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The Gurson [1977] model
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ḟ = (1− f) trε̇p

1 new material parameter: f0
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GTN extension

The Gurson-Tvergaard-Needleman (GTN) extension:

Nucleation [Chu and Needleman, 1980].

(Corrected) void growth.

Coalescence [Tvergaard and Needleman, 1984].
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GTN extension
Tvergaard [1982]

Fp(σ, f, σ) =
σ2
eq

σ2 − 1 + 2q1f cosh
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− q3f2 = 0
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GTN extension
Tvergaard [1982]

Fp(σ, f, σ) =
σ2
eq

σ2 − 1 + 2 q1 f cosh

(
−3 q2 σm

2σ

)
− q3 f

2 = 0

2 new material parameters: q1, q2 (q3 = q1
2)
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Nucleation
Chu and Needleman [1980]

ḟ = ḟg + ḟn + ḟs

ḟn = Aε̇Peq︸︷︷︸
Strain

+B (σ̇eq + cσ̇M )︸ ︷︷ ︸
Stress
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Nucleation
Chu and Needleman [1980]

ḟ = ḟg + ḟn + ḟs
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3 new parameters: fN , εN , SN
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Coalescence
Tvergaard and Needleman [1984]

f∗ =

 f if f < fcr

fcr +
fu − fcr
fF − fcr

(f − fcr) if f > fcr
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Coalescence
Tvergaard and Needleman [1984]

f∗ =

 f if f < fcr

fcr +
fu − fcr
fF − fcr

(f − fcr) if f > fcr

2 new parameters: fcr, fF

(
fu =

1

q1

)
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Shear extension
Xue [2008]; Nahshon and Hutchinson [2008]

ḟ = ḟg + ḟn + ḟs

ḟs = kωfω(s)
sε̇P

σeq

8



Shear extension
Xue [2008]; Nahshon and Hutchinson [2008]

ḟ = ḟg + ḟn + ḟs

ḟs = kω fω(s)
sε̇P

σeq

1 new parameter: kω
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Resuming. . .

9 material parameters:

f0

q1, q2

Nucleation: fN , εN , SN

Coalescence: fcr, fF

Shear: kω
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GTN characterization

Approaches

Microscopic measurements.

Macroscopic measurements.

Hybrid experimental-numerical.

Criteria

Parameter scale.

Nature of the parameter (stress state based, fitting, etc.).
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Microscopic approach

Image analysis, 3D tomography, in-situ neutron diffraction,. . .

Use whenever it is possible.

We can identify 4(5) parameters:

f0, fN , fcr, fF , (SN )
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Tensile test DC01 steel

fF measurement:

f = 0.4− 0.5%

f = 0.04− 0.07%
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Tensile test DC01 steel

Other variables: void spacing, size, distribution SN , etc.

Qualitative measurements:

Ductile

Fragile
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Ductile vs. fragile
Barsoum and Faleskog [2007]

Cavity controlled (Dimples)
T = 1.10

Shear controlled
T = 0.47
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Macroscopic approach

Different notch radius for different triaxiality.

DIC measurements.

Measurements

Load-displacement curve.

Displacement at the onset of fracture and at fracture.

(Sheet) thickness.

DIC: crack appearance.

DIC: strain path to fracture.

We can identify 1(3) parameters:

εN (q1, q2)
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Onset of fracture
Dunand and Mohr [2010]

Location of the onset of
fracture:
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Cup-to-cone fracture
Benzerga and Leblond [2010]

Macro-micro approach:
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Hybrid numerical-experimental

Finite element simulations coupled with experiments.

Inverse modeling

Deterministic (OPTIM)

Stochastic (AI Lagamine)
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Simple methodology
Li et al. [2011]

Al-alloy 6061 T6

GTN model (without shear).

1 f0 =0.02 from image analysis.

2 q1 =1.25 and q2 =1.0 fixed.

3 εN =0.3, SN =0.01, fN =0.02 fixed.

4 fc =0.045 and fF =0.0475 obtained through iterations.
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Numerical methodology
Xue et al. [2010]

DH36 steel

Gurson+coalescence+shear

No microscopic measurements are available.

1 n from a single tensile test.

2 f0 and D (element size) from the load-displacement cracked
specimen.

3 No information about fF =0.25, fcr =0.15.

4 kω from a shear-off test.
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Hybrid methodology
Dunand and Mohr [2010, 2011]

TRIP780 steel sheets.

GTN+shear.

Multiaxial tests and error assesment.

stress and strain from hybrid experimental-numerical.

No inverse modeling.

1 f0 =6× 10=5 from image analysis.

2 Nucleation parameters fitted from tensile specimen.

3 q1 and q2 from a punch test.

4 Coalescence parameters from the punch test.

5 kω from butterfly test (shear).
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Hybrid methodology
Dunand and Mohr [2010, 2011]

22



To keep in mind. . .

Bad plasticity modeling ⇒ bad damage modeling (coupled criteria)

Fracture is very sensible to loading paths: diverse test are needed.

The sensibility of the load-displacement curve to the parameters
should be evaluated.

Post-necking behaviour seems to be important.
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