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1 Introduction

The proliferation of the video surveillance cameras, which accounts for the vast majority of cameras
worldwide, has resulted in the need to �nd methods and algorithms for dealing with the huge
amount of information that is gathered every second. This encompasses processing tasks, such as
raising an alarm or detouring moving objects, as well as some semantic tasks like event monitoring,
trajectory or �ow analysis, counting people, etc.

Many families of tools related to motion detection in videos are described in the literature (see [21]
for tools related to the visual analysis of humans). Some of them track objects, frame by frame, by
following features in the video stream. Others operate by comparing the current frame with a static
background frame, pixel by pixel. This is the basis of background subtraction, whose principle is
very popular for �xed cameras. The purpose of background subtraction is therefore formulated
as the process to extract moving objects by detecting zones where a signi�cant change occurs.
Moving objects are referred to as the foreground, while static elements of the scene are part of the
background. Practice however shows that this distinction is not always obvious. For example, a
static object that starts moving, such as a parked car, creates both a hole in the background and
an object in the foreground. The hole, named ghost, is usually wrongly assigned to the foreground
despite that it should be discarded as there is no motion associated to it. Another de�nition of
the background considers that background pixels should correspond to values visible most of the
time, or in statistical terms, whose probabilities are the highest. But this poses problems when the
background is only visible for short periods of time, like a road with heavy tra�c. The diversity
of scenes and speci�c scenarios explains why countless papers have been devoted to background
subtraction, as well as additional functionalities such as the detection of shadows or the robustness
to camera jitter, etc.

In this chapter, we elaborate on a background subtraction technique named ViBe, that has been
described in three previous papers [1, 2, 37], and three granted patents [34, 35, 36]. After some
general considerations, we describe the principles of ViBe in Section 2. We review the innova-
tions introduced with ViBe: a background model, an update mechanism composed of random
substitutions and spatial di�usion, and a fast initialization technique. We also discuss some en-
hancements that broaden up the possibilities for improving background subtraction techniques,
like the distinction between the segmentation map and the updating mask, or a controlled di�u-
sion mechanism. Section 3 discusses the computational cost of ViBe. In particular, we introduce
the notion of background subtraction complexity factor to express the speed of the algorithm, and
show that ViBe has a low complexity factor. Section 4 concludes the chapter.

∗This is an updated version of the original chapter (the main update relates to the computation times of Table 2).
These numbers were obtained with a library available at http://www2.ulg.ac.be/telecom/research/vibe/doc.
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1.1 What are we looking for?

The problem tackled by background subtraction involves the comparison of the last frame of a
video stream with a reference background frame or model, free of moving objects. This com-
parison, called foreground detection, is a classi�cation process that divides the image into two
complementary sets of pixels (there is no notion of object at this stage): (1) the foreground, and
(2) the background. This binary classi�cation process is illustrated in Figure 1.

Figure 1: The image of a road with moving cars (from the baseline/highway directory of the
�Change Detection� dataset [10]) and the corresponding binary segmentation map (produced by
ViBe). Foreground pixels are drawn in white.

It results in a binary output map, called segmentation map hereafter. For humans, it might seem
obvious to delineate moving objects, because humans incorporate knowledge from the semantic
level (they know what a car is, and understand that there are shadows). However, such knowledge
is not always available for computers to segment the image. Therefore segmentation is prone to
classi�cation errors. These errors might disturb the interpretation, but as long as their number
is small, this is acceptable. In other words, there is no need for a perfect segmentation map.
In addition, as stated in [27], it is almost impossible to specify a gold-standard de�nition of
what a background subtraction technique should detect as a foreground region, as the de�nition
of foreground objects relates to the application level. Therefore, initiatives such as the i-LIDS
evaluation strategy [13] are directed more towards the de�nition of scenarios than the performance
of background subtraction.

1.2 Short review of background subtraction techniques

Many background subtraction techniques have been proposed, and several surveys are devoted to
this topic (see for example [3, 5, 9]). Background subtraction requires to de�ne an underlying
background model and an update strategy to accommodate for background changes over time.
One common approach to background modeling consists to assume that background pixel values
(called background samples) observed at a given location are generated by a random variable, and
therefore �t a given probability density function. Then it is su�cient to estimate the parameters
of the density function to be able to determine if a new sample belongs to the same distribution.
For example, one can assume that the probability density function is a gaussian and estimate its
two parameters (mean and variance) adaptively [39]. A simpler version of it considers that the
mean which, for each pixel, is stored in a memory and considered as the background model, can
be estimated recursively by

Bt = αBt−1 + (1− α)It, (1)

where Bt and It are the background model and current pixel values at time t respectively, and α
is a constant (α = 0.05 is a typical value). We name this �lter the exponential �lter because Bt
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adapts to It exponentially. With this �lter, the decision criterion is simple: if It is close to Bt−1,
that is if the di�erence between them is lower than a �xed threshold, |It −Bt−1| ≤ T , then It
belongs to the background. This �lter is one of the simplest algorithm for background subtraction,
except the algorithm that uses a �xed background. There is one comparison and decision per pixel,
and the background model is updated once per processed frame. To evaluate the computational
speed of ViBe, we use this �lter as one reference in Section 3.

The exponential �lter is simple and fast. When it comes to computational speed and embedded
processing, methods based on Σ − ∆ (sigma-delta) motion detection �lters [18, 20] are popular
too. As in the case of analog-to-digital converters, a Σ − ∆ motion detection �lter consists of a
simple non-linear recursive approximation of the background image, which is based on comparisons
and on an elementary increment/decrement (usually −1, 0, and 1 are the only possible updating
values). The Σ − ∆ motion detection �lter is therefore well suited to many embedded systems
that lack a �oating point unit.

Unimodal techniques can lead to satisfactory results in controlled environments while remaining
fast, easy to implement, and simple. However, more sophisticated methods are necessary when
dealing with videos captured in complex environments where moving background, camera egomo-
tion, and high sensor noise are encountered [3]. Over the years, increasingly complex pixel-level
algorithms have been proposed. Among these, by far the most popular is the Gaussian Mixture
Model (GMM). First presented in [32], this model consists of modeling the distribution of the
values observed over time at each pixel by a weighted mixture of gaussians. Since its introduction,
the model has gained vastly in popularity among the computer vision community (see the excellent
extended review by Bouwmans [4]), and it is still raising a lot of interest as authors continue to
revisit the method.

One of the downsides of the GMM algorithm resides in its strong assumptions that the background
is more frequently visible than the foreground and that its variance is signi�cantly lower. None of
this is valid for every time window. Furthermore, if high- and low-frequency changes are present in
the background, its sensitivity cannot be accurately tuned and the model may adapt to the targets
themselves or miss the detection of some high speed targets. Also, the estimation of the parameters
of the model (especially the variance) can become problematic in real-world noisy environments.
This sometimes leaves one with no other practical choice than to use a �xed variance. Finally, it
should be noted that the statistical relevance of a gaussian model is debatable as some authors
claim that natural images exhibit non-gaussian statistics [31].

Because the determination of parameters can be problematic, and in order to avoid the di�cult
question of �nding an appropriate shape for the probability density function, some authors have
turned their attention to non-parametric methods to model background distributions. One of
the strengths of non-parametric kernel density estimation methods is their ability to circumvent
a part of the delicate parameter estimation step due to the fact that they rely on sets of pixel
values observed in the past to build their pixel models. For each pixel, these methods build a
histogram of background values by accumulating a set of real values sampled from the pixel's
recent history. These methods then estimate the probability density function with this histogram
to determine whether or not a pixel value of the current frame belongs to the background. Non-
parametric kernel density estimation methods can provide fast responses to high-frequency events
in the background by directly including newly observed values in the pixel model. However, the
ability of these methods to successfully handle concomitant events evolving at various speeds is
questionable since they update their pixel models in a �rst-in �rst-out manner. This has led some
authors to represent background values with two series of values or models: a short term model
and a long term model [8]. While this can be a convenient solution for some situations, it leaves
open the question of how to determine the proper time interval. In practical terms, handling
two models increases the di�culty of �ne-tuning the values of the underlying parameters. ViBe
incorporates a smoother lifespan policy for the sampled values. More importantly, it makes no
assumption on the obsolescence of samples in the model. This is explained in Section 2.

The background subtraction method that is the closest to ViBe was proposed in [38]. Wang
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and Suter base their technique on the notion of �consensus�. They keep the 100 last observed
background values for each pixel and classify a new value as background if it matches most of the
values stored in the pixel's model. ViBe has a similar approach except that the amount of stored
values is limited to 20, thanks to a clever selection policy.

While mixtures of gaussians and non-parametric models are background subtraction families with
the most members, other techniques exist. In [15], each pixel is represented by a codebook, which
is a compressed form of background model for a long image sequence. Codebooks are believed
to be able to capture background motion over a long period of time with a limited amount of
memory.

A di�erent approach to background subtraction consists to consider that it is not important to tune
a background subtraction, but instead that the results of the classi�cation step can be re�ned. A
two-level mechanism based on a classi�er is introduced in [17]. A classi�er �rst determines whether
an image block belongs to the background. Appropriate blockwise updates of the background
image are then carried out in the second stage, depending on the results of the classi�cation.
Schick et al. [28] use a similar idea and de�ne a superpixel Markow random �eld to post-process
the segmentation map. They show that their technique improves the performance of background
subtraction most of the time; only results of background subtraction techniques that already
produce accurate segmentations are not improved.

This raises the general question of applying a post-processing �lter to the segmentation map.
Parks et al. [25] consider several post-processing techniques that can be used to improve upon the
segmentation maps: noise removal, blob processing (morphological closing is used to �ll internal
holes and small gaps whereas area thresholding is used to remove small blobs), etc. Their results
indicate that the performance is improved for square kernel morphological �lter as long as the
size is not too large. The same yields for area thresholding where a size threshold well below the
size of the smallest object of interest (e.g. 25%) is recommended. The post-processing is also
interesting from a practical perspective. When it is applied, the segmentation step becomes less
sensitive to noise, and subsequently to the exact values of the method's parameters. To produce
the right-hand side image of Figure 1, we have applied a 5 × 5 close/open �lter and a median
�lter on the segmentation map. For ViBe, Kryjak and Gorgon [16] propose to use a 7× 7 median
�lter to post-process the segmentation map, and two counters per pixel, related to the consecutive
classi�cation as foreground or background, to �lter out oscillating pixels.

1.3 Evaluation

The di�culty of assessing background subtraction algorithms originates from the lack of a stan-
dardized evaluation framework; some frameworks have been proposed by various authors but
mainly with the aim of pointing out the advantages of their own method. The �Change Detection�
(CD) initiative is a laudable initiative to help comparing algorithms. The CD dataset contains 31
video sequences panning a large variety of scenarios and includes groundtruth maps. The videos
are grouped in 6 categories: baseline, dynamic background, camera jitter, intermittent object
motion, shadow, and thermal. The CD web site (http://www.changedetection.net) computes
several metrics for each video separately.

These metrics rely on the assumption that the segmentation process is similar to that of a binary
classi�er, and they involve the following quantities: the number of True Positives (TP), which
counts the number of correctly detected foreground pixels; the number of False Positives (FP),
which counts the number of background pixels incorrectly classi�ed as foreground; the number of
True Negatives (TN), which counts the number of correctly classi�ed background pixels; and the
number of False Negatives (FN), which accounts for the number of foreground pixels incorrectly
classi�ed as background. As stated by Goyette et al. [10], �nding the right metric to accurately
measure the ability of a method to detect motion or change without producing excessive false
positives and false negatives is not trivial. For instance, the recall metric favors methods with a
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low False Negative Rate. On the contrary, the speci�city metric favors methods with a low False
Positive Rate. Having the entire precision-recall tradeo� curve or the ROC curve would be ideal,
but not all methods have the �exibility to sweep through the complete gamut of tradeo�s. In
addition, one cannot, in general, rank-order methods based on a curve.

One of the encountered di�culties is that there are four measurable quantities (TP, TN, FP, FN)
for a binary classi�er, and a unique criterion based on them will not re�ect the trade-o�s when
parameter values are to be selected for the classi�er. This is the reason why the characterization
by multiple criteria helps determining the optimal parameter values. Another di�cult question
is the comparison of techniques. Again, there is a di�erence in optimizing a technique and the
willingness to compare techniques. In this chapter, we do not enter the discussion of comparing
ViBe to other background subtraction techniques (see [10] for a comparative study of techniques,
including two variants of ViBe: PBAS and ViBe+). We prefer to concentrate on aspects proper
to ViBe and to discuss some choices. Because ViBe has a conservative updating policy, it tends to
minimize the amount of False Positives. As a consequence, precision is high. But simultaneously,
ViBe has a inherent mechanism to incorporate ghosts and static objects into the background.
For some applications, this results in an increase of the number of False Negatives. If foreground
objects only represent a very small part of the image, which is common in video-surveillance, the
amount of True Positives is small, and then the recall is low. Therefore, we select the Percentage
of Bad Classi�cations (PBC), that is a combination of the four categories, as a compromise and
as the evaluation criteria. It is de�ned as

PBC = 100× FN + FP

TP + FN + FP + TN
. (2)

Note the PBC assesses the quality of the segmentation map. For some applications however, the
quality of segmentation is not the main concern. For example, the exact shape of the segmentation
map is not relevant if the role of the background subtraction is to raise an alarm in the presence
of motion in the scene. Then a criterion based on the rate of False Negatives might be more
appropriate.

2 Description of ViBe

The background/foreground classi�cation problem that is handled by background subtraction re-
quires to de�ne a model and a decision criterion. In addition, for real time processing of continuous
video streams, pixel-based background subtraction techniques compensate for the lack of spatial
consistency by a constant updating of their model parameters.

In this section, we �rst explain the rationale behind the mechanisms of ViBe. Then, we describe
the model (and some extensions), which is intrinsically related to the classi�cation procedure, an
updating strategy, and initialization techniques.

2.1 Rationale

ViBe is a technique that collects background samples to build background models, and introduces
new updating mechanisms. The design of ViBe was motivated by the following rules:

• many e�cient vision-based techniques that classify objects, including the successful pose
recognition algorithm of the Kinect [29], operate at the pixel level. Information at the pixel
level should be preferred to aggregated features, because the segmentation process is local
and dealing with pixels directly broadens up possibilities to optimize an implementation for
many hardware architectures.
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• we prefer the approach that collects samples from the past for each pixel, rather than building
a statistical model. There are two reasons for that. Firstly, because sample values have been
observed in the past, their statistical signi�cance is higher than values that have never been
measured. Secondly, the choice of a model introduces a bias towards that model. For
example, if one assumes that the probability distribution function of a pixel is gaussian,
then the method tries to determine its mean and variance. It does not test the relevance of
the model itself, even if the distribution appears to be bi-modal.

• the number of collected samples should be kept relatively small. Taking larger numbers
both increases the computational load and memory usage. In ViBe, we keep 20 background
samples for each pixel. This might seem to be a large �gure, but remember that at a typical
video framerate is 25 or 30 Hz; keeping 20 background samples therefore represents a memory
of less than 1 second.

• there should be no �planned obsolescence� notion for samples. The commonly (and exclu-
sively) adopted substitution rule consists to replace oldest samples �rst or to reduce their
associated weight. This assumes that old samples are less relevant than newer samples. But
this assumption is questionable, as long as the model only contains background samples
and is not corrupted by foreground samples. In ViBe, old and recent values are considered
equally when there are replaced.

• a mechanism to ensure spatial consistency should be foreseen. Pixel-based techniques tend to
ignore neighboring pixel values in their model. This allows for a sharp detection capability,
but provides no warranty that neighboring decisions are consistent. ViBe proposes a new
mechanism that consists to insert background values in the models of neighboring pixels.
Once the updating policy decides to replace a value of the model with the current value of
the pixel, it also inserts that value in the model of one of the neighboring pixels.

• the decision process to determine if a pixel belongs to the background should be kept simple
because, for pixel-based classi�cation approaches, the computational load is directly propor-
tional to the decision process. As shown in Section 3, the overall computational cost of ViBe
is about that of 6 comparisons per pixel, which is very low compared to other background
subtraction strategies.

In the next section, we present the details of ViBe. There are di�erences with the original version
of ViBe (as described in [2]) that we point out when appropriate.

2.2 Pixel classi�cation

Classical approaches to background subtraction and most mainstream techniques rely on a prob-
ability density function (pdf) or statistical parameters of the underlying background generation
process. But the question of their statistical signi�cance is rarely discussed, if not simply ignored.
In fact, the choice of a particular form for the pdf inevitably introduces a bias towards that pdf,
when in fact there is no imperative to compute the pdf as long as the goal of reaching a relevant
background segmentation is achieved. An alternative is to consider that one should enhance sta-
tistical signi�cance over time, and one way to proceed is to build a model with real observed pixel
values. The underlying assumption is that this makes more sense from a stochastic point of view,
as already observed values should have a higher probability of being observed again than would
values not yet encountered.

If we see the problem of background subtraction as a classi�cation problem, we want to classify
a new pixel value with respect to previously observed samples by comparing them. A major,
and important di�erence in comparison with existing algorithms, is that when a new value is
compared to background samples, it should be close to only a few sample values to be classi�ed as
background, instead of the majority of all sample values. Some authors believe that comparing a
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value with some sample values is equivalent to a non-parametric model that sums up probabilities
of uniform kernel functions centered on the sample values. That is an acceptable statement for the
model of [38], that considers 100 values and require a close match with at least 90 values, because
the model then behaves as a pdf whose values are compared to the new value to determine if
the probability is larger than 0.9. However, this reasoning is not valid for ViBe, because with
the standard set of values, we only require 2 matches out of 20 possible matches, which would
correspond to a probability threshold of 0.1. One can hardly claim that such a low probability is
statistically signi�cant, and consequently that the model is that of a pdf. Of course, if one trusts
the values of the model, it is crucial to select background pixel samples carefully. The insertion of
pixels in the background therefore needs to be conservative, in the sense that only sure background
pixels should populate the background models.

To be more formal, let us denote by v(p) the value of a feature, for example the RGB components,
taken by the pixel located at p in the image, and by vi a background feature with an index i. Each
background pixel at p is then modeled by a collection of N background samples

M(p) = {v1, v2, . . . , vN}, (3)

taken in previous frames.

In order to classify a new pixel feature value v(p), we compare it to all the values contained in the
modelM(p) with respect to a distance function d() and a distance threshold T . The classi�cation
procedure is detailed in Algorithm 1.

Algorithm 1 Pixel classi�cation algorithm of ViBe.

1 int width ; // width o f the image
2 int he ight ; // h e i g h t o f the image
3 byte image [ width∗ he ight ] ; // curren t image
4 byte segmentationMap [ width∗ he ight ] ; // c l a s s i f i c a t i o n r e s u l t
5
6 int numberOfSamples = 20 ; // number o f samples per p i x e l
7 int requiredMatches = 2 ; // #_min
8 int di s tanceThresho ld = 20 ;
9
10 byte samples [ width∗ he ight ] [ numberOfSamples ] ; // background model
11
12 for ( int p = 0 ; p < width∗ he ight ; p++) {
13 int count=0, index=0, d i s t ance =0;
14
15 // counts the matches and s t op s when requiredMatches are found
16 while ( ( count < requiredMatches ) && ( index < numberOfSamples ) ) {
17 d i s t anc e = getDistanceBetween ( image [ p ] , samples [ p ] [ index ] ) ;
18 i f ( d i s t ance < di s tanceThresho ld ) {
19 count++; }
20 index++;
21 }
22
23 // p i x e l c l a s s i f i c a t i o n
24 i f ( count < requiredMatches )
25 segmentationMap [ p ] = FOREGROUND_LABEL;
26 else

27 segmentationMap [ p ] = BACKGROUND_LABEL;
28 }

A typical choice for d() is the Euclidean distance, but any metric that measures a match between
two values is usable. Benezeth et al. [3] compared several metrics for RGB images. They conclude

7



M. VAN DROOGENBROECK, and O. BARNICH. ViBe: a disruptive method for background subtraction. In T. Bouwmans, F. Porikli,

B. Hoferlin, and A. Vacavant, editors, Background Modeling and Foreground Detection for Video Surveillance, chapter 7. Chapman and

Hall/CRC, pages 7.1-7.23, July 2014. [ DOI: 10.1201/b17223-10 ]. See http://www2.ulg.ac.be/telecom/research/vibe/doc for code.

that four of the six metrics they tested, including the common Euclidean distance, globally produce
the same classi�cation results; only the simplest zero and �rst order distances are less precise. In
many video-surveillance applications, v(p) is either the luminance or the RGB components. For
the luminance, the distance d() is reduced to the absolute di�erence between the pixel value
and a sample value. As shown in the algorithm, it is important to note that, for each pixel,
the classi�cation process stops when #min matches have been found; to the contrary of non-
parametric methods, there is no need to compare v(p) to every sample. This speeds up the
classi�cation process considerably. Discussions about the computational load of ViBe are further
given in Section 3.

2.3 Updating

The classi�cation step of our algorithm compares the current pixel feature value at time t, vt(p),
directly to the samples contained in the background modelMt−1(p), built at time t− 1. Conse-
quently, questions regarding which samples have to be memorized by the model and for how long
are essential.

Many practical situations, like the response to sudden lighting changes, the presence of new static
objects in the scene, or changing backgrounds, can only be addressed correctly if the updating
process incorporates mechanisms capable to cope with dynamic changes in the scene. The com-
monly adopted approach to updating consists to discard and replace old values after a number
of frames or after a given period of time (typically about a few seconds); this can be seen as a
sort of planned obsolescence. Although universally applied, there is no evidence that this strategy
is optimal. In fact, ViBe proposes other strategies, based on random substitutions, that when
combined, improve the performance over time.

General discussions on an updating mechanism

Many updating strategies have been proposed [4] and, to some extent, each background subtraction
technique has its own updating scheme. Updating strategies are either intrinsically related to the
model, or they de�ne methods for adapting parameters over time. Considering the model, there
are two major updating techniques. Parks et al. [25] distinguish between recursive techniques,
which maintain a single background model that is updated with each new video frame, and non-
recursive techniques which maintain a bu�er of n previous video frames and estimate a background
model based solely on the statistical properties of these frames.

Another typology relates to the segmentation results. Unconditional updating or blind updating
considers that, for every pixel, the background model is updated, whereas in conditional updating,
also called selective or conservative updating, only background pixels are updated. Both updating
schemes are used in practice. Conservative updating leads to sharp foreground objects, as the
background model will not become polluted with foreground pixel information. However the major
inconvenience of that approach is that false positives (pixels incorrectly classi�ed as foreground
values) will continually be misclassi�ed as the background model will never adapt to it. Wang et
al. [38] propose to operate at the blob level and de�ne a mechanism to incorporate pixels in the
background after a given period of time. To the contrary, blind updating tends to remove static
objects and requires additional care to keep static objects in the foreground.

Other methods, like kernel-based pdf estimation techniques, have a softer approach to updating.
They are able to smooth the appearance of a new value by giving it a weight prior to inclusion.
For example, Porikli et al. [26] de�ne a GMM method and a Bayesian updating mechanism, to
achieve accurate adaptation of the models.

With ViBe, we developed a new conservative updating method that incorporates three important
mechanisms: (1) a memoryless update policy, which ensures a smooth decaying lifespan for the
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samples stored in the background pixel models, (2) a random time subsampling to extend the
time windows covered by the background pixel models, and (3) a mechanism that propagates
background pixel samples spatially to ensure spatial consistency and to allow the adaptation of
the background pixel models that are masked by the foreground. These components are discussed
in details in [2]. We remind their key features in the next three subsections, and provide some
additional comments.

A memoryless updating policy

Many sample-based methods use �rst-in �rst-out policies to update their models. In order to
deal properly with wide ranges of events in the scene background, Wang et al. [38] propose the
inclusion of large numbers of samples in pixel models. Others authors [8, 40] mix two temporals
sub-models to handle both fast and slow changes. These approaches are e�ective, but then the
management of multiple temporal windows is complex. In addition, they might not be su�cient
for high or variable framerates.

From both practical and theoretical perspectives, we believe that it is more appropriate for back-
ground values to fade away smoothly. In terms of a non-parametric model such as ViBe, this
means that the probability for a value to be replaced over time should decay progressively. There-
fore, we de�ne a policy that consists to replace sample values chosen randomly, according to a
uniform probability density function. This guarantees a monotonic decay of the probability for
a sample value to remain inside the set of samples, as established in [2]. There are two remark-
able consequences to this updating policy: (1) there is no underlying notion of time window in
the collection of samples, and (2) the results of the background subtraction are not deterministic
anymore. In other words, if the same video sequence is processed several times, all the results will
be slightly, but not signi�cantly, di�erent. Remember that this approach is necessarily combined
with a conservative updating policy, so that foreground values should never be absorbed into the
background models. The conservative updating policy is necessary for the stability of the process
to avoid that models diverge over time.

The complete updating algorithm of ViBe is given in Algorithm 2. The core of the proposed
updating policy is described at lines 18-19: one sample of the model is selected randomly and
replaced by the current value. Note that this process is applicable to a scalar value, but to an
RGB color vector or even more complex feature vectors as well. In fact, except for the distance
calculations between values or feature vectors and their corresponding elements in the background
model, all principles of ViBe are transposable as such to any feature vector.

A random updating strategy contradicts the belief that a background subtraction technique should
be entirely deterministic and predictable. From our perspective, there is no reason to prefer an
updating policy that would replace the oldest sample �rst as it reduces the temporal window
dramatically. In addition, it could happen that a dynamic background has a cycle that is longer
than the temporal window. The model would then not be able to characterize that background.
Likewise, dynamic backgrounds with zones of di�erent time frequencies will be impossible to
handle. With our updating policy, the past is not �ordered�; one could say that the past has no
e�ect on the future. This property is called the memoryless property (see [24]). We believe that
many background subtraction techniques could bene�t from this updating policy.

Until now, we have considered pixels individually; this is part of the design of pixel based methods.
However, the random updating policy has introduced a spatial inhomogeneity. Indeed, the index
of the sample values that is replaced depends on the result of a random test and, therefore, di�ers
from one location to another one. This is a second important element of the design of ViBe: we
should consider the spatial neighborhood of a pixel, and not only the pixel itself. Two mechanisms
are used for that: (1) ensure that all the pixels are processed di�erently, and (2) di�use information
locally. The random selection of an index, that de�nes which values should be replaced, is a �rst
method to process pixels di�erently. In the following, we introduce two additional mechanisms:
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Algorithm 2 Updating algorithm of ViBe.

1 int width ; // width o f the image
2 int he ight ; // h e i g h t o f the image
3 byte image [ width∗ he ight ] ; // curren t image
4 byte updatingMask [∗ he ight ] ; // updat ing mask (1==updat ing a l l owed )
5
6 int subsamplingFactor = 16 ; // amount o f random subsampl ing
7
8 int numberOfSamples = 20 ; // number o f samples per p i x e l
9 byte samples [ width∗ he ight ] [ numberOfSamples ] ; // background model
10
11 for ( int p = 0 ; p < width∗ he ight ; p++)
12 i f ( updatingMask [ p ] == 1) { // updat ing i s a l l owed
13
14 // e v en t u a l l y updates the model o f p ( in−p l ace updat ing )
15 int randomNumber = getRandomIntegerIn (1 , subsamplingFactor ) ;
16 i f ( randomNumber == 1) { // random subsampl ing
17 // randomly s e l e c t s a sample in the model to be rep l a ced
18 int randomNumber = getRandomIntegerIn (0 , numberOfSamples − 1) ;
19 samples [ p ] [ randomNumber ] = image [ p ] ;
20 }
21
22 // e v en t u a l l y d i f f u s e s in a ne i ghbor ing model ( s p a t i a l d i f f u s i o n )
23 int randomNumber = getRandomIntegerIn (1 , subsamplingFactor ) ;
24 i f ( randomNumber == 1) { // random subsampl ing
25 // chooses a ne i ghbor ing p i x e l randomly
26 q = getPixelLocationFromTheNeighborhoodOf (p) ;
27 // d i f f u s e s the current va lue in the model o f q
28 // (uncomment the f o l l ow i n g check to i n h i b i t d i f f u s i o n across the

border o f the updat ing mask )
29 // i f ( updatingMask [ q ] == 1) {
30 int randomNumber = getRandomIntegerIn (0 , numberOfSamples − 1) ;
31 samples [ q ] [ randomNumber ] = image [ p ] ;
32 // }
33 }
34
35 } // end o f " i f "
36 } // end o f " f o r "

10
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time subsampling, to increase the spatial inhomogeneity, and a spatial di�usion mechanism. We
also show that the di�usion mechanism is an essential part of ViBe.

Time subsampling

With the random index selection of samples described in the previous section, we have suppressed
an explicit reference to time in the model. The use of a random replacement policy allows the
sample collection to cover a large, theoretically in�nite, time window with a limited number of
samples. In order to extend the size of the time window even more, we resort to random time
subsampling. The main idea is that background is a slow varying information, except for the cases
of a sudden global illumination change or scene cuts that need a proper handling at the frame
level. Therefore, it is not necessary to update each background model for each new frame. By
making the background updates less frequent, we arti�cially extend the expected lifespan of the
background samples and ensure a spatial inhomogeneity because the decision to update or not is
pixel dependent. As in the presence of periodic or pseudo-periodic background motions, the use of
�xed subsampling intervals might prevent the background model from properly adapting to these
motions, we prefer to use a random subsampling policy. As shown at lines 15-16 of Algorithm 2,
a random process determines if a background pixel will be inserted in the corresponding pixel
model.

In most cases, we adopted a time subsampling factor, denoted φ, of 16: a background pixel value
has 1 chance in 16 of being selected to update its pixel model. For some speci�c scenarios, one
may wish to tune this parameter to adjust the length of the time window covered by the pixel
model. A smaller subsampling factor, 5 for example, is to be preferred during the �rst frames of
a video sequence, when there is a lot of motion in the image, or if the camera is shaking. This
allows for a faster updating of the background model.

Spatial di�usion to ensure spatial consistency

One of the problems with a conservative updating policy is that foreground zones hide background
pixels so that there is no way to uncover the background, and subsequently to update it. A popular
way to counter this drawback is what the authors of theW 4 algorithm [11] call a �detection support
map� which counts the number of consecutive times that a pixel has been classi�ed as foreground.
If this number reaches a given threshold for a particular pixel location, the current pixel value
at that location is inserted into the background model. A variant consists to include, in the
background, groups of connected foreground pixels that have been found static for a long time,
as in [7]. Some authors, like those of [38], use a combination of a pixel-level and an object-level
background update.

For ViBe, we did not want to de�ne a detection support map that would add parameters, whose
determination would be application dependent, and increase the computational complexity, neither
to include a mechanism that would be de�ned at the object level.

We believe that a progressive inclusion of foreground samples in the background models is more
appropriate in general. We assume that neighboring background pixels share a similar temporal
distribution and consider that a new background sample of a pixel should also update the models
of neighboring pixels. According to this policy, background models hidden by the foreground
will be updated with background samples from neighboring pixel locations from time to time.
This allows a spatial di�usion of information regarding the background evolution that relies on
samples exclusively classi�ed as background. Our background model is thus able to adapt to a
changing illumination and to structural evolutions (added or removed background objects) while
relying on a strict conservative updating scheme. Lines 22 to 31 of Algorithm 2 detail the spatial
di�usion mechanism. A spatial neighborhood of a pixel p is de�ned, typically a 4- or 8-connected
neighborhood, and one location q in the neighborhood is chosen randomly. Then, the value v(p)
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is inserted in the model of q. Since pixel models contain many samples, irrelevant information
that could accidentally be inserted into a neighboring model does not a�ect the accuracy of the
detection. Furthermore, the erroneous di�usion of irrelevant information is blocked by the need
to match an observed value before it can propagate further. This natural containment inhibits
the di�usion of errors. Note that in [12], the authors use the spatial updating mechanism of ViBe
except that they insert v(q), instead of v(p), in the model of q. Also note that, for reasons similar
to those exposed earlier, the spatial propagation method is also random. A random policy is
convenient in the absence of prior knowledge of the scene, and to avoid a bias towards a scene
model that would unnecessarily decrease the model �exibility.

It is worth mentioning that the original di�usion mechanism of ViBe (which uses the segmentation
map as the updating mask) is not limited to the inside of background blobs. At the borders, it
could happen that a background value is propagated into the model of a neighboring foreground
pixel. If needed, background samples propagation into pixel models of the foreground may be
prevented in at least two ways. The �rst way consists to prevent sample di�usion across the
border of the updating mask by uncommenting lines 29 and 32 of Algorithm 2. Another technique
consists to remove the inner border of the segmentation map when it serves as the updating mask,
e.g. by using a morphologically eroded segmentation map as the updating mask.

An interesting question for ViBe relates to the respective e�ects of in-place substitution (a value
replaces one value of its own model) and spatial di�usion (a value replaces one value of a neighbor-
ing model). To evaluate the impact of these strategies, we made several tests where we modi�ed
the proportion of in-place substitution and spatial di�usion. In addition, we compared the original
di�usion mechanism of ViBe and a strategy that does not allow to modify models of foreground
pixels; this variant, called intra di�usion, is obtained by uncommenting lines 29 and 32 of Algo-
rithm 2 if the updating mask is equal to the background/foreground segmentation map. Table 1
shows the percentage of bad classi�cation (PBCs) obtained for di�erent scenarios; these results
are averages for the 31 sequences of the Change Detection dataset.

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
intra di�usion 3.79 3.74 3.55 3.49 3.40 3.39 3.32 3.27 3.25 3.24 3.20
inter di�usion 2.99 2.32 2.19 2.21 2.27 2.32 2.33 2.36 2.40 2.40 2.41

Table 1: Percentage of bad classi�cation (PBC) for di�erent updating strategies. The top row
indicates the percentage of in-place substitution, with respect to the percentage of spatial di�usion.
A 100% rate thus means that no values are propagated into the model of a neighboring pixel. To
the contrary, in the 0% scenario, every pixel model update results from spatial di�usion. Intra
di�usion is de�ned as a di�usion process that forbids the di�usion of background samples into
models located in the foreground. In the original version of ViBe, di�usion is always allowed, even
if that means that the value of a background pixel is put into the model of a foreground pixel, as
could happen for a pixel located at the border of the background mask. This corresponds to the
bottom row, named inter di�usion.

One can observe that, for the intra di�usion scenario, the PBC decreases as the percentage of
spatial di�usion increases. By extension, we would recommend, for this dataset, to always di�use
a value and never use it to update a pixel's own model. This observation might also be applicable
to other background subtraction techniques. The e�ects of intra di�usion are mainly to maintain
a larger local variance in the model, and to mimic small camera displacements, except that all
these displacements di�er locally.

The last row of Table 1 (inter di�usion) provides the percentages of bad classi�cation for the
original di�usion mechanism proposed in ViBe. It consists to di�use background values into
the neighborhood, regardless of the classi�cation result of neighboring pixels. It appears that
the original spatial di�usion process is always preferable to a di�usion process restricted to the
background mask (intra di�usion). In other words, it is a good idea to allow background values
to cross the frontiers of background blobs. The experiments also show that the original spatial
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di�usion mechanism of ViBe performs better when in-place substitution and spatial di�usion are
balanced; a 50%-50% proportion, as designed intuitively in [2], is close to being optimal.

Why it is useful to de�ne an updating mask that is di�erent from the segmentation
map

The purpose of a background subtraction technique is to produce a binary map with background
and foreground pixels. Most of the time, it is the segmentation results that users are looking for.
In a conservative approach, the segmentation map is used to determine which values are allowed to
enter the background model. In other words, the segmentation map plays the role of an updating
mask. But this is not a requirement. In fact, the unique constraint is that foreground values
should never be used to update the model. In [37], we proposed to produce the updating mask by
processing the segmentation map. For example, small holes in the foreground are �lled to avoid
the appearance of background seeds inside of background objects. Also, we remove very small
foreground objects, such as isolated pixels, in order to include them in the background model as
fast as possible. Another possibility consists to slow down the spatial di�usion across background
borders. An idea to achieve this consists of allowing the di�usion only when the gradient value
is lower than a given threshold. This prevents, or at least decreases, the pollution of background
models covered by foreground objects (such as abandoned objects), while it does not a�ect the
capability of ViBe to incorporate ghosts smoothly. Note that reducing di�usion enhances the risk
that an object is never incorporated into the background.

(a) (b) (c)

Figure 2: Comparison of the e�ects of modifying the updating mask: (a) infrared input image,
(b) segmentation map of the original version of ViBe, (c) segmentation map obtained when the
updating mask inhibits samples di�usion across contrasted background borders (this inhibition
mechanism is described in [37]).

These discussions clearly show that the purpose of di�erentiating the segmentation map and the
updating mask is to induce a behavior for the background subtraction technique that is adapted
to the application needs, while keeping the principles of ViBe. For example, an abandoned object
might need to be left in the foreground for a certain amount of time. After that time, the
application layer can decide to switch the label from foreground to background in the updating
mask, in order to include the abandoned object into the background. In other words, the distinction
between the updating mask and the segmentation map introduces some �exibility and permits to
incorporate high-level information (such as objects blobs, regions of interest, time notions, etc)
into any low-level background subtraction technique.

Initialization

Many popular techniques described in the literature, such as [8, 15], need a sequence of several
dozens of frames to initialize their models. From a statistical point of view, it is logical to wait for
a long period of time to estimate the temporal distribution of the background pixels. But one may
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wish to segment the foreground of a sequence that is even shorter than the typical initialization
sequence required by some background subtraction algorithms, or even to be operational from
the second frame on. Furthermore, many applications require the ability to provide a mechanism
to refresh or re-initialize the background model in circumstances such as in the presence of sud-
den lighting changes, that cannot be handled properly by the regular update mechanism of the
algorithm.

A convenient solution consists to provide a technique that will initialize the background model
from a single frame. Given such a technique, the response to sudden illumination changes is
straightforward: the existing background model is discarded and a new model is initialized instan-
taneously. Furthermore, being able to provide a reliable foreground segmentation as early on as
the second frame of a sequence has obvious bene�ts for short sequences in video-surveillance or
for devices that embed a motion detection algorithm.

In the original version of ViBe [2], we used the same assumption as the authors of [14], which is
that neighboring pixels share a similar temporal distribution, to populate the pixel models with
values found in the spatial neighborhood of each pixel. From our experiments, selecting samples
randomly in the 8-connected neighborhood of each pixel has proved to be satisfactory. As no
temporal information is available from the �rst frame, there seems to be no other alternative
than to take values from the spatial neighborhood. However, other strategies have been tested as
well. The �rst alternative consists to initialize N − 2 samples of the models with values that are
uniformly distributed over the possible range, and 2 samples with the current pixel value. This
accounts for a clean background while providing the capability to accommodate to some motion in
the next frames. In other terms, this ensures to have a background that �lls the entire image and
a non zero variance. If one is ready to wait for a few frames before segmenting the image, then
it is also possible to simply put random values in the model. We then recommend to temporarily
decrease the time subsampling factor φ to speed up the incorporation of background values into
the model.

All these strategies have proved to be successful, and they rapidly converge to identical segmen-
tation results when dealing with long sequences. For short time periods, the presence of a moving
object in the �rst frame introduces an artifact commonly called a ghost. According to [30], a ghost
is �a set of connected points, detected as in motion but not corresponding to any real moving ob-
ject�. In this particular case, the ghost is caused by the unfortunate initialization of pixel models
with samples taken from the moving object. In subsequent frames, the object moves and uncov-
ers the real background, which will be learned progressively through the regular model updating
process, making the ghost fade over time. It appears that the propagation mechanism is capable
to overcome ghost e�ects. In fact, as shown in [2], ghosts are absorbed rapidly compared to static
objects that remain visible for a longer period of time.

Other issues relate to sudden natural illumination changes, scene cuts, or changes caused by the
Automatic Gain Control (AGC) of cameras that arti�cially improves their �dynamic range� to
produce usable images. In all these cases, changes are not due to the motion of objects, and the
amount of foreground pixels indicates that there is a major change in the scene. It also happens
that these changes are temporary and that the scene rapidly returns to its previous state. This
is typical for IP cameras whose gain changes when an object approaches the sensor and returns
to its previous state when the object leaves the scene. This situation also occurs on a pixel basis
when an object stays at the same location for a short period of time, and then moves again.

The solution that we propose to cope with these problems consists to partly re-initialize the model
of each pixel with the new value. More precisely, we only replace #min samples of each model;
the N − #min other samples are left unchanged. With this mechanism, the background model
is re-initialized, while it memorizes the previous background model as well. It is then possible to
return to the previous scene and to get a meaningful segmentation instantaneously. Theoretically,
we could even store N/#min background models at a given time. This technique is similar to that
of GMM based models when they would keep a few of the signi�cant gaussians to memorize a
previous model.
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2.4 Variants of ViBe

Several variants of ViBe have been proposed recently. In [6], it was suggested to use a threshold in
relation to the samples in the model for a better handling of camou�aged foreground. This adap-
tation was done by Hofmann et al. [12]. Their proposed background subtraction technique uses all
the principles of ViBe, and add learning heuristics that adapt the model pixel classi�cation and
updating dynamics to the scene content. They also change the di�usion mechanism to guarantee
that a model is never updated with a value of a neighboring pixel, by updating a neighboring
model with the current value for that same location. However, previously in this section, we have
discussed the di�usion mechanism and clearly showed that the original di�usion mechanism is
preferable. Mould and Havlicek also propose variants of ViBe that adapt themselves to the scene
content [22, 23]. Their major modi�cation consists to apply a learning algorithm that integrates
new information into the models by replacing the most outlying values with respect to the current
sample collections.

While it is obvious that adapting �xed parameters to the image content should increase the
performance, one can observe that a learning phase is then needed to train the parameters of the
heuristics of these authors. To some extend, they have changed the dynamic behavior of ViBe by
replacing �xed parameters by heuristics which have their own �xed parameters. This might be an
appropriate strategy to optimize ViBe to deal with speci�c scene contents, but the drawbacks are
that it introduces a bias towards some heuristics, and that it reduces the framerate dramatically.

In [19], Manzanera describes a background subtraction technique that extends the modeling ca-
pabilities of ViBe. The feature vectors are enriched by local jets and an appropriate distance is
de�ned. Manzanera also proposes to regroup the samples in clusters to speed up the comparison
step. These extensions do not modify the dynamic behavior of ViBe, but Manzanera shows that
its method improves the performance. Enriching the feature vector slightly increases the perfor-
mance, but it also increases the computation times, more or less signi�cantly, depending on the
complexity of the additional features and that of the adapted distance.

Another technique, inspired by ViBe, is described by Sun et al. [33]. They propose to model the
background of a pixel not only with samples gathered from its own past, but also in the history
of its spatial neighborhood.

Note that, while this Chapter focuses on the implementation of ViBe on CPUs, small modi�ca-
tions might be necessary for porting ViBe to GPUs, or to FPGA platforms [16]. However, the
fundamental principles of ViBe are unaltered.

3 Complexity analysis and computational speed of ViBe

Except for papers dedicated to hardware implementation, authors of background subtraction tech-
niques tend to prove that their technique runs in real time, for small or medium sized images. It
is then almost impossible to compare techniques, because many factors di�er from one implemen-
tation to another (CPU, programming language, compiler, etc). In this section, we analyze the
complexity of the ViBe algorithm in terms of the number of operations, and then compare execu-
tion times of several algorithms. We also de�ne the notion of background subtraction complexity
factor that expresses the practical complexity of an algorithm.

To express the complexity of ViBe, we have to count the number of operations for processing
an image. There are basically four types of operations involved: distance computation, distance
thresholding, counter checks, and memory substitutions. More precisely, the number of operations
is as follows for ViBe:

• Segmentation/classi�cation step.
Remember that we compare a new pixel value to background samples to �nd #min matches
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(#min = 2 in all our experiments). Once these matches have been found, we step over to
the next pixel and ignore the remaining background samples of a model; this is di�erent
from techniques that requires a 90% match, for example. Operations involved during the
segmentation step are:

� comparison of the current pixel value with the values of the background model. Most
of the time, the #min �rst values of the model of a background pixel are close to the
new pixel value. The algorithm then reaches its minimal number of comparisons. For
foreground pixels however, the number of comparisons can be as large as the number
of samples in the model, N . Therefore, if #F denotes the proportion of foreground
pixels, the minimal number of comparisons per pixel Ncomp is, on average,

Ncomp = #min + (N −#min)#F. (4)

Each of these comparisons involves one distance calculation and one thresholding op-
eration on the distance. For a typical number of foreground pixels in the video, this
accounts for 2.8 comparisons on average per pixel: Ncomp = 2.8. This is an experimen-
tally estimated average value as computed on the Change Detection dataset (see last
row, column (e) of Table 2).

� comparisons of the counter to check if there are at least 2 matching values in the model.
We need to start comparing the counter value only after the comparison between the
current pixel value and the second value of the background model. Therefore, we have
Ncomp − 1 = 1.8 comparisons.

• Updating step:

� 1 pixel substitution per 16 background pixels (the update factor, φ, is equal to 16).
Because we have to choose the value to substitute and access the appropriate memory
block in the model, we perform an addition on memory addresses. Then we perform
a similar operation, for a pixel in the neighborhood (�rst we locate which pixel in the
neighborhood to select, then which value to substitute).
In total, we evaluate the cost of the update step as 3 additions on memory addresses
per 16 background pixels.

• Summary (average per pixel, assuming that #min = 2 and Ncomp = 2.8, that is that most
pixels belong to the background):

� 2.8 distance computations and 2.8 thresholding operations. In the simple case of a
distance that is the absolute di�erence between two grayscale values, this accounts for
5.6 comparisons.

� 1.8 counter checking operations. Note that a test such as count < 2 is equivalent to
count − 2 < 0, that is to a subtraction and sign test. If we ignore the sign test, one
comparison corresponds to one subtraction in terms of computation times.

� 3
16 addition on memory addresses.

Pro�ling tests show that the computation time of the updating step is negligible, on a CPU,
compared to that of the segmentation step. If for the segmentation step, we approximate the
complexity of a distance computation to that of a comparison, and if we assume that the image is
a grayscale image, the number of operations is 3Ncomp−1 per pixel; this results in 7.4 comparisons
per pixel. In order to verify this number, we have measured the computation times for di�erent
algorithms. Table 2 shows measures obtained for each sequence of the Change Detection dataset.

Column (a) provides the computation times of the simple background subtraction technique with
a static background, whose corresponding code is given in Algorithm 3. To avoid any bias related
to input and output handling, 1000 images were �rst decoded, converted to grayscale, and then
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Sequences (a) (b) (c) (d) (e) (f) (g)
static backgr. ViBe↓ expon. �lter ViBe Ncomp theoretical CF real CF

highway 188 265 897 863 3.1 4.1 4.6
o�ce 211 284 1014 822 2.7 3.6 3.9

pedestrians 177 259 981 770 2.2 2.8 4.4
PETS2006 748 1152 4619 4666 2.4 3.0 6.2

badminton 842 1125 4017 6004 3.6 4.8 7.1
boulevard 250 351 1040 1350 3.1 4.2 5.4
sidewalk 276 358 1050 1482 3.4 4.6 5.4
tra�c 228 284 944 1416 4.4 6.0 6.2

boats 253 297 951 898 2.4 3.1 3.5
canoe 292 340 990 1359 3.0 4.0 4.7
fall 1385 1780 4628 7028 3.6 4.9 5.1

fountain01 334 441 1492 1402 2.4 3.0 4.2
fountain02 326 418 1466 1118 2.1 2.6 3.4
overpass 254 280 962 739 2.2 2.7 2.9

abandonedBox 338 510 1496 1493 2.9 3.8 4.4
parking 157 216 876 652 2.1 2.76 4.2
sofa 153 218 865 705 2.4 3.0 4.6

streetLight 238 336 957 821 2.8 3.7 3.4
tramstop 304 509 1460 1277 3.1 4.1 4.2

winterDriveway 215 317 934 719 2.2 2.9 3.3

backdoor 246 281 917 771 2.4 3.2 3.1
bungalows 190 257 993 997 3.2 4.3 5.2
busStation 191 268 995 811 2.4 3.2 4.2
copyMachine 655 939 3881 4265 3.0 3.9 6.5

cubicle 172 268 967 698 2.2 2.8 4.1
peopleInShade 182 276 1049 990 2.9 3.9 5.4

corridor 144 192 857 775 2.6 3.4 5.4
diningRoom 136 191 852 708 2.6 3.4 5.2
lakeSide 132 185 851 645 2.0 2.5 4.9
library 132 178 851 718 4.0 5.5 5.4
park 112 165 1134 552 2.2 2.8 4.9

Mean 307 421 1451 1580 2.8 3.7 4.8

Table 2: Computation times, in milliseconds and for 1000 images (converted to grayscale), of
several algorithms for each sequence of the Change Detection dataset, on a Intel(R) Core(TM)2
Duo CPU T7300 @2.00GHz. The considered algorithms are: (a) background subtraction with a
static background (1 distance comparison and 1 distance thresholding operation), (b) downscaled
version of ViBe (1 value in the model, 1 comparison), (c) exponential �lter (α = 0.05), and (d)
ViBe. The average number of distance computations per pixel is given, for ViBe, in column (e).
Considering that all images were �rst converted to grayscale, (f) is the theoretical background
subtraction complexity factor and (g) is the measured background subtraction complexity factor.
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Algorithm 3 Background subtraction with a static background. This corresponds to the mini-
mum number of operations for any pixel based background subtraction. Here, the code does not
include any updating step, neither the initialization of the static background model.

1 int width ; // width o f the image
2 int he ight ; // h e i g h t o f the image
3 byte image [ width∗ he ight ] ; // curren t image
4 byte segmentationMap [ width∗ he ight ] ; // c l a s s i f i c a t i o n r e s u l t
5
6 int di s tanceThresho ld = 20 ;
7
8 byte sample [ width∗ he ight ] ; // s t a t i c background model
9
10 . . .
11 for ( int p = 0 ; p < width∗ he ight ; p++) {
12 i f ( getDistanceBetween ( image [ p ] , sample [ p ] ) < di s tanceThresho ld )
13 segmentationMap [ p ] = BACKGROUND_LABEL;
14 else

15 segmentationMap [ p ] = FOREGROUND_LABEL;
16 }
17 . . .

stored into memory. The computation times therefore only relate to the operations necessary for
background subtraction.

Values of column (a) constitute the absolute lower bound on the computation time for any back-
ground subtraction technique, because one need at least to compare the current pixel value to that
of a reference, and allocate the result in the segmentation map (this last step is generally negligible
with respect to that of distance computations or comparisons). In our implementation, we have
converted the input video stream to grayscale to achieve the lowest computation times, because
the distance calculation is then equivalent to the absolute di�erence between the two values. For
more complex distances, the distance calculation will require more processing power than distance
thresholding. We note that, on an Intel(R) Core(TM)2 Duo CPU T7300 @2.00GHz, the average
computation time per image is 0.3 ms.

In [2], we proposed a downscaled version of ViBe, named ViBe↓ hereafter and in Table 2, that
consists to use only one sample for each background model and, consequently, to proceed to only
one comparison per pixel. Computation times of that downscaled version of ViBe are given in
column (b) of Table 2. On average, the computation is 114 ms slower for 1000 images, that is
about 0.1 ms per image. Because the only di�erence with the technique with a static background
is the updating step, we can estimate the cost of the updating to a third of that of a distance
computation and thresholding. Therefore, ViBe↓ is probably the fastest background subtraction
technique that includes an updating mechanism. Results of ViBe↓ are shown in column (b) of
Figure 3.

Columns (c) and (d) of Table 2 provide the computation times for the exponential �lter method
and ViBe, respectively. One can see that the computational cost of ViBe is similar to that of the
exponential �lter, and about 4.8 times that of the simplest background subtraction technique.

In further tests, we explored the average number of distance computations per pixel of ViBe. This
number is given, for each video sequence of the Change Detection dataset, in column (e) of Table 2.
Despite that the model size is 20, we have an average number of distance computations of 2.8.
This means that, on average, ViBe only has to perform about less than 1 distance computation
in addition to the #min = 2 unavoidable distance computations. While this �gure is interesting
for the optimization of parameters, it does not translate directly in terms of computation time
because many other operations are involved in a software implementation. While these additional
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(a) (b) (c)

Figure 3: Segmentation maps obtained with ViBe↓, a downscaled version of ViBe: (a) original
image, (b) un�ltered segmentation map of ViBe↓, and (c) same as (b) after an area opening and
a close �lter.

operations, such as loops unrolling, are necessary, they are often neglected in complexity analyses.
In order not to underestimate the computation times and the complexity, we de�ne a new ratio,
named the background subtraction complexity factor, as follows:

CF =
measured computation time

measured computation for one distance measure and check
. (5)

It corresponds to the ratio between the measured computation time and the time needed to perform
the simplest background subtraction technique (with a static background). For the denominator,
we calculate the time of the algorithm such as described in Algorithm 3. Because this simple
algorithm has a �xed number of operations per pixel and all the operations are known, it can be
used as a yardstick to measure the complexity of another algorithm. Assuming the speci�c case
of a grayscale video stream, the algorithm requires to compute one distance and one thresholding
per pixel. If we approximate these operations as two comparisons per pixel, we have a theoretical
estimate of the denominator of equation 5. We can also estimate the numerator as follows. Column
(e) of Table 2 corresponds to the measured number of distance computations per pixel Ncomp. As
indicated previously, we have 3Ncomp− 1 operations per pixel. The complexity factor can thus be
estimated as (3Ncomp − 1)/2. The theoretical estimates of the complexity factor for each video
sequence are given in column (f) of Table 2. When we compare them to the real complexity factors
(see column (g)), based on experimental measures, we see that the theoretical complexity factor is
often underestimated. This is not surprising as we have neglected some operations such as loops,
updating, memory reallocation, etc.

4 Conclusion

ViBe is a pixel based background subtraction technique that innovated by introducing several new
mechanisms: segmentation by comparing a pixel value to a small number of previously collected
samples, memoryless updating policy, and spatial di�usion. This chapter elaborates on the under-
lying ideas that motivated us to build ViBe. One of the main keys is the absence of any notion of
time when building and updating the background models. In addition, ViBe introduces a spatial
di�usion mechanism that consists to modify the model of a neighboring pixel while updating the
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model of a pixel. We have showed that the use of spatial di�usion always increases the perfor-
mance and that, in particular for the Change Detection dataset, it is even preferable to di�use a
value in the neighborhood of a pixel rather than to use it to update its own model. Furthermore,
crossing background borders in the segmentation map to adapt models of foreground pixels is also
bene�cial for the suppression of ghosts or static objects.

The complexity of ViBe is also discussed in this chapter. We introduce the notion of complexity
factor that compares the time needed by a background subtraction technique to the computational
cost of the simplest background subtraction algorithm. The measured complexity factor of ViBe
is about 4.8, on average, on the Change Detection dataset. The complexity factor even drops to
1.4 for a downscaled version of ViBe, which still produces acceptable results!
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