Hands-on-practice tutorial on SPECTROSCOPIC MODE IDENTIFICATION with the HELAS software package FAMIAS – June 4–6 2008

The moment method

Maryline Briquet

Institute of Astronomy, Leuven University, Belgium

Hands-on-practice tutorial on SPECTROSCOPIC MODE IDENTIFICATION with the HELAS software package FAMIAS – June 4–6 2008

Overview

- * Monoperiodic pulsation
- * Multiperiodic pulsation
- * Computation of the observed moments
- * Newness in FAMIAS

Institute of Astronomy, Leuven University, Belgium

MONOPERIODIC PULSATION

Aerts et al. (1992) Aerts (1996)

 $< v > = v_{p}A(\ell, m, i) \sin \left[\left[\omega - m\Omega \right]t + \psi \right],$ $< v^{2} > = v_{p}^{2}C(\ell, m, i) \sin \left[2(\omega - m\Omega)t + 2\psi + \frac{3\pi}{2} \right]$ $+ v_{p}v_{\Omega}D(\ell, m, i) \sin \left[\left[\omega - m\Omega \right]t + \psi + \frac{3\pi}{2} \right]$ $+ v_{p}^{2}E(\ell, m, i) + \sigma^{2} + b_{2}v_{\Omega}^{2},$

 $< v^{3} > = v_{p}^{3}F(\ell, m, i) \sin \left[3(\omega - m\Omega)t + 3\psi\right]$ $+ v_{p}^{2}v_{\Omega}G(\ell, m, i) \sin \left[2(\omega - m\Omega)t + 2\psi + \frac{3\pi}{2}\right]$ $+ \left[v_{p}^{3}R(\ell, m, i) + v_{p}v_{\Omega}^{2}S(\ell, m, i) + v_{p}\sigma^{2}T(\ell, m, i)\right]$ $\times \sin\left[(\omega - m\Omega)t + \psi\right].$

Second moment varies with 2 ω_{obs} ≣

Zonal mode (m=0)

Odd moments have constant = 0

Slow rotation Constant symmetric local line profile

MONOPERIODIC PULSATION

$$< v > = v_{p}A(\ell, m, i) \sin \left[(\omega - m\Omega)t + \psi\right],$$

$$< v^{2} > = v_{p}^{2}C(\ell, m, i) \sin \left[2(\omega - m\Omega)t + 2\psi + \frac{3\pi}{2}\right]$$

$$+ v_{p}v_{\Omega}D(\ell, m, i) \sin \left[(\omega - m\Omega)t + \psi + \frac{3\pi}{2}\right]$$

$$+ v_{p}^{2}E(\ell, m, i) + \sigma^{2} + b_{2}v_{\Omega}^{2}$$

$$< v^{3} > = v_{p}^{3}F(\ell, m, i) \sin \left[3(\omega - m\Omega)t + 3\psi\right]$$

$$+ v_{p}^{2}v_{\Omega}G(\ell, m, i) \sin \left[2(\omega - m\Omega)t + 2\psi + \frac{3\pi}{2}\right]$$

+ $[v_{p}^{3}R(\ell, m, i) + v_{p}v_{o}^{2}S(\ell, m, i) + v_{p}\sigma^{2}T(\ell, m, i)]$

<v> does not depend on σ and *vsini*

Constant of <v²>:

- width of the intrinsic profile σ
- stellar rotation vsini
- stellar pulsation

Free parameters: (I,m), v_p, vsini, i, σ

 $\times \sin\left[(\omega - m\Omega)t + \psi\right].$

IACC

Amplitude of <v>:

$$v_p A(\ell, K, u) \ d_{0m}^{\ell}(i)$$

In general, becomes smaller for higher degree I ≣ Partial cancellation effect For each (I,m), at least one inclination angle so that $d_{0m}^{\ell}(i) = 0$ \equiv Inclination angle of complete cancellation (IACC) \equiv <v> shows no time variation

IACC and IALC

(ℓ,m)			IAC	CC			IALC	* IACCs and IALCs
(1, 0)						90°	0°	
(2, 0)			54.7°				0°	same for (I,m) and (I,-m)
(3, 0)		39.2°				90°	0°	
(4, 0)		30.6°			70.1°		0°	"I = 0" = IACC for
(5, 0)	25.0°		57.4°			90°	0°	non-zonal modes
(1, 1)	0°						90°	
(2,2)	0°						90°	* i = 90° ≡ IACC
(3,3)	0°						90°	if I modd
(4, 4)	0°						90°	II I - III OUU
(5,5)	0°						90°	$*i = 0^\circ = 101 C$ for
(2, 1)	0°					90°	45.0°	I = 0 = IALC IOI
(3, 1)	0°			63.4°			31.1°	zonal modes
(3, 2)	0°					90°	54.7°	
(4, 1)	0°	49.1°				90°	23.9°	* i = 90° ≡ IALC for
(4, 2)	0°			67.8°			40.9°	sectoral modes
(4, 3)	0°					90°	60.0°	Sectoral modes
(5, 1)	0°	40.1°			73.4°		19.4°	
(5, 2)	0°		54.7°			90°	32.9°	
(5, 3)	0°				70.5°		46.9°	May explain missing
(5, 4)	0°					90°	63.4°	nooke in a multiplet
								peaks in a multiplet

DISCRIMINANT FOR A MONOPERIODIC PULSATION

Comparison of the amplitude of theoretically calculated moments and observed moments, through

$$\begin{split} \Gamma_{\ell}^{m}(v_{p}, i, v_{\Omega}, \sigma) &\equiv \left[\left| AA - v_{p} |A(\ell, m, i)| f_{AA} \right|^{2} + \left(\left| CC - v_{p}^{2} |C(\ell, m, i)| \right|^{1/2} f_{CC} \right)^{2} + \left(\left| DD - v_{p} v_{\Omega} |D(\ell, m, i)| \right|^{1/2} f_{DD} \right)^{2} + \left(\left| EE - v_{p}^{2} |E(\ell, m, i)| - \sigma^{2} - b_{2} v_{\Omega}^{2} \right|^{1/2} f_{EE} \right) + \left(\left| FF - v_{p}^{3} |F(\ell, m, i)| \right|^{1/3} f_{FF} \right)^{2} + \left(\left| GG - v_{p}^{2} v_{\Omega} |G(\ell, m, i)| \right|^{1/3} f_{GG} \right)^{2} + \left(\left| RST - v_{p}^{3} |R(\ell, m, i)| - v_{p} v_{\Omega}^{2} |S(\ell, m, i)| - v_{p} \sigma^{2} |T(\ell, m, i)| \right|^{1/3} f_{RST} \right)^{2} \right]^{1/2} . \end{split}$$
Aerts (1996)

$$f_{AA} \equiv \frac{AA}{s_{AA}W}, f_{CC} \equiv \frac{CC}{s_{CC}W}, f_{DD} \equiv \frac{DD}{s_{DD}W},$$

$$f_{EE} \equiv \frac{EE}{s_{EE}W}, f_{FF} \equiv \frac{FF}{s_{FF}W}, f_{GG} \equiv \frac{GG}{s_{GG}W},$$

$$f_{RST} \equiv \frac{RST}{s_{RST}W},$$

$$W \equiv \frac{AA}{s_{AA}} + \frac{CC}{s_{CC}} + \frac{DD}{s_{DD}} + \frac{EE}{s_{EE}} + \frac{FF}{s_{FF}} + \frac{GG}{s_{GG}} + \frac{RST}{s_{RST}}$$

* Discriminant chosen so that contributions of <v>, <v²> and <v³> are similar

* Less weight to amplitudes with a larger standard error

DISCRIMINANT FOR A MONOPERIODIC PULSATION

$$\Gamma^m_\ell(v_{
m p},i,v_{_\Omega},\sigma)$$

$$\gamma_{\ell}^{m} \equiv \min_{v_{\rm p}, i, v_{\rm o}, \sigma} \Gamma_{\ell}^{m}$$

ℓ	m	γ_ℓ^m	$v_{ m p}$	i	$v \sin i$	σ
0	0	0.08	5.6	_	15.3	6.5
1	1	0.13	10.0	38°	14.8	5.9
2	1	0.17	12.1	64°	16.4	2.2
1	0	0.18	5.0	7°	19.6	1.7
2	2	0.23	15.0	53°	10.3	4.8
:	•	•	•	•	•	

δ Scuti star ρ Puppis

$$< v^{2} >_{f \star g} =$$

$$\sum_{j=1}^{N} (v_{p}^{j})^{2} C(\ell_{j}, m_{j}, i) \sin\left(2(\omega_{j} - m_{j}\Omega)t + 2\psi_{j} + \frac{3\pi}{2}\right) + \sum_{j=1}^{N} \sum_{i=1}^{N} v_{p}^{j} v_{p}^{i} C_{b}(\ell_{j}, \ell_{i}, m_{j}, m_{i}, i)$$

$$\times \sin\left(\left(\omega_{i} - \omega_{j} - (m_{i} - m_{j})\Omega)t + \phi_{ij}^{b}\right) + \sum_{j=1}^{N} \sum_{i=1}^{N} v_{p}^{j} v_{p}^{i} C_{s}(\ell_{j}, \ell_{i}, m_{j}, m_{i}, i)$$

$$\times \sin\left(\left(\omega_{i} + \omega_{j} - (m_{i} + m_{j})\Omega)t + \phi_{ij}^{s}\right) + v_{\Omega} \sum_{j=1}^{N} v_{p}^{j} D(\ell_{j}, m_{j}, i) \sin\left(\left(\omega_{j} - m_{j}\Omega\right)t + \psi_{j} + \frac{3\pi}{2}\right) + \sum_{j=1}^{N} (v_{p}^{j})^{2} E(\ell_{j}, m_{j}, i) + \sigma^{2} + b_{2} v_{\Omega}^{2}$$

Multiple modes are identified separately

- using the amplitudes appearing in the moment expressions expect those coupling frequencies
- with the same discriminant as in the monoperiodic case but without including the constant of <v²>

$$< v^{2} >_{f \star g} =$$

$$\sum_{j=1}^{N} (v_{p}^{j})^{2} C(\ell_{j}, m_{j}, i) \sin\left(2(\omega_{j} - m_{j}\Omega)t + 2\psi_{j} + \frac{3\pi}{2}\right) + \sum_{j=1}^{N} \sum_{i=1}^{N} v_{p}^{j} v_{p}^{i} C_{b}(\ell_{j}, \ell_{i}, m_{j}, m_{i}, i)$$

$$\times \sin\left(\left[(\omega_{i} - \omega_{j} - (m_{i} - m_{j})\Omega)t + \phi_{ij}^{b}\right) + \sum_{j=1}^{N} \sum_{i=1}^{N} v_{p}^{j} v_{p}^{i} C_{s}(\ell_{j}, \ell_{i}, m_{j}, m_{i}, i)$$

$$\times \sin\left(\left[(\omega_{i} + \omega_{j} - (m_{i} + m_{j})\Omega)t + \phi_{ij}^{s}\right) + v_{\Omega} \sum_{j=1}^{N} v_{p}^{j} D(\ell_{j}, m_{j}, i) \sin\left((\omega_{j} - m_{j}\Omega)t + \psi_{j} + \frac{3\pi}{2}\right) + \sum_{j=1}^{N} (v_{p}^{j})^{2} E(\ell_{j}, m_{j}, i) + \sigma^{2} + b_{2} v_{\Omega}^{2}$$

BUT

- Separate identifications lead to different values for *i* and *vsini*
- One does not use the information from the coupling terms and from the constant of <v²>
- No simultaneous identification mainly because of still very CPU-time consuming

MULTIPERIODIC PULSATION

- **Slowly Pulsating B stars:**
- Multiperiodic
- The rotation period is of the same order as the pulsation periods (of the order of days)
- \rightarrow Need of improved version of the moment method:
- Improved efficiency of computers + clever implementation:
 Use of a discriminant which identifies all the modes simultaneously, leading to one value for *vsini* and *i*
- Use of Lee & Saio (1992)'s formalism for the pulsation velocity field, taking into account the Coriolis force in a way appropriate to g-modes (use of routines by Richard Townsend 1997)

MULTIPERIODIC PULSATION

$$< v > = \sum_{j=1}^{N} A_1^j \cos(\omega_j t + \psi_j),$$

$$< v^2 > = \sum_{j=1}^{N} C_1^j \cos(2\omega_j t + 2\psi_j)$$

$$+ \sum_{j=1}^{N} D_2^j \sin(\omega_j t + \psi_j)$$

$$+\sum_{j=1}^{N}\sum_{k\neq j}^{N}C_{b1}^{jk}\cos((\underline{\omega_{j}-\omega_{k}})t+\psi_{j}-\psi_{k})$$

$$+\sum_{j=1}^{N}\sum_{k\neq j}^{N}C_{\mathrm{s1}}^{jk}\cos((\underline{\omega_{j}+\omega_{k}})t+\psi_{j}+\psi_{k})$$

+
$$\sum_{j=1}^{N} E_{12}^{j} + E_{\text{rot}} + \sigma^{2}$$
,

$$A_{1}^{j} = A_{p}^{j} \left\{ I[C_{\ell_{j}}^{m_{j}}] + K_{j}I[D_{\ell_{j}}^{m_{j}}] \right\}$$

/[x] ≡ integration over the visible stellar surface

To gain computational time, a grid of such integrals is pre-computed for all (I,m,i) combinations

Briquet & Aerts (2003)

DISCRIMINANT FOR A MULTIPERIODIC PULSATION

Comparison of theoretically calculated moments and observed moments at each time of observations, through

$$\Sigma = \left\{ \frac{1}{N_{\text{obs}}} \sum_{k=1}^{N_{\text{obs}}} \left[(\langle v \rangle (t_k) - \langle v \rangle_{\text{obs}} (t_k))^2 + \left| \langle v^2 \rangle (t_k) - \langle v^2 \rangle_{\text{obs}} (t_k) \right| + \left(\langle v^3 \rangle (t_k) - \langle v^3 \rangle_{\text{obs}} (t_k) \right)^{2/3} \right] \right\}^{1/2}$$

Main drawback: no statistical significance for the derived solutions

APPLICATION TO A β CEPHEI STAR

The β Cephei star θ Ophiuchi

ID	Frequency (d	$^{-1})$ (ℓ,m)	
1/1	7 1160	(2 2)	
$\nu_1 u_2$	7.2881	(2,?)	
ν_3	7.3697	(2,?)	
$ u_4$	7.4677	(0,0)	
ν_5	7.7659	(1, -1)	
$ u_6$	7.8742	(1,0)	
$ u_7$	7.9734	(1, 1)	
(0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(0, 1)	$(1 \ 1) \ (2 \ 1)$	()
(ℓ_1, n)	(z, -1) (0, 0)	(1, -1) $(3, -1)(0, 0)$ $(0, 0)$	(1
(~2,1 A ¹	1 33.96	12.65 46.28	2

In photometry, three components of a quintuplet

Two possible m-values

Ambiguity lifted by spectroscopy

(ℓ_1, m_1)	(2, -1)	(1, -1)	(3, -1)	(2, 0)	(0, 0)	(1, 0)	(2, -2)	(3, 0)	(1, 1)	(2, 1)	
(ℓ_2, m_2)	(0, 0)	(θ, θ)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	
A_p^1	33.96	12.65	46.28	20.80	13.11	8.98	16.98	47.43	12.65	38.73	
A_p^2	10.74	10.74	10.74	10.74	10.74	10.74	10.74	10.74	10.74	10.74	
$v_{r,max}$	3.23	7.23	17.46	9.34	6.58	3.05	9.36	3.39	7.24	3.21	
$v_{\rm t,max}$	3.28	0.55	1.86	0.04	0.00	0.53	1.70	6.39	0.51	3.47	
$i_{\rm rot}$	75	89	90	90	-	5	90	69	90	77	
$v \sin i$	31	33.5	30	38	38.5	38.5	31.5	30	32	30.5	
σ	10	8.5	10	2.5	1	1	10	9.5	10	10	
Σ	14.40	14.43	14.54	14.55	14.56	14.57	14.77	14.77	15.01	15.13	

APPLICATION TO A β CEPHEI STAR

The β Cephei star θ Ophiuchi

(ℓ_1, m_1)	(2, -1)	(1, -1)	(3, -1)	(2, 0)	(0, 0)	(1, 0)	(2, -2)	(3, 0)	(1, 1)	(2, 1)	
(ℓ_2, m_2)	(θ, θ)	(θ, θ)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	
A_p^1	33.96	12.65	46.28	20.80	13.11	8.98	16.98	47.43	12.65	38.73	
A_p^2	10.74	10.74	10.74	10.74	10.74	10.74	10.74	10.74	10.74	10.74	
$v_{r,max}$	3.23	7.23	17.46	9.34	6.58	3.05	9.36	3.39	7.24	3.21	
$v_{t,max}$	3.28	0.55	1.86	0.04	0.00	0.53	1.70	6.39	0.51	3.47	
i_{rot}	75	89	90	90	-	5	90	69	90	77	
$v \sin i$	31	33.5	30	38	38.5	38.5	31.5	30	32	30.5	
σ	10	8.5	10	2.5	1	1	10	9.5	10	10	
Σ	14.40	14.43	14.54	14.55	14.56	14.57	14.77	14.77	15.01	15.13	

(I,m) = (2,-1)

Mode identification from spectroscopy

COMPUTATION OF THE OBSERVED MOMENTS

 Use the zero point of the least-squares fit to the first moment as velocity of the star v, with respect to the Sun

The computed observed moments are then corrected for v_v so that odd moments have a constant equal to zero

 Chose the integration boundaries of the moments dynamically in order to avoid to noisy continuum

Changes in the moment method implemented in FAMIAS compared to version by Briquet & Aerts (2003):

* Computation of statistical uncertainties of observed moments from S/N ratio of the spectrum: $\sigma_{< v^1 > o} \sigma_{< v^2 > o}$

Use of these uncertainties to derive a chi-square goodnessof-fit value using only the first and second moment

$$\chi^2_{\nu} = \frac{1}{2N} \sum_{i=1}^{N} \left[\left(\frac{\langle v^1 \rangle_o - \langle v^1 \rangle_t}{\sigma_{\langle v^1 \rangle_o}} \right)^2 + \left(\frac{\langle v^2 \rangle_o - \langle v^2 \rangle_t}{\sigma_{\langle v^2 \rangle_o}} \right)^2 \right]$$

- * Limb darkening coefficient of 4th order
- * Genetic optimization

Hands-on-practice tutorial on SPECTROSCOPIC MODE IDENTIFICATION with the HELAS software package FAMIAS – June 4–6 2008

The moment method

Maryline Briquet

Institute of Astronomy, Leuven University, Belgium