Il y a 8000 ans, le climat et la végétation des Hautes-Fagnes ont changé considérablement en quelques centaines d'années

par Florence DEROCHE, Philippe GERRIENNE et Maurice STREEL
Département de géologie de l'Université de Liège, Unité de paléobotanique, paléopalinologie et micropaléontologie, Sart-Tilman B 18, B-4000 LIEGE 1, Belgique

1. Introduction

1.1. Il y a 8000 ans environ, l'"Atlantique ancien" s'inscrit dans une époque de changement climatique et de transformation des paysages dans l'Hémisphère Nord, parmi les plus importantes de l'Holocène (la période qui, il y a un peu plus de 11.000 ans, a suivi le Tardiglaciaire). Sur l'Amérique du Nord, les proportions relatives de terre, de mer et de glace et, en particulier la calotte glaciaire des Laurentides, se sont modifiées de manière telle qu'elles ont entraîné des changements dans la circulation océanique et atmosphérique. Au début de l'Holocène, les contraste saisonniers étaient plus marqués que de nos jours, avec une prévalence d'été plus chauds et d'hivers plus froids pendant la phase dite "Boréale". En Europe occidentale, dans les latitudes moyennes comme celles des Hautes-Fagnes, l'épervation estivale était maximale et donc la disponibilité en eau, minimale. Le noisetier (Corylus), arbre héphile de relativement petite taille, semble avoir été mieux adapté à la sécheresse saisonnière que d'autres espèces d'arbres. Ultérieurement, pendant l'Atlantique ancien, des arbres de haute taille comme le tilleul (Tilia), le chêne (Quercus), le frêne (Fraxinus) et l'orme (Ulmus), plus dépendants d'un climat humide pourraient se répandre, surplombant Corylus d'un feuillage beaucoup plus dense et limitant ainsi son extension (Tinner & Lotter, 2001).

1.2. Nous avons cherché à préciser dans le temps ces transformations du paysage dans les Hautes-Fagnes par l'analyse pollinique et quelques datations par le radiocarbone 14. En bordure des Hautes-Fagnes (vallée de la Helle, au Grand-Bongard), Gotje et al. (1990) datent la fin du recul du noisetier court, avec l'extension de la gaine, de 7170 ± 70 années radiocarbone BP, soit 8120-7800 années cal BP (pour "calendrier Before Present") ou environ 8.0 ka (k=mille; a= ancie, en anglais, soit "il y a", en français). Nous retiendrons cette date provisoirement avant d'analyser de nouvelles datations au radiocarbone (voir § 7).

1.3. Nous avons préféré analyser les proportions et les concentrations des principaux pollens et spores dans les dépôts, formés, de tourbe, de restes de lithalises d'origine glaciaire, abandonnés dans la région (Pissart, 2003). Contrairement aux tourbières à sphagnes qui ont seulement commencé à s'installer pendant la période de transition qui nous occupe, les tourbières des lithalises plus anciennes, permettent d'examiner des séquences stratigraphiques plus longues, accumulées généralement dans la fin du Tardiglaciaire, et par là des enregistrements polliniques moins influencés par les stades boisés locaux qui ont caractérisé l'installation de ces tourbières à sphagnes.

2. Matériel et méthode

2.1. Trois sondages (L22, L27 et LV1; Fig. 1a, 2a, et 3a) réalisés respectivement dans les traces de lithalises 22, 27 et 119 de la Fagne des Deux-Sœurs ont été analysés. Les sondages L22 et L27 sont distants l'un de l'autre d'une centaine de mètres. Le sondage LV1 est situé à 2,5 km à l'Est des premiers. Les coordonnées géographiques sont les suivantes : coordonnées Lambert, LV1 138275/274100, L22 137690/271890, L27 137580/271930. Nous avons choisi ces lithalises parce qu'elles avaient été repérées préalablement et étudiées par radar de subsurface par C. Wastiaux-Schumacker (inédit). Ces lithalises n'affaillant pas à la surface de la tourbière, on pouvait penser que la tourbe s'y était accumulée de manière ininterrompue jusqu'aujourd'hui, sans être perturbée par l'activité humaine récente. Chacune d'elles montre des réflecteurs plans à différentes profondeurs. L'origine de ces réflecteurs est encore inconnue mais pourrait provenir de niveaux plus enrichis en matière minérale (Wastiaux et alii, 2000) ou de différences d'humification de la tourbe (Charlier, 2002). Nous avons étudié ces sondages en analysant les valeurs relatives et les concentrations en pollens. Les concentrations (exprimées en nombre de pollens et spores par gramme de tourbe fraîche ou sèche) sont inversément proportionnelles à la vitesse d'accumulation de la tourbe. Cette technique a été utilisée par Hindryckx & Streel (2000) dans la fagne du Misten, travail auquel nous renvoyons le lecteur pour plus de détail.

2.2. Les lithalises 22 et 27 (sondages L22 et L27) n'avaient pas préalablement fait l'objet d'analyse palynologique ou d'analyse du radiocarbone 14. En revanche, la lithaise 119 avait déjà été étudiée par Vargas-Ramírez (1999 et 2003) dans le sondage LV2 (Fig. 1a), parallèle au sondage LV1 étudié ici. L'analyse palynologique écrite par cet auteur et des analyses du radiocarbone 14 réalisées près de la base du sondage LV2 démontrent que la tourbe a commencé à s'accumuler dans le fond de la cuvette dès la fin du Tardiglaciaire. On y observe aussi très nettement la transition Boréal-Atlantique, connue vers 8500 années calendriers BP.

2.3. Nous avons cherché dans chaque sondage deux critères de détermination de ce qui nous appellerons d'abord l'"horizon critique". Le premier, le critère principal, correspond au début de la croissance des pollens d'aulne (Alnus) suivi d'un passage rapide de ses proportions à des valeurs importantes. Le second critère est le fin de la décroissance de la courbe des pollens de noisetier, une limite qui est moins abrupte que celle de la croissance de l'aulne, car le noisetier conserve, pendant l'Atlantique, des proportions non négligeables. L'horizon critique était bien visible dans le diagramme pollinique du lithalse 119 (Vargas-Ramírez, 1999 et 2003) et donc repérable facilement dans le sondage LV1. En revanche, dans un premier temps, nous avons cherché à repérer l'horizon critique dans les quelques mètres de tourbe des sondages L22 et L27 sans, pour autant, être obligés d'analyser les deux sondages.
sur toute leur longueur. Dans ce but, nous avons d'abord traité et analysé des échantillons de 5 cm d'épaisseur de tourbe tous les 25 cm. Nous avons ainsi repéré un intervalle de 25 cm de tourbe où chercher l'horizon critique. Ensuite, dans cet intervalle, nous avons prélevé et analysé des échantillons d'un cm d'épaisseur tous les 5 cm et enfin tous les cm de part et d'autre de l'horizon critique, une fois reconnu.

3. Sondage LV1 (Fig. 1a et 1b)

L'horizon critique se situe entre 174 cm et 175 cm et correspond approximativement à la base de la série de réflecteurs plans, et de leurs échos, enregistrés par le radar de subsurface dans la partie supérieure de la lithalise. Les concentrations sont élevées. En dessous du niveau 175 cm, elles oscillent autour de 500.000 alors qu'au dessus de cette limite, elles sont plus élevées, de l'ordre de 1.500.000-2.000.000 et très variables d'un centimètre à l'autre. On observe également que l'augmentation des concentrations correspond à la régression du noisetier.

Le fond de la lithalise se trouvant à 420 cm de la surface du sol et l'accumulation de tourbe ayant commencé, selon Vargas Ramirez (2003) à la fin du Tardiglaciaire, il y a un peu plus de 11000 ans, il a donc fallu 3000 ans pour qu'envinron 245 cm de tourbe s'accumulent alors que les 175 cm suivants (de l'horizon critique jusqu'à la surface) se sont accumulés en 8000 ans. Ceci traduit un ralentissement considérable de la tourbification au-dessus de l'horizon critique comme le suggèrent les calculs des concentrations. Ces dernières sont beaucoup plus élevées au dessus de l'horizon critique et sont surtout très variables d'un centimètre à l'autre.

4. Sondage L22 (Fig. 2a et 2b)

L'horizon critique se situe entre les niveaux 204 cm et 205 cm, soit juste en dessous du début d'une série de réflecteurs plans et de leurs échos dans la partie supérieure de la lithalise.

Les concentrations oscillent généralement entre 50.000 et 200.000. On constate un pic de concentration à 203 cm, caractérisant une tourbification plus lente. Il n'y a pas de changement de concentration très marqué en regard de l'augmentation de l'Ainus et de la décroissance du Corylus. Cependant, à partir du niveau 208 cm où une concentration minimaïne caractérise le maximum de Corylus, au fur et à mesure que le Corylus décroît, jusqu'au centimètre 200, la concentration augmente faiblement mais régulièrement. Le fond de la lithalise se trouvant à 450 cm de la surface du sol, il aura fallu environ 3000 ans pour que 245 cm de tourbe s'accumulent et 8000 ans pour l'accumulation des 205 cm restants. Cette tourbérie semble donc également avoir souffert d'un ralentissement considérable de la tourbification, mais on ne constate pas, dans cette lithalise, d'accroissement notable des concentrations dans les limites très restreintes de l'intervalle étudié.

5. Sondage L27 (Fig. 3a et 3b)

Une augmentation brutale d'Ainus se marque de 297 cm à 296 cm passant de 17% à 56% en un seul centimètre. Parallèlement le pourcentage de Corylus diminue de plus de moitié à cette même limite. L'horizon critique se place donc entre 296 cm et 297 cm.

Comme dans le sondage L22, les concentrations oscillent généralement entre 50.000 et 200.000 sauf au sommet de la partie analysée du sondage. En effet à partir de 296 cm, elles augmentent et dépassent 500.000. Il existe donc un important changement de part et d'autre de l'horizon critique. Ces concentrations brutalement élevées traduisent, comme explicite précédemment, un ralentissement de la tourbification, voire l'existence de lacunes.

Le fond de la lithalise, se situant à 575 cm, date sans doute d'environ 11,0 ka et l'horizon critique ayant été déterminé entre 296 cm et 297 cm, un peu plus de 275 cm de tourbe se sont accumulés en 3000 ans. Les 300 cm sus-jacents s'étant constitués en environ 8000 ans, on constate, comme pour les autres sondages, un ralentissement de la tourbification. Ce ralentissement est bien décélè par le calcul des concentrations qui atteignent des valeurs dix fois supérieures au dessus de l'horizon critique.

6. Comparaisons des concentrations de pollens dans les trois sondages

La figure 4 met bien en évidence la différence des valeurs de concentration en pollens de part et d'autre de l'horizon critique dans les sondages LV1 et L27. Cette différence est moins évidente dans le sondage L22. Mais l'observation la plus surprenante concerne la faible concentration moyenne dans le sondage L22 comparée à la forte concentration moyenne (prés de 8 fois supérieure) dans le sondage LV1. Ces deux tourbières ayant accumulé en 11.000 ans des épaisseurs de tourbe comparables (respectivement 450 cm et 420 cm), on conçoit difficilement que l'infux pollinique (la pluie pollinique locale par année) ait pu différer de 2,5 km de distance dans une telle proportion. Nous croyons au contraire que l'infux pollinique était, en moyenne, relativement homogène dans la fagnes des Deux-Séries, mais que le régime d'alimentation en eau des tourbières se développant dans les lithalises ne pouvait être très différent d'un endroit à l'autre. Ceci implique une alimentation non seulement par la pluie mais aussi par infiltration de la nappe sous-jacente (Hambuckers et al. 1995). Les faibles concentrations polliniques en L22 pourraient s'expliquer par un régime très irrégulier alternant des périodes de croissance rapide et des arrêts complets de la construction de la tourbérie. Cette hypothèse trouve un écho dans le paragraphe suivant consacrée aux datations par le radiocarbone 14. En revanche, la différences entre les concentrations en L27 et en LV1 peut correspondre en partie à une plus grande activité tourfière dans la première tourbière (épaisse de 575 cm) que dans la seconde (épaisse de 420 cm).

7. Datations par le radiocarbone 14

7.1. Les dates 14C ont été transformées en dates calendrières (années cal BP). Quatre échantillons provenant du sondage LV1 et deux échantillons provenant des sondages L22 et L27 ont été analysés au "Centrum voor Isotopen Onderzoek" à Groningen (NL) en vue d'une datation par le radiocarbone 14. Ce sont les niveaux 163-167 (GRn-28171), 171-174 (GRn-27899) et 177-180 (GRn-27890), 188-191 (GRn-27981) pour le LV1, respectivement au dessus et en dessous de l'horizon critique, le niveau 317-320 (GRn-28907) pour le L27, 20 cm sous l'horizon critique, et le niveau 205-208 (GRn-28906) pour le L22, juste en dessous de celui-ci.
Fig. 1a : Coupe transversale dans la lithaise 119 (sondages LV1 et LV2) d’après Wastiaux-Schumacker dans Vargas-Ramirez (1999, 2003). Dates cal BP : a : 6085 ± 95, b : 7700 ± 140, c : 8315 ± 145, d : 8265 ± 155. La ligne horizontale interrompue indique la position de l’horizon critique (voir texte).

Fig. 1b : Histogramme de comparaison entre les quantités moyennes de pollens par gramme de poids frais (en blanc) et les pourcentages de *Corylus* (ligné horizontalement) et d’*Alnus* (en noir) dans le sondage LV1. La ligne verticale interrompue indique la position de l’horizon critique.

Fig. 2a : Coupe transversale dans la lithaise L22 d’après Wastiaux-Schumacker dans Chartier (2002). Date cal BP : a : 5745 ± 145.

Fig. 2b : Histogramme de comparaison entre les quantités moyennes de pollens par gramme de poids frais (en blanc) et les pourcentages de *Corylus* (ligné horizontalement) et d’*Alnus* (en noir) dans le sondage L22. La ligne verticale interrompue indique la position de l’horizon critique.

Fig. 3a : Coupe transversale dans la lithaise L27 d’après Wastiaux-Schumacker dans Chartier (2002). Date cal BP : a : 8290 ± 120.

Fig. 3b : Histogramme de comparaison entre les quantités moyennes de pollens par gramme de poids frais (en blanc) et les pourcentages de *Corylus* (ligné horizontalement) et d’*Alnus* (en noir) dans le sondage L27. La ligne verticale interrompue indique la position de l’horizon critique.
7.2. Les niveaux 177-180 et 188-191 du sondage LV1 ont été datés respectivement de 8460-8170 années cal BP et 8420-8110 années cal BP alors qu'ils se situent environ entre 3 et 15 centimètres en dessous de l'horizon critique, que nous avons reconnu à 174-175 cm. On remarquera que, tenant compte des intervalles de confiance, ces deux dates se recouvrent largement. Le niveau 317-320 du sondage L27 a été daté de 8410-8170 années cal BP. L'échantillon étant situé à environ 20 cm sous l'horizon critique, la date est en bon accord avec les dates obtenues à partir du sondage LV1. L'horizon critique (principalement le départ de l'extension d'Alnus) doit donc bien se situer aux environs de 8.0 ka avec une certaine probabilité pour un âge un peu plus récent que 8290 années cal BP, moyenne des trois dates disponibles.

7.3. En revanche, les dates obtenues au dessus de l’horizon critique dans le sondage LV1 sont, à première vue, surprenantes. Les niveaux 163-167 et 171-174 qui se situent à environ 10 et 2 centimètres au dessus de l’horizon critique ont été respectivement datés de 6180-5990 années cal BP et 7840-7560 années cal BP. Plus surprenant encore, le niveau 205-208, prélevé immédiatement sous l’horizon critique (204-205) dans le sondage L22, a été daté de 5890-5600 années cal BP. Force nous est donc d’admettre l’existence de lacunes importantes à partir d’environ 8.0 ka dans deux des trois sondages. Ces lacunes sont également détectées par l'analyse des concentrations mais cette technique ne permet pas d’évaluer leur ampleur. Dans le sondage L22, il est probable que le processus de tourbification se soit arrêté pendant des centaines d’années à partir de l’horizon critique et qu’ainsi s’explique l’absence dans ce sondage des fortes variations de concentrations observées dans ces deux autres sondages immédiatement au dessus de cette zone. On peut comprendre aussi pourquoi la date obtenue immédiatement sous l’horizon critique est si différente de la date approximative de 8.0 ka acceptée jusqu’à présent pour cet horizon. En effet, lors de la reprise de l’édification de la tourbière, après l’arrêt prolongé évoqué ci-dessus, une végétation marécageuse à Carex rostrata (ou d’autres herbacées), a pu se développer dans la litière. Or, on sait que plus de 90 % de la biomasse séche d’une telle végétation peut se trouver dans le sol sous forme de rhizomes (Charman, 2002). Cette végétation souterraine peut donc avoir contamié la tourbe sous-jacente et rajouter ainsi la matière organique que nous avons soumise à l’analyse 14C. Les accroissements de pourcentages des céréales et poacées enregistrées pour les niveaux inférieurs à 205 cm étayent cette hypothèse.

8. Fluctuation de la nappe aquifère dans les lithasles de la fagene des Deux-Séries

Les condensations et lacunes suggèrent une fluctuation importante, et propre à chaque lithasle, de la nappe aquifère locale. Lorsque cette nappe descend (par excès d’évaporation sur les apports en eau), la matière organique est dégradée par l’oxygénation du milieu, conduisant ainsi à de faibles taux d’accumulation de la tourbe (et de fortes concentrations en pollens), voire à des absences de dépôt de tourbe. Lorsque cette nappe aquifère remonte (par excès d’apport d’eau sur l’évaporation), les conditions anaérobiques réduisent l’activité des microorganismes qui détruisent la matière organique, conduisant alors à des taux plus élevés d’accumulation de la tourbe (et de faibles concentrations en pollens). Mais une inondation extrême du milieu, en réduisant brutalement la couverture végétale de la tourbière, peut conduire aussi à un ralentissement de la construction de la tourbe. L’analyse sommaire des macro-restes végétaux (Deroche 2004) ne permet pas une meilleure approche du problème car la tourbe, en dessous et au dessus de l’horizon critique, est très dégradée.

9. Relation entre les concentrations en pollens et les réflecteurs plans reconnus par le radar de sub-surface

L’ensemble des observations qui précèdent nous amène à suggérer une relation entre les concentrations en pollens, et par conséquent la vitesse d’accumulation de la tourbe, et la présence de réflecteurs plans mis en évidence par le radar de sub-surface. En effet, dans les trois tourbières examinées, l’horizon critique qui, rappelons-le, sépare des zones de tourbière à vitesses d’accumulation de tourbe différentes, correspond plus ou moins à la base d’un ensemble de réflecteurs plans. Une succession de lacunes sédimentaires et de tourbes différemment saturées en eau pourrait étayer l’hypothèse émise par Charlier (2003) sur le rôle joué par le degré d’humification de la tourbe (voir § 2). Malheureusement, la résolution du radar de sub-surface, qui est bien moindre que celle de l’analyse pollinique que nous avons réalisée tous les centimètres, et l’épuisement des carottes de tourbe étudiées par Charlier (2003) ne nous ont pas permis de tester cette hypothèse plus en détail en contrôlant les observations.

10. Discussion

10.1. La forte décroissance du Corylus sous l’horizon critique est le seul critère de comparaison à notre disposition pour corrélérer nos observations avec d’autres sites mieux datés en Europe. L’extension de la courbe d’Alnus paraît en effet
10.3. *Alinus* est peu présent pendant le Boréal dans les Hautes-Fagnes. Commencant à croître et fleurir tôt dans la saison, *Alinus glutinosus* est particulièrement sensible au gel du début du printemps (Veski et al., 2004). Il requiert d’autre part des conditions écologiques humides. Ceci suggère que l’expansion d’*Alinus* a demandé un climat plus humide et plus chaud en hiver que précédemment et, par conséquent, on peut émettre l’hypothèse que le début de la courbe de croissances d’*Alinus* est postérieur à l’événement 8.2 ka. Bien que l’événement 8.2 ka ne soit pas identifié jusqu’à présent dans la fagère des Deux-Sérées par une caractéristique particulière de la végétation ou de la tourbe, on peut admettre qu’il se situe peu en dessous de l’horizon critique que nous avons localisé dans les 3 sondages. L’appréciation de l’intervalle de temps qui sépare l’événement 8.2 ka de l’horizon critique est cependant rendue difficile par la présence de condensations et/ou de lacunes dans le dépôt tourbeux.

11. Conclusion

A partir de 8.0 ka, la croissance des tourbières édifiées à l’intérieur des litothésies étudiées dans la fagère des Deux-Sérées a été fortement ralentie. Le climat et la végétation des Hautes-Fagnes ont changé considérablement en quelques centaines d’années, conduisant, vers 8.0 ka, à une transformation radicale du paysage. Dans les Hautes-Fagnes, des forêts d’aulnes se sont étendues dans les déppressions où s’est amorcée, à la faveur d’un climat soudainement plus humide, l’installation des grandes tourbières à sphaignes. Sur ces crêtes, les forêts basses de noisetiers, sous le couvert clair de pins (*Pinus*) et de bouleaux (*Betula*), ont été progressivement remplacées par de hautes futaies densément de chênes, frênes, tillets et ormes. Il faudra attendre 5200 ans (la transition Subborell-Subatlantique, vers 2800 ans cal BP) pour que d’autres changements climatiques introduisent un nouveau type de forêt : la forêt de hêtres.

REFERENCES

