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The Gurson [1977] model
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The Gurson [1977] model
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1 new material parameter: fj



GTN extension

The Gurson-Tvergaard-Needleman (GTN) extension:
m Nucleation [Chu and Needleman, 1980].
m (Corrected) void growth.
m Coalescence [Tvergaard and Needleman, 1984].



GTN extension

Tvergaard [1982]
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GTN extension

Tvergaard [1982]
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2 new material parameters: q1, g2 (43 = q12)



Nucleation

Chu and Needleman [1980]
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Nucleation

Chu and Needleman [1980]
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Nucleation

Chu and Needleman [1980]

f:fg+fn+fs
fn = AL+ B (6eq + conr)
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Strain Stress
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3 new parameters: fn, en, Sy



Coalescence

Tvergaard and Needleman [1984]
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Coalescence

Tvergaard and Needleman [1984]

f it f<fer
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2 new parameters: fer, fr (fu = qi>
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Shear extension
Xue [2008]; Nahshon and Hutchinson [2008]
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Shear extension

Xue [2008]; Nahshon and Hutchinson [2008]

f:fg+fn+fs
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1 new parameter: k,




Resuming. . .

9 material parameters:

® fo

B g1, G2

m Nucleation: fy, en, Sy
m Coalescence: f.., fr

m Shear: k,



GTN characterization

Approaches

m Microscopic measurements.

m Macroscopic measurements.

m Hybrid experimental-numerical.
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GTN characterization

Approaches

m Microscopic measurements.

m Macroscopic measurements.

m Hybrid experimental-numerical.

m Parameter scale.

m Nature of the parameter (stress state based, fitting, etc.).
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Microscopic approach

m Image analysis, 3D tomography, in-situ neutron diffraction,. ..

m Use whenever it is possible.
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Microscopic approach

m Image analysis, 3D tomography, in-situ neutron diffraction,. ..

m Use whenever it is possible.

We can identify 4(5) parameters:

fo. fno fers fr. (SN)
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Tensile test DCO1 steel

fr measurement:

f=04-05% 142 : - A

‘

f—0.04—0.07%\. - A
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Tensile test DCO1 steel

m Other variables: void spacing, size, distribution Sy, etc.
m Qualitative measurements:

13



Ductile vs. fragile
Barsoum and Faleskog [2007]

Cavity controlled (Dimples) Shear controlled
T=1.10 T =0.47




Macroscopic approach

m Different notch radius for different triaxiality.

m DIC measurements.

Measurements

Load-displacement curve.

Displacement at the onset of fracture and at fracture.
(Sheet) thickness.

DIC: crack appearance.

DIC: strain path to fracture.

We can identify 1(3) parameters:

EN (QL (12)
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Onset of fracture

Dunand and Mohr [2010]
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Cup-to-cone fracture

Benzerga and Leblond [2010]

Macro-micro approach:

Load

Displacement
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Hybrid numerical-experimental

Finite element simulations coupled with experiments.

Inverse modeling

m Deterministic (OPTIM)
m Stochastic (Al_Lagamine)
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Simple methodology

Li et al. [2011]

m Al-alloy 6061 T6
m GTN model (without shear).

fo =0.02 from image analysis.

g1 =1.25 and g2 =1.0 fixed.

ey =0.3, Sy =0.01, fy =0.02 fixed.

A f. =0.045 and fr =0.0475 obtained through iterations.
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Numerical methodology

Xue et al. [2010]

m DH36 steel
m Gurson+coalescence-+shear

m No microscopic measurements are available.
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Numerical methodology

Xue et al. [2010]

m DH36 steel
m Gurson+coalescence+shear
m No microscopic measurements are available.

n from a single tensile test.

fo and D (element size) from the load-displacement cracked
specimen.

No information about fr =0.25, f.. =0.15.
A k., from a shear-off test.
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Hybrid methodology

Dunand and Mohr [2010, 2011]

TRIP780 steel sheets.
GTN+shear.
Multiaxial tests and error assesment.

stress and strain from hybrid experimental-numerical.

No inverse modeling.
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Hybrid methodology

Dunand and Mohr [2010, 2011]

m TRIP780 steel sheets.

m GTN+shear.

m Multiaxial tests and error assesment.

m stress and strain from hybrid experimental-numerical.
m No inverse modeling.

fo =6 x 107> from image analysis.

Nucleation parameters fitted from tensile specimen.
q1 and ¢o from a punch test.

Coalescence parameters from the punch test.

k., from butterfly test (shear).
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Hybrid methodology

Dunand and Mohr [2010, 2011]
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To keep in mind. ..

m Bad plasticity modeling = bad damage modeling (coupled criteria)
m Fracture is very sensible to loading paths: diverse test are needed.

m The sensibility of the load-displacement curve to the parameters
should be evaluated.

m Post-necking behaviour seems to be important.
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