Influence of the elephant (Loxodonta africana) on the landscape mosaic and the creation of microhabitats in Burkina Faso

LINCHANT Julie, **VERMEULEN** Cédric Séminaire faune 21 octobre 2013

- Listed as Vulnerable in the IUCN Red List
- Alarming decrease of elephant populations in West Africa

Habitat fragmentation and loss

- Listed as Vulnerable in the IUCN Red List
- Alarming decrease of elephant populations in West Africa

Habitat fragmentation and loss

- Listed as Vulnerable in the IUCN Red List
- Alarming decrease of elephant populations in West Africa

Poaching

 Paradoxically, important increases of population size on a local scale => refuge in protected areas

6

7

- Sudano-sahelian climat: +-900 mm
- Dry season from October to April-May
- Woody savannas

- Elephants not hunted in West Africa
- Hunting area: installations
 - Waterholes, ponds
 - Controlled fires and green pastures
 - Anti-poaching

=> Increasing densities

High densities, a problem?

- Damages on the ligneous, degradation of the forested habitats
- Regression of woody savannas towards grassy savannas
- Habitat loss
- Decrease in biodiversity

Two other recent theories.... The theory of megaherbivores and the *Ecosystem engineers*

- Provide new food resources
- Modification and complexification of the landscape mosaic
- Creation of new microhabitats
- Positive effect on the biodiversity

- (1) The elephants change the landscape mosaic and create new microhabitats by bringing down trees
- (2) Those microhabitats could increase the diversity and the abundance of micromammalian species

- Main objective: to verify the theory of megaherbivores and its application in the case of the elephant in the savannas of Burkina Faso
- Specific objectives:
 - (1) Quantifying the creation of microhabitats by the elephants, characterizing them and their environment
 - (2) Analyzing their spatial organization
 - (3) Studying the diversity and the abundance of micromammals in relation with the microhabitats and their repartition

- Multi-scalar analysis
- Seasonal analysis (dry and wet seasons)

• 4 plots of 1 km²: different use and damage densities

• 4 plots of 1 km²: different use and damage densities

Microhabitats map

• Microhabitats « fallen trees »

• 5 trapping grids by plot

• Microhabitats « fallen trees »

• 5 trapping grids by plot

• Including 10 trapping stations each

Scherman traps, snap-traps and pitfalls

Prospected every morning during the trapping session
Specimens and tissue samples brought to the Royal Belgian Institute of Natural Sciences

D. Description of the microhabitats

- Within a radius of 25 m around every trapping station
- Composition
 - Size, specie, state, ...
 - Fruits, seeds, ...
 - Burrows, indications of use by other species, ...
- Spatial organization
 - Number by station, density by plot
 - Connectivity

E. Description of the environment (Lambert *et al.* 2006)

- Within a radius of 10 m around every trapping station
- Density of trees, shrubs, herbaceous plants
- Ground cover, covers of the tree and shrub layers
- Food resources : fruits and seeds

 Context
 Hypothesis
 Objectives
 Method
 Results
 Perspectives

 5. First results

• There are plans and there is reality...

 Context
 Hypothesis
 Objectives
 Method
 Results
 Perspectives

 5. First results

• 2 plots, 13 days trapping session at the beginning of the wet season

	Plot 1 (1km²)	Plot 2 (1km²)	Total (2km²)
Total fallen trees	338	277	615
Characterized microhabitats	36	26	62
Catches	83	73	156

• Genetic analysis at the Museum : under process

Number of catches and microhabitats by trapping grid

 Context
 Hypothesis
 Objectives
 Method
 Results
 Perspectives

 6. Perspectives

- Necessity of further prospecting:
 - by species
 - at the station level and the impact of the microhabitat density at the plot level
 - impact of the environment
 - effect of the season
 - effect of the microhabitat characteristics
- Discovery of new species ?

> Thank you for your attention