Effect of abrupt preload reduction on left atrial and ventricular pressures in a multi-scale mathematical model of the cardiovascular system



A. Pironet<sup>1</sup>, PC. Dauby<sup>1</sup>, S. Kosta<sup>1</sup>, S. Paeme<sup>1</sup>, JG. Chase<sup>2</sup>, P. Kolh<sup>1</sup>, T. Desaive<sup>1</sup>

- 1. University of Liège (ULg), GIGA-Cardiovascular Sciences, Liège, Belgium
- 2. University of Canterbury, Department of Biomedical Engineering, Christchurch, New Zealand









Maximal measured (- -) and simulated (-) pressures during preload reduction

Measured and simulated pressures during one cardiac cycle





Simulated left atrial pressurevolume loops before (- -) and after (-) preload reduction

## Conclusions

This model correctly accounts for LA behavior and responds to preload reduction experiments as physiologically expected.

It thus represents a valid substitute to the time-varying elastance method.

[1] Pironet, A., Dauby, P. C., Paeme, S., Kosta, S., Chase, J. G., & Desaive, T. (2013). Simulation of left atrial function using a multi-scale model of the cardiovascular system. PLoS ONE, 8(6).

Contact: A.Pironet@ulg.ac.be

The authors declare no competing interest.