samples, the blue ones the
other homozygous and the orange ones the heterozygous. The remaining dark gray dots correspond to
samples for which the genotype is difficult to determine.

Where fAA, fAB and fBB are the expected genotype frequencies for the homozygous wild, heterozy-
gous and homozygous mutant respectively. It has been observed that these expectations hold for most
human populations and in practice, deviations from HWE can indicate inbreeding, population stratifi-
cation and genotyping problems. A χ2 test between the expected frequencies and observed ones may
detect such deviations. But these deviations can also pinpoint association [NEW98], since deviations
from HWE can be due to a deletion polymorphism or a segmental duplication that could be responsible
for a phenotype. Thus, one must be careful before discarding loci based on that test.

2.4.2 Single-locus test of association

Suppose that we look at a particular SNP in two sub-groups of a population: cases (individuals affected by
the disease under study) and controls (individuals not affected). We denote the number of individuals in the
two sub-groups by ncase and ncont respectively. At that loci, let us say that we observe the 2 alleles: A,
B. Genotype counts can be summarized in a two-way contingency table, as illustrated in Table 2.2. Such a
table can be analyzed using an observed-expected test statistic which has a χ2 distribution with two degrees
of freedom in order to detect whether there is any relationship, or association, between the genotype and
the disease status.

AA AB BB Total
Cases a b c ncase

Controls d e f ncont

Total nAA = a+ d nAB = b+ e nBB = c+ f n

Table 2.2 Full genotype table for a general genetic model : 2× 3 table

Based on Table 2.2, the idea is to spot genotype significant differences between cases and controls. The
main question is to find whether or not there is an association between the genotype (columns) and the
phenotype (rows). In Table 2.2, there is no association when the proportion of each genotype remains the
same regardless the disease status. These counts are said to be expected under the null hypothesis that
there is no association.

The genotype frequencies, assuming independence from the disease status, can thus be calculated as
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follows:

fAA =
(a+ d)

n
, (2.8)

fAB =
(b+ e)

n
, (2.9)

fBB =
(c+ f)

n
, (2.10)

and from these frequencies, expected counts are derived, as shown in Table 2.3. It has to be noted that the
total counts remain the same as in Table 2.2.

AA AB BB Total
Cases ncasefAA ncasefAB ncasefBB ncase
Controls ncontfAA ncontfAB ncontfBB ncont

Total a+ d b+ e c+ f n

Table 2.3 Expected genotype counts

The idea is now to detect if there is a significant difference between the observed values (Table 2.2) and
the expected ones under the independence hypothesis (Table 2.3). This can be achieved using the standard
Pearson’s χ2 statistical test for independence of the rows and columns:

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij
(2.11)

where Oij is the observed count and Eij is the expected count in the cell in row i and column j . If the null
hypothesis of no association is true, then the calculated test statistic approximately follows a χ2 distribution
with (r − 1) × (c − 1) degrees of freedom (where r is the number of row variants and c is the number of
column variants) i.e. in our case (r− 1)× (c− 1) = 2. This approximation can be used to obtain a p-value.
A small p-value will suggest that there is association between the variables (genotype-phenotype) but the
test will not indicate which are the cells (genotypes) in the contingency table that are the most associated.
The χ2 p-value of an observation corresponds to its probability plus all the more extreme ones under the
null hypothesis (represented in green at Figure 2.7).

From those univariate tests, a p-value is assigned to each SNP, and thus a ranking of variables may be
performed and a Manhattan plot (see Figure 2.8) is usually used to visualize the results. Spotting regions
of interest is then a question of correct thresholding over the resulting p-values. Depending of the size of
the spotted regions and on the genotyping density, it is often expected to see several variants for which the
p-values are way under the significance level α.

One of the major issues at a genome-wide level is the multiple testing problem. Indeed, the larger
the number of hypothesis tests, the larger is the probability of getting significant results due to chance.
One way to correct for multiple testing is to adjust α (using methods like the Bonferroni, the Šidák or the
Benjamini-Hochberg correction) in order to “control” the Type I error rate. Other methods exist such as
permutation based adjustments. Resampling can be performed exhaustively, leading to so-called exact tests
(if the set of observations is small enough) or approximate test (otherwise), such as Monte Carlo simulations.
These tests allow for an estimation of how often a random observation can be as extreme as the observed
one.

As a recommendation for the χ2 test, the sample size should be such that no cells in the table have an
expected count of less than one and no more then 20% of the cells should have an expected count of less
than five. If samples are small, then Fisher’s exact test can be used at the price of a higher computational
cost. The exact p-value can be calculated by considering all the tables with the same row and column totals
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Figure 2.7 The curve represents the probability of every observed outcome under the null hypothesis. The p-value is
the probability of the observation plus all the more extreme ones, represented by the green area.

Figure 2.8 A Manhattan plot is used to identify regions where p-values are under the significance level. Each point
represent a snp (at its chromosomal position, chromosome by chromosome) and its associated χ2 p-value.
The red dotted line represents a significance level of 10−5 = 0.00001, p-values under that threshold
may pinpoint causal regions. On the CD1 Crohn’s disease related dataset (see Chapter 6), among others,
noticeable regions are found on chromosomes 1, 5 and 16 (which have been confirmed as being involved
in the disease).
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as the original one but which are as or more extreme in their departure from the null hypothesis. One way
of evaluating the probability to find such a table at random under the independence hypothesis is to use
Monte-Carlo simulations of random permutations of the dataset.

2.4.3 A bit further

So far, single locus tests of association allowed for the identification of responsible genetic variations and
the elucidation of many mechanisms underlying several diseases and traits. Despite many gwas successes,
only a moderate part of the heritability appears to be explained by those successful findings. Thus, posterior
to the identification of a genomic region using a single point analysis, which does not directly indicate a
true association, neither describe the exact cause and the real impacts of the causative biological mutation,
many downstream approaches may be useful to further confirm and contribute to the deep understanding of
the role of these candidate broken pieces of dna. The following is a non exhaustive overview of possibilities
(which can be combined):

• One approach would be to identify the model of the genetic disease, little modifications of the Ta-
ble 2.2 allow to investigate different hypotheses using statistical tests of association such as described
in Section 2.4.2. For example, if we suspect an allele at a given position to increase the disease
susceptibility, Table 2.4 can be easily derived from Table 2.2 to which a test of association can be
applied. Similarly, the recessive model (Table 2.5) can be investigated as well as other models of
genetic diseases. This may help to detect which is the mutant allele and how it is associated to the
trait of interest.

AA AB+BB Total
Cases a b+ c ncase
Controls d e+ f ncont

Total a+ d b+ c+ e+ f n

Table 2.4 Dominant model: under that hypothesis, allele B increases the disease susceptibility

AA+AB BB Total
Cases a+ b c ncase
Controls d+ e f ncont

Total a+ b+ d+ e c+ f n

Table 2.5 Recessive model: two copies of allele B are required to increase the disease susceptibility

• Replication studies allow to validate or invalidate the findings of an association study. In that case,
the use of a different genotyping platform may help to discard spurious associations due to batch
effects. In order to reduce the cost, a common practice for those replications is to target candidate
genes previously identified at a genome-wide level. Denser sequencing around these regions may be
useful to confirm the presence of a true association between the suspected loci and the phenotype
under study.

• Alleles at different loci on the same chromosome within a gene may create a “super allele” (or hap-
lotype) that has a larger effect than any of its alleles separately. Similarly to the single locus test,
haplotype-based analysis compares haplotype frequencies/similarities between cases and controls.
This type of test requires the genotype to be phased (phasing allows to identify the provenance of
each allele, either it is on the maternal strand or the paternal one), unfortunately, most of the time, the
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output of genotyping platforms is not phased and it may be computationally intensive to reconstruct
the haplotype structure at the genome-wide level.

• Part of the missing pieces [M+09] might be hidden in potential gene-gene interactions. In [Ste12], the
author reviews current trends in the field of gene-gene interaction analysis. In particular, the extension
of the multifactor dimensionality reduction (mdr) called Model-based mdr (or mb-mdr) [CUV+08] is a
notable example for the investigation of gene-gene interactions in which the multi-locus genotypes are
merged (in three categories: high risk, low risk and ’no evidence’) in order to reduce the dimensionality
(hence the name mdr) and increase the power to detect gene-gene interactions.

• Testing the potential interaction of snps with environmental factors (such as smoking habits, diet habits
or stress exposure), the investigation of copy number variants (cnv) or the link between expression
data and the corresponding genotypes at a given candidate gene, etc.

Actually, most of these approaches are, at the time of the writing of this manuscript, practically infeasible
at a genome-wide level due to the growing amount of genetic variants typed and the resulting combinatorial
“explosion”. The majority of these methods tends to be applied after a first stage of filtering, on a (much)
smaller amount of variables spotted by single locus analysis, implying that this subset of candidate snps
harbors a significant marginal effect (which may not be a good assumption for fully epistatic interactions).
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During the two last decades, the amount of data being collected in multiple domains (medicine, genetics,
social networks, ...) has been massively increasing. As that volume of data increases, the part of it that
people understand drops and the task of analyzing huge datasets has now become infeasible by standard
approaches. Those facts render obvious the need to develop algorithms and statistical methods capable of
extracting knowledge from an important volume of data, in other words, capable of discovering the underlying
hidden but potentially useful information contained in large databases.

Fortunately computational power has increased in parallel with the amount of gathered data. In a given
context, that computational power can be used to extract some relevant information from a set of observations.
In this thesis, we focus on so-called supervised learning. In this case, the extracted information concerns
relations/patterns between variables that could explain a studied outcome. Succinctly, the goal is to predict
output labels for new objects given their inputs and a dataset of observed input-output pairs.

This chapter provides a general introduction to the field of supervised machine learning. The different
stages of a supervised learning algorithm will be described as well as the associated vocabulary, notations
and standard procedures used to evaluate the results of applying supervised learning methods to a dataset.

20
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As stated by Moore’s law, processor speed, storage capacity and sensor capabilities improve at expo-
nential rates. They double approximatively every two years. Such advances in acquisition and storage
technologies now allow for collecting a massively increasing volume of data at low-cost (time and money)
investments. In many domains such as web mining, automatic image classification, diagnosis, medicine and
marketing, it is now common to gather gigabytes, even terabytes, of data in very short periods of time.

The goal of supervised machine learning is to learn from labelled data. Such data can be viewed as a
set of labelled entities of the same type described by a number of features, i.e., each entity is a point in a
multidimensional feature space. The purpose of supervised learning is to find the optimal function of features
that allows to predict as well as possible the labels.

3.1 Datasets and notations

Typically, in supervised learning, the data are composed by a collection of n objects described by p features
(one also uses the terms input-variables, attributes, or simply inputs) which, basically, correspond to ele-
mentary measurements. These features may have some influence or provide some information on the label
of each object (one also uses the terms output-variable, target, or simply output). When the output is a real
number, the task of machine learning is also referred to as regression while if the output is discrete (binary
or categorical) one talks about classification. In this thesis, the output will be binary, denoting the disease
status of a patient, i.e. healthy (controls) or sick (cases), and will be represented by 0 or 1 respectively.

We will denote by X the space of input vectors of dimension p. Similarly, Y will denote the output
space. Observed values are written in lowercase; hence the ith observed value in X for object j is written xji .
Likewise, the jth output object label is denoted by yj . Thus, a dataset can be represented by a n× (p+1)

matrix: x
1
1 · · · x1p y1

...
. . .

...
...

xn1 · · · xnp yn


Along this manuscript, we will denote such a dataset by DB. Generally, such a DB is a subset of all

possible objects. Indeed, in most of the domains, it is impossible to collect all the existing objects from the
studied population, even if the latter is in principle finite. In addition, depending of the field under study,
gathering data can be a difficult task. For some reasons, features may be incorrect, missing or not easy
to access or measure. For these reasons, most of the time, a DB is submitted to many quality checks and
pre-processing steps prior to the application of machine learning techniques. In the sequel, when we refer
to a DB, we refer to the data matrix resulting from this pre-processing.

Finally, for genome-wide association studies, the features xji (with 1 ≤ i ≤ p and 1 ≤ j ≤ n) represent
genetic variants measured all along the dna of an individual (e.g. snps). The output represents the phenotype,
indicating whether or not the individuals are suffering from the disease of interest. Typically, for such an
analysis, the value of n ranges from a few hundreds to a several thousand while p can reach several hundreds
of thousand (and even more). In later chapters, we will discuss and analyze the pre-processing steps typically
applied to these latter problems.

3.1.1 Curse of Dimensionality

Nowadays, whether in biotechnology, finance, multi-media or social networking, we observe and face a
growing amount of features for a limited number of objects. The curse of dimensionality refers to the fact that
it is more and more common to deal with datasets containing n samples described by a very large number
p of variables, leading to a really small n/p ratio. We will see that some machine learning methods are
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more appropriate for dealing with such a scenario than others. This is typically the case for genome-wide
association studies where an individual can be described by a huge number of genetic variants.

3.2 The learning step

Once the data have been collected, checked and cleaned they can be used as learning samples for supervised
learning. The basic goal of supervised machine learning is to infer from a learning sample composed of a
number of objects described by their input variables and their output labels (figure 3.1), a statistical model
able to predict the label of new objects (figure 3.2) based on their input values.

Machine
Learning
Algorithm

Learning
Samples

Model
X Y

Figure 3.1 The learning step is the process of inferring a statistical model from a learning set.

LabelsNew
Samples

Model
X Y

Figure 3.2 The common usage of a model is to predict the labels of new samples.

More formally, given a learning set ls of n objects (typically a subset of the available DB):

ls = {samplej}nj=1 = {((xj1, . . . , xjp), yj)}nj=1, (3.1)

drawn from some population of objects, the goal of machine learning is to find a function h : X → Y that on
the average predicts as well as possible the value of y for any new object drawn from the population from
which the DB was gathered.

Various additional assumptions have to be made in order to characterize this problem from the mathe-
matical point of view:

• Specification of the hypothesis-space of candidate functions H ⊂ Y X , within which the goal is to
find the most accurate predictor. For example, if inputs are encoded as numerical values, one can use
either linear or non-linear, parametric or non-parametric hypothesis spaces (see also Section 3.4 and
Chapter 4 for some examples).

• Definition of a numerical criterion to measure prediction errors, typically via the choice of a loss
function ` : Y × Y → R+, and by defining the error of a function h as its expected loss over a so-
called generative probability distribution P (X,Y ), i.e. EP (X,Y ){`(h(x), y))}. For example, when the
outputs are binary or categorical, one often uses the so-called 0-1 loss function, defined by `(y, y′) = 0

if y = y′ and `(y, y′) = 1 if y 6= y′ ; its expected value is equal to the probability of making a wrong
prediction.
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• Assumptions about the sample generation mechanism: often it is assumed that the ls is drawn i.i.d.
(independently and identically distributed) from the same generative probability distribution P (X,Y )

used to define the average loss. This assumption is in particular useful in order to characterize the
theoretical properties of supervised learning algorithms, such as large sample behavior (asymptotic
analyses), and finite sample bias and variance, as a function of the complexity of the hypothesis space
H .

One of the main expected qualities of a learning algorithm is its consistency: roughly, consistent behavior
means that as the size of the learning sample increases the expected loss decreases, and eventually converges
to the lowest possible average loss within the hypothesis spaceH . Statistical learning theory has established
necessary and sufficient conditions for consistent behavior of learning algorithms, and also provides upper
bounds on their asymptotic rate of convergence. However, in practice one is interested in the behavior of
the used algorithm in finite sample conditions of realistic size. In this context, the theory unfortunately only
helps us to understand qualitative behavior and is of little use to make quantitative a priori predictions as
concerns the relative performances of different algorithms on a given problem. We will therefore not further
elaborate on the theoretical aspects of supervised learning. We refer the interested reader to general text-
books [HTF09, Vap98b]. In section 3.3, we discuss techniques for the sound empirical evaluation of models
induced by machine learning, which may be used in practice.

Notice that from an algorithmic point of view, different training regimes exist and depend on how the
learning samples are used to infer the hypothesized function h. The most common case corresponds to the
batch mode, when the entire ls is available, all the training objects are used at once to infer h. Another
possibility is the incremental mode where objects are added (randomly or not) one by one to modify the
current hypothesis. A particular case of the incremental mode is the online method, as the objects arrive,
they are incorporated to the current trained function h. Some methods will use the incremental (and online)
mode while some will use the batch mode; some of them can be used in both modes with minor adaptations.
In this thesis, we will only consider batch-mode supervised learning algorithms.

3.3 The model evaluation step

The resulting function h can be used as a predictor for new entities. But, prior to that, the accuracy of the
corresponding model has to be evaluated. In particular, the following questions are relevant:

• How well the machine has learned ? Does h classify correctly the learning set itself ? Applying h
to each training object and comparing the results with the known labels (Figure 3.3) will tell us how
well (or how badly) h fits the learning set. This is called the resubstitution error.

• How well does h approximate the output variable y over the rest of the population of possible objects ?
In other words, how well does the computed model classify objects that are not represented in the
learning set. This is also called the generalization error.

A common practice is to find a compromise between these two types of errors. Indeed, while one can
to some extent expect that the more accurate the model is on the learning sample the more accurate it
should also be on the rest of the population, this is not always true. Indeed, if the goal is to minimize
the generalization error, it is often counterproductive to target a minimal resubstitution error. In fact, this
scenario is a common issue in machine learning, hereafter referred to as the overfitting problem. Indeed, most
often a model will not be interesting if it perfectly classifies the training objects while poorly generalizing
its classification performances to previously unseen objects.
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Figure 3.3 The evaluation of the generalization error of a model is achieved by a comparison between the predicted
labels and the real ones.

3.3.1 Prediction versus Interpretation

Every supervised machine learning algorithm produces models. Those models are potentially useful for:

1. Making predictions for previously unobserved objects.

In the context of GWAS, this predictive feature would allow one to assess the genetic risk of disease
for a new patient, given his genotype.

2. Making interpretations of the underlying relations between the input and output variables that hold
in the studied domain. The goal is to improve our knowledge of the studied field. One of the most
relevant questions is to see what are the input variables that are the most linked with the studied
output variable ? Are there irrelevant variables, what are the relevant ones ? Is there a particular
threshold over a particular descriptor that is explaining the output or are there particular combinations
among some variables that lead to a particular outcome ? All those questions are possibly of interest
and answering them may help towards a better understanding of the situation/domain from which the
dataset has been gathered.

In the context of GWAS, this interpretability feature would help biologists to gain insight about the
biological mechanisms involved in the disease.

The interpretability of a model refers to the possibility to explicitly confront the model with existing knowl-
edge about the problem, to see whether it is coherent or not with this knowledge, and to infer from it new
hypotheses that may be validated or invalidated experimentally or from first principles assumed to hold
within the considered domain.

Some models have graphical representations which are easily readable. For those, a quick look directly
gives a explanation on how the variables are connected to the outcome. Of course when dealing with large
numbers of descriptors, graphical representations can become fuzzy and difficult to read. When no such view
is available, numbers can still speak by ranking variables according their importances inside the predictive
model. We will further elaborate on this aspect in Chapter 4.
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3.3.2 Evaluation of the accuracy of binary classification models

In this section we describe several measures of accuracy that are used in practice for supervised learning
problems when the target output is a binary variable, as these are relevant for our empirical evaluations in
later chapters. In this context, we use the term classifier to denote the model inferred by supervised learning,
and replace the target variable y by the term class ∈ {0, 1}.

Once a classifier C is built, evaluating its predictive capability can be achieved using an independent
test set T of size n′ (this test set is typically the part of the DB that was not used to create the learning
sample):

T = {samplej} = {(inputj , classj)} j = 1, ..., n′ (3.2)

The most standard and obvious way to proceed is to compute the accuracy which corresponds to the ratio
between the number of objects correctly classified over the test set size:

Accuracy =
#{samplej : C(xj) = classj , j = 1, ..., n′}

n′
(3.3)

which is generally expressed as a percentage. That quality measure is the easiest to understand, but it has
two drawbacks. Indeed, it relies on:

• the number of objects of each class represented in the test set: in some cases, it could be difficult to get
well balanced datasets. One class may for example be strongly over-represented, and this situation
would then lead to an average error rate mainly reflecting the rate of correctly classifying objects from
this latter class.

• the decision threshold: most of the time, a learned model actually outputs a class-probability ∈ [0, 1]

for each input vector of features. In order to transform this into a class prediction, a threshold has
to be chosen. For example, in the case of a binary classification task the common choice is to use a
threshold of 0.5, but sometimes this choice might not be the optimal one.

3.3.3 roc curves

To circumvent those two previous disadvantages, it is possible to characterize the type of each prediction
given their real classes. In particular, for binary classification tasks, if we associate the positive class to 1

and the negative class to −1, when the classifier is predicting the good class, that class can be positive
for positive samples or negative for negative samples. On the other hand, when the classifier is wrong, the
prediction can be negative for positive samples or positive for negative ones. Those two types of errors are
also known as the Type I (false alarm), Type II (miss) errors respectively.

Given these prediction characteristics, it is then possible to derive a contingency table (Figure 3.4), also
called a confusion matrix, that will allow to compute metrics such as:

1. the true positive rate, equivalent with sensitivity or recall : TPR = TP
P ,

2. the false positive rate : FPR = FP
N ,

3. the accuracy : TP+TN
P+N or the error rate : 1− TP+TN

P+N .

Of course, those metrics are still relying on a chosen decision threshold. For one decision threshold,
we can compute the true positive rate and the corresponding false positive rate which gives a point in the
receiver operating characteristic (roc) space. Doing this for every possible decision cutoff produces a roc
curve. Figure 3.5 represents the roc space where:
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Figure 3.4 The confusion matrix: characterization of predictions given the real classes.

• point a at (0, 0) represents the cutoff 1, in other words all the predictions are negative,

• point b at (1, 0) represents the ideal situation where the true positive rate is maximal and the false
positive rate is minimal,

• point c at (1, 1) represents the cutoff 0, all the predictions are positive,

• the dashed line represents a roc curve for random predictions, the area under that curve is equal to
0.5,

• the orange line represents an example of roc curve,

• the green shaded area represents the area under the roc curve (auc)

AUC

a

b c

FPR

TP
R

0

1 1,1

1
0

Figure 3.5 The important points in the roc space and an example of roc curve (in orange) and the corresponding auc
(in green).

The area under the resulting curve is called the auc and gives a new quality measurement that is
independent of the decision threshold and the class distribution. Given the scenario, it is possible to choose
the right decision cutoff that would be an acceptable tradeoff between type I and type II errors. For example,
in medicine, sometimes it will be preferable to tell a patient he is sick while he is not rather than the
opposite. In other word, it will be better to minimize the type II errors. In practice the auc varies between
0.5, for a model that classifies objects at random, to 1, for a model that is able to classify them perfectly. The
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Figure 3.6 An example of a 5-fold cross-validation: the initial dataset is divided (randomly) into 5 subsamples. In
turn, each fold is used as a test set (ts) to evaluate the learning algorithm applied to the full dataset minus
the given ts.

auc can also be interpreted as the probability that the classifier will assign a higher score to a randomly
chosen positive sample than to a randomly chosen negative one. In our empirical investigations on synthetic
and real-world gwas datasets, we will mostly use the auc as a criterion to evaluate the relative accuracies
of models obtained in different conditions.

3.3.4 Cross-validation

In order to assess the predictive accuracy of a model inferred by supervised learning, the ideal situation
would be to dispose of a very large test sample, independent from the learning sample used to infer the
model, and then to assess its accuracy according to any one (or all) of the preceding criteria (from error
rates to aucs).

Given a dataset of classified objects, we would thus have to split this dataset into two parts, one used for
learning and the other used for testing. When the number of available observations is limited, this will lead
to even smaller learning and test samples, leading both to suboptimal models and inaccurate evaluations of
its accuracy.

To circumvent this dilemma, machine learning researchers commonly use the so-called ’v-fold cross-
validation’ approach, which works as follows:

• First the overall available sample is divided (randomly) into v subsamples of (approximately) the same
size (typical values of v are 5 or 10, depending on the conditions).

• Then, for each one of the v subsamples the following procedure is applied:

– The supervised learning algorithm is applied to the full dataset minus the given subsample.
– The accuracy (error rate, auc, etc.) is evaluated on the subsample.

• The so obtained v values of the accuracy measure are averaged and used as an approximation for the
accuracy of the model trained on the whole dataset.

One can show that the larger v (it is upper bounded by the size of the available dataset), the closer the
expected value of the ’v-fold cross-validation’ approach to the expected error rate of the model built on the
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whole sample, while small values of v lead in practice to pessimistic estimates. Since the computational
complexity of this procedure is directly proportional to v, a value of v = 10 typically leads to a good
compromise between accuracy and computing times. Figure 3.6 illustrate a 5-fold cross-validation approach.

Notice that since the resulting statistics depend on the random division of the sample into v subsamples,
it is important to control this random effect, by using the same folds to assess different models built in
different settings (e.g. different algorithms, or different subsets of input features).

3.4 Summary

In this chapter, we introduced the concept of supervised machine learning, the idea of statistical model
inference from a dataset and the possible measures of evaluation of such model. It constitutes the basis
of our research and we strongly believe that the overall methodology “package” is well suited to the field
of genome-wide association studies. Indeed, there is a strong overlap between the two fields in the tasks
they try to achieve. The first one is the identification of variables/snps of interest and the second one
is the ability to exploit those descriptors to estimate the probability of an object/individual to be of a
given class/phenotype. Also, the commonly achieved tasks in a gwas are easily transposable to the field of
supervised machine learning.

In the next chapter, we discuss the details of the tree-based supervised-learning methods and motivate
why they constitute a good choice for gwas.
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In the present chapter we focus on the sub-class of supervised learning algorithms based on decision
trees that we want to study and improve in the context of genome-wide association studies. We start by
describing single trees, random forests, and extremely randomized trees which are state-of-the-art methods,
and then we explain our own proposal called T-Trees. All along this presentation we try to provide at
the same time intuitions about the methods and their algorithmic choices and precise descriptions of the
algorithms that we have implemented and applied in GWAS studies.

29
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4.1 Motivations

The nature of genome-wide association studies puts several constraints on candidate supervised learning
methods. First of all, the method should help to identify the genomic regions which contain causal mutations
which in isolation or in combination are associated with the studied phenotype. In the machine learning
language, this implies that the method should be able to identify relevant variables (i.e. snps) among a
very large number of irrelevant ones, and thus incorporate some feature selection mechanism. Also, given
the possible epistatic effects, and the emerging hypothesis [CG10] that rare mutations could affect the
phenotype of complex diseases as well as common variants, and given the various sources of correlations
(physical linkage, and sampling artefacts), the method should not make any strong a priori assumption about
the underlying relationship among genotype and phenotype and rather let the data speak for themselves to
reveal this information. Specifically, when considering common complex diseases, we do not know in advance
how many causal loci will eventually be revealed by our analysis, and we can’t exclude that some mutations
that are marginally benign could lead to increased risks when they appear together with others. Similarly
we can’t exclude that a significant part of the heritability is carried by a relatively large number of variants
to rare to be detected by current gwas univariate approaches.

From the computational point of view, given the very large number of candidate input variables considered
in gwas, and a growing number of cases and controls available, the method should as well be efficient enough,
so as to allow its application in realistic scenarios, with millions of variables and thousands of individuals. In
addition, in order to avoid cumbersome trial and error iterations, and to ensure reproducibility of results, the
machine learning algorithms should be as far as possible ’off-the-shelf’, in other words as much as possible
free of meta-parameters that need to be tuned in a dataset dependent way.

Moreover, as we will see in our experimental studies, we want to be able to apply the supervised learning
method in different settings corresponding to different subsets of input variables, e.g. by using subsets of
snps based on their allele frequencies, and also with different scenarios corresponding to different ways of
pre-processing the datasets. These kind of studies can indeed reveal sampling and preprocessing artefacts,
and help to assess the relative importances of different subgroups of variables corresponding to different
biological hypotheses about the genetic nature of a disease. The used methods must therefore be flexible
and almost fully automatic.

Because of their intrinsic features that fit very well a priori with the above requirements, our research
focuses on the application of tree-based classifiers to gwas, and more specifically on variations around
the random forest method. In the subsequent chapters, we will study their behaviour in simulated and
real-life conditions. In the present chapter we describe the used algorithms in detail, so as to allow the
reader to understand their mechanics, weaknesses and strengths, and so as to ensure reproducibility of our
investigations.

The rest of the present chapter is organized as follows. We start, in section 4.2 by describing state-
of-the-art methods from the literature, namely standard classification trees, random forests and extremely
randomized trees. We customize the description of these methods to our practical context, namely discrete
snp-based input variables and a binary phenotype of type case/control. We then propose an adaptation
of these ensemble methods which aims at taking into account the correlation structure of the genotypic
information, that we called T-Trees, because it is based on a two-level combination of tree-based methods,
the outer layer screening snp blocks, and the inner layer exploiting the information inside a given block. We
proceed by briefly discussing extensions of these algorithms to a broader class of gwas, where phenotypes
may be quantitative or multi-class, and input variables could comprise other than genotypic information,
such as environmental factors, although we did not implement these extensions yet. Finally, we provide a
discussion of related works from the literature on machine learning applications to gwas, mostly focusing on
the use of tree-based methods.
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4.2 State-of-the-art in tree-based supervised learning

In this section we describe the state-of-the-art in ensembles of tree-based methods used in our investigations.
While, for reasons that will become clear from our explanations, we do not use single trees in our study,
we nevertheless start with a detailed discussion of this method, since it is at the core of these ensemble
methods and also of our own proposal described in the subsequent sections.

4.2.1 Single Decision Trees

Basically, a (binary) decision tree is a series of (binary) questions which can be programmatically schematised
as nested if-then-else statements and represented as an acyclic graph directed outwards from a root-
node, and having the following properties:

• each node can have zero (a leaf) or two descendants (a test node)

• each node has one parent, except for a single node called the root which has no parent.

Root node

Test node

Leaf

Figure 4.1 A directed tree is an acyclic graph directed outwards from a root-node

Figure 4.1 generically illustrates those different types of nodes of a binary directed tree. The directed
edges refer to the link from a parent to one of its children. Such a structure is called a full binary tree as each
test node has exactly two children. Notice that the total number of nodes of a binary decision tree is equal
to the sum of its number of test (or internal) nodes and of its number of leaves (or terminal nodes); since the
number of leaves is always equal to the number of test nodes plus one, the total number of nodes is an odd
number equal to 2c+1, where c is the number of test nodes also called tree complexity, which is also equal
to half the number of edges of the tree. In addition to the number of test nodes, sometimes one also uses
another parameter to measure the size of a tree, namely its maximal (respectively average) depth, which refers
to the maximal (respectively average) length of a path from the root to a leaf of the tree. In our example of
Figure 4.1, we have c = 4, a maximal depth of 3, and an average depth of (2+2+3+3+2)/5 = 12/5. Note
that a tree is said to be (almost) balanced if its average and maximal depths are (almost) equal. Notice that,
while one can also use non-binary decisions trees, in supervised machine learning one generally restricts
to binary ones, for reasons that will be explained later on.

Figure 4.2 provides an example of a decision tree for a prediction task. In this case the test nodes are
decorated with questions comparing an input feature to a threshold, while the leaves are associated with
information about the output target variable (here a simple “yes/no” label). This graphical representation is
often easy to understand and interpret by human experts.

A decision tree can be translated into a nested set of ’if-then-else’ statements defining an algorithm
for carrying out predictions based on the tree. For our example, this is illustrated in Algorithm 1, and we
observe that these rules are easy to interpret: reading them allows us to immediately grasp how predictions
are linked to input variables. From a practical point of view, the more complex a decision tree is, and the
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income > 1250

age > 18no

no yes

no

no

yes

yes

Figure 4.2 An example of a simple binary decision for a hypothetical credit card allocation problem.

more complex the set of ’if-then-else’ rules and the predictor h it implements are, and the more difficult it is
to interpret this function.

if (income > 1250) then
if (age > 18) then

yes
else

no
else

no

Algorithm 1: Translation of the decision tree of Figure 4.2 in a cascade of if-then-else statements.

From a statistical point of view, as we will see, the complexity of a tree is directly related to the number
of degrees of freedom of the corresponding model. We can thus anticipate that the more complex a tree, the
larger the number of samples necessary to validate its overall significance.

The stakes of supervised learning of (binary) decision trees

Supervised learning aims at automatically inferring a decision tree based on a learning sample. To explain
the rationale behind this algorithm, we will discuss a simple supervised learning problem.

Let us consider a bank client listing as the one given at Table 4.1, which we chose very small for the
sake of legibility, and let us consider these data as a learning set.

client number age monthly income credit card
001 17 550$ no
002 19 900$ no
003 21 1500$ yes
004 16 1200$ no
005 28 1550$ yes
006 32 2000$ yes
007 25 1150$ no
008 34 2900$ yes

Table 4.1 Example of data for a credit card marketing problem

The last column of Table 4.1 is the output we want to learn. Our goal is to answer the following question:
“Should we spend budget and time to propose a credit card to a client?” The clues that our decision tree
should use to answer this question are the two descriptors of the person corresponding to the second and
third columns: its age and its monthly income. Indeed, at this stage we can a priori exclude the first column
as irrelevant, since we don’t normally want to infer a decision strategy based on client number. Note however,
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that in another context we might be interested in assessing whether or not the client number is correlated
to the decisions recorded in the dataset, which could raise interesting questions about the quality of our
dataset and/or about our past decisions.

By examining the learning set, we can check that the decision tree shown in Figure 4.2 actually is a
consistent explanation of the record of past situations, since its predictions are perfectly fitting the target
output over the learning sample. We will say that the tree perfectly fits this dataset, and if we consider that
the dataset is also representative of future conditions of usage of the tree, we may be tempted to accept it
as a potential decision strategy, and if we consider that the dataset indeed reflects our past experience, we
can infer that so does also the decision tree. In this particular case, we might also be attracted by the fact
that the interpretation of the rule is conform with our intuition, namely that consumers with small income or
that are very young are unlikely to purchase a credit card.

To get further insight, let us depict a geometric interpretation of our problem. To this end, we observe
that each object of the table 4.1 may be viewed as a point in a two dimensional space spanned by the
variables “age” and “monthly income”. These points are plotted on figure 4.3, where the dashed line is the
decision boundary that separates the clients asking for a credit card (in green) from those who do not (in
orange), as expressed by the decision tree of Figure 4.2.
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Figure 4.3 The decision rule in a two dimensional space

Notice that from this graphic, we may also infer that actually the two subsamples labelled respectively
“yes” and “no”, could as well be perfectly separated by a simple threshold of say 1250$ on the “income”
feature, and almost perfectly by a simple threshold of say 18 on the “age” feature. So, we now end up with
three different explanations of our past observations, and the question is which one is the best. Intuitively,
it is difficult to compare the first explanation (involving the two features but yielding a perfect fit to the
learning sample) and the third one (which involves only one feature but is not perfect anymore on the
sample). However, the second rule dominates these two rules, both in terms of data fit and complexity, so
that it looks at this stage as being the best explanation among the three alternatives, and maybe the most
effective decision rule to use for our future marketing campaigns.

From our discussion, we may infer that good decision trees are those that are both simple and fit well to
the dataset, but that it is not so easy to a priori define the correct compromise between these two criteria.
We have also seen that for a given level of fit on the training set, it is in general possible to formulate
a number of alternative explanations that are possibly of different complexity. For a given level of fit, we
would certainly prefer the simplest tree, but it turns out that from a computational point of view solving this
problem is so-called NP-hard [HR76], and hence out of reach in any practical setting (as soon as the number



34 CHAPTER 4. TREE-BASED METHODS FOR GWAS

of features and observations are larger than a few tens). Conversely, for a given complexity, we would prefer
the tree that fits best to the learning sample, but solving this problem is again NP-hard.

So even if we could a priori guess the right level of fit or of tree complexity for a given problem, finding a
good tree in these conditions has to be based on heuristics and possibly suboptimal algorithmic approaches.
Furthermore, the optimal level of complexity of a decision tree turns out to be highly problem specific, for
example if the features are effectively unrelated to the target output we would like a supervised learning
algorithm to tell us this by producing a “trivial” tree composed only of its root, while for a problem where
some of the inputs are indeed correlated to the output we would like a tree to tell us this information, but if
the correlation structure is intricate we do not expect to be able to achieve this goal unless the dataset is
of rather large size.

To summarize our discussion, supervised learning of decision trees leads inevitably to solving a dataset
specific compromise between complexity and learning set fit, and can’t be solved in a computational efficient
way without resorting to heuristic algorithmic approaches. Research in single decision tree induction has
started in the early 1960’s [MS63, Hun66, HJF69], and was addressed by researchers with very different
perspectives (survey analysis in sociology, questionnaire design, artificial intelligence, and last but not least
computational statistics [Fri77, Qui83, KBR84]). This work has explored many different alternatives but
eventually culminated with the publication of the book on Classification and Regression Trees [Bre84] in
the mid 1980’s. In the next subsection we describe the resulting algorithm. We will see that it is not only
interpretable from the viewpoint of the results that it computes but also from the viewpoint of its algorithmic
behavior. Later on we will see that this latter kind of interpretability is quite important to help researchers
to produce novel algorithms overcoming the basic limitations of this method.

Overall principle of top-down induction of decision trees

The standard strategy for supervised learning of decision trees uses the available dataset in order to build
the tree in two steps, i.e. by first growing an overly complex tree and then pruning it to the right level
of complexity [Bre84]. Tree growing uses a top-down divide and conquer strategy in order to build a tree
of small complexity fitting very well the learning sample. Tree-pruning typically uses an independent test
sample, in order to simplify the tree in a bottom-up fashion as much as possible and so as to maximize its
accuracy on this independent test-sample.

The goal of tree growing is to divide the attribute space (in our example the plane spanned by ’income’
and ’age’) into an as small as possible number of regions (in our case rectangles) which contain essentially
only samples of a single class. In a nutshell, the method starts with a trivial tree composed only of its
root and the complete learning sample: it then tries to split the learning sample by finding a test (or a
question) based on one of the input features, in such a way that objects of different classes correspond as
much as possible to different outcomes of the test. Once this test has been found, the method splits the
learning sample in two subsamples corresponding to the two possible outcomes of the test and proceeds by
recursively building the corresponding subtrees based on these subsamples. Notice that before deciding to
expand any node the algorithm verifies whether or not the current node should or not become a leaf of the
final tree.

Thus, the three key ingredients for growing a decision tree are the following.

1. Definition of a set of candidate splits: based on observations, we need to find a ”question” that will
partition the learning set in two subgroups. In the standard method, a split is defined by choosing
an input feature and a question about its values that will divide the current learning set in two parts.
Depending on the nature of the feature (discrete or continuous) different types of splits can be defined.
For numerical features with k different values there are k − 1 possible splits and for categorical
variables with i categories there are 2i−1 − 1 possible splits.
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2. Evaluation of the splits: a score measure has to be used in order to decide which is the best question
to ask, what is the best feature to use at the current node and with which threshold. Since the idea is
to generate the purest learning subsets in terms of the output labels, the basic principle is to measure
the purity improvement made by any candidate split, yielding score measures based on the class
purity improvement between the sub-sample reaching the current node and those of its resulting two
sub-sub-samples.

3. Deciding under which conditions should a node become a leaf: the stopping rules will ensure that the
tree has a finite number of nodes. Different rules exists, some of them are data driven while the others
are user defined:

• data driven :

– a node is pure: if all the objects in a node are of the same class, the fit is locally perfect so
that no additional split should be made.

– identical value for each variable: sometimes, objects may have identical descriptors while
being of different classes. In that particular case, it is not possible to find a split that will
improve the fit.

• user defined: these are essentially pre-pruning variants to limit the size of a tree and avoid
overfitting problems. Several criteria have been proposed in the litterature:

– limit the maximum depth of a tree

– limit the number of test nodes

– limit the minimum number of objects at a node required to split

– do not split a node when, at least, one of the resulting subsample sizes is below a given
threshold

– stop developing a node if it does not sufficiently improve the fit.

The above framework captures the large majority of tree growing algorithms which have been proposed
in the literature. A simplified version of the resulting recursive procedure is depicted in Algorithm 2, where
Acand denotes a subset of the input attributes used in the particular application context of the method. The
tree induction algorithm is recursive, starting from the root node, the left and right child nodes are created
and then expanded by calling the algorithm on their corresponding subsamples. At some point, if the local
learning set becomes pure or all the attributes constant, the algorithm stops creating children and the node
becomes a leaf. Those leaves are typically labelled with the majority class present in the sub-sample of the
learning set reaching the leaf, or if several classes are present in the corresponding subsample by a vector
of relative class-frequencies, as suggested in our pseudo-code.

Notice that this simplified procedure continues splitting until no sensible additional split can be found,
i.e. produces what we will call in the sequel a fully developed tree. In practice this leads to overly complex
trees, typically overfitting the learning sample. Therefore, the tree growing procedure is in practice completed
by a so-called tree-pruning method: roughly this consists in generating from the grown tree a sequence
of shrinking trees obtained by successively replacing test nodes by leaves, by assessing the accuracy of
each one of these trees on an independent test set (or by using a cross-validation technique), and by
eventually selecting among the pruned trees one that yields an appropriate compromise between complexity
and accuracy. Since in this work we will not use these tree pruning methods, we refer the interested reader
to the literature for more information about these methods [Bre84, Min89, WA93].
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BuildDecisionTree

input : LS , Acand

output: A tree : T // Its root node

if const(attributes) or const(output) then
return a leaf labeled by class frequencies in LS

else
Select all attributes ∈ Acand : {a1, ..., ap}
{s1, ..., sp} : si = pickOptimalSplit(LS, ai)
s∗ = maxi=1,...,pScore(si,LS)
Split LS into LSleft and LSright according to s∗
Tright ← BuildDecisionTree(LSright,Acand)

Tleft ← BuildDecisionTree(LSleft,Acand)

return createNode(s∗,Tleft,Tright)

Algorithm 2: The recursive algorithm for growing fully developed decision trees from a dataset.

Implementation details used in this thesis

In order to be precise, in this section we describe the specific choices we have made in our implementation
of single trees, used within the methods described in the sequel.

• Evaluation of the splits – The score measures we will use in our experiments are based on the well-
known logarithmic or Shannon entropy. Let t denote a test outcome at a node of a decision tree and
c the class which we are trying to predict, t and c are two discrete random variables of respective
distribution (p(t1), ..., p(tk)) and (p(c1), ..., p(cm)) (in our case, as from a machine learning point of
view a gwas is a binary classification problem and the decision trees are binary trees, m = k = 2).
Basically, the class entropy allows to measure the impurity at a given node:

HC(node) , −
m∑
i=1

p(ci) log2 p(ci) (4.1)

, −pcase log2 pcase − pcontrol log2 pcontrol (4.2)

where pcase (where pcontrol) correspond to the proportion of cases (controls) reaching the current node.
Similarly the test entropy is defined as follows:

HT (node) , −
k∑

j=1

p(tj) log2 p(tj) (4.3)

, −pleft log2 pleft − pright log2 pright (4.4)

where pleft (prigth) denotes the proportion of objects propagated to the left (right) at the current test
node. Also we can define the average conditional entropy of the class given the test:

HC|T (node) , −
m∑
i=1

k∑
j=1

p(ci, tj) log2 p(ci|tj) (4.5)



4.2. STATE-OF-THE-ART IN TREE-BASED SUPERVISED LEARNING 37

Thus, a score measure can be defined as follow:

score(node) , HC(node)− pleftHC(nodeleft)− prightHC(noderight) (4.6)
, HC(node)−HC|T (node) (4.7)
, ITC(node) (4.8)

and corresponds to the difference of the current node impurity and the weighted impurity of the two
resulting child nodes. It reflects the goal of the tree induction which aims to reduce the impurity at
each test node. The split that maximizes such score is the one that reduces the more the class entropy
from one node to its descendants. It is also called the mutual information ITC and it quantifies the
reduction of the uncertainty of c given t. As this information quantity is upper bounded by the prior
entropy HC(node), that measure is sensitive to the number and prior distribution of classes rendering
it difficult to interpret. Also in the context of decision tree induction, it has been observed to favor
tests at a node with a larger number of outcomes. For these reasons, various normalizations have been
introduced and are discussed in details in [Weh96]. Two of these normalizations will be investigated
in our work. Equation 4.9 defines the “gain ratio” introduced by Quinlan which aims to reduce the
bias towards tests with many successors:

QT
C ,

ITC
HT

(4.9)

However, low HT could lead to an overestimate of the value of a split. In the literature [Tor01], this
issue is called the “end-cut” preference of the “gain ratio” criterion as, for ordered attributes, it tends
to be maximized at extreme cutoff values.

Second, Equation 4.10 defines a symmetrical (in C and T ) score measure:

ST
C ,

2ITC
(HC +HT )

(4.10)

In our experiments, we will investigate three variants of score measure (ITC ,QT
C and ST

C ) and discuss
their impact on the results. In practice, as for the χ2 test of association, scores are computed from a
contingency table. For example, if e samples reach a given node, where we test snp345 against the
threshold 0.5 (in other words, if we separate the homozygous wild samples (0) from the heterozygous
(1) and homozygous mutant ones (2), which corresponds to the dominant model), it is possible to
summarise this test in Table 4.2, where a (c) represents the numbers of homozygous wild controls
(cases), b (d) represents the number of heterozygous and homozygous mutant controls (cases). The
proportions pleft, pright, pcase and pcontrol are then used in combination with the rest of the table to
compute our different score measures.

snp345 > 0.5 snp345 ≤ 0.5

Controls a b pcontrol =
a+b
e

Cases c d pcase =
c+d
e

pleft =
a+c
e pright =

b+d
e e

Table 4.2 Similarly to the χ2 test of association, the different score measures are based on a contingency table. In
this example, e samples are reaching a node at which snp345 is tested against the dominant model.
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• Complexity control – In some situations, it may be useful to prevent a node from being further splitted.
In the following, we mainly use two types of complexity control parameters:

– Nmin: this (user defined) number corresponds to the required minimum number of objects (i.e.
local sub-sample size) reaching a node for it to continue splitting. For example, setting Nmin to
n− 1 will produce a one-level decision tree with its root node directly connected to two leaves
(this type of tree is also called a decision stump). Practically, a simple condition is added to
check whether or not the learning set is big enough to create a new split. The typical default
value for Nmin is 2; meaning that the tree is fully developed.

– Nnode: this limit corresponds to the maximum number of test nodes allowed in a tree. Similarly,
setting Nnode to 1 will produce a decision stump. In order to obtain a fully developed tree, Nnode

is set to +∞. At this point, from an algorithmic point of view it is important to notice that the
nodes are developed in a given order which is implementation dependent. For example, in the
Algorithm 2, we see that the right node is always the first one being expanded (and recursively,
its right child is also being developed first). Now, imagine that we know our tree will be balanced
(maximum and average depth equal 3) and that we use a Nnode = 3 to limit the number of nodes
in the induction of such a tree, we end up with a highly unbalanced tree looking like a linked list
also called a degenerate tree (see Figure 4.4). That is why we must control the order in which
the nodes are developed when we use a limit over the maximum number of nodes allowed in a
tree. In that case, in our implementation we choose to randomise the order in which nodes are
expanded. In our method proposal, we will see that this configuration will be particularly useful
to produce weak learners.

• Labeling the leaves – In a fully developed tree, (most of the time) the objects reaching one leaf are all
of the same class, in that case, we say that the terminal node is pure. One approach would be to label
the leaves with their corresponding class, but, as explained before, if we stop earlier the induction of
the tree, more than one class may be represented in a leaf. Thus, another approach would be to label
the leave with the majority class. The propagation of an object through the tree will lead to labeling it
with the majority class. Yet another approach would be to keep in the leaves the proportion of objects
of each class that reached that terminal node. That proportion would somehow reflect the confidence
of the corresponding prediction. For example, an object reaching a terminal node with 98 cases and
only 2 controls is more susceptible to be classified as a case than another object that arrives in a leaf
with 32 cases and 25 controls.

Figure 4.4 A degenerate tree is a highly unbalanced tree looking like a linear graph. Each test node has only one
test node as child node.
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Feature selection ability and input feature importance measures

In tree-based approaches, the feature selection mechanism, i.e. the ability to identify from a large set of
candidate attributes the maximal subset of relevant ones, is said to be embedded into the methods. Indeed,
in the particular case of single decision trees, at each node, a full scan of the feature space is performed
in order to select the optimal split (the one that locally maximizes the reduction of entropy), thus, irrelevant
features will naturally be discarded.

Also, single decision trees with a small number of nodes are easily interpretable due to the graphical
representation. Now that we know how the tree is inferred, it is easy to understand that the tests that are
appearing closer to the root are the ones carrying the most valuable part of the information regarding the
output. Indeed, at each node we maximize the score and near the root we do that on bigger parts of the
learning set. On the other hand, tests at the bottom of the tree are less informative as they concern a smaller
part of the dataset from which the tree was learned.

However, in many applications, the tree complexity increases rapidly rendering its graphical represen-
tation difficult to read and understand. Still, numbers can speak and should allow to rank the variables
according to their respective “contributions” or importances in a tree. Such numbers should reflect how
well that variable helped to reduce the impurity of a node during the learning stage. Intuitively, such a
“variable importance” measure should give more credit or weight to a variable that is used near the root
while according less importance to the ones used at the bottom of the tree.

It is then possible to use the mutual information for that purpose. For each variable xi used (maybe
more than once) in a decision tree, we compute its importance as follow:

Vimp(xi) =
∑

n∈Nodes(xi)

pnI
T
C(n) (4.11)

where Nodes(xi) is the set of tree nodes where the variable xi is used to split, pn denotes the relative
sample size of node n, and ITC(n) is the local reduction of entropy resulting from the selected split at this
node.

Doing so, variables appearing in many and “bigger” nodes (i.e. closer to the root) should be more
important than the other ones.

Discussion

Single decision tree induction is the core of our research which aims to apply machine learning tree-based
methods for gwas. The main advantages of this method are as follows:

• simplicity: the method is essentially a parameter free “plug-and-play” method. It can be applied with
no prior knowledge on the nature of the supervised learning problem, the combination of tree-growing
and tree-pruning techniques ensures the asymptotic consistency;

• algorithmic efficiency: the learning stage is linear in the number p of input features and between
O(n log n) and O(n2) in the sample size, and in practice typically O(n log n). While the testing step
complexity ranges from O(0) to O(n) and typically is O(log n)1;

• interpretability: the method incorporates mechanisms of feature selection, an easily interpretable
graphical representation and variable ranking capabilities which are all natural by-products obtained
without significant computational overhead;

Nevertheless, single decision trees as such do not meet the requirements for a genome-wide association
study because of their limitations:

1The big O notation is used in Computer Science to describe the complexity of an algorithm.
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• the number of features used by the model is limited to the size of the learning sample, especially for
the gwas where the ratio n/p is really small and the number of relevant variables is expected to be
large, a single decision tree may not be able to exploit all the features that are associated with a
disease and may lead to a suboptimal statistical model;

• some score measures (such as QT
C and its “end-cut” preference), used in the context of single decision

trees, are suffering from a pathological behavior when dealing with almost constant features or, in the
gwas context, rare variants;

• high variance, leading to low accuracy in generalization and jeopardizing to some extent the inter-
pretability;

• for a given implementation, the induction of a tree is deterministic meaning that, for a given learning
set, the corresponding inferred tree will always be the same. In consequence, in the presence of large
numbers of strongly correlated variables (i.e. variables carrying the same information), only a few of
them will be effectively used, potentially hiding its surrogates in the variable importance ranking.

4.2.2 Random Forests

In this section we explain the rationale behind the random forest method, and then describe the algorithm
implementation used in our practical studies carried out in the subsequent chapters, and discuss its three
main meta-parameters.

Historical notes and motivation

Single decision trees are subject to several limitations, and in particular a (very) high variance which makes
them often suboptimal in practical applications. Driven by this fact, a standard technique for reducing the
variance of a machine learning algorithm was proposed in the early nineties by Leo Breiman [Bre96], since
then called Bagging. The term bagging stands for bootstrapping and aggregating: instead of building a
single predictor (in our case a single decision tree) the method generates an ensemble of predictors by
bootstrapping over the learning sample and then aggregates their predictions, in the following way:

1. Generate T randomized versions of the learning sample, by sampling randomly with replacement n
objects from the initial learning set. For each one of these T so-called bootstrap copies of the learning
set, use a supervised learning algorithm (in our case a classification tree growing method).

2. In order to predict the output of a new case, use in turn all the T built models to get as many
predictions (in our case each tree provides an estimate of the conditional probability of the output
classes, given the input feature values of the new case), and then aggregate these predictions. In
practice there are two different ways, one that we call ’soft’ voting where the prediction becomes the
average class-probability, and one called ’majority’ voting where the prediction becomes the relative
number of times, among the T predictions, where a given class was of majority probability, i.e. higher
than 0.5 if we have only two classes.

Breiman showed that the resulting ensemble model has a smaller variance than the original supervised
learning method (called base learner in this context), and that the variance reduction effect is proportional
to the number T of ensemble terms. When the base learner consists of growing fully developed trees, the
method leads hence to a very strong reduction of variance, and typically at a price of only a very moderate
increase in bias [Geu02], so that in the end, the resulting model is typically much more accurate than a single
tree built on the original learning sample. Bagging does not improve or fundamentally change the asymptotic
properties with respect to those of the used base learner, but it leads in practice to much better small sample
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behavior in terms of accuracy, essentially at the price of an increased computational budget, since instead
of a single run on the full dataset, the supervised base learner is used T times (in practice T ∈ [10, 10000]).
The nice feature of this algorithm is that it is fully generic and any-time: it can be applied to any base
learner, yields monotonic improvement with the number of terms T and can be interrupted at any-time to
produce a classifier with a ensemble generated at this stage. Moreover the algorithm may benefit from
straightforward parallelization, since each individual model of an ensemble may be learnt independently of
the others.

During the same period of the early 1990’s other researchers investigated the idea of building ensembles
of tree-based models by transforming explicitly the deterministic tree-growing algorithm into a stochastic
method, e.g. by locally or globally randomizing the choices of the algorithm, and in particular the subset
of input features exploited [Ho98, Die00]. Leo Breiman realized the interest of connecting the theoretical
analysis of these methods with bagging of tree-based models, and proposed the random forest as a synthesis
of the two ideas [Bre01]. Since then this method has been considered as one of the most effective supervised
learning methods on the shelf [HTF09]. As we will see, not only it is generically more effective than bagging
from the accuracy point of view, but it also has strong advantages in terms of computational complexity,
specially in the context of very high dimensional input spaces covered by many correlated features.

Our implementation of the random forest algorithm

In order to randomize the tree induction algorithm, Breiman proposes two levels of randomization:

1. tree level: to build each tree of the ensemble, a bootstrap copy of size n is drawn randomly with
replacement from the learning set.

2. node level: at each node, instead of a search for the optimal split among all the features, only a
random subset of K features is investigated (K ∈ {1, . . . , p} where p = #Acand).

That method introduces two meta-parameters :

1. T the total number of desired trees in the forest: the choice of T is essentially driven by time/computation
limitation. Indeed, theory and empirical results show that the larger T the better. Of course, given
the data, after a certain number of trees in the ensemble, the results are expected to converge. Thus,
when it is possible, one recommendation to follow is to build trees until the error rate measured on
an independent test set (or via any other unbiased estimation procedure such as cross-validation, or
out-of-bag estimates [Bre01]) no longer changes.

2. K the number of tested variables at each node: the choice here is dependent on the nature of the
problem. If we know that many variables are relevant, a small value of K would be a good choice, on
the other hand, when only a few descriptors are informative, a large value of K would be well suited.
Still, in most of the cases, it has been observed that K =

√
p is often a good choice and will produce

near-optimal results (in the context of classification trees).

The top-level iteration of the random forest method is stated in Algorithm 3, where we introduce one
more parameter: Nmin. This parameter is used to limit the complexity of the individual trees composing the
ensemble model. The sub-routine used within the random forest method to grow individual tress is described
in Algorithm 4. It is quite similar to the algorithm 2 except that K random attributes are selected at each
node instead of all of them and in that it uses the “pre-pruning” parameter Nmin representing the minimum
number of samples at a tree node to allow splitting of that node. Fully grown trees correspond to Nmin = 2;
higher values of Nmin allow to reduce the complexity of the method (and the resulting trees) and may be
either favorable or detrimental in terms of accuracy (in practice , in problems where the features are providing
complete information about the output smaller values are better, and vice-versa, if residual uncertainty is
present, higher values are better).
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BuildRFEnsemble

input : LS ,Acand,T ,K ,Nmin

output: A tree ensemble T = {t1, ..., tT }

for i← 1 to T do
LSi ← Bootstrap(LS)
ti ← BuildRFTree(LSi,Acand, K , Nmin)

Append(T ,ti)
return T

Algorithm 3: Random Forest algorithm: building an ensemble of trees over bootstrapped versions of the
learning set. Randomization at the tree level in red; meta-parameters in blue

BuildRFTree

input : LS ,Acand,K ,Nmin

output: A tree : t // Its root node

if const(attributes) or const(output) or #LS ≤ Nmin then
return a leaf labeled by class frequencies in LS

else
Select K random attributes ∈ Acand : {a1, ..., aK}
{s1, ..., sK} : si = pickOptimalSplit(LS, ai)
s∗ = maxi=1,...,KScore(si,LS)
Split LS into LSleft and LSright according to s∗
Tright ← BuildRFTree(LSright,K ,Acand,Nmin)

Tleft ← BuildRFTree(LSleft,K ,Acand,Nmin)

return createNode(s∗,Tleft,Tright)

Algorithm 4: Random Forests: sub-routine for building one tree by randomizing the choice of features at
each node. Randomization in red and meta-parameters in blue.

Once the ensemble of trees has been learned, predictions are made by combining those of each tree
of the forest. As suggested by Figure 4.5, an object is propagated into each tree, leading that object to T
different leaves. The probability vectors vi associated to these T leaves are averaged as follows:

v =
1

T

T∑
i=1

vi (4.12)

and the prediction for the propagated object becomes the average class-probability v. This aggregation
method is also referred to as the ’soft’ class probability aggregation. In the binary classification case, the
resulting predictions v = (c0, c1) where c0 (reps. c1) corresponds to the probability of being classified as
an object of class 0 (resp. class 1) and c1 = 1− c0.

Extension of variable importances to ensembles

While the direct interpretation of the ensemble of trees is lost, it is still possible to rank the variables
according to the importance in the forest (their occurrence and proximity to the root of a tree). Similarly to
the case of single decision trees, variables importances are computed for tree ensembles by using the mutual



4.2. STATE-OF-THE-ART IN TREE-BASED SUPERVISED LEARNING 43

Figure 4.5 Ensemble of trees used in prediction mode.

information. In Equation 4.11, instead of looking at nodes from a single tree, the set Nodes(xi) becomes
now the set of all nodes in the forest of T trees where variable xi is used.

As such, this measure is however dependent on the number of trees T of the ensemble, and on the initial
impurity of the dataset and the impurity reduction yielded by the trees, and is thus difficult to interpret.
Hence the two possible following normalizations may be used:

V1
imp(xi) =

Vimp(xi)∑p
i=1 Vimp(xi)

, (4.13)

or

V2
imp(xi) =

Vimp(xi)

maxi∈{1,...,p} Vimp(xi)
. (4.14)

In Equation 4.14, the variable importances are normalized such that the maximum is equal to 1, whereas
in equation 4.13 they are normalized so as to sum up to 1.

Discussion of intrinsic features of this algorithm

In the Random Forest algorithm (Algorithm 3), we introduced 3 meta-parameters: T , K andNmin. Depending
on the nature of the problem, these parameters influence the induced model, the computation time required
for the learning stage and the quality of the results. Here is a small discussion about each of these
meta-parameters and some recommendations:

• T , the number of trees: the larger the number of trees in such a forest of decision trees and the better
will be the variance reduction of the resulting aggregation. It is then recommended to build as many
trees as possible in order to obtain better models and smaller generalization errors. Essentially, the
choice of this parameter is driven by the available time, computational power and the learning set
size. As in our gwas problem, we face the small n/p ratio, in conjunction with the limited number of
test nodes in a single tree, growing a larger forest and randomising the subset of candidate attributes
at each node increases the chances of investigating each snp at least once;

• K , the number of randomly selected variables at each node: the possible value for this meta-parameter
ranges from 1 to p (where p denotes the total number of attributes). Of course, as K increases, the
required computation time to construct a single node increases too. From an accuracy point of view
the optimal value of K is problem dependent, and we will thus investigate its impact on our different
datasets.;

• Nmin, the minimum sample size for splitting a node: also called the smoothing strength, it reduces
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the depth of the trees by limiting their complexity. A larger value of Nmin tends to produce results
with higher bias and smaller variance. Its optimal value is related to the noise level in the dataset as
it prevents “small” nodes from splitting (thereby avoiding the resulting trees to fit the noise). Larger
values of Nmin lead to earlier stopping of the tree induction process, and hence smaller computation
times.

4.2.3 Extremely Randomized Trees

Motivation

The Extra-Tree method (standing for extremely randomized trees) was proposed in [GEW06], with the main
objective of further randomizing tree building in the context of numerical input features, where the choice of
the optimal cut-point is responsible for a large proportion of the variance of the induced tree.

With respect to random forests, the method drops the idea of using bootstrap copies of the learning
sample, and instead of trying to find an optimal cut-point for each one of the K randomly chosen features
at each node, it selects a cut-point at random.

This idea is rather productive in the context of many problems characterized by a large number of
numerical features varying more or less continuously: it leads often to increased accuracy thanks to its
smoothing and at the same time significantly reduces computational burdens linked to the determination of
optimal cut-points in standard trees and in random forests.

From a statistical point of view, dropping the bootstrapping idea leads to an advantage in terms of
bias, whereas the cut-point randomization has often an excellent variance reduction effect. This method has
yielded state-of-the-art results in several high-dimensional complex problems [MWG13, LG12, G+05a].

From a functional point of view, the Extra-Tree method produces piece-wise multilinear approximations,
rather than the piece-wise constant ones of random forests [GEW06].

Our implementation of the Extra-Tree algorithm

The pseudo-code is given in Algorithms 5 and 6. Essentially the method iterates T times by using the initial
learning sample to grow a tree, in the following way:

1. at each node of each tree a random subset of K features is investigated, as in the random forest
method,

2. for each of the K features, instead of searching for the optimal split, a random question is picked (in the
case of numerical features, this is done by selecting a threshold from a uniform sampling distribution
spanning the values of the considered feature in the sub-sample of the current tree node). The K
couples (feature, threshold) are evaluated by computing their score and the best one is selected to
split the node.
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BuildETEnsemble

input : LS , Acand,T ,K ,Nmin

output: A tree ensemble T = {t1, ..., tT }

for i← 1 to T do
ti ← BuildExtraTree(LS ,Acand,K ,Nmin)

Append(T ,ti)

return T

Algorithm 5: Extra-Trees: the top-level iteration of the algorithm (there is no randomization; meta-
parameters are exposed in blue).

BuildExtraTree

input : LS ,Acand,K ,Nmin

output: A tree : t // Its root node

if const(attributes) or const(output) or LS ≤ Nmin then
return a leaf labeled by class frequencies in LS

else
Select K random attributes ∈ Acand : {a1, ..., aK}
{s1, ..., sK} : si = pickRandomSplit(LS, ai)
s∗ = maxi=1,...,KScore(si,LS)
Split LS into LSleft and LSright according to s∗
Tright ← BuildExtraTree(LSright,K ,Acand,Nnode)

Tleft ← BuildExtraTree(LSleft,K ,Acand,Nnode)

return createNode(s∗,Tleft,Tright)

Algorithm 6: Extra-Trees: algorithm for building one extremely randomize tree. Meta-parameters exposed
in blue, and randomization in red.

Discussion of interest w.r.t. random forests

In the Extra-Trees, the different inputs needed are the same as for the random forests but K = 1 has now
a particular meaning. Indeed, setting K to 1 makes the resulting trees totally randomized. Indeed, given
the fact that the cut-point is randomized and that there is only one random attribute being checked, the
generated splits are totally independent from the output variable information provided in the learning sample.
This means that this version (Extra-Trees with K = 1 are called Totally Randomized Trees) is producing
models that are very close to the k-nearest neighbour method [GEW06].

In the particular case of snp attributes, there are at most two possible cut-points (0.5 and 1.5). In the
random forests, the search for the optimal split at each node is straightforward while in the Extra-Trees the
randomization of the cut-point is not so random anymore. This reduces the difference between the choices
that are made at each nodes in the two types of methods. Also, the expected speed-up due to the absence
of optimal split search in the Extra-Trees is way less significant in such configuration of the feature space.

Finally, variable importances are computed exactly as for the random forest, using the mutual information.
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4.3 Trees inside Trees

In this section we describe our method called T-Trees (which stands for Trees inside Trees). It is based on
the two preceding ones: the random forests and the Extra-Trees. This novel approach aims at addressing
some specific features of gwas.

4.3.1 Motivation

In all the previous algorithms, test-nodes are exploiting only one variable at a time. The basic idea under
our extension proposition of decision tree algorithms is to treat more than one variables inside the splitting
nodes. One of the main reasons to modify the splits is because of the particular structure of the feature
space. In the gwas context, due to linkage disequilibrium, we expect at a given position a limited haplotype
diversity. Thus based on the physically ordered nature of the snps, the idea behind the T-Trees algorithm
is to partition the feature space into blocks of contiguous and (potentially highly) correlated variables. The
splits will be made on a block of snps instead of a single one, taking advantage of the local information
potentially carried by the region covered by the corresponding block. Figure 4.6 illustrates the structure of
a T-Tree.

block25

block471 block12

block36 block88

Figure 4.6 Overview of a T-Tree. Instead of single variable test-nodes, a T-Tree allow to split on blocks of variables.

This constraint allows to reduce the size of the feature space. By doing so, we expect to increase the
chances of:

• capturing the interactions between (blocks of) variables: as the size of the feature space is divided by
the size of the blocks, we increase the chance of finding interactions in consecutive splits (or at least
along one branch of a tree),

• discovering a particular snp combination (i.e. a haplotype) that is linked to the disease. Indeed, in
the classical tree-based methods, the chances of testing consecutively two snps falling into the same
haplotype block are relatively small (it will depend on the total number of snps, the parameter K and
the presence of other informative variables),

• exploiting a group of surrogate variables: if two or more variables are in perfect ld, they share the
exact same information about the output variable, due to the randomisation in the previously presented
algorithms, each of these variables will be asymptotically equally selected in a forests of decision trees
(random forests or Extra-Trees), their respective importances will drop as the number of surrogates
increases. The ability to rank a block instead of a single variable will help to identify a group of
highly correlated variables.



4.3. TREES INSIDE TREES 47

4.3.2 Algorithm

Our method is based on the two previously presented tree-based methods : the random forest and the
Extra-Trees algorithms (respectively abbreviated rf and et in the following).

As a reminder, those two methods are quite similar, but differences occurs during the learning stage, rf
grows T trees by recursively partitioning a bootstrap sample (n samples extracted with replacement from
the learning set of size n). At each node, a search for the optimal split among a random subset (of size
k ≤ p ) of all the p variables is performed. On the other hand, et grows T trees by recursively partitioning
the initial learning set. At each node, K random splits on a random subset of K variables are picked, the
best one is kept.

Basically, the node splitting rule in rf is modified to test a group of variables using a weak learner2
developed on a small subset of the feature space (e.g. a small number of consecutive snps). The predictions of
this small learner will produce a vector of probability for each learning samples reaching the corresponding
node. That vector is used as a new numerical attribute corresponding to the group over which the split was
made. A cut point is then optimally chosen between 0 and 1 as in the standard rf algorithm. In our proposal,
we choose to use a single Extra-Tree with a limited number of nodes as a weak learner.

These small trees are used inside the splitting nodes, they are developed on a subset of variables. The
Algorithms 9 and 10 uses the Extra-Trees ensemble method where the number of tested attributes at each
node (Kint) is set to the total number of variables contained inside the groups/blocks and T is fixed to 1.
Two important modifications are added :

1. the maximal number of nodes is limited by the internal complexity parameter: IC . The choice of
this value will depend on the nature of the variable groups. IC = 1 will be an interesting choice
for strongly correlated attributes as they all carry the same information, higher values will be well
suited when a combination of several attributes is required to explain the outcome. Note that when the
internal complexity is set to 1, the method does not reduce to standard random forests as in T-Trees the
K variables will be selected each in a different bloc, thus widening the scan coverage of the feature
space while searching for an optimal split.

2. in most of the decision tree induction algorithms a fixed order is used to expand the nodes (left to
right or vice versa). As we choose to limit the number of nodes, we want to avoid the resulting tree
to degenerate (i.e. to become a branch). For that reason we expand the nodes in a randomised order
(to break the depth-first order). For the sake of clarity, that randomisation step has been intentionally
omitted in the Algorithm 10.

In the following, as we use trees inside trees, what we call external nodes are the group test nodes
containing the weak learners. These nodes correspond to rf nodes. Internal nodes are the ones being part
of the weak learner (the node limited Extra-Tree), testing a single variable (Figure 4.7).

2In the machine learning context, a weak learner is a model that performs at least better than random guessing.
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block25
internal

nodes
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Figure 4.7 T-Trees terminology: difference between internal and external nodes.

As input, instead of a pool of candidate attributes, this method needs a block map defining how variables
are grouped. In the gwas context, the block map partitions the initial feature space into sets of contiguous
snps. For this novel method, instead of selecting K random attributes (Algorithm 4), we select K random
groups of variables. Algorithms 7 and 8 respectively detail the T-Trees forest induction and one T-Tree
induction.

Figure 4.8 shows an example of a T-Tree splitting node. Three external nodes are represented, they
partition the learning set using group 8, 27 and 1. In this example, the IC = 3. Out of the Group1 3 snps
are tested: snp13, snp16 and snp12.

Group8

Group27 Group1

YesNo

YesNo

YesNo

YesNo YesNo

SNP3>0.5

SNP6>1.5 SNP2>0.5

1

1 1

Probability > Threshold

Probability > Threshold

Probability > Threshold

Figure 4.8 A closer look into a T-Tree test-node shows how the weak learner is used to split on more than one
variable.
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At each external node, attribute groups are tested and the prediction obtained with the internal tree
corresponding to this node is thresholded to propagate the object to a successor.

T-Trees

input : LS ,B,T ,K ,Kint,IC ,Nmin

output: T

for i← 1 to T do
LSi ← Bootstrap(LS)
Ti ← BuildTTree(LSi,B,K ,Kint,IC ,Nmin)

Append(T ,Ti)

return T

Algorithm 7: The T-Trees algorithm is quite similar to the random forest algorithm. It adds two metapa-
rameters: Kint and IC ; and needs a block map B.

BuildTTree

input : LS ,B,K ,Kint,IC ,Nmin

output: A TTree T // Its root node

if const(attributes) or const(output) or #LS ≤ Nmin then
return a leaf labeled by class frequencies in LS

else
Select K random blocks ∈ B : {g1, ..., gK}
{s1, ..., sK} : si = pickGroupSplit(LS, gi,Kint, IC)

s∗ = maxi=1,...,KScore(si,LS)
Split LS into LSleft and LSright according to s∗
Tright ← BuildTTree(LSright,B,K ,Kint,IC)
Tleft ← BuildTTree(LSleft,B,K ,Kint,IC)
return createNode(s∗,Tleft,Tright)

Algorithm 8: The T-Tree building algorithm
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pickGroupSplit

input : LS, g,Kint, IC

output: [p < th]

T = BuildExtraTTree(LS ,g,Kint,IC)
Propagate LS in T , p = vector of resulting probabilities
Search optimal threshold th over p
return [p < th]

Algorithm 9: The pickGroupSplit function is based on the Extra-Trees algorithm. A single Extra-Tree
is built and its predictions allow to transform a group of attributes into a new numerical value.

BuildExtraTTree

input : LS ,g,Kint,IC
output: A tree : t // Its root node

if const(attributes) or const(output) or #nodes ≤ IC then
return a leaf labeled by class frequencies in LS

else
Select Kint random attributes ∈ g : {a1, ..., aKint}
{s1, ..., sKint

} : si = pickRandomSplit(LS, ai)
s∗ = maxi=1,...,KintScore(si,LS)
Split LS into LSleft and LSright according to s∗
Tright ← BuildExtraTTree(LSright,g,Kint,IC)
Tleft ← BuildExtraTTree(LSleft,g,Kint,IC)
return createNode(s∗,Tleft,Tright)

Algorithm 10: Inside the external nodes, the weak learner that is used is a single Extra-Tree with an
IC-limited number of (internal) test nodes.

4.3.3 Evaluation of variable and group importances

The variable ranking ability of tree-based methods is conserved. The T-Trees uses two types of features:
variables (in the internal nodes) and groups of variables (in the external nodes). This leads to two importance
measures:

• variable importances: instead of considering all the nodes, we only take into account the internal ones.
For each variable, we can sum over all the internal nodes where a variable appears (regardless of its
group) the local reduction of entropy weighted by the local sample size.

• group importances: to rank the groups of variables, we consider the external nodes only. As they also
produce a split over a learning set, it is also possible for each group to sum the local reduction of
entropy at nodes where a group is used (regardless they exploit all variables of a group or not).

Given the features we want to rank, Equation 4.11 is used but the nj are internal nodes for the variable
importances or external nodes for group importances.
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4.4 Extension to more quantitative or multiple phenotypes and environ-
mental effects

In this chapter we presented various tree-based methods and focused on binary classification problems. It
has to be noted that these methods can easily handle more than two phenotypes, the same score measure
can be used on larger contingency tables (instead of a 2× 2 table we consider a 2×#outcome table).

Also, regression trees are well suited in case of quantitative traits. Instead of measuring the reduction
of entropy, variance reduction is used as a score measure.

Finally, the incorporation of environmental factors could be easily achieved as splitting rules could easily
handle categorical variables as well.

4.5 Related works

During the last decade, many researchers investigated machine learning approaches in the field of genome-
wide association studies. Many of these researches focused their effort on the ability to localise loci
associated with a phenotype while a few concentrated their attention on the prediction power of such
machine learning techniques. Beside direct/“black-boxed” application of the method, a few proposed small
adaptations in order to circumvent some of the method flaws, but none of these investigations proposed an
intrinsic modification of the tree-based methodology. Among these, many promising results opened the path
and motivated our current research. More precisely, these researches investigated:

• The general power of machine learning and tree-based approaches on real gwas datasets

In [BDH+03], random forests were applied to the Genetic Analysis Workshop 13 small simulated
dataset. Using the IBD (identity by descent) score of sibling pairs as variables in a candidate gene
and a genome scan approach, they predicted several quantitative phenotypes (hdl, triglycerides and
glucose). The true model being known, they showed the ability of the random forests to detect both
susceptibility genes and markers.

In [H+06], the authors evaluate strengths and weaknesses of several machine learning analysis ap-
proaches on large numbers of SNPs (logistic regression, neural network, combinatorial partitioning,
multifactor dimensionality reduction and Random Forests). Among the criteria, the following important
ones have been considered: the ability to handle large scale datasets, interactions, correlations and
heterogeneity. Especially for Random Forests, they highlight the need to deal with correlated SNPs
which motivated our T-Trees proposal.

More recently, in [GHCB10], a random forest based GWAS (with more than 300K snps as input
variables describing 3000 individuals) on a multiple sclerosis dataset has proven successful, identifying
four new candidate ms genes in addition to a few more already reported as associated. They studied
the impact of the number of tested attribute at each node (k) and the number of trees on the out-of-bag
error rate and variable importances stability. They proposed to remove strong associations in order to
find weaker ones (in this case the mhc region on chromosome 6 that is well known to be associated
with ms). To address variable correlations, they used an LD-pruning approach using Plink, mostly
similar to the one proposed in [MYC+09], removing redundant SNPs. Not surprisingly, they found
that, as we expect a small proportion of the variables to be relevant, larger values of k are better.

In [GRF11], the authors compared two types of Bayesian methods with two types of tree based methods
(random forests and boosting). They compared the predictive capability of these methods in simulated
and real genetic data analysis. On simulated and purely additive scenarios, they found out that the
tree-based methods, and in particular random forests, were slightly superior in terms of precision when
dealing with a small number of associated loci. When that number increased, they noticed that the
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Bayesian approaches were a bit superior in terms of their Pearson correlation evaluation criteria but
still the random forests produced the best auc results. Similar observations were drawn on the real
data sets: random forests produced the best auc results in every experiments, in particular, they noted
that the method perfectly classified the most extreme animals in the different test sets.

Also, in [T+12c], the authors proposed an overview of the random forests in the life sciences and
the gwas context. Discussing the common rf usages and pitfalls, they also briefly tackled some
interesting research directions and less known direct by-products of tree-based methods. Among
these, they propose to determine similarity between individuals using proximity scores, to compute
variable importance locally instead of globally (e.g. by considering only a subpopulation in the
variable importance calculation) or to analyse the forest structure in order to detect recurring cascades
of interacting snps along the tree branches.

• The ability of tree based methods to detect snp interactions

In [LHSVE04], the authors studied the capabilities of random forest importance measure to correctly
rank interacting SNPs. They compared standardised RF importance scores (so called ZT in the
publication) to Fisher p-values on simulated datasets with 100 and 1000 variables under different
heterogeneous interaction models. Their finding were the following: ZT ranking outperforms Fisher
test in presence of interacting SNPs, ZT increases as the number of interacting SNPs does too and
if there is no interactions ZT performs similarly to the univariate Fisher Exact test.

In [JTWF09], the authors use random forest algorithms and the Gini importance measure as a selection
tool to search for epistatic interactions in a framework called epiForest. They propose a sliding window
sequential forward feature selection procedure to select a subset, significantly smaller than the initial
set of variables, of candidate SNPs that minimise the classification error and than test up to three-way
interactions using the B-statistic from [ZL07]. They compared their method with BEAM, the stepwise
logistic regression and the X 2 test on three simulated disease models and on a genome-wide case-
control dataset for age-related macular degeneration (100k snps, 96 cases versus 50 controls). They
found that Gini variable importances were negatively correlated with the p-values and identified two
snps that were already reported as being linked to the disease. Nevertheless, due to the small sample
size, they found no significant interactions after the Bonferroni correction.

Finally, in [W+12], the authors studied the ability of random forests to identify snp interaction in high-
dimensional space such as in gwas. Using different simulation with a fixed number of interacting and
non-interacting variables, they noticed that as the total number of variables increased, the probability
of detecting interacting snps drops more rapidly than for the non-interacting ones. Their experiments
were conducted using standard/recommended rf parameters, notably they suggest a limitation on the
number of terminal nodes (i.e. limit the depth of the trees) which certainly could limit the decline
they observed. This suggests that a dimension reduction would limit the decrease in the probability
of detecting interacting loci as we propose in our tree-based adaptation.

• The behaviour of variable importances in presence of linkage disequilibrium

In [BGHW08b], we started to treat haplotype blocks instead of single SNP inside test nodes using a
maximum likelihood based estimation of the conditional probability that the observed haplotype block
is drawn from the population of cases (resp. controls) assuming class conditional independence of the
SNPs in the block. The results obtained on simulated data representing five different disease models
provided marginally superior results than the direct application to the SNP representation.

In order to limit the information dilution among variables in ld, [MYC+09] proposes to prevent two
SNPs in linkage disequilibrium to appear in the same tree in a forest so they can not act as surrogate
for each other. They change the tree building procedure by growing each tree only with SNPs in
linkage equilibrium using a threshold over the pair-wise genotypic correlation (r2). They modified
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the permutation variable importances calculation in consequence, for a particular variable v, variable
importance is based only on the trees in the forest were v appears. They compared their adaptation
of the original random forest method under various synthetic genetic models. Their results suggest
that when a risk snp appears in a tree, snp in ld might also appear in the same tree which causes
the corresponding variable importances to decrease as the number of markers in ld increases. They
recommend using the original random forest with their revised importance measure when the genetic
model and the number of snps in ld are unknown (which is a common situation in a real gwas). They
also applied their methodology on a realistic gwas dataset and successfully identified a reported risk
gene and four new candidate loci missed by the single snp approach.

In [NM09, NMSZ10, Nic11], the authors investigated the behaviour of the Gini importances in presence
of high ld bloc of snps. Under the null hypothesis, their experiments show that the higher the
redundancy, the lower the variables importances. They noted that pruning the trees diminished that
bias. This expected result confirms previous hypotheses about the possible information dilution that
could be observed when dealing with redundant variables. Especially in presence of signal, once one
of the correlated variables appears in a tree, its surrogates have way less chance to be selected and
the bottom of the tree is more inclined to exploit the other non correlated variables. Although their
simulations might be considered as extreme cases (almost perfect ld and a low number of variables),
they point out some flaws in the Gini variable importances. In addition, they also noticed a bias
towards continuous variables (as noticed by [SBZH07, BBLBS12]).

• Pathological issue and bias related to the Gini variable importances

The authors of [SBZH07] suggests that the original variable importances of Brieman in random forest
are not reliable when attributes vary in their scale of measurement or their number of categories.
They evaluated three different variable importance measures (the “selection frequency” or the number
of times a variable appears in a forest, the Gini importance and the permutation accuracy importance)
on synthetic data while subsampling with and without replacement at each trees (bootstrap and no
bootstrap). In the null case scenario, they demonstrate the preference toward variables with more
categories of the frequency and Gini importances. On the other hand, the permutation importance
seems less sensitive to the scale of measurement but requires much more computations.

In the continuity, using only non-informative snps with varying minor allele frequencies, [BBLBS12]
found out that Gini importance tends to favour larger minor allele frequency variables (in particular at
the bottom of the trees). Meaning that non informative snp with large maf might hide the presence of,
maybe, interesting variables with smaller maf. That bias is similar to the one that is expected when
dealing with variables of different types. As previously observed in [SBZH07], discrete variables with
high number of categories are preferred by the Gini importance measures. Also, in presence of causal
markers, if two variables are causative but differ in their respective maf, the one with the larger minor
allele frequency is also the one that is about to affect a bigger part of the learning set. Thus, it might
not be surprising to observe a similar “bias”. They noted that permutation variable importances were
less sensitive to minor allele frequencies.
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4.6 Summary

In this chapter, we described 3 types of decision trees algorithms and proposed an extension able to handle
more than one descriptor inside the test-nodes.

Single decision trees are really easy to understand and interpret due to their graphical representation:
descriptors appearing near the root node are clearly more important than those appearing into the leaves.
Beside that simplicity, a single tree is clearly not enough to test all the variables as the number of nodes is
limited by the sample size. This is especially problematic for the study of complex diseases where a large
number of variables is expected to be causative and the intrinsically small n/p ratio.

Ensemble methods proposes to circumvent that previous problem by growing a forest of trees which is
achieved by introducing some randomization during the learning stage and multiplying the number of trees.
In that case, the direct interpretation of the ensemble of trees is lost but it is still possible to rank the
variables according to their importance in the forest (their occurrence and their proximity to the root of a
tree).

Despite all these important improvements, there are still cases where the previous algorithms are not
as good as we expect them to be. In the particular case where the descriptors are structured, the chances
of using the correct cascade of attributes drastically decreases as the total number of attributes increases.
Also, in presence of correlated attributes, classical methods are victims of the information dillution among
the variables. That is why we propose to extend the random forests by allowing splitting over a group of
descriptors.

With the success of genome-wide studies and technologic advances, it is clear that denser genotypes
are becoming usual. As the density increases, the number of descriptors increases as well and, obviously,
stronger correlations appear between the variables splitting the genome into logical pieces. In the following
chapter, we will show that the T-Trees method outperforms random forests and Extra-Trees on such data.

Beside their particularities, each of these algorithms can be summarised by Figure 4.9. Some of the
steps may be optional, less or more important depending on the algorithm. When a forest is required, this
flowchart is repeated a certain amount of time (Figure 4.10).

In these methods, as all terms of an ensemble are independent, it is easily feasible to parallelise the
construction of a forest using several CPU.
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Chapter 5

Comparison of Random Forests and
T-Trees on synthetic datasets
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In this chapter, the T-Trees (which stands for trees inside trees) method is evaluated on different syn-
thetically generated datasets aiming at mimicking the structure of GWAS datasets. Its predictive accuracy
and its ability to identify relevant input variables are compared with those of the Random Forest method,
and its capability to identify causal loci is also compared with that of univariate p-values derived from the
exact Fisher test. This study, carried out under controlled conditions, should be considered as a first sanity
check and also aims at evaluating the effect of the meta-parameters of the method, so as to evaluate its
robustness and to identify appropriate default values of these meta-parameters, before the method is applied
in the upcoming chapters to real-life GWAS datasets.
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5.1 Synthetic ‘GWAS’ dataset generation

Our goal is to generate datasets which reproduce the structure of GWAS under controlled conditions, namely
with known block structure and a known model of genotype-to-phenotype mapping. To this end, we proceed
in two steps:

• first, we generate a sample of input (genotype) vectors reproducing in a way the linkage-disequilibrium
structure among genetic markers, based on a segmentation of the set of input variables into a number
of blocks of linked variables;

• next, we choose a subset of causal blocks among those genotype blocks together with a genotype to
phenotype relation (including a choice of background noise level) and then use this model to associate
a binary output (phenotype) value to each input vector, in such as way that the two classes are balanced
over our dataset.

5.1.1 Principle of the synthetic ‘genotype’ generation

We suppose that the input variables are grouped into g consecutive blocks denoted by bi, i = 0, . . . , g − 1,
where each block has a given size si ∈ N0 in terms of the number of ‘snps’ it contains. To each ‘snp’
corresponds a ternary input variable. Let us denote by xij the jth input variable (snp) belonging to the ith
block. Thus

xij ∈ {0, 1, 2},∀i = 0, . . . , g − 1,∀j = 1, . . . si,

and hence any block bi may in principle take 3si different ‘haplotypes’ of length si.
In order to mimic ‘linkage disequilibrium’ inside these blocks, we fix once and for all for each one of

them a number mi � 3si of possible block-wise configurations {b1i , . . . , b
mi
i } and then restrict the observed

values of the block configurations to these latter. To choose one of the possible mi configurations for a given
block, we select its individual SNP values independently while using uniform probabilities over the three
possible values {0, 1, 2}.

On the other hand, we assume that the haplotypes of two different blocks are statistically independent.
Thus, the selection of the genome-wide genotype of an individual is carried out by choosing at random for
each block bi a configuration out of the fixed set {b1i , . . . , b

mi
i }.

To yield a complete dataset of ‘genome-wide’ genotypes, we then select independently according to the
above principle a number n of genome-wide genotypes.

5.1.2 Principle of the synthetic ‘phenotype’ generation

Given a set of possible block-wise genotypes and a dataset of n genome-wide genotypes of n individuals,
{(bj

k
0
0 , . . . , b

jkg−1

g−1 )}nk=1, both built according to the methods described in the previous section, we proceed in
the following way to compute the corresponding output class yk ∈ {0, 1} for each individual.

First, we choose a number c ∈ N of distinct ‘causal’ blocks; let us denote by c1, . . . , cc the corresponding
block identifiers (c = 0 means that actually no causal locus at all is present). Next, we associate to each one
of the mci haplotypes of each one of these c blocks a random number chosen uniformly (and independently)
in the interval [0, 1[. Let us denote by z(bjci),∀i = 1, . . . , c, ∀j = 1, . . . ,mci the corresponding numbers.
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We then compute a numerical value for each individual k according to the following ‘additive over blocks’
model

zk = βεk +

c∑
i=1

αiz(b
jkci
ci ), (5.1)

where εk is a random number uniformly distributed in [0, 1[, and where the positive parameters, β and
αi, i = 1, . . . , c, define respectively the level of noise, and the strength of the different genetic effects that
are associated to the different causal blocks.

Finally, in order to associate a discrete class to each individual of our dataset, and to ensure at the
same time that the two classes are balanced in terms of the number of individuals, we compute for each
observation k its class yk by

yk = 1(zk ≥ θ),

where θ is adjusted to the median of the zk values of the dataset.

5.1.3 Comments

We understand that the above synthetic data model is still far from reproducing the real nature of GWAS
datasets. We are also aware of existing simulators published in the literature [SMD11, E+08, LL08,
GGS11, P+07]. Nevertheless, for the sake of reproducibility, and to facilitate further research along our line
of thinking, we preferred to design our own synthetic model for the study carried out in this chapter.

In the rest of this chapter, we will consider various conditions, corresponding to different settings of our
synthetic model, so as to compare the Random Forest and the T-Tree models.

To keep the computational burden under control, we will restrict to 1000− 1500 genetic markers (which
is, admittedly, quite small with respect to the 500k or 1M markers used in real-life GWAS). On the other
hand, we will consider block sizes si ∈ [10, 50], a number of block modalities mi ∈ [10, 500], and a number
of causal blocks c ∈ {1, 2, 3}, with or without background noise. The precise settings of the conditions will
be given for each sub-study carried out in the next sections.

5.2 Evaluation protocol

In all our simulations in this chapter, we used a dataset composed of n = 10, 000 samples in which we
select learning samples of small sizes (between 100 and 500 individuals), so as to have large enough test
samples for the evaluation of predictive accuracies of the learned models.

Our evaluation protocol for assessing accuracies, for a given learning sample size and given values of
the algorithm parameters, operates in the following way:

1. select a learning sample of the considered size at random among the n = 10, 000 individuals of the
dataset, and define the test sample as the remaining individuals;

2. build a model on the learning sample, and assess its accuracy in the form of the value of its auc, on
the corresponding test sample (remaining individuals);

3. repeat ten times steps 1 and 2, and then display the average auc values obtained over these ten runs.

We note that within a given comparison of RF and T-Trees, we always use the same 10 learning sample vs
test sample splits, for all method variants and for all different parameter settings that are studied, so as to
minimise the effect of learning and test sampling variance.
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Concerning the Random Forest and T-Tree methods, we did not study the effect of parameter T (number
of trees in the ensemble) nor that of Nmin (degree of pre-pruning). For the accuracy evaluations, these
parameters are kept constant over all our simulations, with T = 100 (a moderate but sufficient number of
trees, given the relatively small numbers of variables considered in our experiments) and Nmin = 2 (no
pruning).

Notice that all computations of input variable importances and/or block-wise importances that will be
displayed in the subsequent sections are computed as averages over the ten learning-samples (i.e. without
using any of the test samples). Because of the higher variance of the importance measures derived from
tree-based ensembles, we used for these computations a larger number T of trees in each ensemble, namely
T = 1000.

5.3 Simulation results

In this section, we successively study the sample efficiency of Random Forests and T-Trees in a single locus
model, then we evaluate their robustness in noisy conditions, then we study the effect of prior information
quality in terms of the given block maps, then the effect of increasing the number of causal blocks, and finally
we study the bias of the T-Trees method towards blocks of higher modalities.

5.3.1 Sample efficiency of RF vs T-Trees in the context of a single causal block

We consider in this section a genotype distribution over g = 100 blocks, each one composed of si = 10

variables, and we took for each block mi = 80 possible modalities. Concerning the phenotype, we assume
that there is no background noise (i.e. β = 0) and that there is only a single ‘causal’ block (c = 1, and
we chose block number 0 to be the causal one, arbitrarily but without any restriction) so that in principle
perfect prediction of the phenotype from only the SNPs located in the single causal block b0 is possible. The
T-Trees method exploits full knowledge of the blocks, while the Random Forest method treats the variables
in a fully agnostic way.

We constructed our models based on learning samples composed of (LSsize) 100, 250 and 500 individuals
and then evaluated them on the remaining (out of learning sample) objects. The auc values displayed are
average values obtained over ten such random LS/TS splits.

Figure 5.1 depicts the aucs we obtained. On this figure, rows correspond to the different learning set
sizes and columns correspond to the different methods. From left to right, the black lines represent the aucs
for Random Forests with a value of K ranging from 100 to 1000 (notice that K = 1000 corresponds here to
Tree Bagging), the middle column represents the aucs obtained with the T-Trees with Kint = 1 (i.e. Totally
Randomised, which are the weakest learners, inside the internal nodes) with a (block-wise) K ranging from
10 to 100 and the right column shows the results with the T-Trees with Kint = si (N = si = 10; these
are thus very strong models, almost identical to regular decision trees). The results for the T-Trees are
coloured as we investigated different values of the internal complexity parameter: from red to blue, the
internal complexity IC ranges from 1 to 10. Recall that these numbers are average values obtained over 10
LS vs TS splits of a dataset composed of 10,000 individuals.

Not surprisingly, and regardless of the method, we observe an auc increase as the LSsize increases; the
same applies for the value of K . If we compare the Random Forests to the two variants of the T-Trees, we
see that as the IC grows the T-Trees performances get better than the RF. In every case, with an IC of 10,
T-Trees obtain the best results.
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Figure 5.1 Influence of learning set size, K and IC on the auc. The first row represents results with LSsize = 100,
the second one with LSsize = 250 and the third one with LSsize = 500. The first column represents
the Random Forest results for values of K ranging from 100 to 1000. The two last columns correspond to
results obtained with the T-Trees for different values of the internal complexity (from 1 to 10). The middle
column corresponds to the T-Trees with Kint set to 1 and the right columns with Kint = 10.
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Figure 5.2 LSsize = 100: variable and group importances. In blue, the random forest (K = 1000) variable impor-
tances. In orange, the T-Trees variable importances and in green, the T-Trees group importances (K = 100,
Kint = 10, IC = 10). The left part display an overview of all the variables while the right part shows a
zoom around the causal block.

We also see that with small learning sample sizes the T-Trees very much outperform the Random Forests.
While the effective size 250 is still insufficient for Random Forests, T-Trees seem already to learn quasi
perfect models that correctly classify the remaining samples; T-Trees thus clearly show to have better
generalisation capabilities in this setting. These results show in a rather spectacular way that taking into
account prior knowledge is a very promising avenue for enhancing machine learning methods in the context
of high-dimensional problems. Comparing the middle and right part of the figure, we observe that it is
preferable to use stronger learners inside the tree-nodes, specially when the sample size is small.

Figures 5.2, 5.3 and 5.4 show variable and group importances (average values over the ten runs; T = 1000)
obtained for the three previous values of LSsize, and with K = 1000 for the Random Forests and K = 100,
IC = 10, Kint = 10 for the T-Trees. Notice that the 10 first variables are those corresponding the causal
block used to compute the output class. We see that, with LSsize = 100, the Random Forests are not at all
able to identify any relevant variables while the variable and group importances computed from the T-Trees
already correctly rank the first block of ten variables.

To further analyse the capabilities of the two methods to identify relevant variables, we display on
Figures 5.5, 5.6, 5.7 the distribution of variable rankings over the 10 learning samples, obtained by these
two methods and in comparison with a classical univariate p-value based ranking of the individual SNPs.
For each method (from left to right : exact Fisher test based p-value, RF based importances, T-Tree based
importances), these figures report a box plot giving the mean ranks for the 20 first variables (the 10 first
variables are those of the causal block and are thus potentially relevant; on the other hand, the next ten
are for sure completely irrelevant in the setting studied in this section) and the distribution of these ranks
over the ten runs corresponding to the ten learning samples. We notice that with a small learning set (of
size 100 - Figure 5.5), neither the p-values nor the random forest variables importances allow to identify the
causal variables while the T-Tree variables importances already correctly rank the 10 first variables. With
LSsize = 250 (Figure 5.6), p-values and random forest variable importances start to correctly rank some of
the 10 potentially relevant variables, and with LSsize = 500 (Figure 5.7) the random forests do correctly
rank all the 10 first variables while the p-ranking still only catches a subset of them.



5.3. SIMULATION RESULTS 63

Variables

R
F

 V
.im

p

●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Groups

T
T

 G
.im

p

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Variables

T
T

 V
.im

p

●
●
●
●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Variables

block1 block2 block3

● ● ● ●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Groups

block1 block2 block3block1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Variables

block1 block2 block3

●
●

●
● ●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.3 LSsize = 250: variable and group importances. In blue, the random forest (K = 1000) variable impor-
tances. In orange, the T-Trees variable importances and in green, the T-Trees group importances (K = 100,
Kint = 10, IC = 10). The left part display an overview of all the variables while the right part shows a
zoom around the causal block.
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Figure 5.4 LSsize = 500: variable and group importances. In blue, the random forest (K = 1000) variable impor-
tances. In orange, the T-Trees variable importances and in green, the T-Trees group importances (K = 100,
Kint = 10, IC = 10). The left part display an overview of all the variables while the right part shows a
zoom around the causal block.
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Figure 5.5 LSsize = 100: comparison of three different rankings. The three box plots represents the mean rank for
the 20 first variables, the 10 first being the causal ones. In grey, the mean rank according to the Fisher
p-value, in blue the mean rank according to the random forest variable importances (K = 1000) and in
orange, the mean rank according to the T-Trees variables importances (K = 100, Kint = N and IC = 10).
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Figure 5.6 LSsize = 250: comparison of three different rankings. The three box plots represents the mean rank for
the 20 first variables, the 10 first being the causal ones. In grey, the mean rank according to the Fisher
p-value, in blue the mean rank according to the random forest variable importances (K = 1000) and in
orange, the mean rank according to the T-Trees variables importances (K = 100, Kint = N and IC = 10).
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Figure 5.7 LSsize = 500: comparison of three different rankings. The three box plots represents the mean rank for
the 20 first variables, the 10 first being the causal ones. In grey, the mean rank according to the Fisher
p-value, in blue the mean rank according to the random forest variable importances (K = 1000) and in
orange, the mean rank according to the T-Trees variables importances (K = 100, Kint = N and IC = 10).
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Figure 5.8 Robustness against label errors, influence of K and IC on the aucs. The columns correspond to different
methods (from left to right: Random Forests, T-Trees with Kint = 1, and T-Trees with Kint = 10). The
rows correspond here to different percentages of permuted outputs, from 0 to 30%. For these simulations
we used LSsize = 250.

5.3.2 Robustness against label errors

In order to test the robustness against labelling errors of our analysis of the previous section, we successively
permuted 10%, 20% and 30% of the labels of the used dataset and then looked at the effect of constructing
models on a learning set of size 250, while using the same protocol as in the previous section.

We report on figure 5.8 the corresponding auc values. We observe that, as the percentage of permuted
labels increases, the auc decreases for all methods. But the performance of T-Trees aucs are still much better
(specially for Kint = 10 and IC = 10) than those of the RF method, and the best values obtained with this
method are actually very close to the maximum possible values that could be expected in these conditions
(i.e. respectively 100%, 90%, 80% and 70%, for degrees of permutation of 0%, 10%, 20% and 30%).
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5.3.3 Influence of the quality of prior information about the block structure

In this subsection we want to see how much the T-Trees method is sensitive to the quality of the provided
block map; indeed, on real datasets, we do not always know how the variables should be structured/grouped.

To assess this, the first row of Figure 5.9 exposes results obtained from a learning set of 250 objects
with the actual block map used to generate the data as in the previous simulations (block size = 10), while
various ’wrong’ maps are used by the T-Trees algorithm (either where each of its used blocs includes 20

adjacent variables, or where each used bloc contains 50 adjacent variables) in the two last rows. On this
figure, for the T-Trees, notice that the horizontal axis represents the internal complexity while the different
shades of colour correspond to different values of K . For blocks of 20 variables, 50 blocks are available,
and K thus ranges from 10 to 50 while IC ranges from 1 to 20. For blocks of 50 variables, K ranges from
10 to 20 while IC ranges from 1 to 50.

Interestingly, aucs do not decrease so much with blocks of size 20 even with IC = 20. If we consider
blocks of 50 adjacent variables, good results are still obtained but aucs start dropping around IC = 40 as
the internal trees become more complex, which probably leads the resulting trees to overfit the learning set.

In terms of variables ranking, Figure 5.11 displays a comparison of mean ranks according to the three
previously used methods (Fisher p-values (in grey), random forests (in blue) and T-Trees (in orange) variable
importances). We observe that the 20 variables in the first block are correctly ranked, we also see that
the 10 first are the one coming from the real causal blocks. Inspection of the variables importances [results
not shown here] (not the ranks) clearly shows that the 10 (real) causal variables are the most important.
Figure 5.12 display similar results for a less extreme set of T-Trees parameters: K = 10 and IC = 5. It
seems that when using a “not so bad block map”, some of the variables may be wrongly associated as they
are, in a way depending on the internal complexity, used jointly with the true signal (probably at the bottom
of the small test-nodes located at the bottom of the T-Trees). We also notice that a simple inspection of the
variable and group importances and of their ranking, and the investigation of different values of the internal
complexity, allow to (visually) guess the true structure of variables (at least the causal ones).

Finally, we wanted to see how the T-Trees deal with a totally random (wrong) bloc map. Figure 5.10
compares the results we obtained with the correct bloc map (non overlapping blocks of 10 contiguous
variables) versus the results with a random bloc map (blocks of 10 variables chosen randomly along the
‘genome’). As expected, we see that when the variables are not correctly ordered the method is not able
anymore to combine them efficiently. The best results of the T-Trees method are then obtained when IC = 1,
which, as we observed already previously, reduces the performances of the method roughly to that of Random
Forests using a same level of randomisation.
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Figure 5.9 Influence of bloc size, K and IC on the auc. The first row represent results with correct block size (10),
the second one with blocks of size 20 and the third one with blocks of 50 variables. The first column
represent the random forest results for values of K ranging from 100 to 1000. The two last columns
correspond to results obtained with the T-Trees for different value of the internal complexity. The middle
column correspond to the T-Trees with Kint set to 1 and the right columns with Kint = 10.
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Figure 5.10 LSsize = 250 T-Trees (Kint = N ): on the left, results obtained with the good block map (blocks of 10
contiguous variables). On the right results obtained with a random block map (blocks of 10 randomly
chosen variables).
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Figure 5.11 LSsize = 250 and block of 20 variables: comparison of three different rankings. The three box plots
represents the mean rank for the 40 first variables, the 10 first being the causal ones. In grey, the mean
rank according to the Fisher p-value, in blue the mean rank according to the random forest variable
importances (K = 1000) and in orange, the mean rank according to the T-Trees variables importances
(K = 50, Kint = N and IC = 20).
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Figure 5.12 LSsize = 250 and blocks of 20 variables: comparison of three different rankings. The three box plots
represents the mean rank for the 40 first variables, the 10 first being the causal ones. In grey, the mean
rank according to the Fisher p-value, in blue the mean rank according to the random forest variable
importances (K = 1000) and in orange, the mean rank according to the T-Trees variables importances
(K = 10, Kint = N and IC = 5).
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5.3.4 More than one causal block

Too further analyse the comparative behaviours of the Random Forests and the T-Trees methods, we in-
vestigated a number of ‘multi-loci’ genotype-to-phenotype models based on Formula 5.1, as indicated in
Table 5.1: with and without noise, with 2 and 3 causal blocks.

Dataset #Variables α1 α2 α3 β

DB-1 1000 1 1 / 0
DB-2 1000 1.2 1 / 0
DB-3 1000 1.4 1 / 0
DB-4 1000 2 1 / 0
DB-5 1000 1 1 / 0.5
DB-6 1000 2 1 / 0.5
DB-7 1500 1 1 1 0

Table 5.1 Summary table of investigated phenotypes. The parameters αi and β correspond to the weight of each
causal block and the noise level, as defined by Formula 5.1.

On these different conditions, with a learning set of size 250, the obtained results (see Figure 5.13)
highlight the influence of the parameters K and IC on the predictive power. As before, as K and IC

increase, the auc increases as well. We can also conclude that the T-Trees method (with the correct block
map) clearly outperforms the Random Forests method when IC is appropriately set to 10. As a matter of
fact, we see that Random Forests are not able to deal with 3 interacting blocks.

To complete the analysis, Figure 5.14 shows variable and group importances in the context of the 3-loci
model of DB-7: we conclude that T-Trees are still able to correctly rank the 30 causal variables contained
inside the 3 blocks, while the Random Forests are not extracting any valuable signal in these conditions.

5.3.5 Modality, scale of measurement and number of categories

In this section we want to address the problem mentioned in [BBLBS12]: the authors established a variable
importance bias in favour of large minor allele frequency snps.

Besides the fact that we are working with snps, the concept of minor allele frequency is closely related
to the variable importance bias introduced by the scale of measurement or the number of categories of each
variables (see [SBZH07]). With the T-Trees, working with groups of snps may introduce such a bias. Indeed,
as the linkage disequilibrium markers varies along the chromosome (and also depends on the genotyping
density), the numbers of snp combinations generated from the different blocks may differ. In other words, the
numbers mi of block modalities may introduce the same bias. In order to test that hypothesis we generated
blocks of growing modalities, compiled them in a single dataset with a random output. Figure 5.15 shows
the resulting variable and group importances for block modalities 10, 20, 30, 40 and 50 while Figure 5.16
corresponds to modalities 10, 50, 100 and 500. We observe that as the modality mi increases the resulting
variable and group importances indeed slightly increase as well.

We then introduced one actual causal block (see Figure 5.17) and two actual causal blocks (see Fig-
ure 5.18) on those blocks having the smallest number mi of configurations, so as to test how that small
pathological bias influences the importances when there is a true signal. We notice that as the true signal(s)
is (are) still quite well detected, so that the above bias does not seem to be a major source of false positives
in practice.
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Figure 5.13 Influence K and IC on the auc on different ‘phenotype’ models. Each row corresponds to one of the
models described in Table 5.1. The first column represents the Random Forest results for values of K
ranging from 100 to 1000. The two last columns correspond to results obtained with the T-Trees for
different value of the internal complexity. The middle column correspond to the T-Trees with Kint set to
1 and the right columns with Kint = 10.
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Figure 5.14 DB7: variable and group importances. In blue, the random forest (K = 1500) variable importances. In
orange, the T-Trees (K = 150, Kint = 10 and IC = 10) variable importances and in green, the T-Trees
group importances. The left part display an overview of all the variables while the right part shows a
zoom around the three causal blocks.
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Figure 5.15 Results with different block modalities spread over 50 blocks, the 10 first blocks modalities are equal to
10, the 10 following 20 and so on up to 50 for the last ten blocks. The upper plot corresponds to group
importances and the bottom plot to variable importances obtained with the T-Trees methods (K = 25,
Kint = 10 and IC = 10) on a dataset with no causal variable/block.
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Figure 5.16 Results with different (higher) block modalities spread over 40 blocks, the 10 first blocks modalities are
equal to 10, the 10 following 50, followed by 10 blocks of modality equals 100 and to 500 for the last
ten blocks. The upper plot corresponds to group importances and the bottom plot to variable importances
obtained with the T-Trees methods (K = 20, Kint = 10 and IC = 10) on a dataset with no causal
variable/block.
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Figure 5.17 Results with different block modalities spread over 50 blocks, the 10 first blocks modalities are equal to
10, the 10 following 20 and so on up to 50 for the last ten blocks. The upper plot corresponds to group
importances and the bottom plot to variable importances obtained with the T-Trees methods (K = 25,
Kint = 10 and IC = 10) on a dataset with one causal block (the first one).
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Figure 5.18 Results with different block modalities spread over 50 blocks, the 10 first blocks modalities are equal to
10, the 10 following 20 and so on up to 50 for the last ten blocks. The upper plot corresponds to group
importances and the bottom plot to variable importances obtained with the T-Trees methods (K = 25,
Kint = 10 and IC = 10) on a dataset with two causal blocks (block 1 and 11).

5.4 Discussion

In this chapter, we compared the T-Trees to the Random Forests on the basis of synthetically generated
datasets aiming at mimicking the conditions of real GWAS. Even tough our artificial datasets are certainly
a rather naïve approximation of real GWAS datasets, we were able to screen the various questions that one
wants to investigate in this context, and we observed an encouraging difference between the T-Trees and the
Random Forest methods. That difference is quite striking and may point out a Random Forests weakness to
detect the correct combination of variables even with a relatively small number of correlated features.

We also noticed that, specially with a small number of learning samples, the T-Trees produced much
better results than the Random Forest method in terms of aucs. In the case of gwas where the number of
samples is often difficult to collect and genotype, it may be of crucial help to be able to extract relevant
information out of a small number of individuals. In terms of the identification of relevant variables, we notice
that T-Trees variable importances allowed to correctly rank the 10 causal variables in a very robust fashion.
We also found out that the Fisher test of association and the Random Forest derived variable importances
seem to require significantly larger sample sizes in order to detect and rank the associated variables, in
those conditions that we used to generate our synthetic datasets.

In the case of the previous simulations, we were expecting an IC = 10 to be the best choice given the
design of our datasets. Still, with most of the values < 10 of IC we obtained better aucs than with the
Random Forest method. In practice, the choice of the value for the internal complexity will depend on how
the blocks are structured. When dealing with strongly correlated variables inside the blocks, lower values
of the internal complexity should be a good choice. In the extreme case where all the variables of the blocks
are perfectly correlated, exploiting one of them would suffice to capture the complete group information, thus
an internal complexity of 1 would then be recommended. On the other hand, if we expect combinations of
variables of a particular block to be linked to the output, as it was the case in the previous experiences, we
recommend using an internal complexity greater than 1.
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We noticed that the block map provided to the method does not need to be precise. Indeed, we observed
that using “larger than required” block maps did not dramatically change the results while blocks of random
variables lead to poor results. This suggests that the main thing that matters when defining a block map
is to preserve the structure of the blocks. In real life problems, the assessment of a precise/right block
definition is not always possible and may therefore remain uncertain. The investigation of variable and
group importances can however help in finding a good value for the block sizes and may thus help to
understand how the genotypic variables are structured.

We compared 2 values of the T-Trees meta parameter Kint which is used to control the “weakness” of
the internal trees. In most cases, we were still able to beat the random forest with the weaker learner inside
the splitting nodes. It can reduce the computing times required at the learning step and thus be helpful in
the early stage of an experiment. But, we noticed that under some conditions (such as in the bad block map
experiment or in the presence of noise), totally randomised trees inside test nodes leads to quite suboptimal
performances. Therefore, we will fix the value of Kint to the size of the blocks in the two following chapters,
when applying the T-Trees to real datasets, in spite of the higher computational cost implied by this decision.
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The case of Crohn’s disease
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Crohn’s disease is a form of inflammatory bowel disease (ibd). It usually affects the intestines, but may
occur anywhere from the mouth to the end of the rectum. It mostly causes abdominal pain, diarrhea, vomiting
and may cause weight loss. It is known to be a complex disease, it is a result of environmental, immunological
and bacterial factors combined with a genetic predisposition. Current treatments imply lifestyle changes (such
as dietary adjustments, proper hydration or smoking cessation), medication and, in the more extreme cases,
surgery. Even with a full battery of tests (endoscopy, radiologic tests, blood tests), current diagnoses of
Crohn’s disease are difficult to establish with 100% certainty. Combining the intrusive aspects of diagnosis,
the important required lifestyle changes, the absence of real effective treatments and all the inconveniences
related to the disease motivates the efforts of geneticists in identifying the genetic underlying causes of such
pathology.

This chapter focuses on a Crohn’s disease dataset. The first part investigates the predictive power, the
localization of causative genes ability, and the influence of quality control filters applied to the dataset on
the different tree-based methods discussed in Chapter 4. The second part is dedicated to the influence
of the different meta-parameters of the different methods. This chapter ends with recommendations for the
application of tree-based methods in the field of genome-wide association studies.

75
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6.1 Two dataset variants for Crohn’s disease

In this section, we will show how tree-based ensemble algorithms can be used in the fields of genome-wide
association studies. In order to validate our approach, we had access to a huge data collection coming from
the Wellcome Trust Case Control Consortium (wtccc [Wel07]). It contains 17.000 genotypes, it is composed of
3.000 shared controls and 14.000 cases and it concerns 7 common diseases of major public health (including
Crohn’s disease, abbreviated here cd). The genotypes are described by 500.000 SNPs (genotyped with the
Affymetrix GeneChip 500K Mapping Array Set).

As described in [Wel07], the data quality controls where applied at a study-wide range. The sample-
based quality controls excluded:

• 250 samples with > 3% missing rate across all snps,

• 6 samples for excess of heterozygosity (> 30%),

• 3 samples for low heterozygosity (< 23%),

• 16 samples because of discrepancies between wtccc information and external identifying information,

• 153 individuals clearly not caucasian (compared to the HapMap ceu population),

• 295 duplicated samples (> 99% identity) and,

• 86 related samples (between 86% and 99% identity).

A total of 809 individuals were removed, leaving 4686 individuals in the wtccc cd dataset. The marker-based
qc were less stringent, the following markers are excluded:

• 26567 snps with a missing data rate > 5% or > 1% for the markers exhibiting a study-wise minor
allele frequency < 5%,

• 4351 markers with a hwe exact p-value < 5.7× 10−7 in the combined set of controls and,

• 93 markers with a p-value < 5.7× 10−7 for either a one- or two-degree of freedom test of association
between the two control groups.

A total of 469557 snps remained in the study. They choose to apply light quality control filters but to
visually inspect (the cluster plots of) all the apparently associated snps. We will see that this assumption
is of crucial importance, particularly when using multivariate approaches such as tree-based methods. Out
of the bulk wtccc download, we used the chiamo output to regenerate a dataset using the following rule to
determine the missingness of each genotype: are considered as missing the genotypes for which the chiamo
score is below 0.9. As our methods do not deal with missing values as such, for each snp we chose to
randomly fill the unknown genotypes taking into account the genotypic distribution of the corresponding non
missing values of the snp. Finally, we excluded markers and individuals based on the provided exclusion
lists (found in the wtccc bulk download).

On the other hand, we also got access to a variant of the cd dataset from the Inflammatory Bowel Disease
(ibd) Consortium. This copy of the wtccc samples has been strongly filtered. In terms of missingness, a
comparison between the wtccc bulk download and the ibd consortium showed that the missing values were
determined following the same procedure (perfect match in position for the missing values in the two genotype
matrices). We also randomly filled the missing genotypes following the same approach as for the previous
wtccc dataset.

On that second version of the cd dataset, the following qc filters have been applied:

• missing rate per snp < 5% (before sample removal)
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• missing rate per individual < 2%

• heterozygosity per individual +/− 0.2

• missing rate per snp < 2%

• missing rate difference between case and control < 2%

• hwe p-value < 10−6 (controls only)

• hwe p-value < 10−10 (cases only)

We will use the two resulting datasets to compare how the qc filters may impact the quality of the
inducted trees. In the following, we denote those two variants of the datasets as follow:

• CDwtccc: the wtccc lightly filtered (≈ 470000 snps and 4686 individuals (1748 cases and 2938
controls)),

• CDibd: the ibd strongly filtered (≈ 436000 snps and 4676 individuals (1739 cases and 2937 controls)).

6.1.1 Predictions

In this section, we will compare the previously discussed methods in terms of their predictive power. All
the following results are obtained in a 10-folds cross-validation way and are expressed in 10-folds average
aucs. We used the score measure ST

C for all the experiments (see Section C). We study the influence of the
different parameters for each of the three methods: Random Forests, Extra-Trees and T-Trees. Our goal here
is twofold: first, we want to evaluate the influence of the preprocessing steps applied to the cd dataset and,
second, we want to compare the three methods.

Random Forests

Let us start with the Random Forest results on the CDwtccc dataset, shown in Figure 6.1. In this figure, the
six upper plots correspond to the different values of K = 100, 500, 1000, 2500, 5000 and 10000, and each
such plot depicts the influence of the parameters Nmin (larger values correspond to stronger pre-pruning)
and T , de number of trees in the ensemble. The bottom part shows the evolution of the auc as K increases:
the plain line corresponds to maximum values of the auc (corresponding to the maximum in each of the six
upper plots) while the dotted line corresponds to the minimum values. On the left part is represented the
rainbow colour scale used in the upper “heatmaps”. From these observations, we see, as expected, that, for
K and T , the larger they are, and the better the results in terms auc. While for the pre-pruning parameter
Nmin it seems that pruning the trees does not dramatically degrade the quality of the predictions; as a
matter of fact, it is even favourable as it slightly increases the auc while reducing the computation time
required. We also notice that pruning is mostly beneficial when we consider a forest with a smaller number
of trees. The maximum auc of 0.919 we observed was obtained for K = 10000 with Nmin ≈ 110 while the
minimum reached was 0.893 with a Nmin ≈ 2000.

Similarily, Figure 6.2 shows the results we obtained on the CDibd dataset. The predictive power is
significantly smaller on this dataset. The maximum of 0.7 is obtained with K = 2500 with Nmin ≈ 1050

while a minimum of 0.673 is reached without pruning the trees. Meanwhile, for K = 10000 we obtained
aucs ranging from 0.671 (with no pruning) to 0.697 (with Nmin ≈ 870).

The gap between CDibd and CDwtccc demonstrates the impact of the stronger qc filters that have been
applied to the CDibd dataset implying the removal of about 34000 variables, as compared to the CDwtccc

dataset.
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Figure 6.1 Random Forest: influence of T , Nmin and K on CDwtccc . The six upper panels show the influence of T
and Nmin for each of the six investigated values of K . The last panel displays the evolution of the auc as
the value of K increases, the plain line corresponds to the maximum and the dotted line to the minimum
obtained at each value of K .

The influence of Nmin is illustrated at Figure 6.3 for Random Forests with K = 10000. On CDwtccc, we
see that it is preferable to prune a bit but not too much as it decreases the predictive power. On the other
hand, on CDibd, pruning slightly increases the area under the roc curve. In these two cases, optimising the
pruning parameter Nmin allowed for an auc gain of 0.02. While that gain is negligible in terms of accuracy,
it is still of interest as it speeds up the computational time required to construct a forest.
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Figure 6.2 Random Forest: influence of T , Nmin and K on CDibd . The six upper panels show the influence of T
and Nmin for each of the six investigated values of K . The last panel displays the evolution of the auc as
the value of K increases, the plain line corresponds to the maximum and the dotted line to the minimum
obtained at each value of K .
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Figure 6.3 Dataset comparison: Random Forest K = 10000 T = 1000. Evolution of the auc for the optimal value
K = 10000. CDwtccc and CDibd results are, respectively, represented in green and orange. The left
panel shows a comparison between the two variants while, the two right panels show a detailed view of
the corresponding curves.
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Extra-Trees

Similarly, Figure 6.4 shows the results we obtained on CDwtccc with the Extra-Trees. Again optimal results
are obtained at K = 10000, minimum and maximum, respectively are, 0.884 (with Nmin ≈ 2000) and 0.922

(with Nmin ≈ 90).

Figure 6.4 Extra-Trees: influence of T , Nmin and K on CDwtccc . The six upper panels show the influence of T and
Nmin for each of the six investigated values of K . The last panel displays the evolution of the auc as
the value of K increases, the plain line corresponds to the maximum and the dotted line to the minimum
obtained at each value of K .

Finally, Figure 6.5 depicts the results of Extra-Trees for CDibd: as with Random Forests, optimal aucs
are obtained with K = 2500, aucs ranging from 0.708 (Nmin ≈ 0) to 0.723 (Nmin ≈ 1160) while with
K = 10000, aucs range from 0.697 (Nmin ≈ 2000) to 0.704 (Nmin ≈ 1000).

Finally, Figure 6.6 shows the influence of Nmin for K = 10000. On CDibd, the auc is almost insensitive
to Nmin.

Random forests versus Extra-Trees

Table 6.1 summarises the results. A first comparison can be made regarding the two methods. Extra-Trees
perform slightly better than the Random Forests especially on the CDibd dataset. While the difference is
not striking, we noticed that the Extra-Trees produces deeper trees, thus the expected time gain from its
algorithmic properties is compromised (in addition to the randomisation that is not so random due to the
discrete nature of snps: at most there are only two possible splits for each variable), on the other hand the
Random Forest produces trees that are a bit smaller. Beside that small difference in term predictive power,
the behaviour of the two methods remained consistent across the two dataset variations.
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Figure 6.5 Extra-Trees: influence of T , Nmin and K on CDibd . The six upper panels show the influence of T and
Nmin for each of the six investigated values of K . The last panel displays the evolution of the auc as
the value of K increases, the plain line corresponds to the maximum and the dotted line to the minimum
obtained at each value of K .

A second comparison between the two datasets pinpoints the influence of the qc filters prior to the
learning stage. Regardless of the used method, we notice that the aucs produced on more lightly filtered
version of the dataset (CDwtccc) are way higher than those obtained with the more strongly filtered variant
(CDibd). This shows that qc filters may crucially influence the predictive power obtained with tree-based
methods. As we can see, the aucs drop from 0.919 to 0.7 with the rf and from 0.922 to 0.724 with the et.
Also on CDibd, we see that aucs reaches a top around K = 2500 while on the other variant it seems that
potentially higher values of K (> 10000) could still improve the resulting aucs.

Besides these observations, from the biological point of view, aucs reaching a value of 0.92 are probably
over-optimistic. Indeed, Crohn’s disease being a complex disease, we do not expect our prediction to be
so good as we know that environmental factors may play an important role in the disease mechanism in
addition to the fact that we do not have at our disposal, for each individual, the complete genetic information.

In Section 6.1.2, we will investigate the variable importances and will determine which of the variables
and qc filters are responsible for the important auc fluctuations we just observed.
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Figure 6.6 Dataset comparison: Extra-Trees K = 10000 T = 1000. Evolution of the auc for the optimal value
K = 10000. CDwtccc and CDibd results are, respectively, represented in green and orange. The left
panel shows a comparison between the two variants while, the two right panels show a detailed view of
the corresponding curves.

Random Forest Extra-Trees
K CDwtccc CDibd CDwtccc CDibd

100 0.683 0.628 0.690 0.667
500 0.799 0.675 0.798 0.709

1000 0.845 0.684 0.840 0.721
2500 0.888 0.700 0.888 0.724
5000 0.909 0.698 0.913 0.721

10000 0.919 0.697 0.922 0.705

Table 6.1 Summary table: the maximum aucs obtained with the RF and the ET for the different values of K and
T = 1000. Columns maxima are highlighted in bold.
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T-Trees

We will now investigate our method: the T-Trees. In the following, we applied our novel approach in the
same manner than we did for the two previous methods. In the next results, we decomposed the set of
variables into blocks of 10 contiguous snps. We will investigate later on the impact of using other block
sizes.

Figure 6.7 shows the results we obtained on the CDwtccc dataset using the T-Trees and an internal
complexity of 10. The method beats the two previous ones. Previously maximum aucs are reached with
smaller values of K . (note: but, in the context of T-Trees, K now represents the number of blocs being tested
at each node which means that potentially K × 10 snps are investigated at each tests). We observed an
auc of 0.945 with K = 1000 and Nmin = 2000 while no pruning produced an auc of 0.941 which is quite
better than the best results we obtained with Random Forests and Extra-Trees.

Figure 6.7 On CDwtccc: T-Trees prediction performance with 10-snps blocks and IC = 10. The five upper panels
show the influence of T and Nmin for each of the five investigated values of K . The last panel displays
the evolution of the auc as the value of K increases, the plain line corresponds to the maximum and the
dotted line to the minimum obtained at each value of K .

Finally, Figure 6.8 displays the results we obtained on CDibd. Again, K = 1000 is the “winner”, a value
of 0.748 is reached with Nmin = 2000 while without pruning we observed a value of 0.744.

We notice that pruning does not drastically modify the results, in fact, it allowed for a small increase in
the aucs we just observed. Therefore, it seems advised to prune the trees that are built in a forest of T-Trees
since, on the one hand, it does not deteriorate the accuracy results at all, and, on the other hand, allows to
reduce the computing time required. Figure 6.9 summarises these conclusions.
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Figure 6.8 On CDibd: T-Trees prediction performance with 10-snps blocks and IC = 10. The five upper panels
show the influence of T and Nmin for each of the five investigated values of K . The last panel displays
the evolution of the auc as the value of K increases, the plain line corresponds to the maximum and the
dotted line to the minimum obtained at each value of K .
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Figure 6.9 Dataset comparison: T-Trees K = 1000 T = 1000 and IC = 10. Evolution of the auc for the optimal
value K = 1000. CDwtccc and CDibd results are, respectively, represented in green and orange. The
left panel shows a comparison between the two variants while, the two right panels show a detailed view
of the corresponding curves.
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T-Trees specific metaparameters influence

In this section, we will focus on the influence the bloc map that is provided to the T-Trees algorithm and the
influence of the internal complexity parameter.

Figure 6.10 and Table 6.2 show the influence of the IC parameter for a value of K = 1000 with 1000

fully developed trees on the two variations of the CD dataset. Green and orange respectively represent
results for CDwtccc and CDibd. Even with an internal complexity of 1, we obtained better results than the
random forests with K = 1000 (in dashed lines). While for greater values of the IC , we get better aucs
than with Random Forests with K = 10000 (in dotted lines).

We just observed that an internal complexity of 1 leads to similar results than the maximal ones we
reached with standard Random Forests. That setting allows to span the search of an optimal attribute at
each node. Instead of looking at all the variables, the search for an optimal split is done in every 10 snps
blocks.
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Figure 6.10 IC comparison for K = 1000 on the two datasets. In green CDwtccc and in orange, CDibd . The dashed
lines represents the maximal auc obtained with K = 1000 and the dotted lines the maximal auc obtained
with K = 10000 for the Random Forests.

IC CDwtccc CDibd

1 0.906 0.717
5 0.953 0.765

10 0.945 0.749

Table 6.2 aucs obtained for different internal complexities on the three cd datasets. Each variant maximum are
highlighted in bold.

Table 6.3 summarises the results we obtained while investigating different bloc maps and different values
of the internal complexity parameter. In addition of using 10 consecutive snps blocks, we also tested 20

and 50 snps blocks of contiguous markers. Results remained consistent across the two datasets. When the
internal complexity parameter produced better results for one of the dataset variants it also allows for a gain
in predictive power on the other dataset variant. These results also suggest that the T-Trees are quite robust
against the block composition/choice. For each dataset, regardless of the block map and the IC value, we
see that aucs do not fluctuate that much. The table even suggests that, no matter which block map is used,
the only parameter that influences the predictive power is the internal complexity parameter (e.g. results
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Bloc size IC CDwtccc CDibd

10 1 0.906 0.717
5 0.953 0.765

10 0.945 0.749
20 5 0.955 0.755

10 0.945 0.740
20 0.931 0.706

50 10 0.937 0.744
25 0.913 0.700

Table 6.3 Block size and internal complexity influence. Resulting aucs obtained with the T-Trees for different block
sizes and internal complexities. Maxima for each block size are highlighted in bold.

with IC = 10 for bloc size 10 and 20 are almost identical). Nevertheless, we do observe a slight decrease
as the size of the block and the IC increases. We notice that these configurations with both larger block
size and large IC force the T-Trees to exploit a larger number of variables for each internal split, and we
believe that by doing so they tend to overfit the training data.

T-Trees versus standard tree based methods

Table 6.4 summarises all the previous results we obtained with the three methods on the two datasets. Cross
dataset results are consistent among the three methods: CDwtccc produces higher aucs than CDibd.

CDwtccc CDibd

K RF ET TT RF ET TT
100 0.683 0.690 0.921 0.628 0.667 0.719
500 0.799 0.798 0.942 0.675 0.709 0.747

1000 0.845 0.840 0.945 0.684 0.721 0.749
2500 0.888 0.888 0.944 0.700 0.724 0.746
5000 0.909 0.913 0.938 0.698 0.721 0.740

10000 0.919 0.922 0.697 0.705

Table 6.4 Summary table: the maximum aucs obtained with the RF, the ET and the TT for the different values of K .

Using the T-Trees methodology encouragingly improves all the results, regardless of the dataset variant.
Even with the lowest value of K , we observed aucs that are sometimes slightly better, or at least close to the
best results we obtained with the two standard methods. Beside the fact that the aucs increased, a notable
improvement is the downward shift of the optimal value of the K parameters. While with the standard
approaches, auc maxima where observed for K = 10000, a K = 1000 seems sufficient to reach a maximum
value with the trees inside trees approach. In addition to the fact that strongly pruned (Nmin = 2000)
T-Trees were observed as optimal, they thus produces trees that are compact in comparison to the two other
variants.

These promising auc improvements suggest that using more than one snp at each node improves the
power of our tree based “prediction machine”. Table 6.5, empirically ensures that our approach is effectively
taking advantage of the structured nature of the variables i.e. the ld pattern. Indeed, we tested our approach
with blocks of randomly positioned snps rather than contiguous snp blocks. We see that with random blocks
(i.e. when we break the surrounding ld structure), the aucs substantially drop, meaning that the gain we
observed is not the sole consequence of the dimension reduction introduced by our methodology. This result
supports the effectiveness of our approach and confirms the initial intuition that led us to propose such a
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modification in the standard tree based approaches in the gwas context.

CDwtccc CDibd

K contig. rand. contig. rand.
100 0.903 0.753 0.690 0.600
500 0.936 0.835 0.728 0.625

1000 0.941 0.853 0.744 0.627

Table 6.5 aucs obtained with unpruned T-Trees with IC = 10, contiguous blocks of 10 snps versus random blocks of
10 snps. Using randomized bloc map drastically deteriorates the results.

6.1.2 Identification of suceptibility loci

In this section we investigate the loci identification ability of the tree-based methods in the field of gwas.
Based on comparisons between p-values, variable and group importances we will show that most of the
confirmed associated loci identified by standard χ2/Fisher tests of associations are also more or less selected
by the ensemble of tree methods. We will also show that different qc filters may have an important impact
on the tree induction process and that the multivariate aspect of our methods renders it more sensitive to
these filters. Indeed, as the nodes are expanded conditionally to their parents, weaker effects may be hidden
by stronger ones that might not be genuine association but genotyping artefacts.

Besides the important influence on the apparent predictive power of the different tree based methods that
such artefacts can introduce, we will see that variable importances still robustly and consistently identify
many regions as being important. Especially, we will see that many hits (defined by snps appearing in the
top ranking according to the tree based variable importances) are consistently concentrated in some regions
of the genome across the two variants of the cd dataset.

A first glance at the nine reported regions

Let’s start with the 9 regions reported as being strongly associated with the disease on the Crohn dataset in
[Wel07]. Using these 9 loci (listed in Table 6.6), we can compare how well the methods are able to identify
confirmed susceptibility regions on the 2 dataset variants. With the Random Forests we choose to fix the
settings to K = 10000, T = 1000 and Nmin = 250 as it corresponds, for the 2 datasets, to the near optimal
set of parameters (see Figure 6.3). While for the T-Trees, we choose K = 1000, T = 1000, IC = 5 and
Nmin = 2000.

Chromosome Start (Mb) End (Mb)
1p31 67.30 67.48
2q37 233.92 234.00
3p21 49.30 49.87
5p13 40.32 40.66
5q33 150.15 150.31
10q21 64.06 64.31
10q24 101.26 101.32
16q12 49.02 49.40
18p11 12.76 12.91

Table 6.6 The nine wtccc confirmed regions. Positions are expressed in NCBI build-35 coordinates.

Figures 6.11 and 6.12 allow for a rapid comparison between the random forest and the T-Trees applied
to the CDwtccc and CDibd dataset. Each histogram corresponds to the top 100 tree based variables
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importances. Left column corresponds to random forest variable importances while the right corresponds to
T-Trees variable importances.

Firstly, on Figure 6.11, in the first row, variables found in one of the nine confirmed regions are highlighted
in red, variables reported as moderately associated in [Wel07] Supplementary Information are highlighted in
orange, and similarly, blue highlights variables appearing in two more regions that have been detected by
both tree based methods (details about these two regions will follow later in this section). With the rf we
see that many “confirmed” variables appear but most of them are ranked below the 50 first. On the other
hand, with the T-Trees, we detected more variables coming from two additional regions (in blue). Next, in
the second row, purple corresponds to rare variants (snps with a maf < 0.05), some of the rare variants
appear in our two top rankings (there are a few more with the rf (39) than with the T-Trees (25)), among
these some are also deviating from hwe and/or are associated according to their p-values. In the third row,
we highlighted in orange the variables with a hwe p-value < 10−6 in the controls only or < 10−10 in the
cases only. These two thresholds corresponds to the one found in the CDibd qc filters. We see that almost
all of the ten first variables according to the random forests variables importances are deviating from hwe
(at least for one of the phenotype). Finally, in the last row, variables highlighted in green are those with a
Fisher p-value below 10−6. Many of the markers deviating from hwe are also associated according to the
Fisher test of association.

Similarly, Figure 6.12 demonstrates that the removal of suspicious snps from the set of candidate variables
allowed for a better detection of the nine reported regions (first row, first column). On the other hand, we
observed that the T-Trees strongly detects two more regions (in blue, first row, second column). Interestingly,
for the random forest, markers from these two regions are also selected but considered as less informative
while in the T-Trees, these two regions are mainly the only two that are represented in the 20 first according
to the variable importances (see Table 6.9). There seems to be a more important concentration of rare variants
in the top 20 with the rf and way less with the T-Trees. We noticed that there were also less of these
variables on CDwtccc with the T-Trees. As the T-Trees exploit blocks of snps instead of single ones, it is
less sensitive to their respective allele frequencies. As more of the confirmed regions are captured by the
tree based method in the strongly filtered version CDibd of the dataset, we will focus on this latter dataset
in the rest of this section.

Figure 6.13 shows the results we obtained on the CDibd data where the grey bars correspond to the
exact Fisher test based p-values, the blue bars and dots represent the 10 fold aggregated random forests
variable importances (which corresponds to variable importances derived from a forest of 10000 trees), the
orange bars and the green boxes respectively corresponds to variable importances and group importances
derived from the T-Trees (T = 1000, K = 1000, IC = 5 and Nmin = 2000). Each green box contains 10

markers. This Figure shows how the p-values and the variable importances are correlated. In these nine
regions, most of the variables detected by a low p-value are also, more or less, identified by the variable
importances. In each region, the most associated snps are also the most important according to the rf
variables importances and the group importance seems to be the highest where the markers with the locally
lowest p-values are. However, the vertical axis scales on these graphs are a bit misleading (each vertical
axis maximum is equal to the maximum in the corresponding window) (we refer the reader to Figure A.1 in
the Appendix for a normalised vertical axis version).

Table 6.8 details the 20 first snps according to the random forest variable importances on CDibd. In that
top, the first variable appears to be rs11209026 (found in region 1p31) which is also the most important
one according to the Fisher p-value (see Table A.3). We also notice the presence of several snps located
in the nine regions. Such as rs2076756 and rs2066843 on chromosome 16q12. rs10210302, rs6431654,
rs6752107, rs3828309 and rs3792106 on chromosome 2q37. rs7515029 also located in region 1p31.
Mainly three of the nine regions are represented in these 20 first variables.

On the other hand, similarly Table 6.9 lists the 20 first snp according to the T-Trees variable importances.
We no longer see that many snps as being reported except two, found in region 1p31 (rs11209026 and
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Figure 6.11 The first 100 variables according to the tree based importance rankings for CDwtccc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the nine reported regions
and blue highlights two more regions mostly detected by tree based methods. In the second row, purple
corresponds to rare variants (maf < 0.05). In the third row, orange highlights snps deviating from hwe
and in the last row, green represents markers with a low Fisher p-value (< 10−6).

rs2201841). However, we notice several hits on chromosome 2p12 (near position 81.5Mb) and on chromo-
some 7q31 (near position 125.1Mb). In that ranking, the first marker rs11887827 is also found at position
20 in the random forest ranking. In these two regions, only two markers have a low p-value: rs11887827
(2p12) and rs2107062 (on 7q31) but these do not correspond to the markers with the overall lowest p-values.
It seems that region 2p12 is useful for both tree based methods while region 7q31 is only considered as
important by the T-Trees method. Those two regions are represented in Figure 6.14. In these two regions,
two groups of markers are considered as the most important according to the T-Trees group importances.

Figure 6.15 focuses on the 2p12 region. In that figure, T-Trees variable and group importances are
reported in the first row. In the second row, the univariate (Fisher) p-values (axis on the right side) and the
haplotype p-values (axis on the left side; derived from the case/control omnibus test with H − 1 degree of
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Figure 6.12 The first 100 variables according to the tree based importance rankings for CDibd . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the nine reported regions
and blue highlights two more regions mostly detected by tree based methods. In the second row, purple
corresponds to rare variants (maf < 0.05). In the third row, green represents markers with a low Fisher
p-value (< 10−6).

freedom where H corresponds to the number of common1 haplotypes). The third row represents the number
of common haplotypes found in each 10 snp blocks and the bottom part of the figure shows the ld pattern
(r2) in that region. We see that the block with the highest importance is also strongly associated with the
disease and while the univariate p-value (the lowest p-value in that block is 1 · 10−7.6) fails to strongly
identify this association the haplotype p-value is extremely low (1 · 10−67). The ld pattern suggests that
there are two haplotype blocks, and the 10 snp block we identified with the T-Trees falls in a strongly
correlated subregion in the second haplotype block. Similarly (Figure 6.16), for the 7q31 region (details not
reported), the same analysis shows that the corresponding block has a haplotype p-value of 1 · 10−43 while
the flanking blocks are not associated at all. Finally, Table 6.7 reports the 6 common haplotypes found in
the 2p12 and 7q31 regions.

2p12 7q31
GGCATGTGGG GGTGTTAGTC

AGCACGTGGG ATGCCTGACT

AGCACGTAGG ATGCCTGACC

GATGTAAGGC GTGCCTGACC

AATGTAAGGC GGGGTTAGTC

GATGTAAGTC AGGCCCGACT

Table 6.7 The 6 common haplotype found in the 2p12 and the 7q31 regions.

1Here, a haplotype is said to be common if its frequency > 0.01 in the population under study
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Figure 6.13 The nine reported regions for Crohn’s disease. In grey, the exact Fisher test based p-values, in blue
random forest variable importances (K = 10000, T = 1000 and Nmin = 250), in orange the T-Trees
variable importances while the green boxes denote the T-Trees group importances (T = 1000, K = 1000,
IC = 5 and Nmin = 2000). The light grey shaded boxes delimit the nine regions as reported.
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Figure 6.14 Two more important regions for Crohn’s disease according to the tree based methods. In grey, the exact
Fisher test based p-values, in blue random forest variable importances (K = 10000, T = 1000 and
Nmin = 250), in orange the T-Trees variable importances while the green boxes denote the T-Trees group
importances (T = 1000, K = 1000, IC = 5 and Nmin = 2000).
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Figure 6.15 The region 2p12 on CDibd analysed according to the T-Tree block map. In the first row, T-Trees variable
and group importances. In the second row, snp and haplotype p-values. In the third row, the number of
haplotypes. The bottom of the figure represents the corresponding ld pattern (r2) in that region.
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Figure 6.16 The region 7q31 on CDibd analysed according to the T-Tree block map. In the first row, T-Trees variable
and group importances. In the second row, snp and haplotype p-values. In the third row, the number of
haplotypes. The bottom of the figure represents the corresponding ld pattern (r2) in that region.



6.1. TWO DATASET VARIANTS FOR CROHN ’S DISEASE 93

# Chr Pos. snp rf imp. Fisher p-value χ2 p-value maf fmiss pmiss 0 1 2 hwe
0.006 63 0 419 4226 1.03 · 10−4

1 1 67417979 rs11209026 1.40 · 10−2 8.24 · 10−18 2.09 · 10−16 0.0451 0.009 19 4.45 · 10−3 0 342 2568 3.52 · 10−5
0.002 30 0 77 1658 1
0.005 99 0 71 4577 1

2 14 84425325 rs10144260 5.02 · 10−3 1.18 · 10−9 4.40 · 10−8 0.007 64 0.000 681 9.48 · 10−10 0 67 2868 1
0.0150 0 4 1709 1
0.005 56 0 19 4631 1

3 4 86127973 rs1872321 4.81 · 10−3 6.88 · 10−9 1.48 · 10−8 0.002 04 0.006 47 3.15 · 10−1 0 0 2918 1
0.004 03 0 19 1713 1
0.007 91 373 1758 2508 9.11 · 10−3

4 16 49314382 rs2076756 3.88 · 10−3 3.95 · 10−15 2.25 · 10−15 0.270 0.005 45 1.64 · 10−2 174 1065 1682 7.62 · 10−1
0.0121 199 693 826 4.50 · 10−3
0.006 63 0 17 4628 1

5 8 30332834 rs7842024 2.88 · 10−3 4.09 · 10−8 6.42 · 10−8 0.001 83 0.000 681 5.81 · 10−11 0 0 2935 1
0.0167 0 17 1693 1

0.000 428 936 2349 1389 3.30 · 10−1
6 2 233940839 rs10210302 2.79 · 10−3 2.22 · 10−13 2.31 · 10−13 0.452 0.000 681 5.33 · 10−1 646 1529 760 1.98 · 10−2

0 290 820 629 4.25 · 10−1
0.001 07 933 2345 1393 3.60 · 10−1

7 2 233943769 rs6431654 2.68 · 10−3 2.55 · 10−13 2.75 · 10−13 0.451 0.001 36 6.57 · 10−1 645 1524 764 2.91 · 10−2
0.000 575 288 821 629 4.85 · 10−1
0.000 428 937 2348 1389 3.45 · 10−1

8 2 233943448 rs6752107 2.60 · 10−3 3.61 · 10−13 3.89 · 10−13 0.452 0.000 681 5.33 · 10−1 646 1528 761 2.19 · 10−2
0 291 820 628 3.97 · 10−1

0.006 63 0 23 4622 1
9 4 178272461 rs1595154 2.36 · 10−3 1.08 · 10−7 8.80 · 10−8 0.002 48 0.009 87 1.25 · 10−4 0 2 2906 1

0.001 15 0 21 1716 1
0.001 71 113 1132 3423 9.90 · 10−2

10 5 40437266 rs17234657 2.26 · 10−3 1.72 · 10−13 8.09 · 10−14 0.146 0.001 70 1 51 628 2253 3.51 · 10−1
0.001 73 62 504 1170 4.18 · 10−1
0.001 28 22 681 3967 2.60 · 10−1

11 5 33150395 rs6894272 2.10 · 10−3 4.49 · 10−3 3.95 · 10−3 0.0776 0.002 04 9.07 · 10−2 2 415 2514 3.47 · 10−5
0 20 266 1453 7.05 · 10−2

0.003 42 422 1813 2425 1.99 · 10−3
12 16 49302700 rs2066843 2.09 · 10−3 5.96 · 10−13 4.26 · 10−13 0.285 0.002 38 1.26 · 10−1 206 1106 1618 3.61 · 10−1

0.005 18 216 707 807 1.92 · 10−3
0.007 91 0 15 4624 1

13 5 167826491 rs888775 2.01 · 10−3 2.98 · 10−7 3.73 · 10−7 0.001 62 0.001 36 6.23 · 10−11 0 0 2933 1
0.0190 0 15 1691 1
0.002 35 10 315 4340 9.10 · 10−2

14 1 67308393 rs7515029 1.74 · 10−3 5.01 · 10−10 1.47 · 10−9 0.0359 0.002 04 5.51 · 10−1 9 245 2677 1.90 · 10−1
0.002 88 1 70 1663 5.29 · 10−1
0.002 99 935 2344 1383 3.15 · 10−1

15 2 233962410 rs3828309 1.70 · 10−3 1.19 · 10−12 1.12 · 10−12 0.452 0.003 41 5.90 · 10−1 645 1521 761 2.89 · 10−2
0.002 30 290 823 622 5.18 · 10−1
0.005 77 1 61 4587 1.91 · 10−1

16 8 116374529 rs16887291 1.68 · 10−3 1.15 · 10−6 3.75 · 10−7 0.006 78 0.008 85 7.72 · 10−5 1 18 2892 3.22 · 10−2
0.000 575 0 43 1695 1
0.004 71 0 18 4636 1

17 3 6848446 rs17046143 1.67 · 10−3 5.75 · 10−7 4.96 · 10−7 0.001 93 0.005 11 6.65 · 10−1 0 1 2921 1
0.004 03 0 17 1715 1
0.001 28 725 2256 1689 5.41 · 10−1

18 2 233972740 rs3792106 1.60 · 10−3 3.32 · 10−11 3.66 · 10−11 0.397 0.001 70 4.22 · 10−1 494 1490 948 2.81 · 10−2
0.000 575 231 766 741 1.42 · 10−1
0.000 214 0 35 4640 1

19 7 125371971 rs4431537 1.46 · 10−3 1.74 · 10−6 9.66 · 10−7 0.003 74 0.000 341 1 0 8 2928 1
0 0 27 1712 1

0.002 14 499 1903 2264 1.04 · 10−3
20 2 81577812 rs11887827 1.27 · 10−3 2.42 · 10−8 2.73 · 10−8 0.311 0.001 70 5.15 · 10−1 322 1299 1311 1

0.002 88 177 604 953 1.54 · 10−7

Table 6.8 The 20 first markers according to the random forest variable importances (denoted rf imp. in the gray shaded
column) on the CDibd datasets and the corresponding statistics. Green shaded cells refer to statistics related
to controls only while red shaded cells refer to cases only statistics. Bold typeface snp identifiers denote
markers found in one of the nine reported regions.
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# Chr Pos. snp tt imp. Fisher p-value χ2 p-value maf fmiss pmiss 0 1 2 hwe
0.002 14 499 1903 2264 1.04 · 10−3

1 2 81577812 rs11887827 1.03 · 10−2 2.42 · 10−8 2.73 · 10−8 0.311 0.001 70 5.15 · 10−1 322 1299 1311 1
0.002 88 177 604 953 1.54 · 10−7
0.002 14 498 2046 2122 8.94 · 10−1

2 2 81585945 rs7593114 9.39 · 10−3 1.44 · 10−1 1.41 · 10−1 0.326 0.001 02 4.60 · 10−2 323 1299 1312 9.67 · 10−1
0.004 03 175 747 810 9.12 · 10−1
0.000 855 485 1994 2193 3.11 · 10−1

3 7 125126957 rs6947579 7.55 · 10−3 8.54 · 10−1 8.45 · 10−1 0.317 0.001 36 3.04 · 10−1 301 1263 1369 7.02 · 10−1
0 184 731 824 2.45 · 10−1

0.000 642 111 1169 3393 3.86 · 10−1
4 2 81579712 rs17020244 5.66 · 10−3 9.76 · 10−1 9.69 · 10−1 0.149 0.000 681 1 65 743 2127 1

0.000 575 46 426 1266 1.57 · 10−1
0.006 63 0 419 4226 1.03 · 10−4

5 1 67417979 rs11209026 5.23 · 10−3 8.24 · 10−18 2.09 · 10−16 0.0451 0.009 19 4.45 · 10−3 0 342 2568 3.52 · 10−5
0.002 30 0 77 1658 1
0.001 07 110 1168 3393 4.18 · 10−1

6 2 81581046 rs12623313 4.30 · 10−3 1 9.87 · 10−1 0.149 0 7.09 · 10−3 65 743 2129 1
0.002 88 45 425 1264 2.16 · 10−1
0.007 70 483 1811 2346 2.68 · 10−6

7 7 125126698 rs2107062 3.81 · 10−3 5.60 · 10−5 5.43 · 10−5 0.299 0.0119 1.86 · 10−6 300 1223 1379 2.45 · 10−1
0.000 575 183 588 967 9.34 · 10−10
0.002 78 109 1167 3387 4.87 · 10−1

8 2 81581185 rs10520335 3.52 · 10−3 9.04 · 10−1 9.06 · 10−1 0.149 0.002 72 1 63 742 2124 9.42 · 10−1
0.002 88 46 425 1263 1.56 · 10−1
0.007 49 213 896 1410 5.81 · 10−5

9 23 21732484 rs5904497 3.26 · 10−3 4.41 · 10−2 4.29 · 10−2 0.273 0.009 53 3.55 · 10−2 122 562 780 1.50 · 10−1
0.004 03 91 334 630 5.97 · 10−6
0.001 28 30 698 3942 1

10 2 81594169 rs17020301 2.80 · 10−3 3.89 · 10−1 3.79 · 10−1 0.0812 0.001 02 6.77 · 10−1 16 433 2485 6.14 · 10−1
0.001 73 14 265 1457 6.40 · 10−1
0.004 28 209 995 1335 2.17 · 10−1

11 23 21732111 rs4824171 2.60 · 10−3 3.48 · 10−1 3.42 · 10−1 0.284 0.005 11 3.55 · 10−1 120 569 791 2.14 · 10−1
0.002 88 89 426 544 6.52 · 10−1
0.001 28 110 1170 3390 4.53 · 10−1

12 2 81599721 rs12613517 2.14 · 10−3 9.04 · 10−1 9.05 · 10−1 0.149 0.001 36 1 64 743 2126 1
0.001 15 46 427 1264 1.86 · 10−1
0.002 14 487 1988 2191 2.51 · 10−1

13 7 125137814 rs1419584 2.04 · 10−3 8.72 · 10−1 8.53 · 10−1 0.317 0.002 38 7.53 · 10−1 302 1260 1368 6.40 · 10−1
0.001 73 185 728 823 2.02 · 10−1
0.001 50 111 1168 3390 3.86 · 10−1

14 2 81586635 rs9646997 1.40 · 10−3 8.33 · 10−1 8.34 · 10−1 0.149 0.001 02 4.36 · 10−1 63 744 2127 8.84 · 10−1
0.002 30 48 424 1263 8.99 · 10−2
0.000 855 486 1993 2193 2.95 · 10−1

15 7 125127253 rs6967968 1.38 · 10−3 8.36 · 10−1 8.19 · 10−1 0.317 0.001 02 1 302 1263 1369 6.71 · 10−1
0.000 575 184 730 824 2.44 · 10−1
0.001 28 13 575 4082 1.44 · 10−1

16 2 81724164 rs12464902 1.31 · 10−3 2.76 · 10−1 2.69 · 10−1 0.0644 0.001 70 4.22 · 10−1 10 370 2552 4.57 · 10−1
0.000 575 3 205 1530 2.04 · 10−1
0.005 56 0 19 4631 1

17 4 86127973 rs1872321 1.19 · 10−3 6.88 · 10−9 1.48 · 10−8 0.002 04 0.006 47 3.15 · 10−1 0 0 2918 1
0.004 03 0 19 1713 1
0.005 99 0 71 4577 1

18 14 84425325 rs10144260 1.07 · 10−3 1.18 · 10−9 4.40 · 10−8 0.007 64 0.000 681 9.48 · 10−10 0 67 2868 1
0.0150 0 4 1709 1
0.006 63 0 17 4628 1

19 8 30332834 rs7842024 8.47 · 10−4 4.09 · 10−8 6.42 · 10−8 0.001 83 0.000 681 5.81 · 10−11 0 0 2935 1
0.0167 0 17 1693 1

0 564 2094 2018 5.60 · 10−1
20 1 67406223 rs2201841 7.94 · 10−4 1.41 · 10−11 1.15 · 10−11 0.345 0 1 311 1251 1375 2.89 · 10−1

0 253 843 643 4.19 · 10−1

Table 6.9 The 20 first markers according to the T-Trees variable importances (denoted tt imp. in the gray shaded
column) on the CDibd datasets and the corresponding statistics. Green shaded cells refer to statistics
related to controls only while red shaded cells refer to cases only statistics. Bold typeface snp identifiers
denote markers found in one of the nine reported regions.
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Focusing on the suspected regions

To further estimate how these nine reported regions and the two additional ones detected by our approach
influence the tree induction process, we trained Random Forests and T-Trees while using only the variables
from those regions as candidate SNPs or blocks. snp are found in the different investigated regions. The 9
confirmed loci are defined as in [Wel07] (Table 6.6), while the region denoted 2p12 ranges from 81.4Mb to
81.7Mb and the one denoted 7q31 ranges from 125.1Mb to 125.2Mb. Tables 6.11 and 6.10 summarise the
different aucs we obtained under these conditions for the two datasets. In these tables, the second columns
give the number of variables found in each considered subset of variables. As these numbers change, the
appropriate values of K change accordingly. Values of K are represented in the light green cells while the
dark green cells report the IC values in the T-Trees experiments.

On CDibd (Table 6.10), we observe that using only the nine reported regions allowed to reach a maximum
auc of 0.655 with Random Forests (with the lowest investigated value of K). The addition of region 2p12
allowed to further increase the auc to 0.699 with the T-Trees this time (also with the lowest investigated
values of IC and K). The adjunction of 7q31 markers also allowed for a further slight auc gain, a maximum
of 0.719 was obtained with the T-Trees. While the use of only 2p12 and 7q31 variables lead to an auc of
0.628 As the difference between the subsets of variables that were used in both analyses as candidate is
small, similar observations are now drawn for the weakly filtered variant of the dataset CDwtccc (the three
first row in Table 6.11).

While the gap between the auc obtained by exploiting all the variables and only considering 9 to 11
regions is important for the light filtered variant of the dataset, that gap becomes much smaller for the
strongly filtered version. Obviously, a significant part of the information exploited by the tree methods is
located in markers that have been filtered out by the stringent qc filters applied to the CDibd dataset. The
two additional rows at Table 6.11, denoted by HWE and NOT IBD confirm that hypothesis. Using only
markers deviating2 from hwe allowed to reach an auc of 0.851 while the use of markers being excluded from
the CDibd variant leads to an auc of 0.878.

Candidates # rf tt
100 200 300 10 30

5 10 5 10
9loci 322 0.655 0.652 0.651 0.653 0.652 0.648 0.642

9loci,2p12 363 0.677 0.677 0.677 0.699 0.692 0.692 0.685
9loci,2p12,7q31 386 0.682 0.681 0.681 0.719 0.719 0.718 0.714

20 40 60 2 6
5 10 5 10

2p12,7q31 64 0.628 0.628 0.626 0.627 0.625 0.619 0.616
all 436517 0.7 0.749

Table 6.10 CDibd aucs obtained while only using different subset of the available snps. “9loci” corresponds to
only using markers from the nine reported regions, “9loci,2p12” where we added the 2p12 regions and
“9loci,2p12,7q31” where the 2p12 and 7q31 regions are used in addition to the nine reported regions. The
last row corresponds to the results we obtained when using all the available variables. Light and dark
green shaded cells resp. corresponds to values of K and IC parameters.

2Markers with a hwe p-value < 10−5 in controls only or a hwe p-value < 10−7 in cases only.
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Candidates # rf tt
100 200 300 10 30

5 10 5 10
9loci 340 0.654 0.652 0.652 0.652 0.652 0.647 0.644

9loci,2p12 382 0.674 0.674 0.674 0.700 0.698 0.696 0.693
9loci,2p12,7q31 406 0.678 0.680 0.680 0.725 0.723 0.718 0.713

20 40 60 2 6
5 10 5 10

2p12,7q31 66 0.635 0.635 0.631 0.625 0.622 0.621 0.618
1000 2000 3000

HWE 3178 0.851 0.847 0.845
1000 2000 3000

NOT IBD 33123 0.870 0.870 0.878
all 469612 0.919 0.945

Table 6.11 CDwtccc aucs obtained while only using different subset of the available snps. “9loci” corresponds to
only using markers from the nine reported regions, “9loci,2p12” where we added the 2p12 regions and
“9loci,2p12,7q31” where the 2p12 and 7q31 regions are used in addition to the nine reported regions. The
HWE row corresponds to the case where we only considered the variables deviating from hwe and NOT
IBD corresponds to the case where we only used snps that are excluded from the CDibd variant. The last
row corresponds to the results we obtained when using all the available variables. Light and dark green
shaded cells resp. corresponds to values of K and IC parameters.

A little further down in the ranking

So far, we briefly looked at the 100 first variables and detailed the twenty first ones according to the variable
importances of the tree-based methods. Let us now go a little further down in these rankings and see if
more reported regions are detected. In addition to the nine reported regions, we will now also include the
loci reported in [Wel07] Supplementary Information and the 140 loci reported more recently in [J+13].

Table 6.12 lists the different regions found in the 200 first variables detected by the tree-based methods
on the CDibd dataset. The upper part corresponds to Random Forests variable importances and the bottom
part to T-Trees variable importances.

In that Table, we grouped markers and reported regions as follows: given the physical order of the 200

first snps found in the variable rankings, we start a region with the first marker and iteratively add the
following one if it is at most 20 snps away from the previous one. Regions are thus separated by at least
20 snps. For the sake of readability, we report only regions containing at least two markers and at the end
of each subtable, in gray shaded text, markers that appeared isolated but reported as associated in [Wel07]
Supplementary Information. Only details for the most important markers is reported for each group. When
a marker is located in a gene3, the corresponding gene name is reported in parenthesis next to the marker
id. The variable rank is also reported in parenthesis next to the importance value in the last column. Using
the following conventions, we highlighted the marker IDs:

3According to PheGenI: Phenotype-Genotype Integrator (NCBI).

http://www.ncbi.nlm.nih.gov/gap/phegeni


6.1. TWO DATASET VARIANTS FOR CROHN ’S DISEASE 97

• in red, when they were reported as strongly associated in [Wel07] Supplementary Information (p-value
< 10−5),

• in orange, when reported as moderately associated in [Wel07] Supplementary Information (10−5 <
p-value < 10−4 and within 200kb of at least one other snp with a p-value < 10−3),

• in cyan, they were found in regions reported with a strong signal when used in the expanded reference
group analysis4,

• in blue, when they correspond to the two regions we identified previously with the T-Trees,

• underlined, when they correspond to markers reported in [J+13],

• with a (∗), when they correspond to one of the nine regions previously discussed.

For instance, the first row in Table 6.12 reports a region located on chromosome 1, spanning from
67.31Mb to 67.46Mb. That region is characterised by 10 markers, the most important one in that region is
rs11209026 with an importance of 1.40 · 10−2 and is ranked at the first position in the Random Forests
variables ranking. That snp was discussed in the [Wel07], it is one of the nine regions we investigated until
now, it is also reported in [Wel07] Supplementary Information as strongly associated and is found in the 140

loci reported in [J+13], hence the red, the underline and the asterisk in parenthesis next to the marker name.
As we can see, with Random Forests, 5 of the nine reported regions are selected and well represented

in the 100 first variables. There are ten snps located in the interleukin 23 receptor regions on chromosome
1, five on chromosome 2 in the ATG16L1 gene, six around rs11718165, twelve on chromosome 5 around
rs17234657 and four in the NOD2 region on chromosome 16. We also notice the presence of rs2542151
but it appeared isolated and ranked below the 100 first variables. In addition, rs931058 on chromosome
5 has been reported in the list of 140 loci. We note that snp was not reported in [Wel07]. A few other
snps reported only in [J+13] appeared isolated in these 200 first variables: rs11260562 at position 108
in the ranking, rs909813 at position 172, rs17101358 (104), rs10923915 (111), rs11190083 (92) and
rs1751852 at position 171 (not reported in Table 6.12). Interestingly, the most represented region in this
ranking corresponds to one of the two regions we mentioned previously as detected only by the tree-based
methods. Seventeen snps from that region were found in the 200 first variables.

Similarly, with the T-Trees, the six same regions out of the nine are identified. Especially, rs11209026,
rs10210302, rs17234657 and rs2076756 were found in the 100 first. We notice the presence of the two
“blue” regions. This time, on chromosome 2p12, 35 variables were found in the 200 first and 9 for the
7q31 region. The most important markers in these two regions are positioned first and third in the T-Tree
variable ranking. Additionnaly, rs16884693 was represented by 2 markers and a few more of the 140 loci
not reported by the wtccc appeared isolated and at lower ranks (rs11260562 (138), rs17101358 (149),
rs931058 (120), rs10772590 (169) and rs2352937 (95)).

4The expanded reference group analysis consists in including the cases from other (non related) diseases as controls in the analysis
of each disease.
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

1 67.31 67.46 10 rs11209026(∗) (IL23R ) 0.045 1 3.52 · 10−5 8.24 · 10−18 1.40 · 10−2 (1)
2 45.58 45.58 2 rs3755076 0.087 2.65 · 10−3 6.02 · 10−3 5.18 · 10−1 5.30 · 10−4 (48)
2 81.58 81.76 17 rs11887827 0.311 1.54 · 10−7 1 2.42 · 10−8 1.27 · 10−3 (20)
2 233.94 233.97 5 rs10210302(∗) (ATG16L1) 0.452 4.25 · 10−1 1.98 · 10−2 2.22 · 10−13 2.79 · 10−3 (6)
3 49.43 49.68 6 rs11718165(∗) (BSN) 0.295 1.33 · 10−2 1.60 · 10−2 1.70 · 10−6 1.19 · 10−3 (24)
4 114.61 114.62 2 rs17045935 (ANK2) 0.095 2.38 · 10−1 1.07 · 10−4 5.28 · 10−2 6.45 · 10−4 (39)
5 24.77 24.77 3 rs16893874 0.008 2.61 · 10−1 1 3.18 · 10−5 3.32 · 10−4 (80)
5 40.43 40.61 12 rs17234657(∗) 0.146 4.18 · 10−1 3.51 · 10−1 1.72 · 10−13 2.26 · 10−3 (10)
5 121.75 121.76 2 rs17149128 (SNCAIP) 0.122 1.10 · 10−2 1.03 · 10−2 4.10 · 10−1 1.97 · 10−4 (166)
5 150.21 150.31 4 rs931058 0.071 5.64 · 10−1 1 1.53 · 10−8 5.83 · 10−4 (44)
6 36.54 36.64 2 rs600382 0.001 1 1 2.38 · 10−5 2.67 · 10−4 (95)
8 129.88 129.96 4 rs10216909 0.003 1 1 7.76 · 10−5 3.04 · 10−4 (87)

10 65.96 65.96 2 rs16919914 0.080 8.80 · 10−2 4.00 · 10−4 2.22 · 10−1 5.20 · 10−4 (49)
11 130.84 130.84 2 rs1533339 (NTM) 0.005 1 1 2.78 · 10−4 2.15 · 10−4 (145)
16 49.30 49.32 4 rs2076756(∗) (NOD2) 0.270 4.50 · 10−3 7.62 · 10−1 3.95 · 10−15 3.88 · 10−3 (4)
23 89.59 89.64 2 rs6522332 0.160 3.10 · 10−1 5.50 · 10−1 3.23 · 10−1 2.08 · 10−4 (155)
7 135.31 135.31 1 rs834771 0.151 1.01 · 10−1 3.37 · 10−2 1.25 · 10−3 1.91 · 10−4 (177)
8 77.90 77.90 1 rs10957818 0.024 7.13 · 10−1 6.26 · 10−1 2.62 · 10−5 2.13 · 10−4 (151)

14 77.10 77.10 1 rs4903604 0.227 5.78 · 10−3 2.41 · 10−2 2.48 · 10−3 2.89 · 10−4 (89)
18 12.77 12.77 1 rs2542151(∗) 0.180 3.08 · 10−1 9.46 · 10−1 7.21 · 10−8 2.07 · 10−4 (156)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 3.25 3.26 2 rs12409315 0.077 1.75 · 10−1 4.37 · 10−3 2.54 · 10−3 4.36 · 10−4 (32)
1 67.31 67.46 10 rs11209026(∗) (IL23R ) 0.045 1 3.52 · 10−5 8.24 · 10−18 5.23 · 10−3 (5)
1 77.61 77.62 2 rs11162341 0.132 4.01 · 10−1 3.78 · 10−1 8.99 · 10−1 2.28 · 10−4 (57)
1 236.50 236.50 5 rs6677092 (RPS7P5 ) 0.373 3.01 · 10−6 1 1.77 · 10−4 4.15 · 10−4 (33)
2 81.58 81.85 35 rs11887827 0.311 1.54 · 10−7 1 2.42 · 10−8 1.03 · 10−2 (1)
2 143.22 143.28 2 SNP A-2293058 0.003 1 1 1.79 · 10−5 1.81 · 10−4 (78)
2 233.94 233.97 5 rs10210302(∗) (ATG16L1) 0.452 4.25 · 10−1 1.98 · 10−2 2.22 · 10−13 3.07 · 10−4 (48)
3 7.49 7.50 2 rs17047422 0.001 1 1 3.45 · 10−4 1.91 · 10−4 (73)
3 120.41 120.42 2 rs6774 (B4GALT4) 0.108 2.50 · 10−1 7.10 · 10−4 1.39 · 10−2 3.41 · 10−4 (43)
3 187.31 187.35 2 rs4686733 0.053 6.50 · 10−5 1.12 · 10−2 3.65 · 10−1 1.39 · 10−4 (93)
4 86.13 86.18 2 rs1872321 0.002 1 1 6.88 · 10−9 1.19 · 10−3 (17)
4 114.61 114.62 2 rs17045935 (ANK2) 0.095 2.38 · 10−1 1.07 · 10−4 5.28 · 10−2 2.57 · 10−4 (53)
4 178.27 178.28 3 rs1595154 0.002 1 1 1.08 · 10−7 5.70 · 10−4 (28)
5 40.43 40.53 10 rs17234657(∗) 0.146 4.18 · 10−1 3.51 · 10−1 1.72 · 10−13 4.55 · 10−4 (30)
6 21.33 21.35 2 rs16884693 0.004 1 1 1.21 · 10−3 9.36 · 10−5 (145)
6 129.84 129.84 3 rs2784899 0.260 8.06 · 10−1 5.25 · 10−1 6.48 · 10−2 1.26 · 10−4 (106)
7 35.37 35.37 2 rs10270692 0.066 1 6.68 · 10−1 9.31 · 10−2 1.99 · 10−4 (68)
7 125.13 125.16 9 rs6947579 0.317 2.45 · 10−1 7.02 · 10−1 8.54 · 10−1 7.55 · 10−3 (3)
8 129.90 129.92 2 rs10216909 0.003 1 1 7.76 · 10−5 1.03 · 10−4 (131)

10 38.31 38.38 2 rs11011417 0.001 1 1 1.85 · 10−5 1.31 · 10−4 (100)
11 14.16 14.16 2 rs9804490 0.459 1.50 · 10−10 1.44 · 10−6 2.41 · 10−5 1.16 · 10−4 (117)
12 42.78 42.80 2 rs11613902 (TMEM117 ) 0.099 3.98 · 10−7 9.76 · 10−2 9.43 · 10−1 3.46 · 10−4 (41)
14 84.39 84.43 4 rs10144260 0.008 1 1 1.18 · 10−9 1.07 · 10−3 (18)
14 104.47 104.53 2 rs2819467 (C14orf79) 0.011 3.21 · 10−1 1 1.51 · 10−3 1.23 · 10−4 (110)
16 49.30 49.31 3 rs2076756(∗) (NOD2) 0.270 4.50 · 10−3 7.62 · 10−1 3.95 · 10−15 6.43 · 10−4 (25)
23 21.69 21.74 8 rs5904497 (SMS) 0.273 5.97 · 10−6 1.50 · 10−1 4.41 · 10−2 3.26 · 10−3 (9)
23 70.94 70.94 2 rs6624585 (NHSL2) 0.068 7.76 · 10−1 1 2.69 · 10−2 2.24 · 10−4 (58)
3 49.67 49.67 1 rs11718165(∗) (BSN) 0.295 1.33 · 10−2 1.60 · 10−2 1.70 · 10−6 7.93 · 10−5 (159)
5 57.95 57.95 1 rs2279980 0.188 8.16 · 10−2 7.99 · 10−1 6.19 · 10−5 7.03 · 10−5 (182)
8 77.90 77.90 1 rs10957818 0.024 7.13 · 10−1 6.26 · 10−1 2.62 · 10−5 1.06 · 10−4 (126)

18 12.77 12.77 1 rs2542151(∗) 0.180 3.08 · 10−1 9.46 · 10−1 7.21 · 10−8 9.35 · 10−5 (146)

Table 6.12 CDibd: lists of regions identified by the Random Forests and the T-Trees methods.
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Rare and common variants

Another important observation based on Table 6.8 (and also in the two other datasets top rankings at Table A.1
in the Appendix) is that most of the snps that are not found in one of the nine regions are of low minor
allele frequency. Firstly, it contradicts the finding of [BBLBS12]. Secondly, it suggests that an important
part of the information exploited by the random forests is located in rare variants spread all over the genome.
Table 6.13 display the aucs we obtained by using (1) only rare variants (maf ≤ 0.05) and (2) using only
common ones (maf > 0.05) as candidate attributes with the random forests (T = 1000, Nmin = 250). In
that Table, the gray numbers correspond to aucs obtained using all the variables. We see that using only
rare/common variants still allows to reach high aucs (and may comfort the idea that part of the missing
heritability might be hidden in rare variants). With rare variants only we also notice that different values
of K does not significantly change the auc value while on the other hand, with common variants only, an
increase of K leads to an increase of the auc. Obviously, when a test node uses a low maf snp as a splitting
attribute, it certainly produces a child with a small proportion of the current learning set reaching that node
(maybe a pure subsample in which case the node becomes a leaf) transforming the structure of the tree in
a long branch along which the order of variable appearance is not so important anymore (and thus explains
why the auc is so stable with regards to the K parameter).

maf K #wtccc CDwtccc #ibd CDibd

(1) ≤ 0.05 1000 102593 0.800 (0.845) 85110 0.668 (0.684)
2500 0.810 (0.888) 0.668 (0.700)
5000 0.811 (0.909) 0.671 (0.698)

(2) > 0.05 1000 367019 0.764 (0.845) 351407 0.646 (0.684)
2500 0.825 (0.888) 0.661 (0.700)
5000 0.851 (0.909) 0.660 (0.698)

469612 436517

Table 6.13 aucs obtained while filtering the list of candidate attributes based on the maf (minor allele frequency) with
the random forest (T = 1000, Nmin = 250). The two columns #wtccc and #ibd denote the numbers of
snps passing the corresponding maf filters.

Excluding the X chromosome

Because of its specific nature, the X chromosome is often not included in gwas or is studied separately
from the 22 autosomal chromosomes. In our previous experiments, all markers from the chromosome X were
considered. Table 6.14 reports the results we obtained when removing the entire chromosome from the pool
of candidate variables in our tree-based methods. We found no significant differences between taking and
not taking the X chromosome into account for our two Crohn’s disease datasets. As the proportion of male
and female is well balanced between cases and controls in these datasets, the risk of spurious signal of
association related to the individual sex is low.

CDwtccc CDibd

chr. X rf tt rf tt
included 0.919 0.945 0.697 0.749
excluded 0.910 0.945 0.696 0.749

Table 6.14 Comparison of aucs obtained while including/excluding chromosome X from the candidate attributes. Pa-
rameter settings: rf: T = 1000, K = 10000, Nmin = 250 and tt: T = 1000, K = 1000, IC = 5,
Nmin = 2000.
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6.2 A few experiments with linear models

In the present section we carry out a few experiments in order to compare the results obtained with our
tree-based methods with several standard approaches to build linear models. While we mostly focus on the
assessment of predictive accuracy, we also make a preliminary analysis of the snps rankings obtained with
such linear models in comparison with those obtained from tree-based variable importances.

6.2.1 Sum of log odds ratio

The odds ratio (OR) corresponds to the ratio between the proportion of cases having a specific allele and
the proportion of controls having the same allele. That ratio will be greater than one when the frequency
of the allele used as reference is higher in the cases. It denotes how the presence of a specific allele at a
given locus increases or decreases the genetic risk. We investigated a simple model summing together the
natural logarithm of the allelic OR. Each individual is then assigned with an average score per non-missing
snp defined as:

1

n

n∑
i=1

gi × log(ORi). (6.1)

where n corresponds to the number of non-missing genotypes and gi denotes the genotype (0,1 or 2) of
snpi of the considered individual. This model (also called naive-bayes in the machine learning literature)
assumes a class-conditional independence between the markers. We evaluated two variants of this OR
based model: in the first experiment, we used the odds ratio derived directly from the datasets as defined
in eqn. (6.1), while in the second experiment we used instead the “odds ratio” derived from a logistic
regression applied separately to each snp, denoted ORlogit in the following (which corresponds to the β1
coefficient in the corresponding linear model [HV03]). Both experiments were performed with plink [P+07]
and the corresponding cumulated scores are used to determine aucs, according to our 10-fold cross-validation
scheme and by using the same folds as before.

CDwtccc CDibd

OR 0.661 0.648
ORlogit 0.739 0.729

Table 6.15 aucs obtained with the “log odds ratio” methods on the two CD datasets.

Table 6.15 report the aucs we obtained. We see that higher aucs are reached on CDwtccc and that the
second experiment (ORlogit ) produced much better results.

6.2.2 Globally trained linear models

The goal is to learn a linear scoring function in the form f(x) = wTx + b. A common choice to find the
model parameters w and b is by minimizing the regularized training error given by:

E(w, b) =

n∑
i=1

L(yi, f(xi)) + αR(w) (6.2)

where L is a loss function that measures model fit and R is a regularisation term that penalises model
complexity, i.e. to prevent overfitting (α > 0 is a non-negative hyperparameter). We used the hinge loss
function (i.e. L(yi, f(xi)) = max(0, 1 − yi · f(xi))) which is well suited for classification problems. We
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tested two types of regularisation, namely the L1 and the L2 norms which are defined as:

L1 : R(w) =

n∑
i=1

|wi| (6.3)

L2 : R(w) =
1

2

n∑
i=1

w2
i (6.4)

In our first experiment, we fitted our linear model with stochastic gradient descent (SGD) [Zha04]. We
used an open source machine learning library written in Python: Scikit-learn [PVG+11]. Table 6.16 reports
the averaged aucs we obtained with our protocol (i.e. using the same 10-fold cross validation while trying
to fit a model based on all the available snps). For both regularisations, the α values were chosen so as to
maximise the reported aucs. For the L1-regularized model we obtained the best result with α = 1 · 10−6

and for the L2-regularized model the best auc was reached with α = 1000. We notice that the latter
regularisation provides better results, while both variants provide slightly better results on the CDwtccc

dataset than on the CDibd one.

CDwtccc CDibd

L1 0.623 0.613
L2 0.643 0.635

Table 6.16 aucs obtained with linear models learnt by stochastic gradient descent, with two types of regularisation
and on the two CD datasets.

Also, we investigated the L2-regularised logistic regression also available in Scikit-learn which is based
on Liblinear [FCH+08] and solves the following unconstrained optimisation problem:

min
w

1

2
wTw + C

n∑
i=1

log(1 + e−yiw
T xi) (6.5)

Again, under the same conditions and with a grid search for the optimal parameter, we reached an auc of
0.648 (with C = 1 · 10−5) on CDwtccc and 0.638 (with C = 1 · 10−6) on CDibd.

Finally, Table 6.17 summarises all the aucs we obtained until now. The two first rows in that table
corresponds to the best tree-based aucs. For both datasets, in terms of predictive power the best results
are achieved with the T-Trees. While the difference is notable on CDwtccc the gap between the best linear
model and the best tree-based one is much smaller on the CDibd dataset. These preliminary results suggest
that:

• As expected and highlighted with the sum of log odds ratio, a notable part of the genetic risk is
attributable to a linear combination of the individual SNPs odd ratios. In particular, the fact that
variables are considered independent of each other renders this approach quite fast and robust against
overfitting. Indeed, in the overall score, small noise effects due to a large number of irrelevant markers,
are on average cancelled.

• On the other hand, when we tried to globally fit a linear model on all the variables at once, it appeared
as counterproductive. The results we obtained with SGD and the logistic regression are indeed one
step behind the sum of log odds ratio method. This may be caused by the very high dimensionality
and hence the less effective bias-variance tradeoff of the global weight fitting schemes.

• Although the aucs difference is less impressive on CDibd dataset, we saw that the T-Trees were
nevertheless able to outperform all the linear methods as well as the random forests.
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CDwtccc CDibd

RF 0.919 0.700
TT 0.955 0.765
OR 0.661 0.648
ORlogit 0.739 0.729
SGD-L1 0.623 0.613
SGD-L2 0.643 0.635
Logit 0.648 0.638

Table 6.17 Comparison of aucs between the tree-based and the linear models.

6.2.3 Preliminary analysis of the SNP rankings

In addition to the assessment of the aucs of the linear models, we also looked at their ranking of the different
SNPs. Given the univariate way of scoring the SNPs in the OR variants, their rankings should essentially
be similar to those of the univariate p-values. On the other hand, with the globally trained versions we
might expect different rankings. We therefore ranked the snps based on |wi| obtained with the SGD-L2
variant, while focusing on the top 100 variables in these rankings. On CDibd we note, in the overlap, the
presence of several snps in the 1p31, 2q37, 5p13 and 16q12 wtccc reported regions and also one snp in the
2p12 locus (one of the additional regions identified by the T-Trees). Similarly, on CDwtccc, we notice the
presence of several markers also found in confirmed regions and, additionally, a few markers with a strong
deviation from hwe. These similarities with our previous experiments are comforting, but they also highlight
that there is probably more than only linear effects in these datasets, since the tree-based approaches reach
higher aucs than the linear models, particularly on the CDwtccc dataset.
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6.3 Discussion

With all the previous results in mind, different conclusions can be drawn. In this chapter, we applied three
methods to two variations of the same datasets: a lightly and a strongly qc filtered dataset. We evaluated
those methods in terms of their predictions and their ability to identify markers that are associated to Crohn’s
disease.

6.3.1 Importance of the preprocessings

Independently from the method, we observed consistent behaviour in terms of prediction accuracy on the two
variants of the dataset:

• qc filters: we saw that the way these kind of data are cleaned is of crucial importance and beside
the fact that the score we used is strongly correlated and similar to the standard χ2/Fisher test
of association that are of common use in gwas, it can drastically modify the predictive power and
the corresponding variable ranking. At each tree in our different types of forests, nodes are expanded
conditionally to the previous ones. When a strongly (but maybe abnormally) associated marker appears
in the dataset, it will be considered as important by our methods and appear nearer to the root of
trees in an ensemble, prevailing over other weaker (but potentially truly) associated markers.
Especially, on the weakly filtered dataset, we noticed that the most important variables according
to the variable importances in our tree based methods are often those that strongly deviate from the
Hardy-Weinberg equilibrium in one of the two groups. The tree based methods seem to be extremely
sensitive to this filter, as it reflects an important difference in genotype distributions between the
two phenotypes. This issue is strongly related to the quality of the data and is a common problem
in the field of machine learning, unlike univariate analysis where suspicious variables can easily be
discarded on by one. The stronger filters applied to the CDibd dataset demonstrate that the removal
of such “strangely” deviating markers allowed for a better identification of the nine reported regions.
Still, while sometimes such markers appeared isolated (which suggests a potential genotyping error),
we noticed, e.g. in a region on chromosome 4, on the CDwtccc that even snps not deviating as much
as the strongest one were picked as well. In the T-Trees method, one can easily think that the marker
deviating from hwe carries with him the other snps found in the same block, but that is not true in the
random forest context where variables are treated independently from the others.
Besides all these considerations, some of the qc filters are questionable. How can we be sure about
the reasons and the exclusion thresholds used to discard a snp? As suggested in [ZVSW10], what if,
given the way affected individuals are sampled, one or more snps just deviate from one of the filters
because of the disease. A meticulous inspection of each of the variables seems to be inevitable to
guarantee the inference of a reliable tree-based model. Unfortunately, that step, in particular the ones
that are snp based, corresponds to what could be done posterior to a gwas but becomes a crucial
prerequisite to the application of tree-based methods. We noticed that the qc filters essentially affect
the predictive power of the methods. Still, even in presence of suspicious markers in the most important
ones according to the tree based methods, we saw that many of the reported snps were also selected
in a consistent manner across datasets and methods in the variable rankings. The presence of such
aberrant variables pushed the reported ones a bit downwards in the rankings. To circumvent this
problem, one approach would be to repeat the construction of an ensemble of trees while iteratively
removing markers that are considered as important while looking suspicious like common genotyping
errors do.
We also noticed that, while the random forest variables importances allowed to detect the markers with
the lowest p-values, the T-Trees variable and group importances allowed to spot additional regions
that were not associated nor robustly detected by the random forests.
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6.3.2 Methods

We are now confident about the power of tree based methods applied to the field of genome-wide association
studies. The consistency between the three methods applied to the two dataset variations highlighted the
reliability of the ensemble of trees methods behaviour. Most importantly, we notice as expected that the most
important variables in the different models are always the ones that are the most statistically associated
with the outcome.

Et seemed to beat the rf, it also produces deeper trees while reaching slightly better aucs. Results
between the two methods are almost similar and that’s expected given the fact that there are at most two
possible splits for each snp. The only real left difference between those two algorithms being the bootstrap
sampling step. As those two methods are quite similar, we decided to focus on the one that is more widely
known and the more commonly used in the field of gwas: Random Forests.

Finally, we evaluated the power of our novel method, taking into account the particular structure of the
variables. In every case, T-Trees produced higher aucs than the two other standard approaches. We confirmed
that taking ld into account is an effective way to improve the quality of the model while increasing the
robustness against noise of the resulting variable rankings. This method allows to reduce the dimensionality
of the problem by dividing it by the size of a bloc. We explored the different parameters and noticed that
even with the fastest parameter configurations, the T-Trees reached aucs comparable to the best results of
rf and the et.

Based on the variable importances, we noticed that most of the time, variables that were confirmed by
the wtccc where also quite well selected by our tree based methods. Besides that promising similarity,
interestingly, we also found that some regions were sometimes considered as important by the machine
learning approach while being ignored by the univariate statistical approach. Regions such as the one found
(on the two datasets variants and with the two tree based methods) on the chromosome 2 (around position
81.5Mb) may draw geneticists attention as it has not been reported in the literature as being associated
with the Crohn’s disease, at least not yet.
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Six other complex diseases
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In the previous chapter, we focused our effort on and detailed the case of Crohn’s disease. Using our
latest findings, in this chapter we will investigate the six other diseases related wtccc datasets. With a
systematic comparison between different qc filters and two tree-based methods, we will first look at predictive
power and then inspect derived variable importances. This empirical study aims at showing that our previous
findings generalise to other datasets exhibiting different “architectures”.
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7.1 The six other diseases

Following the same principles, we applied our methodology to the six additional wtccc datasets. For each
disease, we generated two dataset variations based on different qc filters. Table 7.1 summarises the 7

diseases (including the Crohn’s disease) and the corresponding name conventions we will adopt along the
current chapter. The wtccc filtered versions are subscripted with wtccc while the “ibd”-like filtered are
subscripted with qc.

For the qc versions, starting from the initial set of 500568 snps available on the Affymetrix chip, we
applied separately the following filters on each disease dataset (in the following order):

1. missing rate per snp < 5% (before sample removal)

2. missing rate per individual < 2%

3. heterozygosity per individual +/− 0.2

4. missing rate per snp < 2%

5. missing rate difference between case and control < 2%

6. hwe p-value < 10−6 (controls only)

7. hwe p-value < 10−10 (cases only).

Unfortunately, some of these filters (at least when applied to the CDibd dataset) were fine tuned under
visual inspection of various plots (e.g. heterozygosity rate vs. missing rate), allowing the manual removal
of outliers and were not exactly reproducible. For that reason, we obtained another variant of the Crohn’s
disease dataset called CDqc (as reported in Table 7.1) which is slightly different from the CDibd variant.
Figure 7.1 represents these three resulting datasets (CDwtccc, CDibd and CDqc).

Disease Light qc Strong qc
Bipolar disorder BDwtccc BDqc

Coronary artery disease CADwtccc CADqc

Crohn’s disease CDwtccc CDqc ( 6= CDibd)
Hypertension HTwtccc HTqc
Rheumatoid arthritis RAwtccc RAqc

Type 1 diabetes T1Dwtccc T1Dqc

Type 2 diabetes T2Dwtccc T2Dqc

Table 7.1 The 7 diseases from the WTCCC dataset and the corresponding naming conventions adopted along this
chapter.

Table 7.2 summarises the qc filter impact for each disease. Columns “#ind.” and “#snp” refers to the
initial number of individuals and snps respectively. The five next columns denote the remaining number
of individuals or snps depending on the corresponding filter that was applied. As no filter is related to
the minor allele frequency, the final numbers of snps in this table includes 3.65 ± 0.23% of monomorphic
markers. Finally, Table 7.3 list the overlap size between the wtccc datasets, the list of excluded snps in
wtccc (comprising 30956 snps) and the corresponding qc versions.
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Dataset #ind. #snp qc1 (snp) qc2 (ind.) qc3 (ind.) qc4 (snp) qc5,6,7 (snp)
BDqc 5002 500568 483331 4949 4943 460219 454409
CADqc 4992 500568 484645 4928 4928 463113 457400
CDqc 5009 500568 484798 4934 4922 463144 457609
HTqc 5005 500568 484293 4947 4937 462089 456448
RAqc 5003 500568 484306 4926 4917 462432 456642
T1Dqc 5004 500568 484357 4975 4966 462342 456767
T2Dqc 5003 500568 483915 4942 4930 461284 455671

Table 7.2 Quality control filters influence on the number of snps and individuals for each of the 6 other wtccc datasets.

Dataset wtccc qc wtccc ∩ qc qc ∩ excluded
BD 469612 454409 449754 4655
CAD 469612 457400 452153 5247
CD 469612 457609 452482 5127
HT 469612 456448 451548 4900
RA 469612 456642 451471 5171
T1D 469612 456767 451721 5046
T2D 469612 455671 450784 4887

Table 7.3 First column: markers included in the wtccc versions, second column: markers included in our qc versions,
third column: markers found in both versions and last column: markers found in qc versions that were
excluded from the wtccc.

500 568 SNPs

469 612 SNPs

436 517 SNPs

457 609 SNPs

30 956 SNPs

30 928 SNPs

25 829 SNPs

33 123 SNPs

17 130 SNPs

CDwtccc

CDibd

CDqc

Figure 7.1 Proportion of markers being excluded for each of the 3 Crohn’s disease dataset versions. In light green, the
full set of available snps. In green, the markers included in the study and in orange, the excluded markers.
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7.2 Comparison of the tree-based methods predictive power

On these 14 (2×7) datasets, we applied the random forests and the T-Trees with the near optimal parameters
we identified and used in the previous chapter. Table 7.4 summarises the aucs we obtained for each of these
experiments.

qc wtccc qc+ wtccc

rf tt rf tt rf tt
BD 0.743 0.813 0.918 0.959 0.683 0.756
CAD 0.756 0.814 0.998 0.999 0.675 0.771
CD 0.776 0.801 0.919 0.945 0.735 0.762
HT 0.807 0.866 0.938 0.969 0.692 0.799
RA 0.806 0.830 0.993 0.996 0.747 0.763
T1D 0.860 0.870 0.900 0.940 0.852 0.860
T2D 0.758 0.834 0.959 0.979 0.705 0.788

Table 7.4 auc comparisons: rf and tt results on two variants of the 7 wtccc datasets. The qc columns corresponds to
the “idb”-like filtered variant and the wtccc to the lightly filtered variant. (parameter settings: rf: T = 1000,
K = 10000, Nmin = 250 and tt: T = 1000, K = 1000, IC = 5, Nmin = 2000)

A first observation can be drawn when comparing our two tree-based methods. T-Trees were still able
to outperform the random forests in term of predictive accuracy (even when there is not much room left for
improvement). We observed the same tendency on the two CD datasets in the previous Chapter. No matter
how the datasets were preprocessed, taking into account the structure of the descriptors allowed for a notable
auc increase in a very consistent way.

Similarly, a comparison between wtccc and qc filtered dataset versions confirmed the impact of the
filters. The “lighter” filters of the wtccc allowed the two type of decision tree forests to reach unexpectedly
high aucs. Especially for CAD and RA, Random Forests and T-Trees were able to almost perfectly predict
individual disease statuses. On these two datasets, we noticed that the removal of certain types of variable
decreased the predictive power. In the most extreme case, with rf on CAD, auc dropped from 0.998 to
0.756. In the next section, we will investigate tree-based derived variables importances to see what filters
are responsible for this quite important changes.

As a third and last observation, regarding the CD datasets, we obtained a different auc on CDqc in
comparison with CDibd. We were not able to reproduce the exact same qc filtering and that lead to an auc
increase with a difference of 0.076 with the rf and 0.052 with the T-Trees.

7.3 Variable importances analyses

Out of the 14 models, we computed rf and tt variables importances. As Figures 6.11 and 6.12, the following
coloured histograms (Figures 7.2-7.15) allow us to quickly see what type of variables are considered as
important in the resulting predictive models. As a reminder, in these variable importance histograms, we use
the following colour scheme:

• based on [Wel07] Supplementary Information, in the first row of each figures, we coloured in red the
markers reported with a p-value < 10−5. In orange those exhibiting a p-value between 10−5 and
10−4 and within 200kb of at least one other snp with a p-value below 10−3. In cyan, markers found
in regions reported with a strong signal when used in the expanded reference group analysis1,

1The expanded reference group analysis consists in including the cases from other (non related) diseases as controls in the analysis
of each disease.
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• in purple in the second rows, the rare variants (maf < 0.05),

• in the wtccc versions, we added a third row where orange corresponds to markers deviating from hwe
(either in controls with a p-value < 10−6 or cases with a p-value < 10−10),

• in green in the last rows, the snps with a Fisher exact p-value < 10−6.

Also, Tables 7.5-7.19 list the different regions found in the 200 first variables according to the tree-based
variable importances (in each Table, the upper part corresponds to Random Forests variables importances
and bottom subtable to T-Trees variable importances). Given the physical order of the 200 first snps, we
start a region with the first marker and iteratively add the following one if it is at most 20 snps away from
the previous one. Regions are thus separated by at least 20 snps. For the sake of readability, we report
only regions containing at least two markers and at the end of each subtable, in gray shaded text, markers
that appeared isolated but reported as associated in [Wel07] Supplementary Information. Only details for
the most important markers are reported for each group. When a marker is located in a gene2, its name is
reported in parenthesis next to the marker ID. The variable rank is also reported in parenthesis next to the
importance value in the last column.

In the qc variants, we noticed the presence of snps being excluded from the wtccc variants. The
corresponding marker identifiers are superscripted by a parenthesised number: (1) corresponds to the first
wtccc exclusion criteria (i.e. missing rate > 5% or > 1% for the markers exhibiting a study-wise maf
< 5%) and (3) to the third one (i.e. p-value < 5.7 × 10−7 for either a one- or two-degree of freedom test
of association between the two control groups). Finally, based on [Wel07] supplementary information, we
highlighted the markers id using the colour scheme as in Figures 7.2-7.15.

Additionally, in the Appendix, Figures B.1-B.7 position these first 100 variables on their respective
chromosome. Blue points and triangles correspond to random forest variable importances. Orange points
and squares correspond to T-Trees variable importances. Those figures enable us to:

• compare and find regions that are consistently identified in both wtccc and qc filtered variants,

• localise the most important variables, these deviate from the center horizontal line,

• visualise agreement between the two tree based variable rankings (which also corresponds to the gray
shaded rows in the previously mentionned Tables),

• spot regions with several concentrated hits. Such loci, where points overlap, are indicated by a higher
(triangle and/or square) opacity.

In the seven following subsections, we study and compare for each disease the differences between
quality control filters and method behaviours. Since our biological knowledge is far from complete, we will
try to correlate when available, in a non exhaustive manner, our findings with other research results and
applications related to the same datasets and/or studying the same phenotypes. Finally, we will discuss the
overall results.

2According to PheGenI: Phenotype-Genotype Integrator (NCBI).

http://www.ncbi.nlm.nih.gov/gap/phegeni
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Bipolar disorder

A first look at Figures 7.2 and 7.3 shows that, in the four experiments, only a few reported regions are
considered as important. The only common snp that is selected in the 100 first variables is rs975687

located on chromosome X. Although its p-value is not that low in comparison with other variables present
in the datasets and no particular deviation from hwe, both tree-based methods catch that signal in the two
dataset variants.

We also notice that on BDqc, rare variants are much more selected with our qc filters. On the other hand,
on the wtccc dataset, there are fewer rare variants considered as important but many important markers
strongly deviate from hwe. Table 7.6 reflects these observations. We can see many markers showing both
strong deviation from hwe and strong signal of association according to the variable importances of the two
tree-based methods. These markers were removed from the BDqc dataset. And among these, we found that
rs13126272 on chromosome 4 was also reported in [BSTB10].

In the first 100 variables of both tree-based methods on BDqc, rs420259 is located in one of the wtccc
reported regions although it has a lower rank with the T-Trees. As it appears isolated in the two rankings,
it is reported in light gray at the end of the two subtables of Table 7.5. On the same dataset variants, rf
spotted another reported region characterised by two variables on chromosome 2.

We notice that several snps excluded from the wtccc are found in the 200 first variables on BDqc.
Contrary to what is suggested by the two subtables of Table 7.5, there are more of them in the Random
Forests ranking but they just appear isolated, while due to the way variables are treated in the T-Trees,
they were less isolated with this latter method.

Interestingly, we found that rs12355606 (located on chromosome 10 and quite well ranked in the four
experiments) falls in the CACNB2 gene. That gene has been reported in [A+13] as significantly associated
with bipolar disorder. It is related to the CACNA1C gene which has been reported in many other association
studies [F+08, SdS+12]. Note that this region was not reported in [Wel07] and is detected by both tree-
based approaches on the two BD dataset versions. rs7821190 is located in NRG1 gene which is linked to
bipolar disorder and other related diseases [G+08a, T+07, G+05b].

Similarly, rs1553460 is reported in [P+12a] has being a “hub snp”. That marker appears with both
Random Forests and T-Trees in groups of ±10 variables on BDwtccc. On BDqc, Random Forest lost that
signal, but T-Trees identifies, at a much lower rank, rs1503865 that is located near rs1553460 (even though
rs1553460 itself has been removed from this version of the dataset because of its strong deviation from hwe).

Finally, we can see that both methods are in agreement: when several snps in the same region are
selected in the 200 first variables, they are found by the Random Forests and the T-Trees approaches. On
BDqc, the widest region selected correspond to rs852996, which is a rare variant excluded from the wtccc.
It has one of the lowest p-values on this dataset. The first one being rs10212068 and is found at position
1 by both tree-based approaches and was excluded from the wtccc because of its ability to dissociate the
two subgroups of controls. We will see that this one re-appears in most of the other diseases considered in
the following subsections.
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Figure 7.2 The first 100 variables according to the tree based importance rankings for BDqc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the reported strongly associ-
ated regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row, green
represents markers with a low Fisher p-value (< 10−6).
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Figure 7.3 The first 100 variables according to the tree based importance rankings for BDwtccc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the strongly associated
reported regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row,
orange highlights snps deviating from hwe and in the last row, green represents markers with a low Fisher
p-value (< 10−6).
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

1 226.95 226.99 5 rs852996(1) 0.009 2.55 · 10−4 1 1.05 · 10−17 2.22 · 10−2 (2)
1 234.34 234.34 3 rs6680230 0.181 7.57 · 10−4 2.25 · 10−1 3.48 · 10−2 1.78 · 10−4 (151)
2 241.24 241.24 2 rs2953145 (RNPEPL1) 0.212 6.78 · 10−3 9.58 · 10−1 2.36 · 10−5 2.59 · 10−4 (102)
6 89.34 89.38 3 rs2610769 0.150 1.10 · 10−1 2.16 · 10−3 2.11 · 10−2 2.13 · 10−4 (122)
8 32.03 32.03 2 rs16878694 (NRG1) 0.001 1 1 5.96 · 10−6 4.18 · 10−4 (67)
9 21.85 22.00 2 rs10123713(MTAP)(1) 0.005 1 1 4.69 · 10−11 1.92 · 10−3 (20)

10 18.53 18.55 3 rs12355606 (CACNB2) 0.006 1 1 1.02 · 10−12 1.10 · 10−2 (3)
10 77.12 77.15 2 rs7082404 0.004 1 1 6.77 · 10−7 1.23 · 10−3 (26)
11 10.16 10.19 3 rs1822295 (SBF2) 0.057 4.83 · 10−2 2.86 · 10−3 7.42 · 10−2 2.41 · 10−4 (109)
14 53.68 53.70 2 rs743276 0.105 1.64 · 10−1 1.16 · 10−3 1.67 · 10−1 2.08 · 10−4 (127)
23 32.36 32.37 5 rs3928369 (DMD) 0.241 6.54 · 10−3 1.84 · 10−1 2.29 · 10−3 1.13 · 10−3 (27)
23 35.97 36.03 4 rs17273161 0.103 7.33 · 10−1 6.78 · 10−1 6.06 · 10−4 4.31 · 10−4 (64)
23 110.31 110.32 2 rs975687 (CAPN6) 0.030 1 1 2.43 · 10−4 9.27 · 10−3 (4)
23 134.83 134.83 2 rs12689820 (SLC9A6) 0.031 6.25 · 10−1 2.59 · 10−1 1.53 · 10−2 1.12 · 10−3 (28)
23 144.00 144.00 2 rs5966463 0.182 1.28 · 10−3 5.57 · 10−1 4.12 · 10−2 5.43 · 10−4 (49)
3 7.63 7.63 1 rs1485171 0.158 3.06 · 10−3 7.17 · 10−3 1.21 · 10−1 3.47 · 10−4 (74)
3 184.35 184.35 1 rs514636 0.089 1.55 · 10−4 3.70 · 10−1 5.54 · 10−6 1.44 · 10−4 (195)
7 22.76 22.76 1 rs2286492 0.097 9.60 · 10−4 5.29 · 10−3 4.25 · 10−1 4.56 · 10−4 (60)
8 34.36 34.36 1 rs2609653 0.061 7.48 · 10−1 3.50 · 10−1 1.82 · 10−6 1.94 · 10−4 (136)
8 58.48 58.48 1 rs2875734 0.052 2.86 · 10−7 6.80 · 10−1 1.40 · 10−3 4.09 · 10−4 (68)

12 73.67 73.67 1 rs1526805 0.052 1.29 · 10−3 6.54 · 10−2 4.05 · 10−2 2.73 · 10−4 (96)
14 57.19 57.19 1 rs10134944 0.097 3.18 · 10−1 2.41 · 10−1 2.22 · 10−6 2.10 · 10−4 (126)
14 75.15 75.15 1 rs3784005 0.019 1 6.85 · 10−1 3.37 · 10−5 1.60 · 10−4 (173)
16 23.54 23.54 1 rs420259 0.269 1.36 · 10−4 1.11 · 10−2 3.78 · 10−4 1.47 · 10−3 (22)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 18.83 18.84 2 rs2789336(1) 0.007 1 1 3.50 · 10−8 8.59 · 10−4 (20)
1 36.30 36.31 2 rs562929(MAP7D1)(3) 0.003 1 1 2.02 · 10−6 2.65 · 10−4 (64)
1 226.94 226.99 10 rs852996(1) 0.009 2.55 · 10−4 1 1.05 · 10−17 9.71 · 10−3 (2)
2 5.37 5.38 4 rs1453783(3) 0.371 7.71 · 10−1 1.62 · 10−2 7.98 · 10−1 1.67 · 10−3 (10)
2 10.91 10.91 2 rs902133(1) 0.004 1 1 3.72 · 10−10 1.29 · 10−3 (14)
2 53.60 53.61 3 rs903229 0.495 6.51 · 10−1 8.54 · 10−1 8.69 · 10−1 1.82 · 10−4 (94)
2 111.30 111.30 2 rs12474907 (ACOXL) 0.048 8.07 · 10−1 2.24 · 10−1 8.48 · 10−1 2.29 · 10−4 (75)
2 133.02 133.02 2 rs10188442 (GPR39) 0.204 9.45 · 10−1 1 6.83 · 10−1 4.36 · 10−4 (41)
3 66.60 66.60 2 rs3845903 (LRIG1) 0.006 1 1 2.91 · 10−8 2.78 · 10−4 (62)
3 96.66 96.66 2 rs5000487 0.427 6.75 · 10−1 9.40 · 10−1 2.97 · 10−1 1.24 · 10−4 (126)
4 17.91 17.92 3 rs1503865 0.270 2.65 · 10−1 8.87 · 10−1 1.80 · 10−2 1.09 · 10−4 (150)
4 23.66 23.68 5 rs582804 0.156 4.41 · 10−1 1 9.32 · 10−1 4.94 · 10−4 (35)
5 36.46 36.50 2 rs2455278(1) 0.010 1 1 1.37 · 10−8 1.25 · 10−4 (125)
5 87.35 87.35 2 rs4916819 0.042 6.88 · 10−2 1.77 · 10−1 2.79 · 10−1 1.29 · 10−4 (123)
6 32.87 32.88 3 rs2157082(3) 0.445 8.20 · 10−1 3.95 · 10−4 1.30 · 10−2 2.17 · 10−4 (82)
6 96.00 96.08 3 rs6928585 0.156 1.99 · 10−1 8.35 · 10−1 1 4.41 · 10−4 (40)
8 58.48 58.49 3 rs2875734 0.052 2.86 · 10−7 6.80 · 10−1 1.40 · 10−3 2.34 · 10−4 (74)
8 120.42 120.42 5 rs2469997 0.190 4.30 · 10−1 9.04 · 10−1 2.17 · 10−1 1.23 · 10−3 (15)

10 18.53 18.55 6 rs12355606 (CACNB2) 0.006 1 1 1.02 · 10−12 3.12 · 10−3 (5)
10 59.22 59.25 5 rs1505923 0.136 3.75 · 10−6 6.90 · 10−1 2.54 · 10−1 8.36 · 10−4 (22)
10 77.08 77.12 3 rs11001473 0.007 1 1 2.21 · 10−1 6.42 · 10−4 (28)
10 123.23 123.24 2 rs1613776(FGFR2)(1) 0.036 7.18 · 10−2 1 8.38 · 10−2 4.79 · 10−4 (37)
10 131.97 132.00 2 rs7918047 0.056 6.42 · 10−1 4.04 · 10−1 1.28 · 10−1 3.65 · 10−4 (45)
11 37.36 37.44 2 rs11034154 0.020 4.86 · 10−1 1 4.18 · 10−1 3.23 · 10−4 (53)
12 127.05 127.06 5 rs6489228 0.481 7.52 · 10−1 9.12 · 10−1 5.37 · 10−1 3.25 · 10−3 (4)
13 78.36 78.36 2 rs1218285 0.042 7.64 · 10−2 5.97 · 10−3 7.59 · 10−1 2.98 · 10−4 (58)
14 88.45 88.45 2 rs2401778 0.287 7.01 · 10−1 9.28 · 10−1 1.92 · 10−1 1.18 · 10−4 (132)
15 98.87 98.88 2 rs1393940(CERS3)(1) 0.034 2.57 · 10−1 1.48 · 10−2 5.24 · 10−7 2.28 · 10−4 (76)
17 45.48 45.49 2 rs17774763(LOC284080)(1) 0.028 4.00 · 10−1 7.31 · 10−1 8.02 · 10−1 5.30 · 10−4 (32)
17 70.40 70.50 3 rs1873598 (CDR2L) 0.002 1 1 6.10 · 10−8 7.67 · 10−4 (25)
19 22.70 22.71 4 rs12980129 0.028 1 1 8.27 · 10−5 9.09 · 10−4 (17)
20 0.89 0.89 2 rs2207323 (RSPO4) 0.130 5.35 · 10−5 1.30 · 10−3 4.25 · 10−1 1.56 · 10−4 (106)
21 39.35 39.37 7 rs999789 0.058 3.01 · 10−2 3.50 · 10−1 7.96 · 10−4 1.46 · 10−3 (12)
22 35.92 35.97 8 rs10212068(3) 0.028 1 2.64 · 10−3 3.39 · 10−58 3.27 · 10−2 (1)
23 20.34 20.36 2 rs1350838 0.099 2.02 · 10−1 1.66 · 10−1 2.16 · 10−1 1.16 · 10−4 (138)
23 32.36 32.39 6 rs3928369 (DMD) 0.241 6.54 · 10−3 1.84 · 10−1 2.29 · 10−3 2.04 · 10−4 (86)
23 110.26 110.32 6 rs975687 (CAPN6) 0.030 1 1 2.43 · 10−4 2.30 · 10−3 (7)
23 134.83 134.86 3 rs12689820 (SLC9A6) 0.031 6.25 · 10−1 2.59 · 10−1 1.53 · 10−2 2.09 · 10−4 (84)
1 54.96 54.96 1 rs10888879 0.034 1.07 · 10−1 7.26 · 10−1 5.60 · 10−6 8.24 · 10−5 (191)
6 18.29 18.29 1 rs365237 0.077 1 7.05 · 10−5 1.03 · 10−4 1.91 · 10−4 (90)

16 23.54 23.54 1 rs420259 0.269 1.36 · 10−4 1.11 · 10−2 3.78 · 10−4 1.72 · 10−4 (97)
22 35.66 35.66 1 rs16997510 0.021 8.31 · 10−2 1 1.85 · 10−5 9.88 · 10−5 (163)

Table 7.5 BDqc: lists of regions identified by the Random Forests and the T-Trees methods.
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

2 25.31 25.36 3 rs2164411 0.154 2.04 · 10−10 1.95 · 10−1 1.21 · 10−3 3.32 · 10−3 (18)
4 17.73 17.90 9 rs1553460 0.313 8.85 · 10−94 2.88 · 10−5 1.28 · 10−28 3.11 · 10−2 (3)
4 186.09 186.11 3 rs13126272 (ACSL1) 0.341 2.30 · 10−43 3.02 · 10−2 1.27 · 10−6 6.02 · 10−3 (10)
8 19.35 19.51 19 rs17480050 (CSGALNACT1) 0.119 0 1 0 2.44 · 10−1 (1)
8 32.03 32.03 2 rs7821190 (NRG1) 0.004 1 1 8.11 · 10−7 2.74 · 10−4 (101)
8 82.41 82.41 2 rs1909936 0.018 2.40 · 10−40 6.29 · 10−1 1.54 · 10−1 2.95 · 10−3 (21)

10 18.53 18.55 3 rs12355606 (CACNB2) 0.006 1 1 8.35 · 10−12 4.06 · 10−3 (13)
11 113.31 113.31 5 rs17116117 (HTR3B) 0.041 1.20 · 10−1 1.16 · 10−1 8.54 · 10−10 8.77 · 10−4 (61)
15 40.73 41.32 28 rs12050604 (UBR1) 0.274 1.41 · 10−19 9.65 · 10−1 4.19 · 10−11 4.07 · 10−3 (12)
16 79.62 79.70 15 rs1048194 (CENPN) 0.095 2.22 · 10−322 9.95 · 10−6 3.66 · 10−39 9.96 · 10−2 (2)
17 17.27 17.27 2 SNP A-1948953 0.282 9.93 · 10−24 5.18 · 10−3 3.97 · 10−5 6.20 · 10−3 (8)
18 38.16 38.22 3 rs1442650 (LOC284260) 0.010 1 5.24 · 10−1 2.32 · 10−13 3.02 · 10−3 (19)
23 32.36 32.37 5 rs3928369 (DMD) 0.241 1.78 · 10−2 2.58 · 10−1 2.55 · 10−3 3.01 · 10−4 (95)
2 176.72 176.72 1 rs12465451 0.136 9.82 · 10−4 6.21 · 10−1 5.02 · 10−3 1.18 · 10−4 (175)
2 241.24 241.24 1 rs2953145 (RNPEPL1) 0.211 6.28 · 10−3 1 1.29 · 10−5 1.14 · 10−4 (181)
3 42.38 42.38 1 rs33457 0.021 1 1 1.68 · 10−5 1.12 · 10−4 (182)
7 22.76 22.76 1 rs2286492 0.097 1.19 · 10−3 1.88 · 10−3 5.25 · 10−1 2.58 · 10−4 (107)
8 58.48 58.48 1 rs2875734 0.052 7.14 · 10−7 1 9.84 · 10−4 2.87 · 10−4 (98)

12 73.67 73.67 1 rs1526805 0.051 6.61 · 10−4 6.36 · 10−2 3.58 · 10−2 2.24 · 10−4 (118)
16 23.54 23.54 1 rs420259 0.269 8.62 · 10−5 1.57 · 10−2 2.25 · 10−4 6.57 · 10−4 (71)
23 110.32 110.32 1 rs975687 (CAPN6) 0.031 1 1 2.67 · 10−4 3.33 · 10−3 (17)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 80.57 80.57 6 rs1896250 0.400 9.76 · 10−9 9.37 · 10−1 3.36 · 10−6 1.95 · 10−3 (29)
1 85.15 85.16 2 rs668860 0.472 6.74 · 10−3 9.41 · 10−1 8.48 · 10−1 3.21 · 10−4 (123)
1 118.80 118.80 2 rs12134541 0.480 1 9.12 · 10−1 4.38 · 10−1 2.92 · 10−4 (133)
1 219.15 219.16 2 rs1909194 0.154 6.53 · 10−1 4.12 · 10−2 6.64 · 10−1 8.57 · 10−4 (56)
2 25.31 25.36 3 rs2164411 0.154 2.04 · 10−10 1.95 · 10−1 1.21 · 10−3 1.46 · 10−3 (32)
2 132.99 132.99 2 rs2315380 0.394 8.10 · 10−1 3.49 · 10−1 1.90 · 10−1 3.15 · 10−4 (126)
3 121.76 121.83 4 rs804974 (HGD) 0.211 6.13 · 10−2 8.68 · 10−1 8.17 · 10−1 2.39 · 10−3 (24)
3 173.37 173.40 3 rs7653441 (FNDC3B) 0.018 5.91 · 10−86 1 2.26 · 10−2 9.51 · 10−3 (9)
4 17.85 17.90 10 rs1553460 0.313 8.85 · 10−94 2.88 · 10−5 1.28 · 10−28 1.44 · 10−2 (4)
4 23.67 23.67 2 rs615604 0.157 4.33 · 10−1 8.35 · 10−1 9.31 · 10−1 2.30 · 10−4 (147)
4 149.61 149.66 5 rs17484678 (NR3C2) 0.137 5.68 · 10−2 4.07 · 10−1 1.59 · 10−2 8.18 · 10−3 (10)
4 186.09 186.11 5 rs13126272 (ACSL1) 0.341 2.30 · 10−43 3.02 · 10−2 1.27 · 10−6 3.21 · 10−3 (22)
5 59.67 59.67 2 rs7733705 (PDE4D) 0.173 1.77 · 10−1 2.33 · 10−1 6.40 · 10−2 1.28 · 10−3 (39)
6 18.18 18.29 4 rs4072775 0.355 9.18 · 10−7 2.71 · 10−6 8.44 · 10−1 1.08 · 10−3 (44)
6 91.73 91.75 3 rs6903505 0.409 3.41 · 10−1 7.59 · 10−1 2.25 · 10−1 9.00 · 10−4 (52)
6 96.00 96.03 3 rs1319912 0.103 2.89 · 10−1 3.13 · 10−1 5.96 · 10−1 3.21 · 10−4 (121)
6 107.09 107.09 4 rs9320174 (AIM1) 0.336 2.94 · 10−1 1.45 · 10−1 1.08 · 10−4 2.57 · 10−4 (143)
6 148.51 148.51 3 rs9377114 0.444 3.11 · 10−2 4.55 · 10−1 8.17 · 10−1 5.85 · 10−4 (72)
6 150.77 150.77 2 rs9322256 0.377 5.51 · 10−1 6.95 · 10−1 3.52 · 10−1 5.69 · 10−4 (77)
6 153.40 153.42 3 rs2236014 (MTRF1L) 0.259 5.12 · 10−8 1.76 · 10−1 7.17 · 10−1 5.91 · 10−4 (71)
7 23.37 23.37 2 rs7781714 0.473 4.31 · 10−1 5.54 · 10−1 6.30 · 10−1 2.39 · 10−4 (146)
8 19.35 19.48 16 rs17480050 (CSGALNACT1) 0.119 0 1 0 1.23 · 10−1 (1)
8 55.10 55.23 6 rs11984645 0.145 1.07 · 10−7 1 4.58 · 10−2 9.12 · 10−4 (51)
8 82.41 82.41 2 rs1909935 0.021 1 6.29 · 10−1 1.70 · 10−1 1.33 · 10−2 (5)
8 120.42 120.42 3 rs2469997 0.189 6.04 · 10−1 8.55 · 10−1 3.09 · 10−1 4.67 · 10−4 (88)

10 18.53 18.54 2 rs12355606 (CACNB2) 0.006 1 1 8.35 · 10−12 9.24 · 10−4 (50)
10 43.64 43.64 2 rs7086449 0.126 8.95 · 10−6 1 1.16 · 10−4 3.02 · 10−4 (129)
10 59.23 59.24 2 rs1395043 0.084 7.47 · 10−1 7.71 · 10−2 1.36 · 10−1 3.97 · 10−4 (102)
10 77.12 77.15 2 rs7082404 0.004 1 1 1.52 · 10−6 4.78 · 10−4 (86)
11 113.31 113.31 3 rs1176741 (HTR3B) 0.029 6.27 · 10−1 1.19 · 10−1 4.58 · 10−2 1.22 · 10−2 (7)
12 37.33 37.38 2 rs826886 (CPNE8) 0.452 1.75 · 10−1 8.23 · 10−1 6.74 · 10−1 1.60 · 10−4 (177)
12 103.37 103.40 4 rs11112069 (CHST11) 0.199 3.64 · 10−22 3.51 · 10−1 1.14 · 10−7 2.11 · 10−3 (27)
12 127.06 127.06 3 rs6489228 0.479 6.43 · 10−1 8.83 · 10−1 3.46 · 10−1 1.57 · 10−3 (31)
14 43.99 44.06 4 rs435340 0.096 2.56 · 10−6 5.54 · 10−2 5.40 · 10−3 9.66 · 10−4 (47)
15 40.88 41.32 20 rs8027733 (UBR1) 0.118 9.09 · 10−1 3.39 · 10−1 3.47 · 10−1 1.23 · 10−2 (6)
16 79.58 79.70 12 rs1048194 (CENPN) 0.095 2.22 · 10−322 9.95 · 10−6 3.66 · 10−39 6.60 · 10−2 (2)
17 17.27 17.27 2 SNP A-1948953 0.282 9.93 · 10−24 5.18 · 10−3 3.97 · 10−5 1.33 · 10−3 (36)
18 38.22 38.22 2 rs1442650 (LOC284260) 0.010 1 5.24 · 10−1 2.32 · 10−13 7.52 · 10−4 (61)
19 22.69 22.71 3 rs12980129 0.028 1 1 5.93 · 10−5 4.63 · 10−4 (90)
21 37.37 37.41 3 rs4816560 (TTC3) 0.468 8.52 · 10−1 3.74 · 10−1 7.05 · 10−1 4.09 · 10−4 (100)
21 39.35 39.37 4 rs999789 0.058 4.18 · 10−2 3.49 · 10−1 8.70 · 10−4 5.85 · 10−4 (73)
23 2.58 2.58 2 rs1419930 0.044 1.81 · 10−2 5.71 · 10−19 3.33 · 10−3 4.54 · 10−3 (19)
23 110.31 110.32 2 rs975687 (CAPN6) 0.031 1 1 2.67 · 10−4 6.66 · 10−4 (64)

Table 7.6 BDwtccc: lists of regions identified by the Random Forests and the T-Trees methods.
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Coronary artery disease

At Figures 7.4 and 7.5, we notice fewer rare variants in the 100 first variables in comparison with the bipolar
disorder results. On CADwtccc, we also obtained markers deviating from hwe in the top ranked variables.
It seems that, strong deviation from hwe are prefered over rare variants by the tree-based methods.

In Tables 7.7 and 7.8, we also see that none of the reported loci are selected except two different with the
T-Trees, one in each dataset versions. On CADqc, rs6475606 located in the strongest region reported in
[Wel07] Supplementary Information. Although it is the reported as the strongest association for that disease,
we found that a rare variant rs3122348 is exhibiting a (really) stronger associated p-value and appears at
position 1 in both ranking on CADqc (and corresponds to one of the excluded markers in the wtccc version).
Many markers are considered as important in that region which corresponds to LOC645954 pseudogene.
Also again, we notice the presence of rs10212068 in the T-Trees rankings. It is also present in the Random
Forests ranking but appeared alone. Additionally, on CADwtccc, we note that rs3785579 (on chromosome
17 in CACNG1 gene) is reported in [P+12a] as a “hub” snp too.

We also notice the presence of many regions on chromosome X in the four experiments. Much more
with the rf than the tt. We found no reported regions located on chromosome X except in [P+00] which
report region Xq23-26 (which potentially ranges from 108.5 to 137.7Mb). It is also important to note that
the proportion of men in the CAD dataset is higher (about 1500 males and 400 females) (which reflects the
higher disease prevalence in males).
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Figure 7.4 The first 100 variables according to the tree based importance rankings for CADqc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the reported strongly associ-
ated regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row, green
represents markers with a low Fisher p-value (< 10−6).



7.3. VARIABLE IMPORTANCES ANALYSES 117

0.
00

0.
10

0.
20

0.
30

0 20 40 60 80 100

RF − Reported

rank

R
F

 v
im

p

0.
00

0.
10

0.
20

0.
30

0 20 40 60 80 100

RF − MAF

rank

R
F

 v
im

p

0.
00

0.
10

0.
20

0.
30

0 20 40 60 80 100

RF − HWE

rank

R
F

 v
im

p

0.
00

0.
10

0.
20

0.
30

0 20 40 60 80 100

RF − Fisher p−value

rank

R
F

 v
im

p

0.
00

0.
10

0.
20

0.
30

0 20 40 60 80 100

TT − Reported

rank

T
T

 v
im

p

0.
00

0.
10

0.
20

0.
30

0 20 40 60 80 100

TT − MAF

rank

T
T

 v
im

p

0.
00

0.
10

0.
20

0.
30

0 20 40 60 80 100

TT − HWE

rank

T
T

 v
im

p

0.
00

0.
10

0.
20

0.
30

0 20 40 60 80 100

TT − Fisher p−value

rank

T
T

 v
im

p

CADwtccc

Figure 7.5 The first 100 variables according to the tree based importance rankings for CADwtccc . The horizontal
axis corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the strongly associated
reported regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row,
orange highlights snps deviating from hwe and in the last row, green represents markers with a low Fisher
p-value (< 10−6).
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance
10 30.99 31.06 6 rs3122348(LOC645954)(1) 0.032 2.85 · 10−5 1 5.57 · 10−88 8.72 · 10−2 (1)
23 5.25 5.43 7 rs16983713 0.234 5.21 · 10−2 8.83 · 10−1 6.16 · 10−3 3.82 · 10−4 (57)
23 6.69 7.22 8 rs941172 (HDHD1) 0.244 8.99 · 10−1 9.44 · 10−1 2.57 · 10−2 2.94 · 10−4 (87)
23 8.82 8.83 2 rs17269753 0.224 1.56 · 10−1 6.38 · 10−1 1.70 · 10−2 2.46 · 10−4 (120)
23 11.37 11.39 2 rs5979435 (ARHGAP6) 0.189 2.70 · 10−2 4.41 · 10−1 1.60 · 10−2 4.84 · 10−4 (44)
23 14.72 14.85 6 rs5978704 0.492 1.08 · 10−1 8.78 · 10−1 3.65 · 10−3 8.20 · 10−4 (18)
23 15.42 15.43 2 SNP A-1907375 0.182 1.75 · 10−1 2.41 · 10−1 3.74 · 10−2 3.94 · 10−4 (55)
23 21.73 21.76 5 rs12688591 (SMS) 0.296 6.27 · 10−1 8.81 · 10−2 2.19 · 10−1 4.98 · 10−4 (42)
23 21.92 22.02 4 rs12216932 (PHEX ) 0.374 2.41 · 10−1 8.86 · 10−2 1.91 · 10−2 5.85 · 10−4 (30)
23 24.04 24.23 2 rs17312220 0.021 2.15 · 10−1 1 7.42 · 10−2 4.01 · 10−4 (51)
23 26.41 26.86 6 rs5944611 0.329 1.42 · 10−1 2.15 · 10−1 3.92 · 10−2 6.83 · 10−4 (24)
23 30.75 30.78 2 rs17315366 0.098 7.88 · 10−1 1 2.88 · 10−2 3.64 · 10−4 (63)
23 33.06 33.15 2 rs2057142 0.394 3.03 · 10−1 3.96 · 10−2 3.44 · 10−2 3.27 · 10−4 (73)
23 34.69 34.98 5 rs3128091 0.212 7.58 · 10−1 5.82 · 10−1 3.68 · 10−2 3.04 · 10−4 (81)
23 39.46 39.47 2 rs3002415 0.301 5.59 · 10−1 9.51 · 10−1 7.63 · 10−3 8.41 · 10−4 (17)
23 47.36 47.47 3 rs11091213 (ZNF81) 0.456 2.70 · 10−1 8.70 · 10−2 7.73 · 10−2 2.11 · 10−4 (148)
23 67.85 68.12 4 rs443731 0.423 1.08 · 10−1 6.73 · 10−1 6.23 · 10−3 5.77 · 10−4 (33)
23 68.97 68.98 5 rs5936814 (EDA) 0.388 7.53 · 10−1 4.46 · 10−1 2.41 · 10−3 8.11 · 10−4 (20)
23 90.18 90.20 5 rs2038452 0.229 6.77 · 10−1 3.77 · 10−1 6.90 · 10−2 2.68 · 10−4 (106)
23 95.09 95.14 2 rs2808726 0.124 3.32 · 10−1 7.40 · 10−1 5.36 · 10−1 2.83 · 10−4 (94)
23 97.74 97.85 3 rs5921205 0.287 5.47 · 10−1 2.61 · 10−1 2.84 · 10−1 2.60 · 10−4 (109)
23 99.55 99.71 2 rs12841456 0.390 6.73 · 10−1 6.25 · 10−1 7.08 · 10−2 2.14 · 10−4 (143)
23 116.77 116.78 2 rs1338512 0.292 1.48 · 10−1 3.21 · 10−1 8.25 · 10−2 2.39 · 10−4 (126)
23 117.52 117.56 2 rs5910392 (DOCK11) 0.145 5.43 · 10−1 1.72 · 10−1 3.01 · 10−2 9.27 · 10−4 (15)
23 124.24 124.26 2 rs3101156 0.404 4.17 · 10−1 9.57 · 10−1 1.16 · 10−3 8.15 · 10−4 (19)
23 125.62 125.93 2 rs204359 0.067 8.71 · 10−2 1 1.85 · 10−1 3.07 · 10−4 (79)
23 129.75 130.23 5 rs6529475 0.180 1.31 · 10−1 1.18 · 10−1 1.11 · 10−1 1.29 · 10−3 (11)
23 130.80 131.03 5 rs5933109 0.248 4.65 · 10−1 3.11 · 10−1 4.48 · 10−2 4.73 · 10−4 (46)
23 135.09 135.14 2 SNP A-2065339 0.283 4.09 · 10−1 1 2.26 · 10−2 2.45 · 10−4 (122)
23 136.57 136.64 2 rs1342044 0.221 1 4.96 · 10−1 7.95 · 10−2 4.82 · 10−4 (45)
23 144.27 144.28 2 rs5965859 0.441 4.44 · 10−3 2.50 · 10−1 1.37 · 10−1 3.58 · 10−4 (64)
23 146.37 146.39 2 rs1076616 0.090 4.08 · 10−1 8.83 · 10−1 7.90 · 10−1 3.74 · 10−4 (60)
23 147.39 147.47 3 rs241127 (AFF2) 0.217 5.54 · 10−1 5.93 · 10−1 5.91 · 10−2 2.59 · 10−4 (110)
23 149.86 149.86 2 rs12845940 0.393 7.51 · 10−1 5.13 · 10−1 2.02 · 10−2 3.92 · 10−4 (56)
23 151.10 151.12 2 SNP A-1999621 0.105 5.40 · 10−2 4.45 · 10−2 1.79 · 10−2 3.98 · 10−4 (53)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 52.95 53.03 5 rs505444(ZYG11B)(3) 0.423 1.16 · 10−1 3.72 · 10−4 5.18 · 10−2 6.01 · 10−4 (21)
1 185.16 185.18 4 rs6683655 0.436 1.53 · 10−1 1.79 · 10−1 7.24 · 10−1 1.08 · 10−3 (16)
2 5.37 5.37 2 rs1453783(3) 0.373 6.62 · 10−1 1.62 · 10−2 5.63 · 10−1 2.24 · 10−4 (76)
3 97.61 97.67 8 rs326296 0.446 1.04 · 10−6 6.68 · 10−2 2.05 · 10−5 6.75 · 10−3 (4)
3 163.64 163.67 4 rs7434223 0.416 6.37 · 10−1 5.73 · 10−1 2.94 · 10−2 5.46 · 10−4 (24)
4 55.92 55.93 2 rs10014689 0.021 4.98 · 10−1 6.49 · 10−1 3.45 · 10−1 1.46 · 10−4 (154)
4 117.36 117.39 2 rs814376 0.392 5.05 · 10−1 3.56 · 10−3 7.18 · 10−1 2.12 · 10−4 (81)
6 32.87 32.88 6 rs2621384 0.384 4.11 · 10−1 9.69 · 10−1 2.99 · 10−1 2.46 · 10−3 (7)
7 37.11 37.12 2 rs2717992 (ELMO1) 0.446 1.55 · 10−1 1.10 · 10−1 3.61 · 10−1 2.23 · 10−4 (77)
7 50.31 50.31 3 rs11575535(DDC)(1) 0.019 8.14 · 10−2 1 1.08 · 10−1 4.21 · 10−4 (33)
8 87.57 87.58 2 rs7460439 (FAM82B) 0.448 8.54 · 10−1 7.65 · 10−1 1.76 · 10−1 2.31 · 10−4 (73)
9 72.35 72.36 2 rs10121866 0.456 9.27 · 10−1 1 1.92 · 10−1 1.77 · 10−4 (112)
9 107.23 107.23 2 rs12343115 0.006 1 1 1.08 · 10−10 2.43 · 10−4 (66)

10 30.95 31.06 12 rs3122348(LOC645954)(1) 0.032 2.85 · 10−5 1 5.57 · 10−88 4.02 · 10−2 (1)
10 113.20 113.22 2 rs1914139 0.427 3.51 · 10−1 1.23 · 10−1 1.55 · 10−1 4.55 · 10−4 (29)
10 125.23 125.25 4 rs913525 0.450 8.54 · 10−1 5.79 · 10−1 3.19 · 10−1 4.35 · 10−4 (31)
11 11.10 11.11 3 rs7103691 0.487 6.49 · 10−1 3.59 · 10−1 1 6.06 · 10−4 (20)
11 12.48 12.48 2 rs7126366 (PARVA) 0.004 1 1 4.58 · 10−7 2.54 · 10−4 (59)
14 103.34 103.36 3 rs17791722 (PPP1R13B) 0.332 5.40 · 10−1 6.19 · 10−1 7.26 · 10−1 2.34 · 10−4 (71)
22 35.93 35.99 8 rs10212068(3) 0.028 1 2.64 · 10−3 1.06 · 10−57 2.00 · 10−2 (3)
22 44.07 44.07 3 rs5764698 (SMC1B) 0.458 8.91 · 10−1 4.17 · 10−1 2.91 · 10−1 4.23 · 10−4 (32)
23 2.70 2.96 3 rs2124012 (ARSF ) 0.362 9.12 · 10−1 1.71 · 10−1 1.58 · 10−1 2.10 · 10−4 (83)
23 3.81 3.81 2 rs5916413 0.470 1.08 · 10−1 1.80 · 10−1 4.90 · 10−1 2.72 · 10−4 (52)
23 4.38 4.50 2 rs5916649 0.492 1.33 · 10−1 3.28 · 10−1 5.57 · 10−1 1.32 · 10−4 (187)
23 13.43 13.43 2 rs4830882 (TCEANC ) 0.473 1.32 · 10−1 6.43 · 10−1 7.02 · 10−1 1.39 · 10−4 (172)
23 14.72 14.78 3 rs4240155 0.494 5.74 · 10−2 8.37 · 10−1 6.89 · 10−3 2.62 · 10−4 (57)
23 26.83 26.90 3 rs1898744 0.483 7.19 · 10−2 5.10 · 10−2 9.19 · 10−1 3.38 · 10−4 (41)
23 33.63 33.80 4 rs1948804 0.388 2.14 · 10−1 1.80 · 10−3 9.58 · 10−1 2.65 · 10−4 (53)
23 35.42 35.46 3 rs5928946 0.458 6.16 · 10−1 1.13 · 10−2 7.01 · 10−1 2.25 · 10−4 (75)
23 45.93 45.93 2 rs851234 0.425 2.62 · 10−1 1.12 · 10−1 5.19 · 10−1 1.97 · 10−4 (89)
23 87.94 89.23 5 rs4545257 0.397 8.11 · 10−2 4.81 · 10−2 3.90 · 10−1 1.92 · 10−4 (93)
23 97.64 97.87 6 rs2498864 0.454 5.38 · 10−2 1.08 · 10−1 8.98 · 10−1 1.90 · 10−4 (98)
23 100.06 100.09 2 rs12557159 0.416 4.30 · 10−3 2.64 · 10−1 5.01 · 10−1 3.04 · 10−4 (45)
23 111.98 111.98 2 rs4829520 0.444 1.81 · 10−1 5.69 · 10−1 3.76 · 10−2 2.01 · 10−4 (86)
23 115.40 115.74 4 rs6645482 0.364 6.86 · 10−3 2.00 · 10−1 8.74 · 10−1 2.34 · 10−4 (72)
23 117.93 117.93 3 rs2278954 (LONRF3) 0.362 2.58 · 10−3 4.00 · 10−2 3.68 · 10−1 3.92 · 10−4 (38)
23 118.71 118.79 2 rs1858934 (NDUFA1, RNF113A) 0.498 5.03 · 10−3 1 1 1.56 · 10−4 (138)
23 139.60 139.61 2 rs4824960 0.457 1.03 · 10−1 1 1.25 · 10−1 1.71 · 10−4 (120)
23 144.27 144.41 6 rs5965859 0.441 4.44 · 10−3 2.50 · 10−1 1.37 · 10−1 3.15 · 10−4 (42)
23 145.03 145.06 2 rs6525652 0.423 1.55 · 10−1 1.42 · 10−1 4.09 · 10−1 1.51 · 10−4 (144)
9 22.07 22.07 1 rs6475606 0.492 7.48 · 10−1 8.44 · 10−2 2.22 · 10−14 3.00 · 10−4 (46)

Table 7.7 CADqc: lists of regions identified by the Random Forests and the T-Trees methods.

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3122348
http://www.genecards.org/cgi-bin/carddisp.pl?gene=LOC645954#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=16983713
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=941172
http://www.genecards.org/cgi-bin/carddisp.pl?gene=HDHD1#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17269753
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5979435
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ARHGAP6#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5978704
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12688591
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SMS#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12216932
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PHEX#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17312220
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5944611
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17315366
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2057142
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3128091
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3002415
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11091213
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ZNF81#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=443731
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5936814
http://www.genecards.org/cgi-bin/carddisp.pl?gene=EDA#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2038452
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2808726
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5921205
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12841456
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1338512
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5910392
http://www.genecards.org/cgi-bin/carddisp.pl?gene=DOCK11#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3101156
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=204359
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6529475
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5933109
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1342044
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5965859
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1076616
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=241127
http://www.genecards.org/cgi-bin/carddisp.pl?gene=AFF2#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12845940
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=505444
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ZYG11B#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6683655
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1453783
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=326296
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7434223
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10014689
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=814376
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2621384
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2717992
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ELMO1#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11575535
http://www.genecards.org/cgi-bin/carddisp.pl?gene=DDC#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7460439
http://www.genecards.org/cgi-bin/carddisp.pl?gene=FAM82B#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10121866
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12343115
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3122348
http://www.genecards.org/cgi-bin/carddisp.pl?gene=LOC645954#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1914139
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=913525
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7103691
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7126366
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PARVA#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17791722
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PPP1R13B#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10212068
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5764698
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SMC1B#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2124012
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ARSF#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5916413
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5916649
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4830882
http://www.genecards.org/cgi-bin/carddisp.pl?gene=TCEANC#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4240155
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1898744
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1948804
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5928946
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=851234
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4545257
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2498864
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12557159
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4829520
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6645482
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2278954
http://www.genecards.org/cgi-bin/carddisp.pl?gene=LONRF3#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1858934
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NDUFA1, RNF113A#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4824960
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5965859
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6525652
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6475606
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

4 17.85 17.88 6 rs1553460 0.313 2.34 · 10−101 2.88 · 10−5 1.78 · 10−27 6.99 · 10−3 (13)
4 139.61 139.63 3 rs890447 (LINC00499) 0.052 2.70 · 10−205 2.22 · 10−2 2.64 · 10−12 1.24 · 10−2 (7)
5 117.03 117.03 2 rs2416472 0.320 1.49 · 10−24 9.35 · 10−1 4.36 · 10−10 3.02 · 10−4 (59)
8 19.40 19.48 8 rs17480050 (CSGALNACT1) 0.118 0 1 0 7.24 · 10−2 (3)
8 95.06 95.06 2 rs6989092 0.017 1 7.27 · 10−1 3.60 · 10−35 3.61 · 10−3 (19)
8 139.11 139.11 3 rs16908145 (FLJ45872) 0.014 2.71 · 10−3 4.02 · 10−1 2.70 · 10−21 2.13 · 10−3 (23)

10 118.22 118.28 16 rs7906587 (PNLIPRP3) 0.078 1.04 · 10−285 4.33 · 10−3 1.00 · 10−28 2.17 · 10−2 (5)
11 129.30 129.32 2 rs2241572 (PRDM10) 0.344 1.84 · 10−313 1 0 3.33 · 10−1 (1)
16 11.28 11.31 5 rs11640295 0.284 2.71 · 10−40 1.45 · 10−4 5.07 · 10−9 8.96 · 10−4 (32)
17 62.46 62.65 9 rs3785579 (CACNG1) 0.277 0 2.12 · 10−2 0 2.11 · 10−1 (2)
18 25.70 25.71 2 rs1595963 0.039 1.62 · 10−184 2.72 · 10−1 2.07 · 10−14 9.27 · 10−3 (10)
18 33.34 33.36 5 rs4799934 (CELF4) 0.078 4.83 · 10−288 2.83 · 10−3 1.90 · 10−26 2.24 · 10−2 (4)
19 19.15 19.21 3 rs11671119 (MEF2BNB-MEF2B) 0.045 2.63 · 10−201 1.12 · 10−1 9.27 · 10−18 1.15 · 10−2 (8)
22 16.89 16.89 2 rs4819660 (FLJ41941) 0.233 8.46 · 10−78 6.85 · 10−7 5.10 · 10−9 2.32 · 10−3 (21)
23 2.68 2.75 2 rs311152 0.355 9.20 · 10−1 5.99 · 10−1 1.13 · 10−14 2.25 · 10−4 (70)
23 5.25 5.36 4 rs4826780 0.430 6.80 · 10−1 4.29 · 10−1 1.59 · 10−2 9.26 · 10−5 (127)
23 6.69 7.14 7 rs6530079 0.272 5.48 · 10−1 4.36 · 10−1 1.51 · 10−3 9.80 · 10−5 (121)
23 11.37 11.39 2 rs5979435 (ARHGAP6) 0.188 1.79 · 10−2 2.97 · 10−1 1.40 · 10−2 9.90 · 10−5 (116)
23 14.73 14.78 4 rs4240155 0.494 6.98 · 10−2 7.17 · 10−1 8.32 · 10−3 1.42 · 10−4 (94)
23 15.42 15.43 2 SNP A-1907375 0.182 1.69 · 10−1 1.71 · 10−1 2.83 · 10−2 1.36 · 10−4 (98)
23 21.73 21.77 5 rs12688591 (SMS) 0.295 6.27 · 10−1 4.84 · 10−2 1.68 · 10−1 1.70 · 10−4 (84)
23 21.92 22.02 3 rs12216932 (PHEX ) 0.375 2.40 · 10−1 7.61 · 10−2 1.60 · 10−2 1.61 · 10−4 (88)
23 22.49 22.49 2 rs3935727 (LOC100873065 ) 0.437 4.74 · 10−1 1.01 · 10−1 4.40 · 10−2 1.18 · 10−4 (106)
23 26.58 26.75 3 rs5944611 0.330 1.72 · 10−1 2.35 · 10−1 3.59 · 10−2 1.74 · 10−4 (83)
23 30.75 30.78 2 rs17315366 0.099 7.89 · 10−1 1 4.86 · 10−2 8.66 · 10−5 (140)
23 39.46 39.47 2 rs3002415 0.303 5.58 · 10−1 7.57 · 10−1 1.11 · 10−2 2.26 · 10−4 (69)
23 47.39 47.47 4 rs5953113 (ZNF81) 0.456 3.17 · 10−1 1.17 · 10−1 4.47 · 10−2 9.19 · 10−5 (130)
23 67.85 68.29 5 rs241388 0.417 6.64 · 10−2 4.53 · 10−1 7.78 · 10−3 1.81 · 10−4 (81)
23 68.97 68.98 5 rs5936814 (EDA) 0.387 8.33 · 10−1 3.23 · 10−1 1.46 · 10−3 1.67 · 10−4 (85)
23 95.09 95.14 2 rs2808726 0.123 3.32 · 10−1 5.72 · 10−1 5.07 · 10−1 9.01 · 10−5 (135)
23 116.77 116.78 2 rs1338512 0.292 1.48 · 10−1 1.88 · 10−1 6.31 · 10−2 1.12 · 10−4 (110)
23 117.52 117.56 2 rs5910392 (DOCK11) 0.146 5.44 · 10−1 1.71 · 10−1 3.22 · 10−2 2.43 · 10−4 (66)
23 124.24 124.26 2 rs3101156 0.404 3.61 · 10−1 1 1.57 · 10−3 2.05 · 10−4 (73)
23 125.62 125.64 2 rs7473865 0.048 6.39 · 10−3 4.56 · 10−1 7.43 · 10−10 4.02 · 10−4 (45)
23 129.75 130.19 4 rs6529475 0.179 1.28 · 10−1 1.57 · 10−1 8.86 · 10−2 3.54 · 10−4 (49)
23 130.80 131.03 3 rs5933109 0.249 4.66 · 10−1 2.48 · 10−1 7.59 · 10−2 1.07 · 10−4 (114)
23 144.27 144.28 2 rs5965859 0.440 2.24 · 10−3 2.06 · 10−1 1.42 · 10−1 6.61 · 10−5 (177)
23 146.37 146.39 2 rs1076616 0.089 4.02 · 10−1 7.64 · 10−1 8.22 · 10−1 7.50 · 10−5 (155)
23 149.86 149.86 2 rs12845940 0.393 8.32 · 10−1 5.09 · 10−1 1.70 · 10−2 8.90 · 10−5 (137)
23 151.10 151.12 2 SNP A-1999621 0.106 5.53 · 10−2 4.44 · 10−2 1.59 · 10−2 1.19 · 10−4 (104)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 86.95 86.98 3 rs1208054 0.217 7.39 · 10−1 5.10 · 10−1 6.14 · 10−1 8.44 · 10−4 (42)
2 25.31 25.36 3 rs2164411 0.156 6.97 · 10−20 1.95 · 10−1 1.20 · 10−2 6.95 · 10−4 (47)
3 53.24 53.27 6 rs7628245 (TKT ) 0.178 1.18 · 10−72 6.43 · 10−5 2.96 · 10−8 4.72 · 10−3 (16)
3 97.63 97.67 4 SNP A-4302324 0.082 5.05 · 10−1 1 2.07 · 10−2 3.62 · 10−3 (19)
3 121.83 121.83 2 rs804974 (HGD) 0.208 5.73 · 10−1 8.68 · 10−1 4.13 · 10−1 4.23 · 10−4 (67)
3 173.37 173.37 2 rs7653441 (FNDC3B) 0.017 2.56 · 10−76 1 3.30 · 10−1 1.95 · 10−3 (29)
4 17.85 17.90 9 rs1553460 0.313 2.34 · 10−101 2.88 · 10−5 1.78 · 10−27 4.56 · 10−3 (17)
4 32.67 32.73 7 rs10022638 0.301 4.16 · 10−1 4.30 · 10−1 9.28 · 10−1 7.61 · 10−4 (44)
4 73.28 73.30 2 rs9884478 (NPFFR2) 0.013 6.78 · 10−23 1 5.88 · 10−2 2.86 · 10−4 (85)
4 139.61 139.63 4 rs890447 (LINC00499) 0.052 2.70 · 10−205 2.22 · 10−2 2.64 · 10−12 1.19 · 10−2 (9)
4 186.09 186.11 5 rs13126272 (ACSL1) 0.346 2.61 · 10−68 3.02 · 10−2 1.92 · 10−9 1.41 · 10−3 (34)
5 117.02 117.06 8 rs17411921 0.344 6.88 · 10−1 3.66 · 10−1 3.82 · 10−1 3.71 · 10−3 (18)
5 172.87 172.90 4 rs17076079 0.097 6.14 · 10−146 7.53 · 10−7 4.69 · 10−17 1.09 · 10−2 (10)
6 18.18 18.19 3 rs4072775 0.350 1.04 · 10−5 2.71 · 10−6 3.27 · 10−1 2.32 · 10−4 (99)
8 19.40 19.48 12 rs17480050 (CSGALNACT1) 0.118 0 1 0 4.59 · 10−2 (3)
8 34.82 34.93 2 rs16883114 0.027 4.29 · 10−112 6.37 · 10−1 1.66 · 10−5 2.93 · 10−3 (21)
8 95.06 95.06 3 rs6989092 0.017 1 7.27 · 10−1 3.60 · 10−35 2.33 · 10−3 (25)
8 119.71 119.74 2 rs16891338 (SAMD12-AS1) 0.024 4.52 · 10−94 4.02 · 10−1 2.17 · 10−1 2.97 · 10−3 (20)
8 139.11 139.11 3 rs16908145 (FLJ45872) 0.014 2.71 · 10−3 4.02 · 10−1 2.70 · 10−21 2.44 · 10−3 (23)

10 118.18 118.27 6 rs7906587 (PNLIPRP3) 0.078 1.04 · 10−285 4.33 · 10−3 1.00 · 10−28 1.89 · 10−2 (6)
11 14.14 14.16 2 rs10832215 0.427 9.63 · 10−1 8.50 · 10−1 3.45 · 10−1 1.28 · 10−4 (159)
11 129.27 129.35 7 rs2241572 (PRDM10) 0.344 1.84 · 10−313 1 0 2.24 · 10−1 (1)
12 94.31 94.32 3 rs2769432 0.116 4.37 · 10−1 5.24 · 10−1 7.69 · 10−1 2.98 · 10−4 (82)
13 98.34 98.35 3 rs12430163 (DOCK9) 0.121 9.15 · 10−1 5.40 · 10−1 7.99 · 10−1 7.78 · 10−4 (43)
16 11.29 11.30 5 rs11640295 0.284 2.71 · 10−40 1.45 · 10−4 5.07 · 10−9 2.39 · 10−3 (24)
16 79.96 79.98 4 rs16955238 0.027 8.76 · 10−124 6.46 · 10−1 1.75 · 10−5 2.84 · 10−3 (22)
17 4.99 5.05 2 rs2641263 (LOC100130950, SCIMP) 0.357 8.01 · 10−1 9.36 · 10−1 9.54 · 10−2 3.25 · 10−4 (76)
17 62.45 62.65 12 rs3785579 (CACNG1) 0.277 0 2.12 · 10−2 0 1.31 · 10−1 (2)
18 25.70 25.71 2 rs1595963 0.039 1.62 · 10−184 2.72 · 10−1 2.07 · 10−14 8.53 · 10−3 (13)
18 33.34 33.37 6 rs4799934 (CELF4) 0.078 4.83 · 10−288 2.83 · 10−3 1.90 · 10−26 2.04 · 10−2 (5)
19 19.15 19.21 3 rs11671119 (MEF2BNB-MEF2B) 0.045 2.63 · 10−201 1.12 · 10−1 9.27 · 10−18 9.01 · 10−3 (12)
22 16.89 16.89 3 rs4819660 (FLJ41941) 0.233 8.46 · 10−78 6.85 · 10−7 5.10 · 10−9 1.58 · 10−3 (32)
23 1.80 1.81 2 rs6588810 0.016 5.06 · 10−3 2.22 · 10−5 2.33 · 10−8 1.84 · 10−3 (30)
23 14.73 14.78 2 rs6527137 0.496 6.98 · 10−2 7.56 · 10−1 1.12 · 10−2 1.32 · 10−4 (152)
23 33.63 33.71 2 rs11095312 0.423 1.03 · 10−1 6.87 · 10−4 6.97 · 10−1 1.78 · 10−4 (115)
23 35.42 35.46 4 rs11095405 0.462 1.84 · 10−1 2.38 · 10−1 4.99 · 10−1 1.63 · 10−4 (123)
23 97.74 97.78 2 rs241863 0.483 6.87 · 10−2 5.27 · 10−2 2.92 · 10−1 1.16 · 10−4 (173)
23 100.06 100.09 2 rs7050888 (TRMT2B) 0.474 2.23 · 10−1 2.98 · 10−1 1.37 · 10−1 1.54 · 10−4 (127)
23 117.93 117.93 3 rs2290514 (LONRF3) 0.361 3.27 · 10−3 5.63 · 10−2 3.64 · 10−1 1.49 · 10−4 (133)
23 144.27 144.28 2 rs5919854 0.440 6.98 · 10−4 3.68 · 10−1 1.55 · 10−1 2.82 · 10−4 (88)
10 85.11 85.11 1 rs11198290 0.061 9.60 · 10−4 1.47 · 10−5 8.62 · 10−1 1.41 · 10−4 (137)

Table 7.8 CADwtccc: lists of regions identified by the Random Forests and the T-Trees methods.

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1553460
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=890447
http://www.genecards.org/cgi-bin/carddisp.pl?gene=LINC00499#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2416472
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17480050
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CSGALNACT1#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6989092
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=16908145
http://www.genecards.org/cgi-bin/carddisp.pl?gene=FLJ45872#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7906587
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PNLIPRP3#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2241572
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PRDM10#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11640295
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3785579
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CACNG1#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1595963
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4799934
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CELF4#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11671119
http://www.genecards.org/cgi-bin/carddisp.pl?gene=MEF2BNB-MEF2B#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4819660
http://www.genecards.org/cgi-bin/carddisp.pl?gene=FLJ41941#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=311152
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4826780
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6530079
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5979435
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Crohn’s disease

Again, we observed more rare variants in the first variables on the qc versions, while the markers deviating
from hwe prevail over recent variants on the wtccc.

For Crohn’s disease, as in the previous Chapter, we also included the 140 reported loci from [J+13] in
Tables 7.10, 7.11. As a reminder, these regions correspond to underlined marker ids and (*) corresponds
to the nine reported regions while the coloured marker ids indicate regions being reported in [Wel07]
Supplementary Information. Additionally, blue highlights important regions according to the T-Trees. To
facilitate the comparison we also add a copy of the Chapter 6 CDibd table (Table 7.9).

A first comparison between Table 7.10 and Table 7.9 there is almost no difference between the two
datasets. With the Random Forests, the same six loci were identified. But, most importantly, we notice
the disappearance of the 35 markers located around rs11887827. Similarly, with the T-Trees, the main
difference is characterised by the disappearance of the two “blue” loci and the presence of the “pathologic”
rs10212068. That marker also appear as the most important one in the Random Forests variable ranking
on the CDqc dataset but it is isolated and thus not reported in the upper part of the Table. Firstly, that
marker on chromosome 22 was not found in the CDibd version although none of our filters discarded it in
the CDqc alternative. Secondly, in the two “blue” regions 2p12 and 7q31, we noted the disappearance of
rs11887827 and rs2107062 (although not reported as the most important that last marker is included in
the region denoted by rs6947579 in 7q31) because of the hwe filter. Apparently, the loss of these two
markers was enough to miss these regions. In other words, while trying to reproduce the qc filters, from one
hand, we included markers in the qc version being excluded from the ibd and on the other hand, we removed
markers from qc that were included in the ibd.

On CDqc, with the T-Trees, a last notable difference is the presence of rs2157082, which share the
same pathologic properties as rs10212068. It is removed by the wtccc but in this case it allowed for the
detection of a region reported in both [Wel07] Supplementary Information and [J+13].

On CDwtccc, with the Random Forest, most of the regions detected on CDqc and CDibd are also
detected. Markers strongly deviating from hwe appear in the top ranking. With the T-Trees, region 2p12
and 7q31 are detected but a few more from the reported strongly associated regions. An additional marker
located in one of the 140 loci: rs12714959 is detected although it is not reported in the wtccc publication.
Also, rs11644392 and rs1553460 are also reported by [P+12a] has “hub” snps.

Finally, we note the presence of a couple of markers located on chromosome X mostly with the T-Trees.
Among these, we note the recurrent presence of markers located in the SMS gene (which is hypothesised to
be linked to autoimmune diseases in [BLDP+10]).
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Figure 7.6 The first 100 variables according to the tree based importance rankings for CDqc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the reported strongly associ-
ated regions and orange the moderately associated regions. In the second row, purple corresponds to rare
variants (maf < 0.05). In the third row, green represents markers with a low Fisher p-value (< 10−6).
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

1 67.31 67.46 10 rs11209026(∗) (IL23R ) 0.045 1 3.52 · 10−5 8.24 · 10−18 1.40 · 10−2 (1)
2 45.58 45.58 2 rs3755076 0.087 2.65 · 10−3 6.02 · 10−3 5.18 · 10−1 5.30 · 10−4 (48)
2 81.58 81.76 17 rs11887827 0.311 1.54 · 10−7 1 2.42 · 10−8 1.27 · 10−3 (20)
2 233.94 233.97 5 rs10210302(∗) (ATG16L1) 0.452 4.25 · 10−1 1.98 · 10−2 2.22 · 10−13 2.79 · 10−3 (6)
3 49.43 49.68 6 rs11718165(∗) (BSN) 0.295 1.33 · 10−2 1.60 · 10−2 1.70 · 10−6 1.19 · 10−3 (24)
4 114.61 114.62 2 rs17045935 (ANK2) 0.095 2.38 · 10−1 1.07 · 10−4 5.28 · 10−2 6.45 · 10−4 (39)
5 24.77 24.77 3 rs16893874 0.008 2.61 · 10−1 1 3.18 · 10−5 3.32 · 10−4 (80)
5 40.43 40.61 12 rs17234657(∗) 0.146 4.18 · 10−1 3.51 · 10−1 1.72 · 10−13 2.26 · 10−3 (10)
5 121.75 121.76 2 rs17149128 (SNCAIP) 0.122 1.10 · 10−2 1.03 · 10−2 4.10 · 10−1 1.97 · 10−4 (166)
5 150.21 150.31 4 rs931058 0.071 5.64 · 10−1 1 1.53 · 10−8 5.83 · 10−4 (44)
6 36.54 36.64 2 rs600382 0.001 1 1 2.38 · 10−5 2.67 · 10−4 (95)
8 129.88 129.96 4 rs10216909 0.003 1 1 7.76 · 10−5 3.04 · 10−4 (87)

10 65.96 65.96 2 rs16919914 0.080 8.80 · 10−2 4.00 · 10−4 2.22 · 10−1 5.20 · 10−4 (49)
11 130.84 130.84 2 rs1533339 (NTM) 0.005 1 1 2.78 · 10−4 2.15 · 10−4 (145)
16 49.30 49.32 4 rs2076756(∗) (NOD2) 0.270 4.50 · 10−3 7.62 · 10−1 3.95 · 10−15 3.88 · 10−3 (4)
23 89.59 89.64 2 rs6522332 0.160 3.10 · 10−1 5.50 · 10−1 3.23 · 10−1 2.08 · 10−4 (155)
7 135.31 135.31 1 rs834771 0.151 1.01 · 10−1 3.37 · 10−2 1.25 · 10−3 1.91 · 10−4 (177)
8 77.90 77.90 1 rs10957818 0.024 7.13 · 10−1 6.26 · 10−1 2.62 · 10−5 2.13 · 10−4 (151)

14 77.10 77.10 1 rs4903604 0.227 5.78 · 10−3 2.41 · 10−2 2.48 · 10−3 2.89 · 10−4 (89)
18 12.77 12.77 1 rs2542151(∗) 0.180 3.08 · 10−1 9.46 · 10−1 7.21 · 10−8 2.07 · 10−4 (156)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 3.25 3.26 2 rs12409315 0.077 1.75 · 10−1 4.37 · 10−3 2.54 · 10−3 4.36 · 10−4 (32)
1 67.31 67.46 10 rs11209026(∗) (IL23R ) 0.045 1 3.52 · 10−5 8.24 · 10−18 5.23 · 10−3 (5)
1 77.61 77.62 2 rs11162341 0.132 4.01 · 10−1 3.78 · 10−1 8.99 · 10−1 2.28 · 10−4 (57)
1 236.50 236.50 5 rs6677092 (RPS7P5 ) 0.373 3.01 · 10−6 1 1.77 · 10−4 4.15 · 10−4 (33)
2 81.58 81.85 35 rs11887827 0.311 1.54 · 10−7 1 2.42 · 10−8 1.03 · 10−2 (1)
2 143.22 143.28 2 SNP A-2293058 0.003 1 1 1.79 · 10−5 1.81 · 10−4 (78)
2 233.94 233.97 5 rs10210302(∗) (ATG16L1) 0.452 4.25 · 10−1 1.98 · 10−2 2.22 · 10−13 3.07 · 10−4 (48)
3 7.49 7.50 2 rs17047422 0.001 1 1 3.45 · 10−4 1.91 · 10−4 (73)
3 120.41 120.42 2 rs6774 (B4GALT4) 0.108 2.50 · 10−1 7.10 · 10−4 1.39 · 10−2 3.41 · 10−4 (43)
3 187.31 187.35 2 rs4686733 0.053 6.50 · 10−5 1.12 · 10−2 3.65 · 10−1 1.39 · 10−4 (93)
4 86.13 86.18 2 rs1872321 0.002 1 1 6.88 · 10−9 1.19 · 10−3 (17)
4 114.61 114.62 2 rs17045935 (ANK2) 0.095 2.38 · 10−1 1.07 · 10−4 5.28 · 10−2 2.57 · 10−4 (53)
4 178.27 178.28 3 rs1595154 0.002 1 1 1.08 · 10−7 5.70 · 10−4 (28)
5 40.43 40.53 10 rs17234657(∗) 0.146 4.18 · 10−1 3.51 · 10−1 1.72 · 10−13 4.55 · 10−4 (30)
6 21.33 21.35 2 rs16884693 0.004 1 1 1.21 · 10−3 9.36 · 10−5 (145)
6 129.84 129.84 3 rs2784899 0.260 8.06 · 10−1 5.25 · 10−1 6.48 · 10−2 1.26 · 10−4 (106)
7 35.37 35.37 2 rs10270692 0.066 1 6.68 · 10−1 9.31 · 10−2 1.99 · 10−4 (68)
7 125.13 125.16 9 rs6947579 0.317 2.45 · 10−1 7.02 · 10−1 8.54 · 10−1 7.55 · 10−3 (3)
8 129.90 129.92 2 rs10216909 0.003 1 1 7.76 · 10−5 1.03 · 10−4 (131)

10 38.31 38.38 2 rs11011417 0.001 1 1 1.85 · 10−5 1.31 · 10−4 (100)
11 14.16 14.16 2 rs9804490 0.459 1.50 · 10−10 1.44 · 10−6 2.41 · 10−5 1.16 · 10−4 (117)
12 42.78 42.80 2 rs11613902 (TMEM117 ) 0.099 3.98 · 10−7 9.76 · 10−2 9.43 · 10−1 3.46 · 10−4 (41)
14 84.39 84.43 4 rs10144260 0.008 1 1 1.18 · 10−9 1.07 · 10−3 (18)
14 104.47 104.53 2 rs2819467 (C14orf79) 0.011 3.21 · 10−1 1 1.51 · 10−3 1.23 · 10−4 (110)
16 49.30 49.31 3 rs2076756(∗) (NOD2) 0.270 4.50 · 10−3 7.62 · 10−1 3.95 · 10−15 6.43 · 10−4 (25)
23 21.69 21.74 8 rs5904497 (SMS) 0.273 5.97 · 10−6 1.50 · 10−1 4.41 · 10−2 3.26 · 10−3 (9)
23 70.94 70.94 2 rs6624585 (NHSL2) 0.068 7.76 · 10−1 1 2.69 · 10−2 2.24 · 10−4 (58)
3 49.67 49.67 1 rs11718165(∗) (BSN) 0.295 1.33 · 10−2 1.60 · 10−2 1.70 · 10−6 7.93 · 10−5 (159)
5 57.95 57.95 1 rs2279980 0.188 8.16 · 10−2 7.99 · 10−1 6.19 · 10−5 7.03 · 10−5 (182)
8 77.90 77.90 1 rs10957818 0.024 7.13 · 10−1 6.26 · 10−1 2.62 · 10−5 1.06 · 10−4 (126)

18 12.77 12.77 1 rs2542151(∗) 0.180 3.08 · 10−1 9.46 · 10−1 7.21 · 10−8 9.35 · 10−5 (146)

Table 7.9 CDibd: lists of regions identified by the Random Forests and the T-Trees methods.
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http://www.genecards.org/cgi-bin/carddisp.pl?gene=C14orf79#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2076756
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NOD2#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5904497
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SMS#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6624585
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NHSL2#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11718165
http://www.genecards.org/cgi-bin/carddisp.pl?gene=BSN#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2279980
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10957818
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2542151
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

1 67.31 67.46 11 rs11209026(∗) (IL23R ) 0.045 6.24 · 10−1 3.59 · 10−5 3.71 · 10−19 1.21 · 10−2 (2)
2 233.94 233.97 5 rs10210302(∗) (ATG16L1) 0.451 2.03 · 10−1 2.52 · 10−2 1.25 · 10−14 3.01 · 10−3 (12)
3 7.49 7.50 2 rs9877337 (GRM7 ) 0.003 1 1 1.34 · 10−6 2.84 · 10−4 (94)
3 49.43 49.68 3 rs11718165(∗) (BSN) 0.294 1.88 · 10−2 2.41 · 10−2 2.55 · 10−6 4.83 · 10−4 (58)
3 59.51 59.53 2 rs10510813 0.195 1.36 · 10−1 1.78 · 10−3 7.49 · 10−5 3.04 · 10−4 (89)
4 101.65 101.65 2 rs2903213 0.101 9.86 · 10−3 2.25 · 10−1 1.40 · 10−4 2.59 · 10−4 (109)
5 40.43 40.60 12 rs17234657(∗) 0.145 2.76 · 10−1 3.12 · 10−1 5.23 · 10−13 1.50 · 10−3 (25)
5 121.75 121.76 2 rs17149128 (SNCAIP) 0.124 7.54 · 10−4 1.38 · 10−2 1.47 · 10−1 3.04 · 10−4 (88)
5 150.24 150.31 2 rs931058 0.072 8.91 · 10−1 1 1.49 · 10−8 2.66 · 10−4 (103)

10 53.84 53.84 2 rs10824464 0.014 5.55 · 10−1 1 3.98 · 10−6 2.10 · 10−4 (139)
11 130.84 130.84 2 rs1533339 (NTM) 0.006 1 1 2.61 · 10−6 2.29 · 10−4 (121)
14 57.36 57.37 2 rs17093726 (SLC35F4) 0.119 2.09 · 10−4 1 3.77 · 10−3 2.15 · 10−4 (132)
16 49.30 49.36 8 rs2076756(∗) (NOD2) 0.269 3.61 · 10−4 7.63 · 10−1 1.72 · 10−14 3.22 · 10−3 (11)
23 134.79 134.86 2 rs3761643 0.024 6.26 · 10−1 1 9.39 · 10−1 6.15 · 10−4 (45)
2 45.58 45.58 1 rs3755076 0.090 3.66 · 10−3 1.91 · 10−2 9.08 · 10−2 2.20 · 10−4 (127)

10 38.53 38.53 1 rs11011491 0.003 1 1 4.58 · 10−5 1.64 · 10−4 (194)
14 77.10 77.10 1 rs4903604 0.227 9.38 · 10−3 3.29 · 10−2 2.82 · 10−3 2.18 · 10−4 (128)
18 12.77 12.77 1 rs2542151(∗) 0.181 1.45 · 10−1 8.41 · 10−1 1.46 · 10−7 1.94 · 10−4 (155)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 67.31 67.46 15 rs11209026(∗) (IL23R ) 0.045 6.24 · 10−1 3.59 · 10−5 3.71 · 10−19 5.12 · 10−3 (2)
1 236.47 236.50 5 rs6677092 (RPS7P5 ) 0.373 2.56 · 10−6 9.38 · 10−1 3.01 · 10−4 4.76 · 10−4 (28)
2 5.37 5.41 7 rs1453783(3) 0.380 4.07 · 10−2 1.62 · 10−2 1.19 · 10−2 1.42 · 10−3 (11)
2 10.90 10.93 5 rs902133(1) 0.004 1 1 3.31 · 10−11 2.61 · 10−3 (5)
2 233.94 233.97 5 rs10210302(∗) (ATG16L1) 0.451 2.03 · 10−1 2.52 · 10−2 1.25 · 10−14 3.00 · 10−4 (42)
3 7.50 7.50 2 rs17047426 (GRM7 ) 0.002 1 1 3.97 · 10−6 2.40 · 10−4 (59)
3 120.41 120.42 2 rs6774 (B4GALT4) 0.109 1.94 · 10−1 3.94 · 10−4 6.45 · 10−3 2.44 · 10−4 (56)
3 133.77 133.78 2 rs3762678 0.002 1 1 3.70 · 10−7 5.01 · 10−4 (27)
3 187.31 187.35 3 rs4686733 0.055 3.79 · 10−6 7.63 · 10−3 7.16 · 10−1 2.55 · 10−4 (53)
4 56.95 56.96 3 rs4865080 (KIAA1211) 0.003 1.14 · 10−1 1 3.27 · 10−13 1.71 · 10−3 (9)
4 114.61 114.62 2 rs17045935 (ANK2) 0.096 8.72 · 10−2 7.68 · 10−5 2.98 · 10−2 2.82 · 10−4 (46)
4 147.08 147.09 2 rs17020598 (ZNF827 ) 0.003 1 1 5.47 · 10−6 1.31 · 10−4 (107)
4 178.27 178.28 3 rs1595154 0.003 1 1 1.70 · 10−10 7.57 · 10−4 (19)
5 40.43 40.53 6 rs17234657(∗) 0.145 2.76 · 10−1 3.12 · 10−1 5.23 · 10−13 3.50 · 10−4 (34)
5 113.07 113.07 2 rs6881153 0.062 5.72 · 10−1 4.22 · 10−1 5.79 · 10−1 1.10 · 10−4 (135)
6 32.85 32.87 9 rs2157082(3) 0.425 2.81 · 10−1 3.95 · 10−4 1.94 · 10−2 1.84 · 10−3 (8)
6 63.43 63.44 2 rs7761764 0.031 4.01 · 10−1 7.85 · 10−2 1.37 · 10−1 9.19 · 10−5 (156)
7 35.37 35.37 2 rs12540326 0.139 1 3.08 · 10−1 2.00 · 10−1 1.14 · 10−4 (130)
8 30.27 30.33 5 rs7842024 0.003 1 1 8.69 · 10−12 2.30 · 10−3 (6)
8 32.06 32.09 3 rs16878847 (NRG1) 0.003 1 1 8.31 · 10−11 1.64 · 10−3 (10)
9 76.50 76.54 3 rs17062858 (PRUNE2) 0.012 1 1 1.92 · 10−4 1.70 · 10−4 (80)
9 110.09 110.10 2 rs3808888 (TXN) 0.002 9.44 · 10−4 1 8.27 · 10−9 3.29 · 10−4 (37)

10 131.95 131.97 2 rs7080464(1) 0.030 7.50 · 10−2 4.05 · 10−1 2.72 · 10−7 2.34 · 10−4 (60)
11 37.28 37.44 4 rs12224887(3) 0.014 6.24 · 10−1 1 1.54 · 10−8 9.44 · 10−4 (13)
12 42.76 42.78 2 rs11613902 (TMEM117 ) 0.099 4.67 · 10−8 8.18 · 10−2 9.17 · 10−1 3.11 · 10−4 (39)
13 93.28 93.31 2 rs12429608 (GPC6, GPC6-AS2) 0.003 6.90 · 10−2 1 6.06 · 10−7 2.43 · 10−4 (57)
14 83.00 83.04 5 rs10144243 0.006 1 1 1.51 · 10−13 3.07 · 10−3 (4)
14 104.47 104.53 2 rs2819467 (C14orf79) 0.011 3.81 · 10−1 1 3.03 · 10−4 1.30 · 10−4 (108)
15 80.18 80.21 4 rs16973411(1) 0.003 1 1 5.88 · 10−14 3.93 · 10−3 (3)
16 49.30 49.32 3 rs2076756(∗) (NOD2) 0.269 3.61 · 10−4 7.63 · 10−1 1.72 · 10−14 6.34 · 10−4 (23)
22 35.92 35.97 8 rs10212068(3) 0.028 1 2.60 · 10−3 3.20 · 10−56 3.07 · 10−2 (1)
23 21.73 21.74 6 rs5904497 (SMS) 0.271 1.73 · 10−6 1.19 · 10−1 3.54 · 10−2 2.01 · 10−3 (7)
23 70.94 70.94 2 rs6624585 (NHSL2) 0.068 1 1 5.13 · 10−2 2.73 · 10−4 (49)
18 12.77 12.77 1 rs2542151(∗) 0.181 1.45 · 10−1 8.41 · 10−1 1.46 · 10−7 8.25 · 10−5 (170)

Table 7.10 CDqc: lists of regions identified by the Random Forests and the T-Trees methods.

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11209026
http://www.genecards.org/cgi-bin/carddisp.pl?gene=IL23R#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10210302
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ATG16L1#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=9877337
http://www.genecards.org/cgi-bin/carddisp.pl?gene=GRM7#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11718165
http://www.genecards.org/cgi-bin/carddisp.pl?gene=BSN#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10510813
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2903213
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17234657
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17149128
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SNCAIP#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=931058
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10824464
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1533339
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NTM#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17093726
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC35F4#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2076756
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NOD2#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3761643
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3755076
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11011491
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4903604
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2542151
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11209026
http://www.genecards.org/cgi-bin/carddisp.pl?gene=IL23R#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6677092
http://www.genecards.org/cgi-bin/carddisp.pl?gene=RPS7P5#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1453783
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=902133
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10210302
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ATG16L1#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17047426
http://www.genecards.org/cgi-bin/carddisp.pl?gene=GRM7#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6774
http://www.genecards.org/cgi-bin/carddisp.pl?gene=B4GALT4#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3762678
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4686733
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=4865080
http://www.genecards.org/cgi-bin/carddisp.pl?gene=KIAA1211#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17045935
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ANK2#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17020598
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ZNF827#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1595154
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17234657
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6881153
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2157082
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7761764
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12540326
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7842024
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=16878847
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NRG1#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=17062858
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PRUNE2#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=3808888
http://www.genecards.org/cgi-bin/carddisp.pl?gene=TXN#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=7080464
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12224887
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11613902
http://www.genecards.org/cgi-bin/carddisp.pl?gene=TMEM117#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12429608
http://www.genecards.org/cgi-bin/carddisp.pl?gene=GPC6, GPC6-AS2#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10144243
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2819467
http://www.genecards.org/cgi-bin/carddisp.pl?gene=C14orf79#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=16973411
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2076756
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NOD2#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10212068
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=5904497
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SMS#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6624585
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NHSL2#diseases
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2542151
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

1 67.31 67.46 11 rs11209026(∗) (IL23R ) 0.045 1 3.53 · 10−5 5.43 · 10−18 6.89 · 10−3 (10)
1 117.16 117.18 9 rs12078461 (PTGFRN) 0.047 2.51 · 10−182 4.91 · 10−2 7.19 · 10−13 4.95 · 10−2 (2)
2 25.31 25.36 3 rs2164411 0.155 2.85 · 10−13 1.95 · 10−1 4.82 · 10−3 5.32 · 10−3 (13)
2 233.94 233.97 5 rs10210302(∗) (ATG16L1) 0.451 4.26 · 10−1 1.98 · 10−2 1.08 · 10−13 1.32 · 10−3 (41)
3 16.45 16.46 2 rs9839841 (RFTN1) 0.195 2.30 · 10−6 5.14 · 10−1 7.20 · 10−13 1.38 · 10−3 (38)
3 49.43 49.68 3 rs11718165(∗) (BSN) 0.295 1.57 · 10−2 1.61 · 10−2 2.21 · 10−6 4.21 · 10−4 (102)
4 16.37 16.48 14 rs157613 (LDB2) 0.082 3.16 · 10−253 3.96 · 10−6 1.13 · 10−14 9.02 · 10−2 (1)
4 17.73 17.93 16 rs1553460 0.315 5.84 · 10−93 2.88 · 10−5 1.59 · 10−31 4.09 · 10−2 (4)
4 158.43 158.43 3 rs17035797 (GLRB) 0.074 1.38 · 10−10 9.06 · 10−1 1.29 · 10−9 5.16 · 10−4 (93)
4 186.09 186.11 3 rs13126272 (ACSL1) 0.338 5.00 · 10−58 3.02 · 10−2 3.65 · 10−5 6.24 · 10−3 (11)
5 40.37 40.52 9 rs17234657(∗) 0.146 4.18 · 10−1 3.52 · 10−1 2.37 · 10−13 7.16 · 10−4 (68)
5 117.00 117.07 16 rs2416472 0.319 2.40 · 10−17 9.35 · 10−1 7.19 · 10−12 4.55 · 10−3 (14)
6 121.66 121.68 3 rs17083420 (C6orf170) 0.009 3.45 · 10−11 1 7.68 · 10−7 1.52 · 10−3 (36)
9 132.51 132.60 13 rs302925 0.475 4.67 · 10−20 5.50 · 10−1 6.32 · 10−6 1.15 · 10−3 (45)

10 125.67 125.67 3 rs7067790 0.391 4.18 · 10−22 3.56 · 10−1 1.10 · 10−7 7.82 · 10−3 (9)
11 113.02 113.31 17 rs17116117 (HTR3B) 0.049 2.92 · 10−4 1.16 · 10−1 1.03 · 10−23 1.12 · 10−2 (8)
14 97.06 97.07 6 rs234202 0.008 1 1 1.21 · 10−9 1.41 · 10−3 (37)
16 30.23 30.29 3 rs4471699 (LOC595101) 0.449 2.31 · 10−49 6.03 · 10−1 4.64 · 10−20 3.27 · 10−2 (5)
16 49.30 49.31 3 rs2076756(∗) (NOD2) 0.270 4.61 · 10−3 7.62 · 10−1 3.00 · 10−15 1.38 · 10−3 (39)
2 45.58 45.58 1 rs3755076 0.087 2.76 · 10−3 6.02 · 10−3 4.95 · 10−1 1.52 · 10−4 (200)
6 32.79 32.79 1 rs3104404 0.148 5.65 · 10−2 1.03 · 10−1 2.31 · 10−6 2.21 · 10−4 (155)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 67.31 67.42 5 rs11209026(∗) (IL23R ) 0.045 1 3.53 · 10−5 5.43 · 10−18 2.55 · 10−3 (28)
1 117.16 117.18 10 rs12078461 (PTGFRN) 0.047 2.51 · 10−182 4.91 · 10−2 7.19 · 10−13 3.32 · 10−2 (2)
1 214.81 214.86 6 rs1933641 (RRP15 ) 0.047 3.76 · 10−180 7.90 · 10−2 7.59 · 10−14 3.17 · 10−2 (3)
2 25.31 25.36 3 rs2164411 0.155 2.85 · 10−13 1.95 · 10−1 4.82 · 10−3 1.53 · 10−3 (41)
2 81.54 81.72 14 rs11887827 0.311 1.66 · 10−7 1 2.19 · 10−8 4.37 · 10−3 (16)
2 132.48 132.55 2 rs4080478 0.104 2.69 · 10−8 1.44 · 10−4 3.64 · 10−3 9.92 · 10−4 (62)
3 16.45 16.46 2 rs9839841 (RFTN1) 0.195 2.30 · 10−6 5.14 · 10−1 7.20 · 10−13 4.83 · 10−4 (93)
3 18.60 18.60 2 rs12714959 0.263 1.74 · 10−23 7.82 · 10−5 5.06 · 10−7 1.46 · 10−3 (44)
3 184.57 184.57 3 rs959880 (MCF2L2) 0.144 4.85 · 10−1 2.65 · 10−1 4.64 · 10−1 1.14 · 10−3 (56)
4 16.43 16.48 15 rs157613 (LDB2) 0.082 3.16 · 10−253 3.96 · 10−6 1.13 · 10−14 6.11 · 10−2 (1)
4 17.85 17.90 9 rs1553460 0.315 5.84 · 10−93 2.88 · 10−5 1.59 · 10−31 1.96 · 10−2 (4)
4 38.77 38.78 2 rs6816863 0.027 4.18 · 10−89 1 2.86 · 10−1 1.25 · 10−2 (9)
4 56.95 56.96 2 rs4865080 (KIAA1211) 0.002 1 1 3.98 · 10−10 5.48 · 10−4 (85)
4 158.43 158.43 3 rs17035814 (GLRB) 0.089 1.05 · 10−1 6.44 · 10−1 7.35 · 10−1 2.52 · 10−3 (29)
4 186.09 186.13 6 rs13126272 (ACSL1) 0.338 5.00 · 10−58 3.02 · 10−2 3.65 · 10−5 5.33 · 10−3 (15)
5 40.37 40.44 2 rs1186661(∗) 0.133 3.80 · 10−1 2.76 · 10−3 1.55 · 10−12 2.27 · 10−4 (140)
5 117.02 117.06 9 rs17411921 0.339 2.19 · 10−1 3.66 · 10−1 7.87 · 10−1 1.83 · 10−2 (5)
6 93.79 93.82 10 rs6454931 0.279 2.16 · 10−1 8.90 · 10−1 5.84 · 10−1 3.58 · 10−3 (19)
6 121.63 121.68 4 rs17083420 (C6orf170) 0.009 3.45 · 10−11 1 7.68 · 10−7 2.62 · 10−3 (26)
7 38.93 38.97 3 rs1525791 (POU6F2) 0.152 1.22 · 10−3 6.26 · 10−1 2.14 · 10−8 6.11 · 10−4 (79)
7 125.13 125.14 6 rs6947579 0.317 2.24 · 10−1 7.34 · 10−1 8.19 · 10−1 3.41 · 10−3 (21)
9 132.59 132.60 7 rs10901198 (GTF3C4) 0.119 9.10 · 10−1 4.79 · 10−1 7.92 · 10−1 1.04 · 10−2 (10)

10 10.32 10.32 2 rs2151595 0.068 1 7.76 · 10−1 2.60 · 10−1 3.16 · 10−4 (118)
10 125.66 125.67 4 rs769282 0.415 6.57 · 10−1 4.94 · 10−1 7.95 · 10−1 5.50 · 10−3 (14)
11 55.32 55.35 2 rs7951100 0.070 2.58 · 10−1 3.97 · 10−1 6.75 · 10−1 3.03 · 10−4 (121)
11 113.28 113.31 5 rs1176741 (HTR3B) 0.030 6.45 · 10−1 1.19 · 10−1 3.50 · 10−1 1.66 · 10−2 (6)
14 35.06 35.16 4 rs10483456 (RALGAPA1) 0.059 5.04 · 10−1 5.22 · 10−1 2.81 · 10−11 1.29 · 10−3 (49)
14 59.81 59.83 3 rs7154773 (PPM1A) 0.352 2.10 · 10−1 1.96 · 10−1 6.84 · 10−1 6.87 · 10−4 (72)
14 83.04 83.06 2 rs10144243 0.005 1 1 2.25 · 10−12 1.24 · 10−3 (51)
14 97.06 97.10 6 rs11846702 0.012 1 3.33 · 10−1 4.42 · 10−1 2.76 · 10−3 (25)
16 29.84 30.29 7 rs11644392 (LOC595101) 0.484 6.99 · 10−1 6.83 · 10−1 2.20 · 10−1 1.60 · 10−2 (7)
17 50.27 50.29 2 rs2934884 0.198 4.06 · 10−1 4.16 · 10−1 9.15 · 10−1 7.33 · 10−4 (70)
23 0.63 0.64 6 rs5988334 0.216 2.36 · 10−2 2.06 · 10−3 1.13 · 10−5 1.36 · 10−3 (47)
23 2.58 2.58 2 rs1419930 0.041 5.51 · 10−2 5.71 · 10−19 2.33 · 10−1 1.11 · 10−3 (57)
23 21.73 21.73 2 rs4824171 (SMS) 0.284 6.52 · 10−1 2.14 · 10−1 3.22 · 10−1 8.84 · 10−4 (66)
2 233.94 233.94 1 rs10210302(∗) (ATG16L1) 0.451 4.26 · 10−1 1.98 · 10−2 1.08 · 10−13 2.68 · 10−4 (132)

16 49.31 49.31 1 rs2076756(∗) (NOD2) 0.270 4.61 · 10−3 7.62 · 10−1 3.00 · 10−15 4.29 · 10−4 (105)

Table 7.11 CDwtccc: lists of regions identified by the Random Forests and the T-Trees methods.
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Figure 7.7 The first 100 variables according to the tree based importance rankings for CDwtccc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the nine reported regions
and blue highlights two more regions mostly detected by tree based methods. In the second row, purple
corresponds to rare variants (maf < 0.05). In the third row, orange highlights snps deviating from hwe and
in the last row, green represents markers with a low Fisher p-value (< 10−6).
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Hypertension

As for previous diseases, we obtain more rare variants in the top ranked variables on the qc version and
more markers deviating from hwe on HTwtccc. On HTqc, we see rs10212068 and rs3122348 popping out
again in the top ranked variables.

Interestingly, rs6499937 located in CSNK2A2 is detected in our four experiments. That gene is reported
in [YLLP11] as potentially linked to hypertension. Many genes are also detected by a multiple-maker
analysis in [SFS+11] and well identified (particularly on HTqc) by the T-Trees. Among these: rs1372662
(ZFAT), rs10188442 (GPR39) and rs200759 (MACROD2) were found. Most of the snp pairs reported in
[SFS+11] are captured in the corresponding groups in our table. Note that the ZFAT region is also found in
[FZ10]. In addition, on HTwtccc, rs10843660 is also reported by [P+12a] as being a “hub”.
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Figure 7.8 The first 100 variables according to the tree based importance rankings for HTqc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the reported strongly associ-
ated regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row, green
represents markers with a low Fisher p-value (< 10−6).
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Figure 7.9 The first 100 variables according to the tree based importance rankings for HTwtccc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the strongly associated
reported regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row,
orange highlights snps deviating from hwe and in the last row, green represents markers with a low Fisher
p-value (< 10−6).
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

2 217.31 217.34 2 rs6733115 0.002 1 1 8.63 · 10−6 4.71 · 10−4 (59)
3 150.14 150.16 3 rs12163649 0.249 7.21 · 10−2 4.86 · 10−2 2.90 · 10−3 1.96 · 10−4 (95)
3 154.52 154.52 2 rs10513440 0.197 1.70 · 10−1 2.71 · 10−3 1.71 · 10−2 1.58 · 10−4 (116)
6 89.37 89.38 2 rs2610769 0.148 1.70 · 10−1 2.69 · 10−3 7.26 · 10−2 1.31 · 10−4 (147)
6 167.32 167.32 2 rs2757045 (RNASET2) 0.103 6.13 · 10−3 2.91 · 10−1 1.33 · 10−2 2.36 · 10−4 (82)
7 93.00 93.01 2 rs2519602 0.149 6.60 · 10−3 1.55 · 10−1 3.26 · 10−2 1.30 · 10−4 (149)
9 117.69 117.81 5 rs488101 0.363 5.56 · 10−6 5.87 · 10−1 4.70 · 10−7 5.60 · 10−4 (52)

10 30.99 31.06 9 rs3122348(LOC645954)(1) 0.034 4.73 · 10−6 1 6.12 · 10−96 1.26 · 10−1 (1)
10 58.39 58.41 2 rs2393191 0.016 3.10 · 10−1 5.71 · 10−1 2.46 · 10−1 2.57 · 10−3 (21)
10 131.95 132.00 3 rs7080464(1) 0.031 4.70 · 10−2 4.05 · 10−1 5.07 · 10−8 1.27 · 10−3 (32)
11 133.33 133.34 2 rs493888 0.120 8.14 · 10−6 3.92 · 10−1 3.92 · 10−1 2.42 · 10−4 (80)
14 60.77 60.77 2 rs4902035 0.096 7.15 · 10−3 1.01 · 10−4 5.53 · 10−1 3.56 · 10−4 (64)
15 63.11 63.12 2 rs2414869 (MTFMT ) 0.120 1.20 · 10−3 1.72 · 10−2 2.54 · 10−1 2.65 · 10−4 (73)
16 56.75 56.79 2 rs6499937 (CSNK2A2) 0.006 1 1 1.30 · 10−8 2.84 · 10−3 (20)
23 24.36 24.44 2 SNP A-1998393 0.011 4.37 · 10−4 5.58 · 10−2 3.78 · 10−7 9.71 · 10−4 (37)
23 70.69 70.96 6 rs5951179 (NHSL2) 0.041 2.57 · 10−1 7.93 · 10−1 2.62 · 10−4 10.00 · 10−3 (10)
23 74.34 74.47 6 rs5938070 (ZDHHC15 ) 0.025 1 6.38 · 10−1 8.33 · 10−7 7.77 · 10−3 (13)
2 212.20 212.20 1 rs6435632 0.307 4.12 · 10−3 1.25 · 10−2 2.39 · 10−2 9.89 · 10−5 (199)
6 99.62 99.62 1 rs1884184 0.215 3.16 · 10−1 3.98 · 10−3 3.07 · 10−4 1.44 · 10−4 (135)
8 123.90 123.90 1 rs10095188 0.176 8.35 · 10−2 1.74 · 10−5 1.29 · 10−2 4.96 · 10−4 (55)

10 10.32 10.32 1 rs2895065 0.094 4.74 · 10−2 5.08 · 10−3 7.83 · 10−2 1.08 · 10−4 (184)
13 60.33 60.33 1 rs167272 0.095 5.15 · 10−3 1.27 · 10−3 2.19 · 10−1 9.77 · 10−4 (36)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 118.80 118.81 3 rs12134541 0.478 5.56 · 10−1 8.54 · 10−1 6.96 · 10−1 2.95 · 10−4 (77)
1 149.24 149.24 2 rs1923496 0.332 7.54 · 10−1 2.34 · 10−1 1.24 · 10−1 1.55 · 10−4 (126)
1 235.59 235.59 2 rs16837761 0.165 8.80 · 10−2 3.85 · 10−1 6.78 · 10−1 1.41 · 10−4 (139)
2 10.90 10.93 4 rs902133(1) 0.006 1 1 1.41 · 10−16 5.24 · 10−3 (12)
2 17.91 17.91 2 rs13394205 0.004 1 1.14 · 10−1 6.53 · 10−9 4.37 · 10−4 (60)
2 133.02 133.02 4 rs10188442 (GPR39) 0.204 1.65 · 10−1 1 7.40 · 10−1 6.00 · 10−4 (46)
3 6.84 6.85 2 rs17046143 0.003 1 1 3.69 · 10−11 2.50 · 10−3 (20)
3 45.11 45.16 6 rs4683064(CDCP1)(1) 0.005 1 1 4.59 · 10−16 5.39 · 10−3 (11)
3 66.60 66.60 2 rs3845903 (LRIG1) 0.006 1 1 3.74 · 10−9 5 · 10−4 (53)
3 147.40 147.40 3 rs16858040 (PLSCR4) 0.002 1 1 1.94 · 10−8 7.67 · 10−4 (38)
4 23.64 23.67 3 rs615604 0.155 1.61 · 10−1 7.30 · 10−1 4.96 · 10−1 3.41 · 10−3 (15)
4 116.10 116.16 6 rs7666328(NDST4)(3) 0.038 8.57 · 10−2 2.82 · 10−3 2.60 · 10−14 2.62 · 10−3 (19)
5 36.46 36.46 3 rs12515142 0.140 6.30 · 10−1 5.99 · 10−1 4.06 · 10−1 2.23 · 10−4 (92)
6 9.59 9.62 6 rs9357438 0.043 4.69 · 10−2 4.37 · 10−2 6.48 · 10−1 5.80 · 10−3 (10)
6 32.86 32.87 4 rs2621382 0.448 3.36 · 10−1 8.53 · 10−1 2.15 · 10−1 5.82 · 10−4 (48)
8 15.70 15.70 3 rs2604383(1) 0.027 1.68 · 10−1 4.06 · 10−1 1.17 · 10−3 1.41 · 10−4 (138)
8 120.42 120.43 4 rs2469997 0.187 3.35 · 10−1 9.04 · 10−1 7.92 · 10−1 1.16 · 10−3 (30)
8 135.58 135.67 10 rs1372662 (ZFAT ) 0.333 6.85 · 10−1 3.42 · 10−1 8.79 · 10−1 7.48 · 10−3 (7)
9 117.77 117.81 10 rs2458879 0.386 3.88 · 10−1 8.47 · 10−1 4.46 · 10−1 9.08 · 10−3 (5)

10 14.82 14.82 4 rs2601749 (FAM107B) 0.401 7.80 · 10−1 1.15 · 10−2 3.49 · 10−2 2.40 · 10−4 (87)
10 30.97 31.06 15 rs3122348(LOC645954)(1) 0.034 4.73 · 10−6 1 6.12 · 10−96 5.51 · 10−2 (1)
10 58.18 58.29 10 rs11005510 0.010 1 1 1.27 · 10−20 7.59 · 10−3 (6)
10 58.39 58.41 2 rs16909905 0.012 1 3.53 · 10−1 9.25 · 10−1 6.72 · 10−4 (42)
10 131.97 132.00 2 rs7918047 0.058 9.05 · 10−2 4.04 · 10−1 8.61 · 10−1 1.69 · 10−3 (25)
11 27.01 27.04 5 rs16916476 (BBOX1) 0.005 1 1 9.29 · 10−17 6.64 · 10−3 (9)
16 56.73 56.75 4 rs6499937 (CSNK2A2) 0.006 1 1 1.30 · 10−8 1.05 · 10−3 (33)
16 59.66 59.67 4 rs2133803 0.459 6.17 · 10−1 1.20 · 10−1 1.42 · 10−1 1.92 · 10−4 (108)
17 70.50 70.58 3 rs1873598 (CDR2L) 0.002 1 1 5.42 · 10−8 6.61 · 10−4 (44)
19 22.69 22.70 2 rs12980129 0.028 5.14 · 10−1 1 3.35 · 10−4 1.43 · 10−4 (136)
20 15.55 15.55 2 rs200759 (MACROD2) 0.113 8.23 · 10−1 1.69 · 10−1 8.71 · 10−1 4.22 · 10−4 (61)
22 35.92 35.99 8 rs10212068(3) 0.028 1 2.60 · 10−3 7.43 · 10−62 3.10 · 10−2 (2)
23 24.36 24.44 2 SNP A-1998393 0.011 4.37 · 10−4 5.58 · 10−2 3.78 · 10−7 8.15 · 10−4 (37)
23 70.86 70.96 8 rs5951179 (NHSL2) 0.041 2.57 · 10−1 7.93 · 10−1 2.62 · 10−4 3.40 · 10−3 (16)
23 74.40 74.45 4 rs4892579 (ZDHHC15 ) 0.027 3.72 · 10−1 6.38 · 10−1 3.33 · 10−3 7.56 · 10−4 (39)
13 60.33 60.33 1 rs167272 0.095 5.15 · 10−3 1.27 · 10−3 2.19 · 10−1 1.08 · 10−4 (167)
14 60.77 60.77 1 rs4902035 0.096 7.15 · 10−3 1.01 · 10−4 5.53 · 10−1 1.47 · 10−4 (132)

Table 7.12 HTqc: lists of regions identified by the Random Forests and the T-Trees methods.
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

1 219.90 219.97 6 rs825148 0.053 2.41 · 10−210 1.38 · 10−2 5.21 · 10−13 4.51 · 10−2 (3)
2 96.53 96.54 3 rs1870340 0.027 3.16 · 10−122 6.30 · 10−1 4.89 · 10−8 1.58 · 10−2 (9)
2 127.16 127.17 2 rs935019 (GYPC ) 0.261 5.86 · 10−13 8.87 · 10−1 9.61 · 10−3 1.03 · 10−3 (74)
4 6.06 6.08 11 rs16837871 0.148 8.62 · 10−23 2.84 · 10−1 1.75 · 10−28 1.56 · 10−2 (10)
4 17.85 17.92 11 rs1553460 0.310 1.42 · 10−94 2.88 · 10−5 2.42 · 10−24 2.48 · 10−2 (6)
4 141.58 141.62 5 rs6840033 (LOC100129858, SCOC ) 0.206 4.64 · 10−19 9.16 · 10−1 2.35 · 10−11 3.09 · 10−3 (30)
6 107.25 107.26 2 rs10499044 0.105 2.37 · 10−18 1.97 · 10−3 6.60 · 10−13 2.76 · 10−3 (34)
7 120.71 120.72 16 rs1528356 0.066 7.10 · 10−264 4.00 · 10−3 3.20 · 10−22 5.94 · 10−2 (1)
8 15.34 15.35 2 rs7837736 0.122 2.92 · 10−75 1.45 · 10−1 1.35 · 10−102 5.90 · 10−2 (2)
9 1.79 1.81 4 rs17797701 0.014 1.99 · 10−9 4.03 · 10−1 1.43 · 10−20 9.29 · 10−3 (13)

10 58.39 58.41 2 rs2393191 0.016 3.11 · 10−1 5.76 · 10−1 2.46 · 10−1 7.46 · 10−4 (92)
11 113.02 113.31 21 rs17116117 (HTR3B) 0.053 9.74 · 10−6 1.16 · 10−1 1.16 · 10−31 1.33 · 10−2 (12)
12 30.25 30.28 11 rs10843660 0.380 2.74 · 10−65 3.54 · 10−2 9.18 · 10−35 3.06 · 10−2 (5)
13 90.79 90.83 4 rs17667894 0.020 1 3.78 · 10−1 2.82 · 10−42 2.17 · 10−2 (7)
15 77.69 77.69 2 rs2865199 0.013 1 6.26 · 10−1 2.35 · 10−13 3.20 · 10−3 (29)
16 56.75 56.79 2 rs6499937 (CSNK2A2) 0.006 1 1 2.20 · 10−8 1.16 · 10−3 (68)
16 79.96 79.98 5 rs16955238 0.027 4.82 · 10−114 6.46 · 10−1 2.45 · 10−5 1.52 · 10−2 (11)
17 17.27 17.27 2 SNP A-1948953 0.279 2.84 · 10−26 5.18 · 10−3 2.10 · 10−6 5.45 · 10−3 (23)
22 27.70 27.75 6 rs8137391 (ZNRF3, ZNRF3-AS1) 0.010 1 1 1.49 · 10−19 8.68 · 10−3 (16)
23 70.95 70.96 2 rs5951179 (NHSL2) 0.040 2.55 · 10−1 1 3.44 · 10−4 3.88 · 10−3 (26)
8 123.90 123.90 1 rs10095188 0.175 7.09 · 10−2 3.01 · 10−5 3.17 · 10−2 1.31 · 10−4 (164)

13 60.33 60.33 1 rs167272 0.095 5.08 · 10−3 1.68 · 10−3 1.91 · 10−1 2.17 · 10−4 (138)
14 60.77 60.77 1 rs4902035 0.096 6.77 · 10−3 1.38 · 10−4 5.05 · 10−1 1.39 · 10−4 (160)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 80.57 80.57 6 rs1896250 0.397 6.97 · 10−8 9.37 · 10−1 8.26 · 10−5 1.14 · 10−3 (54)
1 219.91 219.97 5 rs825148 0.053 2.41 · 10−210 1.38 · 10−2 5.21 · 10−13 3.10 · 10−2 (2)
2 25.31 25.36 3 rs2164411 0.161 3.20 · 10−7 1.95 · 10−1 4.75 · 10−1 4.17 · 10−4 (107)
2 96.53 96.54 3 rs1870340 0.027 3.16 · 10−122 6.30 · 10−1 4.89 · 10−8 7.97 · 10−3 (16)
2 127.16 127.17 4 rs935019 (GYPC ) 0.261 5.86 · 10−13 8.87 · 10−1 9.61 · 10−3 9.25 · 10−4 (66)
2 213.89 213.89 2 rs12694298 0.105 6.20 · 10−1 2.79 · 10−1 7.59 · 10−1 2.48 · 10−4 (160)
3 121.76 121.83 3 rs804974 (HGD) 0.215 9.48 · 10−1 8.68 · 10−1 2.00 · 10−1 1.58 · 10−3 (43)
4 6.04 6.06 6 rs16837871 0.148 8.62 · 10−23 2.84 · 10−1 1.75 · 10−28 1.06 · 10−2 (11)
4 17.85 17.90 9 rs1553460 0.310 1.42 · 10−94 2.88 · 10−5 2.42 · 10−24 1.24 · 10−2 (8)
4 23.66 23.67 3 rs615604 0.155 1.57 · 10−1 8.35 · 10−1 4.24 · 10−1 7.99 · 10−4 (74)
4 141.58 141.62 8 rs6840033 (LOC100129858, SCOC ) 0.206 4.64 · 10−19 9.16 · 10−1 2.35 · 10−11 3.18 · 10−3 (31)
6 18.17 18.19 4 rs4072775 0.348 3.03 · 10−7 2.71 · 10−6 9.05 · 10−2 1.15 · 10−3 (53)
6 91.73 91.73 2 rs6903505 0.405 3.73 · 10−1 7.59 · 10−1 7.68 · 10−1 2.32 · 10−4 (167)
6 99.33 99.36 5 rs4131463 0.050 5.27 · 10−202 1.82 · 10−1 7.38 · 10−14 2.79 · 10−2 (3)
6 107.25 107.26 3 rs10499044 0.105 2.37 · 10−18 1.97 · 10−3 6.60 · 10−13 1.49 · 10−3 (47)
7 120.71 120.72 14 rs1528356 0.066 7.10 · 10−264 4.00 · 10−3 3.20 · 10−22 3.75 · 10−2 (1)
8 15.34 15.37 6 rs7837736 0.122 2.92 · 10−75 1.45 · 10−1 1.35 · 10−102 2.63 · 10−2 (4)
8 95.09 95.09 2 rs3018857 0.065 8.46 · 10−1 6.57 · 10−1 4.03 · 10−1 5.55 · 10−4 (92)
8 114.39 114.43 2 rs7012271 (CSMD3) 0.316 9.17 · 10−1 9.32 · 10−1 9.12 · 10−1 6.21 · 10−4 (85)
8 120.42 120.42 2 rs2469997 0.187 2.66 · 10−1 8.55 · 10−1 7.70 · 10−1 7.68 · 10−4 (75)
8 135.63 135.65 7 rs1372662 (ZFAT ) 0.333 5.76 · 10−1 3.39 · 10−1 8.61 · 10−1 4.78 · 10−3 (23)
9 1.79 1.81 4 rs17797701 0.014 1.99 · 10−9 4.03 · 10−1 1.43 · 10−20 6.60 · 10−3 (18)
9 106.56 106.56 3 rs2035783 0.473 3.63 · 10−3 9.15 · 10−2 2.99 · 10−3 2.86 · 10−4 (142)
9 117.79 117.81 3 rs2151370 0.379 7.35 · 10−1 8.45 · 10−1 1.87 · 10−1 2.63 · 10−3 (35)

10 58.20 58.21 3 rs11005510 0.010 1 1 1.23 · 10−20 3.68 · 10−3 (28)
10 58.39 58.41 2 rs2393191 0.016 3.11 · 10−1 5.76 · 10−1 2.46 · 10−1 2.72 · 10−4 (152)
11 113.28 113.31 6 rs1176741 (HTR3B) 0.031 2.59 · 10−1 1.19 · 10−1 8.13 · 10−1 1.37 · 10−2 (7)
12 30.24 30.26 9 rs10843660 0.380 2.74 · 10−65 3.54 · 10−2 9.18 · 10−35 1.74 · 10−2 (5)
12 68.67 68.67 2 rs10879068 0.300 3.12 · 10−1 9.29 · 10−1 2.24 · 10−1 5.58 · 10−4 (91)
12 124.76 124.76 2 rs16919463 0.118 8.30 · 10−1 7.87 · 10−1 5.42 · 10−1 1.54 · 10−3 (44)
13 90.79 90.83 6 rs17667894 0.020 1 3.78 · 10−1 2.82 · 10−42 1.19 · 10−2 (9)
15 77.69 77.69 2 rs16971150 0.018 4.58 · 10−1 6.26 · 10−1 7.01 · 10−1 5.11 · 10−3 (21)
16 56.75 56.75 3 rs6499937 (CSNK2A2) 0.006 1 1 2.20 · 10−8 4.67 · 10−4 (101)
16 79.96 79.98 6 rs16955238 0.027 4.82 · 10−114 6.46 · 10−1 2.45 · 10−5 1.01 · 10−2 (13)
17 17.27 17.27 2 SNP A-1948953 0.279 2.84 · 10−26 5.18 · 10−3 2.10 · 10−6 1.52 · 10−3 (46)
17 50.27 50.29 2 rs2934884 0.196 1.05 · 10−1 4.16 · 10−1 3.48 · 10−1 5.87 · 10−4 (90)
18 43.91 43.93 3 rs8085875 (ZBTB7C ) 0.174 3.52 · 10−1 7.95 · 10−1 4.30 · 10−1 9.23 · 10−4 (67)
22 27.75 27.75 2 rs16986990 (ZNRF3, ZNRF3-AS1) 0.015 1 1 5.57 · 10−1 5.08 · 10−3 (22)
23 2.58 2.58 2 rs1419930 0.050 5.36 · 10−1 5.71 · 10−19 1.22 · 10−7 4.57 · 10−3 (25)
23 70.95 70.96 2 rs5951179 (NHSL2) 0.040 2.55 · 10−1 1 3.44 · 10−4 1.42 · 10−3 (48)
23 74.42 74.43 2 rs4892579 (ZDHHC15 ) 0.028 3.74 · 10−1 6.40 · 10−1 2.65 · 10−3 2.16 · 10−4 (178)
10 10.32 10.32 1 rs1333834 0.064 5.64 · 10−3 2.64 · 10−6 3.99 · 10−1 3.76 · 10−4 (114)

Table 7.13 HTwtccc: lists of regions identified by the Random Forests and the T-Trees methods.
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Rheumatoid arthritis

For this disease, the wtccc reports a large region named MHC (major histocompatibility complex) which
encapsulates a family of genes implicated in autoimmune diseases. In our four experiments, that region is
well detected, since many markers in our four top rankings appear to be located on chromosome 6 in the
MHC region. There are more of them in the 200 first on RAqc and also more of them with the Random
Forests. In addition, rs6679677 reported in [Wel07] supplementary information is also detected in the 100

first variables in 3 experiments out of four.
We also notice the presence of many snps located on chromosome X especially on the qc version. Like

the CAD dataset, there is a gender disproportion in the RA dataset (about 500 males and 1500 females).
And again, we note the presence of rs3122348 and rs10212068 in the qc version. And a snp:

rs3785579 reported in [P+12a] as a “hub” in the RAwtccc version.
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Figure 7.10 The first 100 variables according to the tree based importance rankings for RAqc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the reported strongly
associated regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row,
green represents markers with a low Fisher p-value (< 10−6).
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Figure 7.11 The first 100 variables according to the tree based importance rankings for RAwtccc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the strongly associated
reported regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row,
orange highlights snps deviating from hwe and in the last row, green represents markers with a low
Fisher p-value (< 10−6).
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

1 113.89 114.02 2 rs6679677 0.124 5.01 · 10−2 2.41 · 10−1 5.47 · 10−26 3.63 · 10−3 (27)
5 143.36 143.37 2 rs160619(1) 0.014 1 4.05 · 10−1 2.78 · 10−27 1.07 · 10−2 (6)
6 31.70 32.82 94 rs6457620 0.433 5.62 · 10−1 5.33 · 10−1 1.53 · 10−83 1.40 · 10−2 (3)

10 30.99 31.06 6 rs3122348(LOC645954)(1) 0.029 1.65 · 10−4 1 3.64 · 10−78 5.23 · 10−2 (1)
23 3.02 3.02 2 rs5982644 (ARSF ) 0.082 7.13 · 10−2 3.89 · 10−1 3.62 · 10−1 1.39 · 10−4 (137)
23 9.08 9.08 2 rs16985421 0.190 4.41 · 10−1 1.49 · 10−2 6.22 · 10−1 1.21 · 10−4 (156)
23 9.95 10.04 3 rs7053877 0.127 3.95 · 10−1 9.29 · 10−2 3.92 · 10−1 1.27 · 10−4 (146)
23 12.71 12.77 2 rs11797883 0.117 1 6.18 · 10−1 1.93 · 10−2 4.29 · 10−4 (77)
23 14.23 14.50 5 rs5934184 (GLRA2) 0.239 4.13 · 10−1 5.79 · 10−1 4.65 · 10−3 3.48 · 10−4 (82)
23 20.21 20.40 3 rs5950315 0.242 9.43 · 10−1 1 1.43 · 10−1 2.31 · 10−4 (104)
23 22.09 22.10 2 rs4824185 (LOC100873065 ) 0.222 9.38 · 10−1 1 1.94 · 10−1 1.29 · 10−4 (142)
23 35.97 36.03 3 rs17273161 0.104 5.25 · 10−1 6.78 · 10−1 1.49 · 10−3 1.56 · 10−4 (127)
23 41.73 42.01 2 rs5918362 0.133 3.45 · 10−1 9.15 · 10−1 2.27 · 10−2 1.50 · 10−4 (130)
23 44.87 45.31 2 rs1883678 0.041 6.99 · 10−2 4.80 · 10−1 8.19 · 10−1 1.65 · 10−4 (122)
23 122.51 122.53 2 rs6648534 (THOC2) 0.283 8.36 · 10−2 2.65 · 10−1 2.78 · 10−2 1.28 · 10−4 (144)
23 135.96 135.96 3 rs1930218 0.241 1.02 · 10−1 4.43 · 10−2 4.87 · 10−2 3.30 · 10−4 (84)
6 31.35 31.35 1 rs3132486 0.427 2.09 · 10−1 2.82 · 10−1 2.12 · 10−14 1.74 · 10−4 (121)
6 33.07 33.07 1 rs3128947 0.215 2.33 · 10−1 3.36 · 10−1 9.57 · 10−16 1.25 · 10−4 (147)

21 41.43 41.43 1 rs2837960 0.179 7.53 · 10−4 1.87 · 10−4 3.70 · 10−2 2.54 · 10−4 (96)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 153.90 153.96 4 rs16838195 0.010 6.28 · 10−1 1 8.69 · 10−34 4.50 · 10−3 (6)
2 10.90 10.91 2 rs902133(1) 0.006 1 1 8.41 · 10−17 8.99 · 10−4 (38)
2 232.64 232.71 2 rs10460436 0.021 1 1 7.75 · 10−1 2.12 · 10−4 (113)
3 7.26 7.30 7 rs1605705 (GRM7 ) 0.178 4.14 · 10−1 3.00 · 10−1 1.48 · 10−2 4.04 · 10−3 (8)
3 141.43 141.44 4 rs9856460 (CLSTN2) 0.451 4.92 · 10−2 8.53 · 10−1 2.81 · 10−1 1.54 · 10−3 (21)
4 182.12 182.13 4 rs4532278 0.209 1 5.44 · 10−1 7.03 · 10−1 7.24 · 10−4 (48)
5 143.36 143.37 2 rs160619(1) 0.014 1 4.05 · 10−1 2.78 · 10−27 3.01 · 10−3 (11)
5 150.15 150.21 6 rs4246045(3) 0.142 1.01 · 10−1 5.99 · 10−5 2.12 · 10−3 7.33 · 10−4 (47)
6 31.73 32.80 79 rs6457617 0.434 5.98 · 10−1 5.33 · 10−1 2.10 · 10−83 9.22 · 10−3 (4)
6 32.87 32.87 2 rs2157082(3) 0.443 8.90 · 10−1 3.95 · 10−4 4.80 · 10−2 3.03 · 10−4 (87)
8 107.27 107.29 3 rs16874204 0.043 2.58 · 10−1 8.23 · 10−1 9.19 · 10−1 2.15 · 10−3 (16)

10 30.97 31.04 11 rs3122348(LOC645954)(1) 0.029 1.65 · 10−4 1 3.64 · 10−78 2.75 · 10−2 (1)
10 114.07 114.08 2 rs4256909 (GUCY2GP) 0.083 2.68 · 10−3 4.49 · 10−1 7.08 · 10−2 5.17 · 10−4 (60)
10 131.97 132.00 3 rs7080464(1) 0.014 1 4.05 · 10−1 8.35 · 10−24 1.94 · 10−3 (17)
12 42.00 42.01 2 rs6582454 0.464 3.86 · 10−1 9.41 · 10−1 2.64 · 10−1 1.54 · 10−4 (134)
15 51.49 51.49 4 rs1711029 0.043 5.47 · 10−1 1.22 · 10−1 2.25 · 10−11 4.05 · 10−4 (70)
15 71.02 71.02 3 rs4777568 0.028 1 2.91 · 10−1 8.50 · 10−1 1.29 · 10−4 (154)
16 51.30 51.31 4 rs4238755 0.257 6.36 · 10−1 1.01 · 10−1 6.20 · 10−1 1.36 · 10−3 (25)
22 35.97 36.02 9 rs10212068(3) 0.028 1 2.64 · 10−3 1.05 · 10−61 1.39 · 10−2 (3)
23 9.28 9.34 3 rs2521413 (TBL1X ) 0.401 8.29 · 10−1 2.53 · 10−5 1.13 · 10−2 2.77 · 10−4 (93)
23 32.12 32.13 2 rs5927971 (DMD) 0.421 1.31 · 10−2 3.98 · 10−1 3.54 · 10−1 1.83 · 10−4 (121)
23 45.31 45.31 2 rs1883678 0.041 6.99 · 10−2 4.80 · 10−1 8.19 · 10−1 1.49 · 10−4 (139)
23 90.14 90.14 2 rs932574 0.438 1.10 · 10−1 8.92 · 10−3 6.46 · 10−1 2.38 · 10−4 (105)
23 96.83 96.85 3 rs2497903 0.484 5.78 · 10−2 8.06 · 10−2 8.32 · 10−2 2.67 · 10−4 (96)
23 99.46 99.48 2 rs5920824 (PCDH19) 0.385 1.24 · 10−1 3.25 · 10−2 1.07 · 10−1 1.45 · 10−4 (143)
1 114.02 114.02 1 rs6679677 0.124 5.01 · 10−2 2.41 · 10−1 5.47 · 10−26 6.33 · 10−4 (50)

Table 7.14 RAqc: lists of regions identified by the Random Forests and the T-Trees methods.
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

1 15.21 15.24 4 rs7539166 (TMEM51) 0.067 2.27 · 10−243 6.30 · 10−3 2.39 · 10−14 2.06 · 10−2 (9)
1 113.89 114.02 2 rs6679677 0.124 1.23 · 10−2 2.41 · 10−1 1.12 · 10−24 8.16 · 10−4 (80)
2 105.54 105.55 3 rs13425033 0.069 8.86 · 10−264 2.60 · 10−3 1.40 · 10−25 2.45 · 10−2 (7)
2 223.66 223.73 7 rs1440065 0.072 2.00 · 10−274 9.17 · 10−3 5.40 · 10−26 2.77 · 10−2 (5)
3 71.93 71.94 3 rs17665418 0.084 8.50 · 10−285 1.58 · 10−5 8.54 · 10−21 3.09 · 10−2 (2)
4 17.85 17.87 3 rs1553460 0.308 1.28 · 10−104 2.88 · 10−5 1.16 · 10−22 7.29 · 10−3 (23)
6 31.17 31.22 3 rs4959053 (PSORS1C1) 0.074 7.30 · 10−273 3.03 · 10−4 1.12 · 10−22 2.70 · 10−2 (6)
6 31.73 32.79 75 rs6457620 0.435 7.47 · 10−1 6.05 · 10−1 1.10 · 10−80 5.17 · 10−3 (26)
7 66.40 66.45 7 rs4718582 0.056 2.34 · 10−2 3.99 · 10−1 3.06 · 10−75 1.36 · 10−2 (12)
7 157.71 157.73 6 rs7789415 (PTPRN2) 0.043 1 2.55 · 10−6 2.45 · 10−66 1.29 · 10−2 (14)
9 24.52 24.61 7 rs16908561 0.041 1.22 · 10−159 4.91 · 10−2 1.35 · 10−4 8.75 · 10−3 (21)

11 93.02 93.03 2 rs10501805 0.033 1.06 · 10−4 1 1.73 · 10−62 1.01 · 10−2 (18)
12 30.25 30.26 4 rs10843660 0.384 2.24 · 10−75 3.54 · 10−2 4.35 · 10−30 7.01 · 10−3 (25)
15 27.77 27.85 2 rs899848 (TJP1) 0.027 5.43 · 10−112 6.33 · 10−1 1.51 · 10−7 3.61 · 10−3 (33)
17 62.46 62.65 9 rs3785579 (CACNG1) 0.271 0 2.12 · 10−2 0 2.61 · 10−1 (1)
18 33.34 33.36 5 rs4799934 (CELF4) 0.078 3.88 · 10−286 2.83 · 10−3 8.28 · 10−27 3.09 · 10−2 (3)
23 1.02 1.80 3 rs6588810 0.015 2.76 · 10−6 2.22 · 10−5 1.73 · 10−8 1.93 · 10−3 (47)
23 14.23 14.50 5 rs5934184 (GLRA2) 0.239 4.45 · 10−1 5.31 · 10−1 1.84 · 10−3 1.08 · 10−4 (162)
6 31.28 31.28 1 rs9295961 0.062 1.11 · 10−1 9.78 · 10−2 6.59 · 10−1 8.72 · 10−5 (174)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 15.23 15.24 3 rs7539166 (TMEM51) 0.067 2.27 · 10−243 6.30 · 10−3 2.39 · 10−14 1.69 · 10−2 (9)
1 87.97 87.97 2 rs4655988 0.237 9.50 · 10−1 5.00 · 10−1 8.89 · 10−2 3.02 · 10−4 (143)
1 205.19 205.19 2 rs17012953 0.019 7.14 · 10−2 1 4.51 · 10−35 1.85 · 10−3 (38)
1 209.90 209.92 2 rs1187768 0.310 3.92 · 10−1 3.16 · 10−1 1.89 · 10−1 1.08 · 10−3 (60)
2 105.54 105.55 3 rs13425033 0.069 8.86 · 10−264 2.60 · 10−3 1.40 · 10−25 1.86 · 10−2 (8)
2 126.13 126.16 4 rs12053356 0.313 6.29 · 10−1 9.66 · 10−1 7.35 · 10−1 5.10 · 10−4 (103)
2 178.51 178.51 6 rs3821009 (PDE11A) 0.080 9.62 · 10−155 2.34 · 10−5 3.38 · 10−15 1.09 · 10−2 (13)
2 223.68 223.70 2 rs1440065 0.072 2.00 · 10−274 9.17 · 10−3 5.40 · 10−26 2.16 · 10−2 (6)
3 7.27 7.30 3 rs1605705 (GRM7 ) 0.178 1.99 · 10−1 2.95 · 10−1 8.96 · 10−3 7.59 · 10−4 (79)
3 71.93 71.94 3 rs17665418 0.084 8.50 · 10−285 1.58 · 10−5 8.54 · 10−21 2.34 · 10−2 (3)
3 141.43 141.44 4 rs9856460 (CLSTN2) 0.448 6.82 · 10−2 8.81 · 10−1 4.11 · 10−1 7.79 · 10−4 (77)
4 17.87 17.90 6 rs1553460 0.308 1.28 · 10−104 2.88 · 10−5 1.16 · 10−22 4.41 · 10−3 (26)
4 32.72 32.73 3 rs10022638 0.306 8.29 · 10−1 4.30 · 10−1 2.95 · 10−1 5.75 · 10−4 (91)
4 186.09 186.11 4 rs13126272 (ACSL1) 0.335 2.15 · 10−65 3.02 · 10−2 1.08 · 10−3 1.35 · 10−3 (51)
6 31.21 31.22 3 rs4959053 (PSORS1C1) 0.074 7.30 · 10−273 3.03 · 10−4 1.12 · 10−22 2.04 · 10−2 (7)
6 32.17 32.79 41 rs9275572 0.361 8.57 · 10−1 8.80 · 10−1 1.20 · 10−60 2.05 · 10−3 (34)
6 133.96 133.99 6 rs2677822 0.182 5.80 · 10−1 8.05 · 10−1 5.86 · 10−1 2.83 · 10−3 (30)
7 66.40 66.42 6 rs4718582 0.056 2.34 · 10−2 3.99 · 10−1 3.06 · 10−75 7.06 · 10−3 (23)
7 82.59 82.62 3 rs12670243 0.044 3.16 · 10−1 4.14 · 10−1 1.23 · 10−32 1.30 · 10−3 (52)
7 121.03 121.04 2 rs10262109 0.036 6.30 · 10−4 1 5.80 · 10−75 8.22 · 10−3 (17)
7 157.73 157.73 5 rs7789415 (PTPRN2) 0.043 1 2.55 · 10−6 2.45 · 10−66 8.08 · 10−3 (18)
8 76.67 76.68 5 rs1449555 0.382 1.79 · 10−1 3.52 · 10−1 6.68 · 10−2 8.65 · 10−4 (69)
8 90.26 90.26 2 rs1483373 0.032 2.50 · 10−1 2.45 · 10−1 5.92 · 10−1 3.43 · 10−4 (135)
8 107.27 107.30 2 rs16874228 0.112 4.73 · 10−1 4.67 · 10−1 4.26 · 10−1 2.99 · 10−4 (144)
8 118.44 118.46 2 rs1948674 0.038 6.04 · 10−122 3.32 · 10−2 6.97 · 10−1 6.00 · 10−3 (24)
9 0.19 0.24 3 rs669980 0.348 2.32 · 10−85 1.05 · 10−1 8.12 · 10−15 3.63 · 10−3 (28)
9 24.59 24.60 2 rs16908561 0.041 1.22 · 10−159 4.91 · 10−2 1.35 · 10−4 8.39 · 10−3 (15)

10 53.94 53.97 4 rs1733720 0.042 7.67 · 10−1 1 7.14 · 10−1 2.01 · 10−3 (36)
10 55.33 55.36 2 rs2121526 (PCDH15 ) 0.080 9.13 · 10−279 1.33 · 10−4 7.35 · 10−27 2.31 · 10−2 (5)
11 93.02 93.03 3 rs10501805 0.033 1.06 · 10−4 1 1.73 · 10−62 5.74 · 10−3 (25)
12 30.25 30.26 4 rs10743704 0.299 2.79 · 10−3 4.02 · 10−1 9.45 · 10−1 8.04 · 10−3 (19)
12 57.73 57.74 3 rs2028720 0.268 2.68 · 10−1 2.96 · 10−1 2.87 · 10−1 6.41 · 10−4 (87)
14 51.63 51.63 3 rs2144977 0.159 1.80 · 10−3 9.43 · 10−1 3.43 · 10−2 2.26 · 10−4 (165)
14 76.20 76.21 2 rs17104722 0.029 5.81 · 10−2 1 4.88 · 10−27 1.68 · 10−3 (41)
15 27.85 27.86 2 rs899848 (TJP1) 0.027 5.43 · 10−112 6.33 · 10−1 1.51 · 10−7 2.06 · 10−3 (33)
15 83.99 84.00 2 rs16942813 (AKAP13) 0.052 5.22 · 10−206 2.10 · 10−2 1.27 · 10−14 1.12 · 10−2 (11)
17 62.45 62.64 10 rs3785579 (CACNG1) 0.271 0 2.12 · 10−2 0 1.50 · 10−1 (1)
17 76.21 76.23 4 rs7503807 (RPTOR ) 0.439 7.05 · 10−1 6.01 · 10−1 2.13 · 10−1 8.14 · 10−4 (75)
18 33.34 33.36 5 rs4799934 (CELF4) 0.078 3.88 · 10−286 2.83 · 10−3 8.28 · 10−27 2.44 · 10−2 (2)
18 74.55 74.58 3 rs2941794 0.202 4.51 · 10−11 1 2.80 · 10−11 4.72 · 10−4 (110)
4 182.13 182.13 1 rs4532278 0.210 9.44 · 10−1 4.36 · 10−1 1 1.88 · 10−4 (194)
6 31.83 31.83 1 rs707939 0.368 4.46 · 10−1 8.31 · 10−1 5.54 · 10−33 1.87 · 10−4 (195)

Table 7.15 RAwtccc: lists of regions identified by the Random Forests and the T-Trees methods.
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Type 1 diabetes

The large region (human mhc) on chromosome 6 is also reported in [Wel07] as being associated with type
1 diabetes. Most of the signal identified by the tree-based methods on the two dataset versions is located
in that region. More than 75% of the first 200 variables are located in the human mhc region. Additionally,
rs6679677 on chromosome 1p13 appears isolated but present among the 200 first variables in our four
experiments. As suggested in [W+09], the removal of that strong signal captured by an important number of
markers should allow for the identification of other associated regions. On T1Dqc, the last region detected
by the T-Trees on chromosome 10 also contains a marker that has been removed by the wtccc.

On T1Dwtccc, the tree-based methods also focused on other regions. These contain variables with
a (really) strong deviation from hwe. Although these are extreme deviations, even the rf exploited many
surrounding variables meaning that this departure is not an isolated batch effect. To our knowledge, no
association has been reported in these regions (for information: rs3805006 is located near ITPR1 gene
and rs7078771 near NRG3. Several investigations [T+12a, vB+11, CvdLJJea11, vdL+07] found in these two
regions important deletions linked to other diseases).

Note that rs9273363 is also detected by the approach of [P+12a].
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Figure 7.12 The first 100 variables according to the tree based importance rankings for T1Dqc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the reported strongly
associated regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row,
green represents markers with a low Fisher p-value (< 10−6).
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Figure 7.13 The first 100 variables according to the tree based importance rankings for T1Dwtccc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the strongly associated
reported regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row,
orange highlights snps deviating from hwe and in the last row, green represents markers with a low
Fisher p-value (< 10−6).
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

6 30.47 30.47 2 rs3094703 0.172 3.91 · 10−2 4.85 · 10−1 1.91 · 10−29 4.17 · 10−4 (166)
6 30.87 30.90 2 rs6930444 0.030 7.97 · 10−1 6.27 · 10−1 2.45 · 10−14 5.13 · 10−4 (144)
6 31.17 31.20 2 rs3130544 0.188 6.20 · 10−2 2.75 · 10−1 3.79 · 10−35 5.53 · 10−4 (135)
6 31.35 31.35 2 rs3132486 0.399 2.92 · 10−1 2.82 · 10−1 3.15 · 10−48 9.54 · 10−4 (103)
6 31.44 33.06 185 rs9273363 0.467 5.05 · 10−3 6.34 · 10−1 0 6.90 · 10−2 (1)
1 114.02 114.02 1 rs6679677 0.125 3.39 · 10−1 2.41 · 10−1 2.72 · 10−27 1.04 · 10−3 (91)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

6 30.45 30.47 2 rs3094050 0.172 3.38 · 10−2 4.86 · 10−1 1.20 · 10−29 3.14 · 10−4 (174)
6 30.87 30.90 3 rs6930444 0.030 7.97 · 10−1 6.27 · 10−1 2.45 · 10−14 3.85 · 10−4 (148)
6 31.17 31.25 4 rs3130544 0.188 6.20 · 10−2 2.75 · 10−1 3.79 · 10−35 8.94 · 10−4 (84)
6 31.35 31.35 2 rs3132486 0.399 2.92 · 10−1 2.82 · 10−1 3.15 · 10−48 1.16 · 10−3 (65)
6 31.44 33.06 179 rs9273363 0.467 5.05 · 10−3 6.34 · 10−1 0 5.33 · 10−2 (1)

10 131.97 132.00 2 rs7080464(1) 0.014 1 4.05 · 10−1 1.04 · 10−27 2.58 · 10−3 (32)
1 114.02 114.02 1 rs6679677 0.125 3.39 · 10−1 2.41 · 10−1 2.72 · 10−27 9.95 · 10−4 (76)
6 30.71 30.71 1 rs2394390 0.037 5.18 · 10−1 1 1.93 · 10−14 2.57 · 10−4 (198)
6 31.02 31.02 1 rs3132581 0.191 2.90 · 10−3 7.32 · 10−1 1.57 · 10−22 2.67 · 10−4 (187)

Table 7.16 T1Dqc: lists of regions identified by the Random Forests and the T-Trees methods.

Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

3 4.78 4.78 7 rs3805006 (ITPR1) 0.378 7.50 · 10−175 4.27 · 10−2 7.16 · 10−96 5.16 · 10−2 (1)
6 31.35 31.35 2 rs2524067 0.218 5.39 · 10−1 5.65 · 10−1 1.02 · 10−35 4.24 · 10−4 (188)
6 31.45 31.46 6 rs2853986 0.170 3.42 · 10−2 4.47 · 10−1 2.97 · 10−41 8.30 · 10−4 (130)
6 31.55 33.06 164 rs9273363 0.467 5.83 · 10−3 6.01 · 10−1 0 4.46 · 10−2 (2)

10 84.68 84.72 10 rs7078771 (NRG3) 0.076 3.31 · 10−257 5.46 · 10−5 5.42 · 10−15 1.86 · 10−2 (7)
13 82.21 82.33 5 rs4254200 0.468 3.58 · 10−132 5.95 · 10−1 6.20 · 10−29 9.84 · 10−3 (18)
1 114.02 114.02 1 rs6679677 0.126 3.77 · 10−1 2.41 · 10−1 2.43 · 10−26 5.01 · 10−4 (172)
6 30.87 30.87 1 rs6930444 0.030 7.95 · 10−1 6.26 · 10−1 1.92 · 10−13 4.89 · 10−4 (177)
6 31.17 31.17 1 rs3130544 0.189 5.24 · 10−2 2.74 · 10−1 6.74 · 10−34 4.38 · 10−4 (186)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

3 4.78 4.78 9 rs3805006 (ITPR1) 0.378 7.50 · 10−175 4.27 · 10−2 7.16 · 10−96 3.51 · 10−2 (2)
3 146.99 146.99 5 rs6440373 0.464 1.15 · 10−61 1.67 · 10−2 9.13 · 10−11 4.64 · 10−3 (17)
6 31.35 31.35 2 rs3132486 0.399 2.89 · 10−1 2.96 · 10−1 4.15 · 10−47 8.37 · 10−4 (111)
6 31.45 33.06 156 rs9273363 0.467 5.83 · 10−3 6.01 · 10−1 0 3.70 · 10−2 (1)

10 84.67 84.68 3 rs7078771 (NRG3) 0.076 3.31 · 10−257 5.46 · 10−5 5.42 · 10−15 1.84 · 10−2 (4)
11 113.31 113.31 5 rs1176741 (HTR3B) 0.029 3.80 · 10−1 1.19 · 10−1 1.12 · 10−1 2.49 · 10−3 (37)
13 82.20 82.31 7 rs7332105 0.424 9.63 · 10−1 8.21 · 10−1 3.07 · 10−1 1.72 · 10−2 (5)
16 28.48 28.50 2 rs9924471 (CCDC101) 0.169 1.74 · 10−16 4.69 · 10−1 1.40 · 10−8 6.02 · 10−4 (135)
17 69.45 69.46 2 rs12103453 0.393 2.66 · 10−24 6.06 · 10−1 8.71 · 10−9 7.31 · 10−4 (120)
1 114.02 114.02 1 rs6679677 0.126 3.77 · 10−1 2.41 · 10−1 2.43 · 10−26 4.12 · 10−4 (182)
6 30.87 30.87 1 rs6930444 0.030 7.95 · 10−1 6.26 · 10−1 1.92 · 10−13 3.58 · 10−4 (194)
6 31.17 31.17 1 rs3130544 0.189 5.24 · 10−2 2.74 · 10−1 6.74 · 10−34 6.25 · 10−4 (130)
6 31.25 31.25 1 rs887464 0.482 6.00 · 10−4 7.38 · 10−3 1.30 · 10−30 4.24 · 10−4 (179)

Table 7.17 T1Dwtccc: lists of regions identified by the Random Forests and the T-Trees methods.
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Type 2 diabetes

On Figures 7.14 and 7.15, Random Forests on T2Dqc detected a few reported regions in the 100 first
variables. In the three other experiments, a few such variables were selected but at much lower ranks.
Again, in the absence of strong deviation from hwe, rare variants are preferentially selected on T2Dqc while
many snps with low hwe p-values are found in the 10 first variables on T2Dwtccc.

We notice that FAT3 gene (represented by rs10501796 and rs10501795) is selected in the four exper-
iments. The ZFAT region is reported in a multi marker analysis ([FZ10]) and is detected by the T-Trees in
both dataset versions. Also, rs959880 located in MCF2L2 gene which is reported as associated with type 2
diabetes in [T+08]. Similarly, rs13126272 located in ACSL1 is reported in [Z+13].

Finally, on T2Dwtccc, we note the presence of rs7077039 which is also reported in [P+12a]. And, on
T2Dqc, rs10212068 was selected again as the most important one by the T-Trees.
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Figure 7.14 The first 100 variables according to the tree based importance rankings for T2Dqc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the reported strongly
associated regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row,
green represents markers with a low Fisher p-value (< 10−6).
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Figure 7.15 The first 100 variables according to the tree based importance rankings for T2Dwtccc . The horizontal axis
corresponds to the ranks and the vertical axis to the variable importances. In the first column variables
are ordered according to random forests variable importances and in the second column they are ordered
according to the T-Trees variable importances. In the first row, red highlights the strongly associated
reported regions. In the second row, purple corresponds to rare variants (maf < 0.05). In the third row,
orange highlights snps deviating from hwe and in the last row, green represents markers with a low
Fisher p-value (< 10−6).
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

3 154.52 154.52 2 rs10513440 0.201 3.88 · 10−1 2.71 · 10−3 3.72 · 10−4 3.05 · 10−4 (84)
5 10.65 10.66 2 rs17761026 (ANKRD33B) 0.111 5.40 · 10−5 1 2.84 · 10−3 2.56 · 10−4 (100)
5 82.93 82.97 2 rs6865544 0.010 3.89 · 10−1 1 1.52 · 10−5 3.02 · 10−4 (86)
6 20.75 20.83 2 rs9348440 (CDKAL1) 0.137 3.63 · 10−2 8.16 · 10−2 1.80 · 10−4 4.51 · 10−4 (49)
9 117.69 117.80 4 rs488101 0.363 4.53 · 10−8 5.87 · 10−1 6.54 · 10−7 8.82 · 10−4 (27)

10 28.62 28.64 2 rs11007003 0.068 1.31 · 10−2 8.63 · 10−2 2.70 · 10−2 2.26 · 10−4 (112)
10 84.07 84.08 2 rs11193797 (NRG3) 0.083 9.13 · 10−3 6.65 · 10−3 4.34 · 10−1 2.49 · 10−4 (102)
10 114.74 114.80 10 rs7077039 (TCF7L2) 0.483 1 1.48 · 10−1 3.78 · 10−12 8.66 · 10−4 (28)
11 16.84 16.88 3 rs392981 (PLEKHA7 ) 0.094 1.62 · 10−1 9.96 · 10−3 1.29 · 10−1 1.89 · 10−4 (131)
11 44.89 44.89 2 rs11038203 (TSPAN18) 0.005 1 1 3.83 · 10−9 4.39 · 10−3 (12)
11 92.07 92.09 3 rs10501796 (FAT3) 0.005 1 1 4.28 · 10−9 3.88 · 10−3 (14)
12 96.80 96.93 4 rs10492267 0.026 9.73 · 10−8 8.07 · 10−1 7.56 · 10−30 4.38 · 10−2 (2)
23 118.19 118.20 2 rs9988376 0.043 1 7.54 · 10−1 6.40 · 10−2 1.48 · 10−4 (171)
3 55.29 55.29 1 rs358806 0.199 7.92 · 10−6 2.33 · 10−2 4.68 · 10−1 3.57 · 10−4 (68)
3 150.03 150.03 1 rs16861027 0.034 3.06 · 10−2 7.28 · 10−1 1.88 · 10−5 3.05 · 10−4 (83)
5 122.49 122.49 1 rs6872465 0.018 3.37 · 10−1 4.16 · 10−1 3.62 · 10−5 1.78 · 10−4 (140)
8 98.43 98.43 1 rs2679765 0.169 1.84 · 10−2 1.71 · 10−2 4.65 · 10−3 3.56 · 10−4 (70)

12 18.47 18.47 1 rs12581163 0.171 5.19 · 10−3 3.67 · 10−3 1.72 · 10−1 3.30 · 10−4 (75)
16 52.37 52.37 1 rs8050136 0.422 7.44 · 10−2 9.70 · 10−1 3.90 · 10−8 1.38 · 10−4 (196)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 18.82 18.84 4 rs2789336(1) 0.006 1 1 2.34 · 10−11 1.50 · 10−3 (23)
1 30.67 30.68 6 rs12031413(1) 0.004 1 1 2.77 · 10−15 5.23 · 10−3 (7)
1 86.93 86.98 4 rs1208054 0.220 6.51 · 10−1 5.49 · 10−1 1.41 · 10−1 3.68 · 10−3 (10)
1 164.79 164.87 9 rs275145(GPR161)(1) 0.004 1 1 3.02 · 10−16 6.49 · 10−3 (5)
1 165.12 165.12 3 rs2300564 (LOC100505918) 0.405 4.52 · 10−1 6.21 · 10−1 9.83 · 10−1 2.14 · 10−4 (83)
2 5.37 5.39 6 rs1453783(3) 0.374 5.00 · 10−1 1.62 · 10−2 3.05 · 10−1 1.04 · 10−3 (26)
2 10.90 10.91 3 rs902133(1) 0.005 1 1 2.82 · 10−12 3.47 · 10−3 (11)
2 53.60 53.61 3 rs903228 0.058 7.28 · 10−1 5.61 · 10−1 3.29 · 10−5 2.67 · 10−4 (74)
3 7.92 7.93 6 rs10510375 0.004 1 1 4.47 · 10−7 5.82 · 10−4 (41)
3 66.59 66.60 2 rs3845903 (LRIG1) 0.006 1 1 4.54 · 10−11 1.01 · 10−3 (27)
3 154.52 154.56 2 rs10513440 0.201 3.88 · 10−1 2.71 · 10−3 3.72 · 10−4 1.66 · 10−4 (100)
3 163.64 163.70 5 rs9858104 0.421 2.62 · 10−1 3.89 · 10−1 1.50 · 10−1 5.02 · 10−4 (48)
4 1.11 1.12 4 rs6826705 0.298 2.30 · 10−1 1.61 · 10−1 8.21 · 10−1 1.06 · 10−3 (25)
4 33.74 33.78 3 rs10517298 0.090 2.76 · 10−1 4.89 · 10−1 4.23 · 10−1 1.67 · 10−4 (99)
4 116.14 116.14 2 rs7666328(NDST4)(3) 0.033 1.80 · 10−1 2.82 · 10−3 2.48 · 10−7 3.23 · 10−4 (66)
5 14.68 14.70 2 rs153822 0.049 1.53 · 10−1 1.36 · 10−2 5.03 · 10−1 1.17 · 10−4 (127)
6 32.85 32.87 10 rs17429127 0.067 7.15 · 10−1 5.53 · 10−2 1 2.88 · 10−3 (13)
7 47.52 47.52 4 rs7792409 0.220 7.45 · 10−1 3.58 · 10−1 3.19 · 10−1 6.41 · 10−4 (38)
7 50.31 50.31 2 rs11575518 (DDC ) 0.015 1 1 6.72 · 10−1 8.38 · 10−5 (177)
8 32.07 32.09 3 rs16878847 (NRG1) 0.002 1 1 1.46 · 10−9 1.52 · 10−3 (21)
8 37.16 37.16 2 rs7826024 0.005 1 1 1.61 · 10−1 4.57 · 10−4 (50)
8 135.58 135.65 12 rs1372662 (ZFAT ) 0.332 6.83 · 10−1 3.22 · 10−1 9.30 · 10−1 8.85 · 10−3 (4)
9 117.78 117.82 6 rs2151370 0.377 6.61 · 10−1 7.86 · 10−1 7.41 · 10−2 6.27 · 10−3 (6)

10 77.12 77.12 2 rs7082404 0.004 1 1 6.98 · 10−7 2.37 · 10−4 (79)
10 114.74 114.78 3 rs7077039 (TCF7L2) 0.483 1 1.48 · 10−1 3.78 · 10−12 8.50 · 10−5 (174)
11 44.89 44.89 3 rs11038203 (TSPAN18) 0.005 1 1 3.83 · 10−9 1.08 · 10−3 (24)
11 92.07 92.09 8 rs10501795 (FAT3) 0.009 1 1 5.12 · 10−1 4.71 · 10−3 (8)
12 10.27 10.28 2 rs2900385 0.019 1 6.25 · 10−1 6.00 · 10−1 3.26 · 10−4 (65)
12 96.80 96.93 11 rs10492267 0.026 9.73 · 10−8 8.07 · 10−1 7.56 · 10−30 1.87 · 10−2 (2)
15 42.65 42.75 2 rs2277610 (SPG11) 0.006 1 1.01 · 10−1 1 3.40 · 10−4 (60)
17 14.28 14.29 2 rs7221370(1) 0.003 1 1 1.39 · 10−6 5.59 · 10−4 (42)
18 27.45 27.45 2 rs974676 0.349 7.66 · 10−1 1.70 · 10−1 7.95 · 10−1 1.40 · 10−4 (111)
18 41.08 41.12 3 rs7235815(SLC14A2)(1) 0.007 1 1 3.29 · 10−3 2.30 · 10−4 (81)
22 35.97 36.02 9 rs10212068(3) 0.028 1 2.64 · 10−3 8.47 · 10−62 3.55 · 10−2 (1)
23 40.10 40.10 2 rs952836 0.328 1.59 · 10−4 6.41 · 10−2 3.04 · 10−2 2.00 · 10−4 (86)
5 82.93 82.93 1 rs6865544 0.010 3.89 · 10−1 1 1.52 · 10−5 9.56 · 10−5 (158)

Table 7.18 T2Dqc: lists of regions identified by the Random Forests and the T-Trees methods.
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Random Forests
chr start end size rsid maf hwecase hwecontrol p-value importance

2 25.31 25.36 3 rs2164411 0.153 1.45 · 10−17 1.95 · 10−1 4.46 · 10−4 2.98 · 10−3 (26)
4 6.06 6.08 9 rs16837871 0.150 3.34 · 10−26 2.84 · 10−1 8.97 · 10−25 1.25 · 10−2 (7)
4 186.09 186.11 4 rs13126272 (ACSL1) 0.340 4.19 · 10−43 3.02 · 10−2 3.11 · 10−6 3.79 · 10−3 (18)
5 34.78 34.79 2 rs2048646 (RAI14) 0.231 3.77 · 10−23 1.67 · 10−1 3.84 · 10−2 2.77 · 10−3 (28)
5 117.00 117.07 17 rs2416472 0.313 2.21 · 10−20 9.35 · 10−1 2.06 · 10−16 6.69 · 10−3 (11)
6 20.75 20.83 2 rs9465871 (CDKAL1) 0.194 2.29 · 10−1 4.36 · 10−2 1.38 · 10−6 1.53 · 10−4 (150)
6 46.01 46.03 8 rs3777582 (CLIC5 ) 0.082 4.40 · 10−295 1.29 · 10−4 6.76 · 10−30 7.11 · 10−2 (2)
6 107.25 107.26 2 rs10499044 0.099 3.75 · 10−13 1.97 · 10−3 7.06 · 10−22 6.23 · 10−3 (12)
7 136.22 136.37 6 rs1477523 (LOC349160) 0.053 2.97 · 10−189 5.95 · 10−3 3.58 · 10−8 3.27 · 10−2 (5)
8 17.51 17.52 2 rs2517202 (PDGFRL) 0.006 1 1 2.21 · 10−8 5.93 · 10−4 (79)
8 19.35 19.53 19 rs17480050 (CSGALNACT1) 0.114 0 1 0 1.81 · 10−1 (1)
9 117.69 117.79 2 rs488101 0.364 3.77 · 10−8 6.12 · 10−1 6.93 · 10−7 2.15 · 10−4 (128)

10 114.74 114.80 9 rs7077039 (TCF7L2) 0.484 1 1.35 · 10−1 4.20 · 10−12 2.63 · 10−4 (113)
11 10.16 10.19 5 rs11042656 (SBF2) 0.076 8.28 · 10−274 5.07 · 10−4 8.38 · 10−26 6.06 · 10−2 (4)
11 92.07 92.09 3 rs10501796 (FAT3) 0.005 1 1 1.23 · 10−8 8.40 · 10−4 (61)
11 113.02 113.31 19 rs17116117 (HTR3B) 0.053 8.32 · 10−5 1.16 · 10−1 3.41 · 10−31 1.22 · 10−2 (8)
12 96.85 96.93 3 rs10492267 0.026 6.38 · 10−8 8.03 · 10−1 8.53 · 10−30 1.25 · 10−2 (6)
16 58.89 58.90 2 rs9889057 0.360 3.84 · 10−32 1.04 · 10−1 3.94 · 10−5 9.69 · 10−4 (55)
21 26.95 27.00 17 rs226261 0.374 1.10 · 10−53 9.03 · 10−1 6.75 · 10−8 1.04 · 10−2 (9)
22 23.76 23.88 10 rs11705626 (KIAA1671) 0.081 8.08 · 10−28 5.83 · 10−2 1.06 · 10−96 6.27 · 10−2 (3)
23 0.49 0.64 2 rs5988334 0.216 3.42 · 10−3 2.06 · 10−3 3.31 · 10−6 3.20 · 10−4 (104)
3 55.29 55.29 1 rs358806 0.201 7.67 · 10−6 2.00 · 10−2 4.82 · 10−1 9.38 · 10−5 (200)
5 82.93 82.93 1 rs6865544 0.010 3.93 · 10−1 1 1.28 · 10−5 1.66 · 10−4 (144)
8 98.43 98.43 1 rs2679765 0.170 2.28 · 10−2 2.36 · 10−2 2.39 · 10−3 1.38 · 10−4 (158)

11 94.53 94.53 1 rs11021059 0.106 8.26 · 10−1 2.98 · 10−6 1.86 · 10−3 1.11 · 10−4 (179)
12 18.47 18.47 1 rs12581163 0.171 3.97 · 10−3 5.05 · 10−3 1.17 · 10−1 1.93 · 10−4 (134)

T-Trees
chr start end size rsid maf hwecase hwecontrol p-value importance

1 22.10 22.15 4 rs2473324 (CDC42) 0.069 1 2.44 · 10−1 7.75 · 10−1 4.45 · 10−4 (88)
1 75.68 75.68 2 rs13373826 (SLC44A5 ) 0.148 1.01 · 10−10 4.32 · 10−1 1.43 · 10−1 5.25 · 10−4 (82)
1 80.57 80.57 4 rs1896250 0.396 8.04 · 10−3 9.37 · 10−1 4.19 · 10−4 3.59 · 10−4 (101)
1 86.95 86.98 3 rs1208054 0.219 4.34 · 10−1 5.10 · 10−1 1.75 · 10−1 1.30 · 10−3 (49)
1 89.44 89.44 2 rs11587221 (GBP5 ) 0.421 3.51 · 10−1 6.22 · 10−1 3.78 · 10−1 1.03 · 10−3 (59)
2 25.31 25.36 3 rs2164411 0.153 1.45 · 10−17 1.95 · 10−1 4.46 · 10−4 1.56 · 10−3 (44)
3 184.57 184.57 3 rs959880 (MCF2L2) 0.146 2.65 · 10−2 2.65 · 10−1 9.53 · 10−1 4.40 · 10−4 (91)
4 6.02 6.06 8 rs16837871 0.150 3.34 · 10−26 2.84 · 10−1 8.97 · 10−25 9.49 · 10−3 (12)
4 186.09 186.11 5 rs13126272 (ACSL1) 0.340 4.19 · 10−43 3.02 · 10−2 3.11 · 10−6 2.65 · 10−3 (30)
5 34.78 34.79 2 rs334912 (RAI14) 0.457 3.11 · 10−1 1.19 · 10−1 4.41 · 10−1 4.92 · 10−3 (20)
5 117.02 117.07 10 rs17411921 0.336 1 3.66 · 10−1 3.45 · 10−1 9.94 · 10−3 (10)
6 46.01 46.02 6 rs3777582 (CLIC5 ) 0.082 4.40 · 10−295 1.29 · 10−4 6.76 · 10−30 4.88 · 10−2 (2)
6 93.79 93.81 7 rs503319 0.195 4.33 · 10−1 8.58 · 10−1 2.49 · 10−1 2.67 · 10−3 (28)
6 107.25 107.26 3 rs10499044 0.099 3.75 · 10−13 1.97 · 10−3 7.06 · 10−22 2.96 · 10−3 (26)
7 136.26 136.27 6 rs1477523 (LOC349160) 0.053 2.97 · 10−189 5.95 · 10−3 3.58 · 10−8 2.39 · 10−2 (5)
8 19.35 19.51 16 rs17480050 (CSGALNACT1) 0.114 0 1 0 9.73 · 10−2 (1)
8 37.16 37.16 2 rs7826024 0.005 1 1 1.96 · 10−1 2.38 · 10−4 (129)
8 55.10 55.23 6 rs11984645 0.142 1.17 · 10−8 1 4.32 · 10−1 1.05 · 10−3 (56)
8 135.58 135.65 9 rs1372662 (ZFAT ) 0.333 7.97 · 10−1 3.39 · 10−1 9.47 · 10−1 4.16 · 10−3 (22)
9 117.79 117.81 3 rs2151370 0.377 6.94 · 10−1 8.45 · 10−1 6.89 · 10−2 2.99 · 10−3 (25)

11 10.12 10.19 6 rs11042656 (SBF2) 0.076 8.28 · 10−274 5.07 · 10−4 8.38 · 10−26 4.37 · 10−2 (3)
11 44.89 44.89 2 rs11038203 (TSPAN18) 0.005 1 1 1.17 · 10−8 3.40 · 10−4 (103)
11 55.32 55.35 2 rs17501618 0.054 3.63 · 10−3 7.29 · 10−4 3.77 · 10−1 2.20 · 10−4 (140)
11 92.09 92.09 2 rs10501795 (FAT3) 0.009 1 1 5.04 · 10−1 1.60 · 10−3 (42)
11 113.28 113.31 7 rs1176741 (HTR3B) 0.031 1 1.19 · 10−1 6.75 · 10−1 1.35 · 10−2 (8)
12 96.85 96.91 7 rs10860262 0.042 7.79 · 10−1 3.50 · 10−1 7.18 · 10−1 7.21 · 10−3 (14)
12 124.08 124.09 3 rs879993 (AACS) 0.137 2.47 · 10−18 2.66 · 10−3 8.45 · 10−2 2.91 · 10−4 (114)
14 59.81 59.83 3 rs7154773 (PPM1A) 0.358 4.62 · 10−1 1.96 · 10−1 6.27 · 10−2 2.72 · 10−4 (121)
14 86.39 86.39 2 rs1362719 0.449 1.92 · 10−21 7.84 · 10−5 9.63 · 10−6 5.01 · 10−4 (84)
15 21.57 21.58 3 rs17117531 0.022 1.95 · 10−92 6.26 · 10−1 1.05 · 10−2 6.92 · 10−3 (16)
15 32.00 32.03 6 rs597414 (AVEN) 0.274 1.71 · 10−15 5.92 · 10−2 8.69 · 10−3 2.35 · 10−3 (34)
16 58.89 58.90 2 rs10500428 0.351 1.61 · 10−1 2.25 · 10−1 8.62 · 10−1 6.60 · 10−3 (18)
17 40.43 40.47 3 rs9915259 (DCAKD) 0.207 3.34 · 10−1 5.35 · 10−1 7.39 · 10−1 8.50 · 10−4 (66)
17 50.27 50.29 2 rs2934884 0.196 7.13 · 10−1 4.16 · 10−1 4.48 · 10−1 1.87 · 10−4 (150)
21 26.95 27.00 13 rs2830322 0.191 9.41 · 10−1 5.51 · 10−1 9.79 · 10−1 1.69 · 10−2 (7)
22 23.72 23.88 13 rs11705626 (KIAA1671) 0.081 8.08 · 10−28 5.83 · 10−2 1.06 · 10−96 2.70 · 10−2 (4)

Table 7.19 T2Dwtccc: lists of regions identified by the Random Forests and the T-Trees methods.
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7.4 Overall remarks

Although the studies reported in the present chapter are less extensive and detailed than our study of Chapter
6, we believe that they provide good insight on how the tree-based methods behave on real-life datasets in
the gwas field.

Most importantly, in terms of predictive power, our novel T-Trees method produced consistently better
auc values than the standard Random Forests on every dataset. These promising auc increases validate
our previous investigation of the Crohn’s disease dataset. Taking into account the structured nature of the
variables in the genomic context has proven to be profitable. Even though we saw with the Random Forests
that the most important variables already appeared in groups, we believe it confirms that the treatment of
several neighbouring variables at once as in the T-Trees method allows to take advantage over Random
Forests type of methods. Indeed, in the Random Forests, the chance of exploiting several markers in a region
are lower. Constructing the “right” cascade of nodes might take longer while the T-Trees directly focuses its
efforts on grouped variables and their local structure.

The analysis of variable importances pointed out that some markers showing particularities were prefer-
entially considered as important for both of the tree-based methods. For example, with “our” quality control
filters, some variables that were excluded from the wtccc datasets appeared in our top rankings. Most of
these were rare variants with a missing rate > 1% or discriminant for the two sub-group of controls. For
example, we noticed the recurrent presence of a marker (rs10212068) on all of our qc datasets. That marker
was selected by both Random Forests and T-Trees, although it was not always reported in the Random
Forests tables as it appeared alone.

On the other hand, for the wtccc dataset versions, many markers strongly deviating from the Hardy-
Weinberg equilibrium were spotted in the most important descriptor listings. Strangely, while this filter is
commonly accepted has being good exclusion criteria, it is also disputed ([ZVSW10]). We discovered that
when such variables were exploited in a forest, they were “followed” by many of their neighbours. In addition,
these particularities allowed in some cases to detect signals there were not reported in the wtccc study.

We also found out similarities with our findings to those of other investigations of the same datasets
pointing to some of these (rare or deviating form hwe) variables. This might indicate that, while these markers
are set aside and discarded from classical studies due to the lack of statistical power, they might reveal true
associations with the use of different and maybe more powerful approaches.

Interestingly, we identified some markers located in genes reported posterior to the wtccc genome-wide
association study and in other datasets. Some of these markers are rare variants and might have been
underestimated due to the lack of power of classical univariate approaches in the wtccc study. Different
sets of individuals may have increased the chance of identifying such regions as it might have changed the
observed allele frequencies.

With the T-Trees, we also noticed some similarities with other research findings. These researches were
focused either on finding epistatic interactions or detecting “super-allele” associations allowing them to
spot loci that were unknown before. Although these finding were a few (and might be questionable), they
might as well point that such approaches are currently underestimated in addition to reinforcing our primary
motivations/intuitions that lead to the T-Trees approach.

Of course, we are aware that some of our findings obviously point to spurious associations, but still,
these are statistical associations. Beside that, we also showed that the tree-based methods were able to
spot many of the reported regions, and not only the ones that were discovered by the wtccc study but a few
more. Although we were not always able to link regions to the literature findings, we noticed in some cases
a strong consistency among experiments involving the same phenotype. It has to be noted that we mostly
discussed markers directly located in genes but some of the most important ones might also be located
outside genes. They can still be in linkage disequilibrium with many others.

Finally, we mainly looked at the 100 first variables. In cases like T1D or RA, where an important
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number of snps are expected to be associated, one might want to look further down and see what is found
just below in the rankings or to remove the regions from the candidate attributes to discover what else is
popping out in the top rankings.
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Chapter 8

Closure

Below we first summarise our research pathway, and then we report our main findings, and finally we
suggest further research and development directions.

8.1 Epitome

The initial objective of this thesis was to study the application of state-of-the-art tree-based supervised
learning methods in the context of genome-wide association studies of complex diseases, with a twofold
goal, namely, on the one hand, the inference of predictive models of the disease risk from available datasets,
and, on the other hand, the identification of the genetic information contained in these datasets and that is
useful for making these predictions. To this end, we have considered both existing methods (such as Random
Forests, and Extra-Trees) and designed a novel algorithm (called T-Trees) which is tailored to the strong
correlations among genetic markers stemming from the so-called genetic linkage. To study and compare
these three algorithms, we have developed our own software package, and designed sound and reproducible
empirical protocols, and applied them both on synthetic and on real datasets.

The organisation of this manuscript reflects the main steps of our research: in Part I, we analyse the state-
of-the art in the application field of genome wide association studies and in supervised machine learning,
and subsequently describe in details the three tree-based ensemble methods that we have implemented and
applied in our research; in Part II, we report our empirical investigations, in three successive steps, namely
i.) a preliminary study on simulated datasets yielding controlled conditions with known ground-truth and
allowing for a first sanity check of the T-Trees methods, in ideal conditions; ii.) a detailed study on a
given real-life dataset concerning Crohn’s disease, where we try to understand the main features of the
three different algorithms in terms of predictive accuracy and capability of identification of relevant genetic
information, and their sensitivity with respect to various kinds of quality control procedures and algorithmic
parameters; iii.) a systematic study, where we confirm, on 7 different datasets from the Welcome-Trust-
Consortium, the main outcomes of our study on the Crohn’s disease, while using default parameter settings.

In addition to the main scientific questions that we have addressed during our research, we have also
devoted a significant amount of efforts to develop our simulation and supervised learning software and to find
out relevant ways of presenting the information extracted by these methods from the datasets. Notice that
many of the side-simulations that we carried out during our work are not reported in this thesis. For example,
we did not report the non-conclusive results of our study of the average genetic distances within cases and
control sub-cohorts, a study that was aimed at finding out whether sample “stratification” was present
and responsible of some of the abnormally high auc values that we observed. We also tried out different
algorithmic versions of the supervised learning methods, before settling our final choices documented in this
manuscript. In particular, during these latter investigations we found out that the kind of normalisation of the
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splitting score measures used in tree-based methods may have a major impact on their intrinsic properties
(some of these results are reported in Appendix A), and hence led us to choose the least biased normalisation
in order to carry out our tests in Part II of the thesis.

8.2 Main findings

• Overall, the paradigm of tree-based ensemble supervised learning methods that we investigated in
this thesis constitutes an interesting approach in the gwas context, due to their intrinsic algorithmic
properties. Some of their core features have shown to be particularly well suited in this context, since
they were able to effectively classify individuals given their genotypes, and at the same time provided
information for ranking genetic markers in terms of their relevance in these predictive models.

• We are confident in the observations we made along this thesis, as they generalised and remained
consistent across many datasets and experiences. In particular, we found out that these methods are
potentially very sensitive to particular types of variables (rare variants, markers deviating from hwe),
but we also observed that the overall decision tree forest behaviour stayed stable across the different
datasets and experiences. Hence it is important to very well document the quality control procedures
used to pre-process datasets when these latter are exploited by supervised learning methods.

• We also found out that the way the splitting score measure is normalised may have a major im-
pact on the outcome of applying these tree-based ensemble methods in the context of genome-wide-
association-studies. In particular, the classical normalisation (called gain-ratio) used by many re-
searchers appeared to be highly biased towards the selection of markers with small minor allele
frequencies, while the other normalisations are much more agnostic in this respect. We believe that
this finding is an important one, since it links some internal “algorithmic details” (often neglected by
researchers) to some of the main outcomes of these methods (i.e. the variable importances). Hence
it is important to report in a very precise way all algorithmic details about the supervised learning
methods used to exploit GWAS datasets.

• In terms of the predictive power, as assessed by our cross-validation protocol over multiple datasets,
we found that the T-Trees method that we proposed in an attempt to take into account the block-wise
linkage disequilibrium structure of GWAS, outperforms in a significant and consistent way both Random
Forests and Extra-Trees. Hence the exploitation of the structure of input variable dependencies is a
credible avenue for tailoring supervised learning methods to GWAS datasets.

• Our empirical studies with the T-Trees method allowed us to identify two novel susceptibility loci
in the context of Crohn’s disease, which according to our analysis are potentially relevant from the
biological point of view, and certainly indicative that this method approaches the datasets in a quite
different way than the classical state-of-the-art Random Forest types of methods. Hence, biologists
might be interested by further analysing the actual relevance of these novel susceptibility regions and
by using the T-Trees method to look at their own datasets.

8.3 Further work

With hindsight, our research certainly opens more new questions than it has been able to answer. In the
following lines we will organise the discussion of these many open questions into three parts, namely first
those more specifically related to tree-based supervised learning algorithm development, then those related
to the extension of our framework to the broad context of the genetical dissection of diseases and other
complex phenotypes, and finally those related to practical implementation and use of our algorithms.
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8.3.1 Tree-based supervised learning methods

There are many possibilities for further enhancing the tree-based methods in order to better exploit the
correlation structures among input variables of complex datasets.

In particular, we would like to explicitly take into account the observed correlation structure in a given
dataset when defining the blocks of input variables exploited by the T-Trees method. This could be achieved
by combining in some way unsupervised learning methods (like clustering and Bayesian networks) with the
tree-based supervised learning techniques.

We would also like to extend our T-Trees method to other problem domains revealing similar geometrical
correlation structures, such as time-series classification and image classification. Within this latter context, a
comparison between our approach and the so-called ‘Segment and Combine’ paradigm already successfully
used in time-series and image classification [GMW06] would be of great interest.

Finally, we believe that from a more theoretical point of view, it would be interesting to compare the
two-level input variable handling approach used by our T-Trees method (and its possible variants) with the
two-level structure of Group-LASSO-based supervised learning methods [MVDGB08, JOV09]. In particular,
it would be of interest to compare these latter methods with our own algorithm on our datasets used in this
thesis.

8.3.2 Genetical dissection of complex phenotypes by supervised learning

In this context, we believe that one first practical problem that should be tackled in a better way is to cope
in a non ad-hoc way with missing information. In our research we have not worked on this aspect, but in our
applications we had to fill in missing values in a rough way so as to be able to apply our algorithms. There
should be more elegant ways to treat this aspect of missing values, and many of these have been reported
in the literature, but not really investigated in the practice of GWAS.

Second, the methods that we have developed have focused on the study of binary (e.g. case/control) traits,
while non-binary and even quantitative traits have also to be studied. The adaptation of our algorithms is
more or less straightforward in principle; however, the empirical findings that we have reported have to be
analysed carefully when generalising the approach to non-binary traits. Specially, in the context of complex
diseases it is likely that the binary phenotype is only a very approximate representation of the information
that is collected by physicians, and it is certainly of interest to hypothesise that such complex diseases are
actually composed of many sub-syndromes, and if information were available about these sub-syndromes it
could as well be exploited by supervised learning.

The fact that the individuals collected in GWAS studies can not in practice be assumed to be sampled in
an i.i.d. fashion from a general population, notably because they are to a smaller or larger extent belonging
to the same ’family’, and because of artefacts introduced by sample collection constraints and measurement
protocols, in particular due to the fact that environmental factors can not be fully eliminated by the experiment
design, make the interpretation of the findings of multi-variable approaches difficult in comparison with the
traditional uni-variate approaches. Further work has to be carried out in order to find out ways to cancel
such ’sampling and measurement artefacts’ when interpreting the notion of variable importance computed by
supervised learning algorithms. Also, we recommend to collect all information about the cases and controls
that could have some influence on the observed phenotype, and about the measurement protocols that could
to some extent impact their recorded genetic information, so as to be then able to look at this information in
conjunction with the genotypes, when analysing the datasets. The modern supervised learning methods are
indeed able to exploit in the same way all sources of information, be they of genetic, of environmental, or of
experimental nature.

Given the progress in high-throughput sequencing technology, we can foresee that in the near future
we will have at our disposal large cohorts of fully sequenced patients and controls. How to leverage the
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supervised learning methods, and in particular the tree-based ensemble methods studied in our thesis, to
such scenarios is certainly the major research direction for the future in order to enable the best synergy
between computational and experimental methods in the pursue of the understanding of complex biology.

8.3.3 Software development and implementation

In spite of all the future research directions discussed above, we believe that the T-Trees method that we
have developed, is in its current form already of practical interest, together with the Random Forests and
the Extra-Trees.

Therefore, we believe that it would be of interest to pack our software modules in such a way that
they could be easily exploited by other researchers, and automatically take advantage of the growing grid-
computing environments.

To achieve this in the best way, we would need to collaborate with potential end-users and specialists
in the grid-computing technology.
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Appendix A

Additional data related to Chapter 6

For the sake of readability and to keep the Chapter 6 uncluttered, we report here additional results
gathered for the investigation conducted in Chapter 6.

149



150 APPENDIX A. ADDITIONAL DATA RELATED TO CHAPTER 6

−
lo

g(
p−

va
lu

e)

●

●
● ● ●● ●●●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

0
5

10
15

1p31

R
F

 v
im

p

● ● ● ● ●● ●●●●● ●● ● ● ●●

●

●
●

● ●● ● ●● ●● ●
●
● ● ●

●

●● ●
●

●

●

●

● ●●

●

● ●
●
● ●

●

● ● ● ●

0.
00

0
0.

00
4

0.
00

8
0.

01
2

position (Mb)

T
T

 v
im

p/
gi

m
p

● ● ● ● ●● ●●●●● ●● ● ● ●● ●● ● ● ●● ● ●● ●● ● ●● ● ● ● ●● ● ●●●
●

● ●●

●

● ● ●● ●● ● ● ● ●

0.
00

0.
02

0.
04

67250000 67300000 67350000 67400000 67450000 67500000

−
lo

g(
p−

va
lu

e)

● ●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●●

●

●●

●

●
● ●0

5
10

15

2q37

R
F

 v
im

p

● ●● ● ●

●
●●

●

●

●●

●

● ●● ● ● ● ●●● ●●● ● ●● ● ● ● ●

0.
00

0
0.

00
4

0.
00

8
0.

01
2

position (Mb)

T
T

 v
im

p/
gi

m
p

● ●● ● ● ● ●● ● ● ●● ● ● ●● ● ● ● ●●● ●●● ● ●● ● ● ● ●

0.
00

0.
02

0.
04

233900000 233950000 234000000 234050000

−
lo

g(
p−

va
lu

e)

●

● ●

●

● ●

●
●●
●●

● ●

●

●

●

●

●● ●

●

●

●● ●

●

●

●

●

●

●

● ● ●

●

●
●

●●

●

0
5

10
15

3p21

R
F

 v
im

p

●● ● ● ● ● ●●●●●● ● ●●
●
● ●● ●

●
● ●● ● ●● ●

●

●

● ● ● ● ● ●●●● ●

0.
00

0
0.

00
4

0.
00

8
0.

01
2

position (Mb)

T
T

 v
im

p/
gi

m
p

●● ● ● ● ● ●●●●●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ● ● ● ● ● ● ●●●● ●

0.
00

0.
02

0.
04

49300000 49400000 49500000 49600000 49700000 49800000 49900000

−
lo

g(
p−

va
lu

e)

● ●

● ●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●●
●

● ●

●

●

●

●● ●●
●

●

●
●

●●

● ●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●
●

0
5

10
15

5p13

R
F

 v
im

p

● ● ● ● ●●●● ● ●●●● ● ● ● ● ●● ●● ●

●
●

●

●● ●● ●

● ●
●● ● ●

●

●

●

●
●● ●●●● ●● ●●

● ●
● ● ● ● ●●● ●●●● ● ● ● ●●●●

0.
00

0
0.

00
4

0.
00

8
0.

01
2

position (Mb)

T
T

 v
im

p/
gi

m
p

● ● ● ● ●●●● ● ●●●● ● ● ● ● ●● ●● ●● ● ●●● ●● ●● ● ●● ● ● ●● ●● ●● ●●●● ●● ●● ● ●● ● ● ● ●●● ●●●● ● ● ● ●●●●

0.
00

0.
02

0.
04

40300000 40400000 40500000 40600000 40700000

−
lo

g(
p−

va
lu

e)

●
●● ●

● ●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●●
●●● ●0

5
10

15

5q33

R
F

 v
im

p

● ●● ● ● ●●● ● ● ● ●
● ●

●
● ●

● ●
●
●● ● ● ● ● ●●● ●

●

● ●●● ●●● ● ●●●●● ●

0.
00

0
0.

00
4

0.
00

8
0.

01
2

position (Mb)

T
T

 v
im

p/
gi

m
p

● ●● ● ● ●●● ● ● ● ● ● ●● ● ●● ●●●● ● ● ● ● ●●● ● ● ● ●●● ●●● ● ●●●●● ●

0.
00

0.
02

0.
04

150100000 150150000 150200000 150250000 150300000 150350000

−
lo

g(
p−

va
lu

e)

●● ●
●

● ●

●

●
●

●

●

●● ●●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●●

●

●
●

●

●

●
●

●●●
●

● ●
●

●

●
●●●

●

● ●

●●

●
●●●

0
5

10
15

10q21

R
F

 v
im

p

●● ●●● ● ● ● ● ● ● ●● ●●●●●● ● ● ●●●● ●● ● ● ●●● ●●● ● ●● ● ● ● ● ●● ●●●● ●● ●●● ●●● ● ●● ● ● ●● ● ●●● ● ●● ● ●●● ● ● ●●●●●●●●● ●● ●●●●●●● ●●●●●●●

0.
00

0
0.

00
4

0.
00

8
0.

01
2

position (Mb)

T
T

 v
im

p/
gi

m
p

●● ●●● ● ● ● ● ● ● ●● ●●●●●● ● ● ●●●● ●● ● ● ●●● ●●● ● ●● ● ● ● ● ●● ●●●● ●● ●●● ●●● ● ●● ● ● ●● ● ●●● ● ●● ● ●●● ● ● ●●●●●●●●● ●● ●●●●●●● ●●●●●●●

0.
00

0.
02

0.
04

64000000 64050000 64100000 64150000 64200000 64250000 64300000 64350000

−
lo

g(
p−

va
lu

e)

● ●●

● ●

●
● ●

● ●

●
●
●●

●

●

●

●●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

● ●
●●
●

●

● ● ● ●●●
● ● ●0

5
10

15

10q24

R
F

 v
im

p

● ●● ● ●●● ● ● ● ●●●● ● ●
●●● ●●●● ●●● ●

● ● ● ● ● ●● ●● ● ●●●● ● ● ● ●●● ● ● ●

0.
00

0
0.

00
4

0.
00

8
0.

01
2

T
T

 v
im

p/
gi

m
p

● ●● ● ●●● ● ● ● ●●●● ● ●●●● ●●●● ●●● ● ● ● ● ● ● ●● ●● ● ●●●● ● ● ● ●●● ● ● ●

0.
00

0.
02

0.
04

101250000 101300000 101350000

−
lo

g(
p−

va
lu

e)

●
●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●
●●●

●

●
● ●

●

●●

●
●

●
●

●
● ●

●

●●

●

● ●

●●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●●
●

0
5

10
15

16q12

R
F

 v
im

p

● ● ● ●●●●● ● ● ●●● ● ● ● ● ● ●●●●●● ● ● ●●● ● ● ● ● ● ●● ●● ● ● ● ●●●● ●●● ●● ●

●

●

●

● ●

●

●
●

●● ● ●● ●● ● ● ●● ●● ●●●● ●● ● ●● ●

0.
00

0
0.

00
4

0.
00

8
0.

01
2

T
T

 v
im

p/
gi

m
p

● ● ● ●●●●● ● ● ●●● ● ● ● ● ● ●●●●●● ● ● ●●● ● ● ● ● ● ●● ●● ● ● ● ●●●● ●●● ●● ●●● ●● ●
●

● ● ●● ● ●● ●● ● ● ●● ●● ●●●● ●● ● ●● ●

0.
00

0.
02

0.
04

49000000 49100000 49200000 49300000 49400000

−
lo

g(
p−

va
lu

e)

●

●

● ●

●
● ●

●

●

●

●
● ●

●

●

●
●
●●

●

●

●

●

●

●●

●

●
●0

5
10

15

18p11

R
F

 v
im

p

● ● ● ●●● ● ● ●
●

●● ● ● ● ● ●●● ● ● ● ● ● ●●● ● ●

0.
00

0
0.

00
4

0.
00

8
0.

01
2

T
T

 v
im

p/
gi

m
p

● ● ● ●●● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ● ●●● ● ●

0.
00

0.
02

0.
04

12700000 12750000 12800000 12850000 12900000 12950000

Figure A.1 The nine reported regions for Crohn’s disease on CDibd . In grey, the exact Fisher test based p-values, in
blue random forest variable importances (K = 10000, T = 1000 and Nmin = 250), in orange the T-Trees
variable importances while the green boxes denote the T-Trees group importances (T = 1000, K = 1000,
IC = 5 and Nmin = 2000). The light grey shaded boxes delimit the nine regions as reported.
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# Chr Pos. snp rf imp. Fisher p-value χ2 p-value maf fmiss pmiss 0 1 2 hwe
0.0141 190 379 4051 2.14 · 10−121

1 4 16454556 rs157613 9.02 · 10−2 1.13 · 10−14 3.93 · 10−15 0.0821 0.0133 6.08 · 10−1 0 376 2523 3.96 · 10−6
0.0155 190 3 1528 3.16 · 10−253
0.0100 116 205 4318 2.14 · 10−107

2 1 117184091 rs12078461 4.95 · 10−2 7.19 · 10−13 2.37 · 10−13 0.0471 0.002 38 1.57 · 10−11 0 204 2727 4.91 · 10−2
0.0229 116 1 1591 2.51 · 10−182
0.0196 115 199 4280 8.68 · 10−108

3 1 214857356 rs1933641 4.90 · 10−2 7.59 · 10−14 1.68 · 10−14 0.0467 0.006 13 2.25 · 10−17 0 198 2722 7.90 · 10−2
0.0423 115 1 1558 3.76 · 10−180
0.0540 699 1395 2339 1.58 · 10−70

4 4 17872130 rs1553460 4.09 · 10−2 1.59 · 10−31 6.55 · 10−32 0.315 0.0848 3.05 · 10−46 237 969 1483 2.88 · 10−5
0.002 29 462 426 856 5.84 · 10−93
0.0374 774 2498 1239 1.10 · 10−15

5 16 30227808 rs4471699 3.27 · 10−2 4.64 · 10−20 5.03 · 10−20 0.449 0.0143 4.20 · 10−26 672 1461 763 6.03 · 10−1
0.0761 102 1037 476 2.31 · 10−49
0.009 82 49 150 4441 3.99 · 10−48

6 4 38783368 rs6816863 1.49 · 10−2 2.86 · 10−1 2.73 · 10−1 0.0267 0.005 11 4.14 · 10−5 1 146 2776 1
0.0177 48 4 1665 4.18 · 10−89
0.0147 1091 2287 1239 5.76 · 10−1

7 16 30235818 rs11644392 1.34 · 10−2 2.20 · 10−1 2.14 · 10−1 0.484 0.0140 6.16 · 10−1 698 1437 762 6.83 · 10−1
0.0160 393 850 477 6.99 · 10−1
0.0226 1 444 4135 3.11 · 10−4

8 11 113306801 rs17116117 1.12 · 10−2 1.03 · 10−23 6.85 · 10−25 0.0487 0.004 08 1.23 · 10−28 0 183 2743 1.16 · 10−1
0.0538 1 261 1392 2.92 · 10−4
0.0397 616 2287 1597 7.51 · 10−6

9 10 125667027 rs7067790 7.82 · 10−3 1.10 · 10−7 1.12 · 10−7 0.391 0.0211 2.00 · 10−16 499 1369 1008 3.56 · 10−1
0.0709 117 918 589 4.18 · 10−22
0.006 62 0 419 4236 1.02 · 10−4

10 1 67417979 rs11209026 6.89 · 10−3 5.43 · 10−18 1.45 · 10−16 0.0450 0.009 19 4.43 · 10−3 0 342 2569 3.53 · 10−5
0.002 29 0 77 1667 1
0.0578 685 1612 2118 1.37 · 10−33

11 4 186107089 rs13126272 6.24 · 10−3 3.65 · 10−5 3.39 · 10−5 0.338 0.0844 1.26 · 10−28 302 1123 1265 3.02 · 10−2
0.0132 383 489 853 5.00 · 10−58
0.0546 200 1926 2304 5.21 · 10−17

12 3 18596095 rs12714959 5.42 · 10−3 5.06 · 10−7 5.48 · 10−7 0.263 0.0524 3.88 · 10−1 177 1208 1399 7.82 · 10−5
0.0584 23 718 905 1.74 · 10−23
0.0305 89 1234 3220 2.03 · 10−2

13 2 25364557 rs2164411 5.33 · 10−3 4.82 · 10−3 4.75 · 10−3 0.155 0.0266 4.35 · 10−2 86 764 2010 1.95 · 10−1
0.0372 3 470 1210 2.85 · 10−13
0.008 96 551 1860 2233 1.33 · 10−7

14 5 117033845 rs2416472 4.55 · 10−3 7.19 · 10−12 8.42 · 10−12 0.319 0.0136 1.22 · 10−6 345 1307 1246 9.35 · 10−1
0.001 14 206 553 987 2.40 · 10−17
0.001 71 611 2198 1869 3.95 · 10−1

15 16 30293004 rs11863150 4.13 · 10−3 6.41 · 10−1 6.32 · 10−1 0.366 0.002 38 2.72 · 10−1 379 1374 1178 4.98 · 10−1
0.000 572 232 824 691 6.07 · 10−1
0.0109 0 94 4541 1

16 1 87862563 rs17130103 4.08 · 10−3 1.10 · 10−12 2.34 · 10−10 0.0101 0.000 681 3.54 · 10−19 0 89 2847 1
0.0280 0 5 1694 1
0.007 47 0 49 4602 1

17 14 83044749 rs10144243 3.87 · 10−3 2.25 · 10−12 1.31 · 10−12 0.005 27 0.001 70 4.34 · 10−9 0 7 2926 1
0.0172 0 42 1676 1

0.000 854 790 2266 1626 1
18 10 125667065 rs17680424 3.44 · 10−3 9.83 · 10−1 9.74 · 10−1 0.411 0.000 681 6.32 · 10−1 500 1411 1025 7.03 · 10−1

0.001 14 290 855 601 6.57 · 10−1
0.0305 59 829 3655 1.31 · 10−1

19 2 132482534 rs4080478 3.27 · 10−3 3.64 · 10−3 3.35 · 10−3 0.104 0.0344 5.30 · 10−2 10 530 2297 1.44 · 10−4
0.0240 49 299 1358 2.69 · 10−8

0.000 854 21 610 4051 8.21 · 10−1
20 4 16453444 rs150260 2.85 · 10−3 9.32 · 10−2 9.08 · 10−2 0.0696 0.000 681 6.32 · 10−1 14 401 2521 7.85 · 10−1

0.001 14 7 209 1530 1

Table A.1 The 20 first markers according to the random forest variable importances (denoted rf imp. in the gray
shaded column) on the CDwtccc datasets and the corresponding statistics. Green shaded cells refer to
statistics related to controls only while red shaded cells refer to cases only statistics.



152 APPENDIX A. ADDITIONAL DATA RELATED TO CHAPTER 6

# Chr Pos. snp Fisher p-value χ2 p-value maf fmiss pmiss 0 1 2 hwe
0.0540 699 1395 2339 1.58 · 10−70

1 4 17872130 rs1553460 1.59 · 10−31 6.55 · 10−32 0.315 0.0848 3.05 · 10−46 237 969 1483 2.88 · 10−5
0.002 29 462 426 856 5.84 · 10−93
0.0226 1 444 4135 3.11 · 10−4

2 11 113306801 rs17116117 1.03 · 10−23 6.85 · 10−25 0.0487 0.004 08 1.23 · 10−28 0 183 2743 1.16 · 10−1
0.0538 1 261 1392 2.92 · 10−4
0.0374 774 2498 1239 1.10 · 10−15

3 16 30227808 rs4471699 4.64 · 10−20 5.03 · 10−20 0.449 0.0143 4.20 · 10−26 672 1461 763 6.03 · 10−1
0.0761 102 1037 476 2.31 · 10−49
0.006 62 0 419 4236 1.02 · 10−4

4 1 67417979 rs11209026 5.43 · 10−18 1.45 · 10−16 0.0450 0.009 19 4.43 · 10−3 0 342 2569 3.53 · 10−5
0.002 29 0 77 1667 1
0.007 90 374 1762 2513 9.18 · 10−3

5 16 49314382 rs2076756 3.00 · 10−15 1.76 · 10−15 0.270 0.005 45 1.67 · 10−2 174 1065 1683 7.62 · 10−1
0.0120 200 697 830 4.61 · 10−3
0.0141 190 379 4051 2.14 · 10−121

6 4 16454556 rs157613 1.13 · 10−14 3.93 · 10−15 0.0821 0.0133 6.08 · 10−1 0 376 2523 3.96 · 10−6
0.0155 190 3 1528 3.16 · 10−253
0.0196 115 199 4280 8.68 · 10−108

7 1 214857356 rs1933641 7.59 · 10−14 1.68 · 10−14 0.0467 0.006 13 2.25 · 10−17 0 198 2722 7.90 · 10−2
0.0423 115 1 1558 3.76 · 10−180

0.000 427 936 2354 1394 3.16 · 10−1
8 2 233940839 rs10210302 1.08 · 10−13 1.08 · 10−13 0.451 0.000 681 5.32 · 10−1 646 1530 760 1.98 · 10−2

0 290 824 634 4.26 · 10−1
0.001 07 933 2350 1398 3.45 · 10−1

9 2 233943769 rs6431654 1.24 · 10−13 1.29 · 10−13 0.450 0.001 36 6.57 · 10−1 645 1525 764 2.65 · 10−2
0.000 572 288 825 634 4.86 · 10−1
0.008 32 16 2 4629 3.57 · 10−44

10 4 38445177 rs17615966 1.71 · 10−13 6.54 · 10−13 0.003 66 0.0112 4.15 · 10−3 0 1 2904 1
0.003 43 16 1 1725 1.45 · 10−38
0.000 427 937 2353 1394 3.30 · 10−1

11 2 233943448 rs6752107 1.76 · 10−13 1.83 · 10−13 0.451 0.000 681 5.32 · 10−1 646 1529 761 1.99 · 10−2
0 291 824 633 4.26 · 10−1

0.0668 30 836 3507 8.28 · 10−3
12 12 127945945 rs11060028 1.95 · 10−13 6.98 · 10−13 0.102 0.0317 2.42 · 10−34 29 622 2194 4.01 · 10−2

0.126 1 214 1313 5.30 · 10−3
0.001 92 113 1135 3429 9.98 · 10−2

13 5 40437266 rs17234657 2.37 · 10−13 1.10 · 10−13 0.146 0.001 70 7.35 · 10−1 51 629 2253 3.52 · 10−1
0.002 29 62 506 1176 4.18 · 10−1
0.001 28 589 2051 2040 3.85 · 10−2

14 1 67387537 rs11805303 3.70 · 10−13 2.91 · 10−13 0.345 0.001 36 1 313 1236 1385 1.36 · 10−1
0.001 14 276 815 655 3.94 · 10−1
0.002 99 935 2349 1388 3.15 · 10−1

15 2 233962410 rs3828309 5.06 · 10−13 5.34 · 10−13 0.452 0.003 40 5.90 · 10−1 645 1522 761 2.64 · 10−2
0.002 29 290 827 627 5.51 · 10−1
0.003 41 423 1817 2430 2.01 · 10−3

16 16 49302700 rs2066843 5.46 · 10−13 3.58 · 10−13 0.285 0.002 38 1.27 · 10−1 206 1106 1619 3.61 · 10−1
0.005 15 217 711 811 1.98 · 10−3
0.0100 116 205 4318 2.14 · 10−107

17 1 117184091 rs12078461 7.19 · 10−13 2.37 · 10−13 0.0471 0.002 38 1.57 · 10−11 0 204 2727 4.91 · 10−2
0.0229 116 1 1591 2.51 · 10−182
0.0414 136 1478 2878 1.01 · 10−3

18 3 16454562 rs9839841 7.20 · 10−13 4.09 · 10−13 0.195 0.0201 1.54 · 10−20 80 831 1968 5.14 · 10−1
0.0772 56 647 910 2.30 · 10−6
0.001 71 661 2107 1910 4.07 · 10−2

19 5 40473705 rs9292777 7.53 · 10−13 8.86 · 10−13 0.367 0.001 70 1 468 1375 1090 3.34 · 10−1
0.001 72 193 732 820 1.24 · 10−1
0.0109 0 94 4541 1

20 1 87862563 rs17130103 1.10 · 10−12 2.34 · 10−10 0.0101 0.000 681 3.54 · 10−19 0 89 2847 1
0.0280 0 5 1694 1

Table A.2 The 20 first markers according to the Fisher p-value on the CDwtccc datasets and the corresponding
statistics. Green shaded cells refer to statistics related to controls only while red shaded cells refer to
cases only statistics.
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# Chr Pos. snp Fisher p-value χ2 p-value maf fmiss pmiss 0 1 2 hwe
0.006 63 0 419 4226 1.03 · 10−4

1 1 67417979 rs11209026 8.24 · 10−18 2.09 · 10−16 0.0451 0.009 19 4.45 · 10−3 0 342 2568 3.52 · 10−5
0.002 30 0 77 1658 1
0.007 91 373 1758 2508 9.11 · 10−3

2 16 49314382 rs2076756 3.95 · 10−15 2.25 · 10−15 0.270 0.005 45 1.64 · 10−2 174 1065 1682 7.62 · 10−1
0.0121 199 693 826 4.50 · 10−3
0.001 71 113 1132 3423 9.90 · 10−2

3 5 40437266 rs17234657 1.72 · 10−13 8.09 · 10−14 0.146 0.001 70 1 51 628 2253 3.51 · 10−1
0.001 73 62 504 1170 4.18 · 10−1
0.000 428 936 2349 1389 3.30 · 10−1

4 2 233940839 rs10210302 2.22 · 10−13 2.31 · 10−13 0.452 0.000 681 5.33 · 10−1 646 1529 760 1.98 · 10−2
0 290 820 629 4.25 · 10−1

0.001 07 933 2345 1393 3.60 · 10−1
5 2 233943769 rs6431654 2.55 · 10−13 2.75 · 10−13 0.451 0.001 36 6.57 · 10−1 645 1524 764 2.91 · 10−2

0.000 575 288 821 629 4.85 · 10−1
0.000 428 937 2348 1389 3.45 · 10−1

6 2 233943448 rs6752107 3.61 · 10−13 3.89 · 10−13 0.452 0.000 681 5.33 · 10−1 646 1528 761 2.19 · 10−2
0 291 820 628 3.97 · 10−1

0.001 71 436 1923 2309 2.22 · 10−1
7 5 40481438 rs11957215 5.78 · 10−13 6.87 · 10−13 0.299 0.002 38 2.72 · 10−1 318 1272 1340 5.28 · 10−1

0.000 575 118 651 969 5.29 · 10−1
0.001 71 659 2102 1907 4.05 · 10−2

8 5 40473705 rs9292777 5.79 · 10−13 6.26 · 10−13 0.366 0.001 70 1 468 1374 1090 3.15 · 10−1
0.001 73 191 728 817 1.36 · 10−1
0.003 42 422 1813 2425 1.99 · 10−3

9 16 49302700 rs2066843 5.96 · 10−13 4.26 · 10−13 0.285 0.002 38 1.26 · 10−1 206 1106 1618 3.61 · 10−1
0.005 18 216 707 807 1.92 · 10−3
0.001 71 442 1924 2302 1.75 · 10−1

10 5 40483754 rs4957295 7.32 · 10−13 1.00 · 10−12 0.301 0.001 36 4.80 · 10−1 320 1277 1336 5.85 · 10−1
0.002 30 122 647 966 3.45 · 10−1
0.000 855 436 1921 2315 1.97 · 10−1

11 5 40478626 rs10213846 8.04 · 10−13 1.03 · 10−12 0.299 0.000 681 6.31 · 10−1 317 1273 1345 5.56 · 10−1
0.001 15 119 648 970 4.49 · 10−1
0.001 28 438 1918 2314 1.63 · 10−1

12 5 40490831 rs4957297 1.12 · 10−12 1.41 · 10−12 0.299 0.000 341 2.94 · 10−2 317 1274 1345 5.56 · 10−1
0.002 88 121 644 969 3.44 · 10−1
0.002 99 935 2344 1383 3.15 · 10−1

13 2 233962410 rs3828309 1.19 · 10−12 1.12 · 10−12 0.452 0.003 41 5.90 · 10−1 645 1521 761 2.89 · 10−2
0.002 30 290 823 622 5.18 · 10−1
0.001 28 583 2049 2038 5.58 · 10−2

14 1 67387537 rs11805303 1.24 · 10−12 1.02 · 10−12 0.344 0.001 36 1 313 1235 1385 1.36 · 10−1
0.001 15 270 814 653 5.45 · 10−1
0.000 428 430 1909 2335 1.61 · 10−1

15 5 40515944 rs6871834 1.96 · 10−12 2.32 · 10−12 0.296 0.000 341 1 309 1271 1356 6.72 · 10−1
0.000 575 121 638 979 2.28 · 10−1
0.001 07 438 1922 2311 1.85 · 10−1

16 5 40499496 rs4957300 2.30 · 10−12 2.67 · 10−12 0.300 0.001 70 1.65 · 10−1 316 1274 1342 6.14 · 10−1
0 122 648 969 3.46 · 10−1

0.000 855 499 1925 2248 4.72 · 10−3
17 16 49297083 rs17221417 6.88 · 10−12 5.53 · 10−12 0.313 0.000 681 6.31 · 10−1 256 1175 1504 2.24 · 10−1

0.001 15 243 750 744 1.60 · 10−2
0.0182 859 2227 1505 4.89 · 10−1

18 1 67400370 rs10489629 8.65 · 10−12 9.15 · 10−12 0.430 0.0191 5.74 · 10−1 614 1404 863 3.48 · 10−1
0.0167 245 823 642 5.06 · 10−1
0.001 07 349 1796 2526 2.32 · 10−1

19 5 40433109 rs16869934 1.00 · 10−11 1.28 · 10−11 0.267 0.000 681 3.68 · 10−1 252 1203 1480 7.54 · 10−1
0.001 73 97 593 1046 3.04 · 10−1

0 564 2094 2018 5.60 · 10−1
20 1 67406223 rs2201841 1.41 · 10−11 1.15 · 10−11 0.345 0 1 311 1251 1375 2.89 · 10−1

0 253 843 643 4.19 · 10−1

Table A.3 The 20 first markers according to the Fisher p-value on the CDibd datasets and the corresponding statistics.
Green shaded cells refer to statistics related to controls only while red shaded cells refer to cases only
statistics.
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Chr Pos. snp rf imp. tt imp. Fisher p-value χ2 p-value maf fmiss pmiss 0 1 2 hwe
0.007 47 358 1832 2461 5.07 · 10−1

2 81542598 rs11688716 1 · 10−6 6 · 10−6 7.65 · 10−3 7.45 · 10−3 0.274 0.008 85 1.65 · 10−1 243 1165 1504 4.12 · 10−1
0.005 15 115 667 957 1
0.001 71 0 7 4671 1

2 81542876 rs10211262 1 · 10−6 1 · 10−6 7.17 · 10−1 7.63 · 10−1 0.000 748 0.002 38 2.72 · 10−1 0 4 2927 1
0.000 572 0 3 1744 1

0.002 77 431 1784 2458 5.38 · 10−5
2 81543370 rs6706111 3 · 10−6 1.86 · 10−4 4.74 · 10−3 4.73 · 10−3 0.283 0.003 06 7.78 · 10−1 289 1140 1500 1.13 · 10−3

0.002 29 142 644 958 2.33 · 10−2
0.001 49 949 2310 1420 8.59 · 10−1

2 81550580 rs11692929 0. 1.22 · 10−4 4.65 · 10−1 4.53 · 10−1 0.450 0.001 02 4.36 · 10−1 602 1453 880 9.70 · 10−1
0.002 29 347 857 540 8.46 · 10−1
0.007 90 114 1185 3350 4.59 · 10−1

2 81577055 rs17020238 5.60 · 10−5 3.89 · 10−4 9.76 · 10−1 9.51 · 10−1 0.152 0.007 83 1 67 753 2095 1
0.008 01 47 432 1255 1.91 · 10−1
0.002 56 109 1166 3399 4.51 · 10−1

2 81577090 rs17020239 9.30 · 10−5 2.34 · 10−3 9.76 · 10−1 9.57 · 10−1 0.148 0.002 38 7.71 · 10−1 63 741 2127 9.42 · 10−1
0.002 86 46 425 1272 1.54 · 10−1
0.002 77 499 1907 2267 1.32 · 10−3

2 81577812 rs11887827 3.88 · 10−4 4.37 · 10−3 2.19 · 10−8 2.42 · 10−8 0.311 0.001 70 8.63 · 10−2 322 1300 1311 1
0.004 58 177 607 956 1.66 · 10−7
0.000 854 111 1171 3400 3.87 · 10−1

2 81579712 rs17020244 7.10 · 10−5 1.60 · 10−3 9.76 · 10−1 9.75 · 10−1 0.149 0.000 681 6.32 · 10−1 65 743 2128 1
0.001 14 46 428 1272 1.85 · 10−1
0.001 71 110 1168 3400 4.18 · 10−1

2 81581046 rs12623313 9.20 · 10−5 2.85 · 10−3 9.52 · 10−1 9.39 · 10−1 0.148 0 3.71 · 10−4 65 743 2130 1
0.004 58 45 425 1270 1.84 · 10−1
0.003 41 109 1167 3394 4.52 · 10−1

2 81581185 rs10520335 7.30 · 10−5 4.91 · 10−4 9.52 · 10−1 9.54 · 10−1 0.148 0.002 72 3.09 · 10−1 63 742 2125 9.42 · 10−1
0.004 58 46 425 1269 1.55 · 10−1
0.002 13 498 2053 2125 9.47 · 10−1

2 81585945 rs7593114 6.30 · 10−5 4.11 · 10−3 1.44 · 10−1 1.41 · 10−1 0.326 0.001 02 4.65 · 10−2 323 1300 1312 9.67 · 10−1
0.004 01 175 753 813 1
0.002 13 111 1168 3397 3.86 · 10−1

2 81586635 rs9646997 5.60 · 10−5 9.25 · 10−4 8.81 · 10−1 8.82 · 10−1 0.149 0.001 02 4.65 · 10−2 63 744 2128 8.84 · 10−1
0.004 01 48 424 1269 8.91 · 10−2

0.002 99 110 1167 3395 4.18 · 10−1
2 81587078 rs11126813 5.80 · 10−5 4.80 · 10−5 1 9.73 · 10−1 0.148 0.002 04 1.65 · 10−1 64 743 2125 1

0.004 58 46 424 1270 1.54 · 10−1
0.001 49 152 1338 3189 4.19 · 10−1

2 81593778 rs7570013 1 · 10−6 4 · 10−6 5.93 · 10−1 5.73 · 10−1 0.176 0.001 02 4.36 · 10−1 97 846 1992 5.27 · 10−1
0.002 29 55 492 1197 6.15 · 10−1

Table A.4 CDwtccc variable importances results on chromosome 2 around a tree based only selected region. The 10
gray shaded rows correspond to the most important block according to the T-Trees method in that region.

Chr Pos. snp rf imp. tt imp. Fisher p-value χ2 p-value maf fmiss pmiss 0 1 2 hwe
0.007 91 114 1182 3343 4.25 · 10−1

2 81577055 rs17020238 1.77 · 10−4 3.10 · 10−5 9.52 · 10−1 9.38 · 10−1 0.152 0.007 83 1 67 753 2094 1
0.008 05 47 429 1249 1.61 · 10−1
0.002 14 109 1165 3392 4.51 · 10−1

2 81577090 rs17020239 2.25 · 10−4 3.60 · 10−5 9.28 · 10−1 9.30 · 10−1 0.148 0.002 38 7.53 · 10−1 63 741 2126 9.42 · 10−1
0.001 73 46 424 1266 1.54 · 10−1

0.002 14 499 1903 2264 1.04 · 10−3
2 81577812 rs11887827 1.27 · 10−3 1.03 · 10−2 2.42 · 10−8 2.73 · 10−8 0.311 0.001 70 5.15 · 10−1 322 1299 1311 1

0.002 88 177 604 953 1.54 · 10−7
0.000 642 111 1169 3393 3.86 · 10−1

2 81579712 rs17020244 1.64 · 10−4 5.66 · 10−3 9.76 · 10−1 9.69 · 10−1 0.149 0.000 681 1 65 743 2127 1
0.000 575 46 426 1266 1.57 · 10−1
0.001 07 110 1168 3393 4.18 · 10−1

2 81581046 rs12623313 2.38 · 10−4 4.30 · 10−3 1 9.87 · 10−1 0.149 0 7.09 · 10−3 65 743 2129 1
0.002 88 45 425 1264 2.16 · 10−1
0.002 78 109 1167 3387 4.87 · 10−1

2 81581185 rs10520335 3.10 · 10−4 3.52 · 10−3 9.04 · 10−1 9.06 · 10−1 0.149 0.002 72 1 63 742 2124 9.42 · 10−1
0.002 88 46 425 1263 1.56 · 10−1
0.002 14 498 2046 2122 8.94 · 10−1

2 81585945 rs7593114 2.34 · 10−4 9.39 · 10−3 1.44 · 10−1 1.41 · 10−1 0.326 0.001 02 4.60 · 10−2 323 1299 1312 9.67 · 10−1
0.004 03 175 747 810 9.12 · 10−1
0.001 50 111 1168 3390 3.86 · 10−1

2 81586635 rs9646997 2.34 · 10−4 1.40 · 10−3 8.33 · 10−1 8.34 · 10−1 0.149 0.001 02 4.36 · 10−1 63 744 2127 8.84 · 10−1
0.002 30 48 424 1263 8.99 · 10−2
0.002 35 110 1167 3388 4.18 · 10−1

2 81587078 rs11126813 8.00 · 10−5 7.28 · 10−4 9.76 · 10−1 9.79 · 10−1 0.149 0.002 04 5.51 · 10−1 64 743 2124 1
0.002 88 46 424 1264 1.55 · 10−1
0.001 07 152 1333 3186 3.89 · 10−1

2 81593778 rs7570013 0. 1.34 · 10−4 5.54 · 10−1 5.45 · 10−1 0.175 0.001 02 1 97 845 1992 5.26 · 10−1
0.001 15 55 488 1194 5.56 · 10−1
0.001 28 30 698 3942 1

2 81594169 rs17020301 5 · 10−6 2.80 · 10−3 3.89 · 10−1 3.79 · 10−1 0.0812 0.001 02 6.77 · 10−1 16 433 2485 6.14 · 10−1
0.001 73 14 265 1457 6.40 · 10−1
0.001 28 110 1170 3390 4.53 · 10−1

2 81599721 rs12613517 1.72 · 10−4 2.14 · 10−3 9.04 · 10−1 9.05 · 10−1 0.149 0.001 36 1 64 743 2126 1
0.001 15 46 427 1264 1.86 · 10−1

0.000 642 110 1172 3391 4.53 · 10−1
2 81600746 rs11689930 2.22 · 10−4 2.23 · 10−4 9.52 · 10−1 9.39 · 10−1 0.149 0.000 681 1 65 743 2127 1

0.000 575 45 429 1264 2.56 · 10−1
0.0124 15 661 3942 1.90 · 10−2

2 81601323 rs1052397 4 · 10−6 2.13 · 10−4 7.13 · 10−1 6.93 · 10−1 0.0748 0.0106 1.71 · 10−1 9 412 2485 7.64 · 10−2
0.0155 6 249 1457 2.28 · 10−1

Table A.5 CDibd variable importances results on chromosome 2 around a tree based only selected region. The 10
gray shaded rows correspond to the most important block according to the T-Trees method in that region.
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Figure B.1 BD: the position of the first 100 variables according to the tree based methods. Blue and triangle
correspond to rf variable importances. Orange and square correspond to tt variable importances. As
points overlap, opacity increases, indicating several hits concentrated in a region
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Figure B.2 CAD: the position of the first 100 variables according to the tree based methods. Blue and triangle
correspond to rf variable importances. Orange and square correspond to tt variable importances. As
points overlap, opacity increases, indicating several hits concentrated in a region
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Figure B.3 CD: the position of the first 100 variables according to the tree based methods. Blue and triangle
correspond to rf variable importances. Orange and square correspond to tt variable importances. As
points overlap, opacity increases, indicating several hits concentrated in a region
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Figure B.4 HT : the position of the first 100 variables according to the tree based methods. Blue and triangle
correspond to rf variable importances. Orange and square correspond to tt variable importances. As
points overlap, opacity increases, indicating several hits concentrated in a region
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Figure B.5 RA: the position of the first 100 variables according to the tree based methods. Blue and triangle
correspond to rf variable importances. Orange and square correspond to tt variable importances. As
points overlap, opacity increases, indicating several hits concentrated in a region
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Figure B.6 T1D: the position of the first 100 variables according to the tree based methods. Blue and triangle
correspond to rf variable importances. Orange and square correspond to tt variable importances. As
points overlap, opacity increases, indicating several hits concentrated in a region
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Figure B.7 T2D: the position of the first 100 variables according to the tree based methods. Blue and triangle
correspond to rf variable importances. Orange and square correspond to tt variable importances. As
points overlap, opacity increases, indicating several hits concentrated in a region



Appendix C

About the score measure

This section justifies our score measure choice. We applied the random forest (a 10-folds cross validation
with T = 100 and no pruning) on CDwtccc (resp. CDibd). Figure C.1 (resp. C.2) shows how the auc evolve
w.r.t. the value of K for the three different score measures: ST

C , QT
C and ITC (cf. Chapter 4). We notice that

ST
C reaches the highest value. With ITC for identical values of K we reach lower aucs than with ST

C . Finally,
the QT

C curve increases rapidly w.r.t. K but saturates around 0.8.
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Figure C.1 CDwtccc: the different auc curve profiles we obtained with rf (T = 100) using three different score
measures while increasing the K parameter.

K

A
U

C

0.5

0.6

0.7

0.8

0.9

1.0

10
0

50
0

10
00

25
00

50
00

10
00

0

●
●

●
●

●

●

●

●

●

●

●

●

SC
T

●
● ● ● ●

●

K

A
U

C

0.5

0.6

0.7

0.8

0.9

1.0

10
0

50
0

10
00

25
00

50
00

10
00

0

●

● ● ● ●
●

●

● ● ●
●

●

QC
T

●

●

●
●

●
●

K

A
U

C

0.5

0.6

0.7

0.8

0.9

1.0

10
0

50
0

10
00

25
00

50
00

10
00

0

●

●

●

●

●
●

●

●

●

●

●

●

IC
T

Figure C.2 CDibd: the different auc curve profiles we obtained with rf (T = 100) using three different score measures
while increasing the K parameter.

Also, Figure C.3 (resp. C.4) depicts the minor allele frequencies of the 1000 first markers according to
each variable importance ranking obtained from forests using the three different score measures on CDwtccc

(resp. CDibd). Especially, with QT
C , the “end-cut” preference is a real problem. As we can see the most

important variables are systematically the ones with a low maf. It also explains why the auc saturated with
that score: the variable selection process is biased towards low maf variables which forces the trees to
exploit only a small subset of possible attributes and renders the method much less sensitive to an increase
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of K . On the other hand, we see for ITC that there is also a (less pronounced) bias but towards major allele
frequencies variables this time. Finally, we see that with the ST

C , the maf values are more evenly distributed
among top variables using the “adequately” normalised score measure.
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Figure C.3 CDwtccc: Minor allele frequencies of the 1000 first variables according to three forests (rf, K = 1000,
T = 100 and no pruning) using the three different score measures.
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Figure C.4 CDibd: Minor allele frequencies of the 1000 first variables according to three forests (rf, K = 1000,
T = 100 and no pruning) using the three different score measures.

Those two observations justify our choice of the ST
C score measure as it leads to better predictions while

not being biased towards any particular maf value.
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[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel, Extremely randomized trees, Machine Learn-
ing 36 (2006), no. 1, 3–42.

[GGS11] Torsten Gunther, Inka Gawenda, and Karl Schmid, phenosim - a software to simulate pheno-
types for testing in genome-wide association studies, BMC Bioinformatics 12 (2011), no. 1,
265.

[GHCB10] Benjamin A Goldstein, Alan E Hubbard, Adele Cutler, and Lisa F Barcellos, An application of
random forests to a genome-wide association dataset: Methodological considerations & new
findings, BMC Genetics 11 (2010), no. 1, 49.
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Duchesnay, Scikit-learn: Machine Learning in Python, The Journal of Machine Learning Re-
search 12 (2011), 2825–2830.



BIBLIOGRAPHY 171

[Qui83] J. R. Quinlan, Learning Efficient Classification Procedures and Their Application to Chess
End-Games, pp. 463–482, Morgan Kaufmann Publishers, Los Altos, CA, 1983.

[S+06] Frank J Steemers et al., Whole-genome genotyping with the single-base extension assay,
Nature Methods 3 (2006), no. 1, 31–33.

[S+12] Fayaz Seifuddin et al., Meta-analysis of genetic association studies on bipolar disorder, Amer-
ican journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of
the International Society of Psychiatric Genetics 159B (2012), no. 5, 508–18.

[SBZH07] Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn, Bias in random
forest variable importance measures: illustrations, sources and a solution, BMC Bioinformatics
8 (2007), 25.
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[Tor01] Lúıs Torgo, A Study on End-Cut Preference in Least Squares Regression Trees, EPIA ’01:
Proceedings of the10th Portuguese Conference on Artificial Intelligence on Progress in Artificial
Intelligence, Knowledge Extraction, Multi-agent Systems, Logic Programming and Constraint
Solving, Springer-Verlag, December 2001.

[Vap98a] Vladimir Naumovich Vapnik, Statistical learning theory, Wiley-Interscience, September 1998.

[Vap98b] Vladimir Naumovich Vapnik, Statistical learning theory, Wiley-Interscience, Jan 1998.

[vB+11] Bregje W M van Bon et al., The phenotype of recurrent 10q22q23 deletions and duplications,
European Journal of Human Genetics 19 (2011), no. 4, 400–408.

[vdL+07] Joyce van de Leemput et al., Deletion at ITPR1 Underlies Ataxia in Mice and Spinocerebellar
Ataxia 15 in Humans, PLoS Genet 3 (2007), no. 6, e108.

[VSKZ09] Maren Vens, Arne Schillert, Inke R König, and Andreas Ziegler, Look who is calling: a com-
parison of genotype calling algorithms, BMC Proceedings 3 Suppl 7 (2009), S59.

[W+09] Zhi Wei et al., From Disease Association to Risk Assessment: An Optimistic View from Genome-
Wide Association Studies on Type 1 Diabetes, PLoS Genet 5 (2009), no. 10, e1000678.

[W+12] Stacey J Winham et al., SNP interaction detection with random forests in high-dimensional
genetic data, BMC Bioinformatics 13 (2012), no. 1, 164.

[WA93] Louis Wehenkel and Vijay Akella, A hybrid decision tree - neural network approach for power
system dynamic security assessment, Proceedings of the 4th International Symposium on Expert
Systems Application to Power Systems, 1993, pp. 285–291.

[Weh96] Louis Wehenkel, On uncertainty measures used for decision tree induction, Proceedings of the
International Congress on Information Processing and Management of Uncertainty in Knowl-
edge based Systems, IPMU96 (Granada), 1996, pp. 413–418.

[Wel07] Wellcome Trust Case Control Consortium, Genome-wide association study of 14,000 cases of
seven common diseases and 3,000 shared controls, Nature 447 (2007), no. 7145, 661–78.

[YLLP11] Zeng-You Ye, De-Pei Li, Li Li, and Hui-Lin Pan, Protein kinase CK2 increases glutamatergic
input in the hypothalamus and sympathetic vasomotor tone in hypertension., The Journal of
neuroscience : the official journal of the Society for Neuroscience 31 (2011), no. 22, 8271–
8279.

[Z+13] Xu Zhao et al., Single-nucleotide polymorphisms inside microRNA target sites influence the
susceptibility to type 2 diabetes., Journal of human genetics 58 (2013), no. 3, 135–141.

[Zha04] Tong Zhang, Solving large scale linear prediction problems using stochastic gradient descent
algorithms, ICML ’04: Proceedings of the twenty-first international conference on Machine
learning, ACM, July 2004.

[ZHSL12] Or Zuk, Eliana Hechter, Shamil R Sunyaev, and Eric S Lander, The mystery of missing heritabil-
ity: Genetic interactions create phantom heritability., Proceedings of the National Academy of
Sciences of the United States of America 109 (2012), no. 4, 1193–1198.

[ZL07] Yu Zhang and Jun S Liu, Bayesian inference of epistatic interactions in case-control studies.,
Nat Genet 39 (2007), no. 9, 1167–1173.

[ZVSW10] Andreas Ziegler, Kristel Van Steen, and Stefan Wellek, Investigating Hardy–Weinberg equilib-
rium in case–control or cohort studies or meta-analysis, Breast Cancer Research and Treatment
128 (2010), no. 1, 197–201.


	Introduction
	Motivations
	Approach to research
	Organization of the manuscript
	List of publications

	I Background and Methods
	Genome-Wide Association Studies
	dna : 3 letters for 3 billions bases
	snp : 3 letters (again) for 3 values
	Genome-wide associations studies
	Thanks to linkage disequilibrium

	GWAS : how ?
	Quality controls
	Single-locus test of association
	A bit further


	Machines can learn
	Datasets and notations
	Curse of Dimensionality

	The learning step
	The model evaluation step
	Prediction versus Interpretation
	Evaluation of the accuracy of binary classification models
	roc curves
	Cross-validation

	Summary

	Tree-based methods for GWAS
	Motivations
	State-of-the-art in tree-based supervised learning
	Single Decision Trees
	Random Forests
	Extremely Randomized Trees

	Trees inside Trees
	Motivation
	Algorithm
	Evaluation of variable and group importances

	Extension to more quantitative or multiple phenotypes and environmental effects 
	Related works
	Summary


	II Validations
	Comparison of RF and T-Trees on synthetic datasets
	Synthetic `GWAS' dataset generation
	Principle of the synthetic `genotype' generation
	Principle of the synthetic `phenotype' generation
	Comments

	Evaluation protocol
	Simulation results
	Sample efficiency of RF vs T-Trees in the context of a single causal block
	Robustness against label errors
	Influence of the quality of prior information about the block structure
	More than one causal block
	Modality, scale of measurement and number of categories

	Discussion

	The case of Crohn's disease
	Two dataset variants for Crohn's disease
	Predictions
	Identification of suceptibility loci

	A few experiments with linear models
	Sum of log odds ratio
	Globally trained linear models
	Preliminary analysis of the SNP rankings

	Discussion
	Importance of the preprocessings
	Methods


	Six other complex diseases
	The six other diseases
	Comparison of the tree-based methods predictive power
	Variable importances analyses
	Overall remarks


	III Conclusion
	Closure
	Epitome
	Main findings
	Further work
	Tree-based supervised learning methods
	Genetical dissection of complex phenotypes by supervised learning
	Software development and implementation


	Appendices
	Additional data related to Chapter 6
	Additional data related to Chapter 7
	About the score measure


