Variational data analysis for generating ocean climatologies (Diva) and web-based distribution of data products (OceanBrowser)

Alexander Barth, **Charles Troupin**, Aida Alvera-Azcárate & Jean-Marie Beckers

> Acknowledgement: SeaDataNet, EMODnet Chemistry, EMODnet Biology

Objectives of data analysis

- 1 Temperature at the ⋄?
- 2 Mean field?
- 3 Uncertainty of your estimate for 1 and 2?

Variational analysis

What is the "best looking" field close to the observations?

How can we quantify "good-looking"?

Salinity in the Mediterranean Sea

Too smooth!

Too noisy!

Slightly better...

OK, looks nice!

Good-looking analysed field?

Close to observations but...

not too close

cruises should not be visible

Smooth variations but...

not too smooth

more than a uniform gradient should be visible

Good-looking analysed field?

Analysis parameters:

- 1. correlation length scale
- 2. signal-to-noise ratio

determined from data themselves

Diva Cocktail Recipe

Ingredients:

- 1 1/2 oz vodka
- 1/2 oz passion-fruit juice
- 1/2 oz lime juice
- 1 tbsp cherry juice
- fill with soda

Diva Cocktail Recipe

Diva Cocktail Recipe

Proportions:

- correlation length scale
- signal-to-noise ratio

Diva 2D: longitude/latitude

Procedure repeated

- for various depth levels
- for different periods

Diva in 3D

■ Result layers *stacked* together

Diva in 3D

- Result layers *stacked* together
- Problems may occur between two levels...

Diva in 3D

- Result layers *stacked* together
- Problems may occur between two levels...
- ... so stabilisation is required

Extension to higher dimensions

Classic Diva: smoothness constraint only in 2D

DIVAnd: arbitrary high dimensional space (time, depth, ...)

Extension to higher dimensions

Classic Diva: smoothness constraint only in 2D

DIVAnd: arbitrary high dimensional space (time, depth, ...)

1928: [Theosophy and the Fourth Dimension, Alexander Horne]

Extension to higher dimensions

Classic Diva: smoothness constraint only in 2D DIVAnd: arbitrary high dimensional space (time, depth, ...)

1928: [Theosophy and the Fourth Dimension, Alexander Horne]

2013: [Theory of Diva in the Fourth Dimension (and more), Alexander Barth]

$$K^{n,m}(\vec{x}) = \frac{2}{\Gamma(\nu)} \left(\frac{|\mathbf{L}^{-1}\vec{x}|}{2} \right)^{\nu} K_{\nu}(|\mathbf{L}^{-1}\vec{x}|)$$
+ many more!

Application

- Pseudo-observations: temperature from a global ocean model (NEMO-LIM2).
- Horizontal resolution: $\approx 2^{\circ}$
- Positions: ARGO observations from 2007
- Analysis quality: comparison between
 - analysed field
 - original model data
- Observations: daily model results
 Analysis: monthly means
- Surface fields only

Application

Analysis parameters: optimized by minimizing RMS to model climatology

Advection constraint

Forces gradients of interpolated fields to align with currents In 3D: distinction between upstream and downstream

3D case: background error covariance without (upper row) and with advection constraint (lower row) for a data point located at the cross and at month 6

Experiments:

- with/without time dimension
- with/without advection

dimension of analysis	advection constraint	skill-score
2D	no	0

Experiments:

- with/without time dimension
- with/without advection

dimension of analysis	advection constraint	skill-score
2D	no	0
2D	yes	29

Experiments:

- with/without time dimension
- with/without advection

dimension of analysis	advection constraint	skill-score
2D	no	0
2D	yes	29
3D	no	27

Experiments:

- with/without time dimension
- with/without advection

dimension of analysis	advection constraint	skill-score
2D	no	0
2D	yes	29
3D	no	27
3D	yes	44

Want to use Diva?

Playing...

http://data-assimilation.net/Tools/divand_demo/html/

Want to use Diva?

With your own data...

http://gher-diva.phys.ulg.ac.be/web-vis/diva.html or ODV

Want to use Diva?

For serious work:

2D version (for production), open source, GPL nD version (for research), open source, GPL

http://modb.oce.ulg.ac.be/mediawiki/index.php/DIVA

Web-based viewer of climatologies (in NetCDF)

Based on OGC standards: WMS, WFS

Horizontal section at predefined depth and arbitrary vertical sections

Output formats:

Images: PNG, SVG, EPS, KMLAminations: MP4 and WebM

Direct user feed-back ⊠

Implementation of Diva in more than 2 dimensions (on a curvilinear grid).

- Implementation of Diva in more than 2 dimensions (on a curvilinear grid).
- 2 The benefit of the advection constraint demonstrated in 2 and 3 dimensions.

- Implementation of Diva in more than 2 dimensions (on a curvilinear grid).
- 2 The benefit of the advection constraint demonstrated in 2 and 3 dimensions.
- 3 Various ways (with various degrees of complexity) are offered to use or try this method.

- Implementation of Diva in more than 2 dimensions (on a curvilinear grid).
- 2 The benefit of the advection constraint demonstrated in 2 and 3 dimensions.
- 3 Various ways (with various degrees of complexity) are offered to use or try this method.
- 4 A web interface has been developed to visualize the output of Diva aiming to simplify the dissemination of data products.

Thanks for your attention

