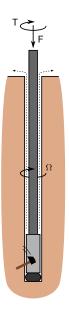
AN EFFICIENT FORMULATION FOR THE SIMULATION OF ELASTIC WAVE PROPAGATION IN 1-DIMENSIONAL COLLIDING BODIES

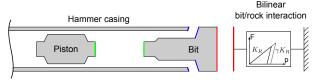
A. Depouhon, E. Detournay, V. Denoël

Université de Liège (Belgium) University of Minnesota (USA)

ICOVP Lisbon, September 9, 2013

PERCUSSIVE DRILLING: DOWN-THE-HOLE HAMMER





Model specificities

- Linear elasticity
- Multibody with contact
- Bilinear bit/rock interaction (BRI) law
 - Piecewise linear
 - Requires history variable

FE discretization \rightarrow linear EOM for each body

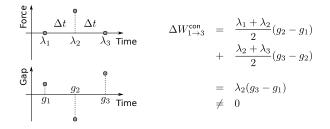
$$\mathbf{M}\dot{\mathbf{v}} + \mathbf{C}\mathbf{v} + \mathbf{K}\mathbf{u} = \mathbf{f}^{\mathsf{ext}} + \mathbf{f}^{\mathsf{con}} + \mathbf{f}^{\mathsf{bri}}$$

CONTACT HANDLING: PENALTY METHOD

• Regularizes unilateral constraints by introducing numerical stiffness at interface

Contact stiffness
Body 1 Body 2
$$\lambda^{con} = f([g]_{-}), \quad [g]_{-} = \min(0,g)$$

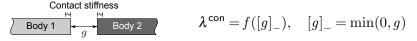
• Quadratic contact potential possibly leads to energetic instability



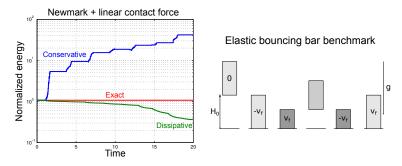
Stores energy during persistent contact

CONTACT HANDLING: PENALTY METHOD

• Regularizes unilateral constraints by introducing numerical stiffness at interface



• Quadratic contact potential possibly leads to energetic instability



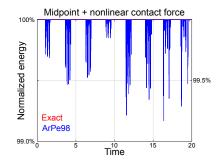
Stores energy during persistent contact

CONTACT HANDLING: PENALTY METHOD

• Regularizes unilateral constraints by introducing numerical stiffness at interface

Contact stiffness
Body 1 Body 2
$$\lambda^{con} = f([g]_-), \quad [g]_- = \min(0,g)$$

- Quadratic contact potential possibly leads to energetic instability
- Stores energy during persistent contact, Armero & Petőcz (1998)



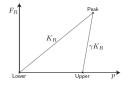
EVENT-DRIVEN INTEGRATION SCHEME



- 1. March EOM in time using any integration scheme
- 2. Detect occurrence of events related to BRI & contact status
- 3. Update EOM, go to 1

Pros & cons

- + Enables switch between BRI modes & correct handling of history variables
- + Maintains linearity of semi-discrete equations
- + Unilateral constraints become bilateral (easier)
- + Control of contact work
- Nonlinear robust event detection/localization required
- Possible troubles: chattering, zeno behavior



 $\rightarrow [g]_- = g$

DISSIPATIVE MIDPOINT SCHEME

Armero & Romero (2001)

- One-step, four stage, 2nd order accurate
- Spectral annihilation property ($ho_{\infty}=0$)

$$\Gamma_0 \mathbf{z}_{n+1} = \Gamma_1 \mathbf{z}_n + \ell_n$$

with ($\chi > 0$)

$$\begin{split} \mathbf{z}_n &= \begin{pmatrix} \mathbf{u}_n \\ \mathbf{v}_n \\ \mathbf{\tilde{u}}_{n-1} \\ \mathbf{\tilde{v}}_{n-1} \end{pmatrix} & \Gamma_0 = \begin{pmatrix} \mathbf{K} & \frac{2\mathbf{M}}{\Delta t} + \mathbf{C} & \mathbf{K} & \mathbf{0} \\ 2\mathbf{I} & -\Delta t\mathbf{I} & \mathbf{0} & -\Delta t\mathbf{I} \\ \mathbf{0} & \chi \Delta t\mathbf{I} & \mathbf{I} & -\chi \Delta t\mathbf{I} \\ -\chi \Delta t\mathbf{K} & \mathbf{0} & \chi \Delta t\mathbf{K} & \mathbf{M} \end{pmatrix} \\ \ell_n &= \begin{pmatrix} 2(\mathbf{f}_n + \mathbf{f}_{n+1}) \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} & \Gamma_1 = \begin{pmatrix} \mathbf{0} & \frac{2\mathbf{M}}{\Delta t} - \mathbf{C} & \mathbf{0} & \mathbf{0} \\ 2\mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} & \mathbf{0} & \mathbf{0} \end{pmatrix} \end{split}$$

Also possible to reduce system to displacement-based formulation

$$\mathbf{0} = \mathbf{Z}_1 \mathbf{u}_{n+1} + \mathbf{Z}_2 \mathbf{u}_n + \mathbf{Z}_3 \mathbf{v}_n - \mathbf{h}_n \quad \rightarrow \quad \mathbf{v}_{n+1} = \mathbf{H}_1 \mathbf{u}_{n+1} + \mathbf{H}_2 \mathbf{u}_n + \mathbf{H}_3 \mathbf{v}_n_{\frac{5}{5}/14}$$

EVENT DETECTION ALGORITHM

Key points

Index set of active constraints

 $\mathscr{I}_n = \{i \in \mathscr{C} : (\mathbf{g}_L)_i \cdot (\mathbf{g}_R)_i < 0\}$

 (t_L, g_L)

- Parallel search
- Constraint reset

Algorithm

Given time bracket $[t_L,t_R]$ and \mathbf{z}_L , \mathbf{z}_R , \mathbf{g}_L , \mathbf{g}_R , \mathscr{I}_n

- 1. Locate earliest event $\forall i \in \mathscr{I}_n$ (bisection, inverse interpolation, etc.)
- 2. Compute state vectors using the leftmost state and time step $\Delta t^* = t^* t_L$: \mathbf{u}^* , \mathbf{v}^*
- 3. Compute event functions using updated state $\forall i \in \mathscr{C}: \mathbf{g}^*$
- 4. Update \mathscr{I}_n
- 5. Assess convergence:

$$\begin{split} \text{If } \left\| \mathbf{g}_{\mathscr{I}_n}^* \right\| < \texttt{tol} : \text{ reset constraints, proceed with integration} \\ \text{Else} : \text{ update bracket } [t_L, t_R], \\ \text{ proceed with event detection} \end{split}$$

 (t_R, g_R)

EVENT LOCALIZATION

- 1. All procedures rely on the bracketing of an event after detection through a sign change of the event function.
- 2. Bisection is used if convergence is too slow.
- 3. Iterators:
 - Bisection

$$t^* = \frac{1}{2} \left(t_L + t_R \right)$$

• Inverse linear interpolation

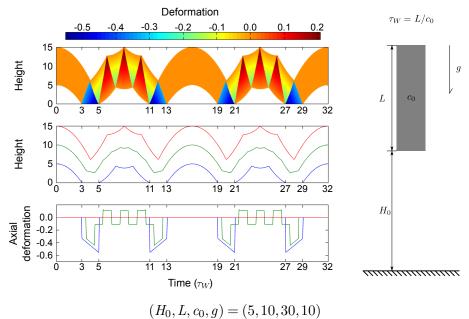
$$t^* = t_L - \frac{t_R - t_L}{g_R - g_L} g_L$$

• Barycentric hermite interpolation (Corless et al. (2007))

$$\mathbf{C}_0 = \begin{pmatrix} 0 & g_L \\ 1 & 0 & Tg'_L \\ & 1 & g_R \\ & 1 & 1 & Tg'_R \\ -2 & -1 & 2 & -1 & 0 \end{pmatrix}, \quad \mathbf{C}_1 = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \\ & & & 0 \end{pmatrix}$$

$$t^* = T \min_{\Lambda \in (0,1)} \Lambda(C_0, C_1), \quad T = t_R - t_L$$

ELASTIC BOUNCING BAR



8/14

BOUNCING BAR – BENCHMARKING

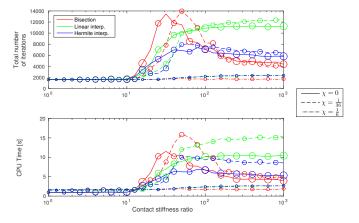
Problem data

• Single event: gap at contact

• 100 linear elements, $\mathsf{CFL}=1$

Error measure: mechanical energy after 1 period

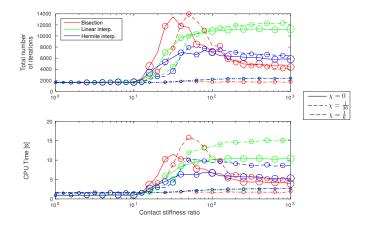
$$E = \frac{1}{2} (\mathbf{u}^T \mathbf{K} \mathbf{u} + \mathbf{v}^T \mathbf{M} \mathbf{v})_{t=16\tau_W}$$



BOUNCING BAR – BENCHMARKING

Learnings

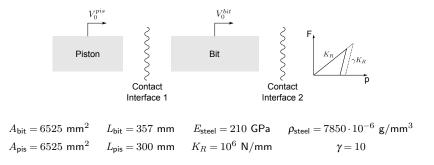
- Contact stiffness strongly influences convergence of ED
- $\chi = 1/6$: better convergence and lower error ($\sim 3^{rd}$ -order TDG)
- · Bisection method not necessarily more expensive



DTH SYSTEM

Problem data

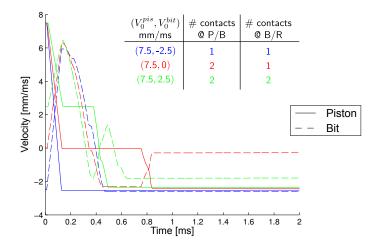
- 5 events: contact + BRI
- Linear interpolation + bisection
- Uniform velocity prior to impact (no defo.)



DTH SYSTEM – CG VELOCITIES

Analysis

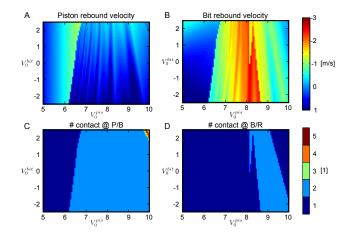
- Number of persistent contact phases varies with impact velocities
- Given nominal impact velocities design can ensure double impact



DTH SYSTEM – PARAMETRIC ANALYSIS

Analysis

- Rebound velocities depend discontinuously on impact velocities
- Persistent contact phases play a critical role in post-impact velocities



SUMMARY

Framework for the handling of contact & events

- Contact is handled via penalty method
- Scheme is energetically stable
- Applies to
 - $-\,$ Wave propagation in DTH systems (motivation) & chain systems
 - Linear structural dynamics

Benchmark 1 – Elastic bouncing bar

- Best performance/accuracy with dissipative midpoint for $\chi=1/6$
- [●] Influence of contact stiffness
 [●]

Benchmark 2 – DTH system

- Discontinuous dependence & persistent contact phases
- $\rightarrow\,$ Possible to model DTH systems with RBD? Tough \ldots

CONTENTS

Motivation & Introduction

DTH percussive drilling Contact handling: penalty method Event-driven integration scheme

Event-driven integration

Dissipative midpoint scheme Event detection

Applications

Elastic bouncing bar DTH hammer

Summary & work in progress Summary