Herd-test-day variability of methane emissions predicted from milk MIR spectra in Holstein cows

M.-L. Vanrobays¹, P.B. Kandel¹, H. Soyeurt¹, A. Vanlierde², F. Dehareng², E. Froidmont², P. Dardenne² & N. Gengler¹

¹ University of Liège, Gembloux Agro-Bio Tech – Gembloux, Belgium ² Walloon Agricultural Research Centre – Gembloux, Belgium Contact: mlvanrobays@ulg.ac.be

Background

- Enteric methane (CH₄) emissions of cows
 - Losses of dietary energy
 - Contribution to global warming
- Need to mitigate these CH₄ emissions
- CH₄ production is affected by many & different categories of factors (Taminga et al. 2007, Feeding strategies to reduce methane loss in cattle, 46 p.)

Material & Methods

Data

- Prediction of daily CH₄ emissions from milk mid-infrared (MIR) spectra (R² of cross-validation = 0.70) (Vanifed et al. 2013, Presentation 2, Session 4, EAAP, Nuntex)
- 412,520 milk MIR spectra & test-day (TD) records collected between January 2007 & January 2012:
- Milk yield, fat & protein content
- 69,223 primiparous Holstein cows from 1,104 herds
- 2 CH₄ studied traits:
- g of CH₄ per day
 - g of CH₄ per kg of milk
- Descriptive statistics of the dataset

Trait (N = 412,520)	Mean	SD
Milk (kg/day)	23.44	5.97
Fat (g/dL of milk)	3.97	0.66
Protein (g/dL of milk)	3.34	0.34
MIR CH ₄ (g/day)	545.91	109.34
MIR CH ₄ (g/kg of milk)	25.01	8.88

Model

- Bivariate random regression TD models
 - Resolved using REML
 - A CH₄ trait & a milk production trait

y = Xb + Q (Zp + Za) + e

where **y** = Vector of observations

- **b** = Vector of fixed effects
- ightarrow HTD, classes of days in milk, & age at calving
- **p** = Vector of permanent environmental random effects
- a = Vector of additive genetic random effects
- \mathbf{Q} = Covariate matrix for 2^{nd} order Legendre polynomials
- X & Z = Incidence matrices
- e= Error

Conclusions

- Herd & test-day (HTD) have large effects on CH₄ emissions & milk production
- > HTD effects varied through herds & seasons

Results

Coefficient of variation (CV) of HTD solutions for studied traits (N= 33,159)

Trait	CV	
Milk (kg/day)	17.54 %	(
Fat (g/dL of milk)	8.93 %	
Protein (g/dL of milk)	4.68 %	
MIR CH ₄ (g/day)	15.51 %	
MIR CH ₄ (g/kg of milk)	23.18 %	

Large differences between herds for milk yield & MIR CH₄

Evolution of the mean HTD effect on studied traits across time

The Ministry of Agriculture of the Walloon Region of Belgium (Service Public de Wallonie – Direction générale de l'Agriculture, des Ressources naturelles et de l'Environnement, Direction de la Recherche) is acknowledged for its financial support through the research project D31-1304. The authors gratefully acknowledge funding from the European Commission, "GreenHouseMik" project (PP7 Marie Curie ITN). M.-L. Vanrobays acknowledges the National Fund for Scientific Research for travel grant to attend EAAP annual meeting 2013.

