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ABSTRACT

We show that there exist c-generated algebras (and dense in C∞([0, 1])) ev-

ery nonzero element of which is a nowhere Gevrey differentiable function.

This leads to results of dense algebrability (and, therefore, lineability) of

functions enjoying this property. In the process of proving these results

we also provide a new construction of nowhere Gevrey differentiable func-

tions.

1. Introduction and preliminaries

The work presented here is a contribution to the ongoing search for large alge-

braic structures of functions on [0, 1] or R enjoying special properties. Given

such a property, we say that the subset M of functions which satisfies it is lin-

eable if M ∪ {0} contains an infinite-dimensional linear (not necessarily closed)

space. The concept of lineability was coined by V. I. Gurariy and it first ap-

peared in [2]. In a more general framework we have the following.

Definition 1.1 (Lineability, [2]): LetX be a topological vector space,M a subset

of X , and κ a cardinal number.

(1) M is said to be κ-lineable ifM ∪{0} contains a vector space of dimen-

sion κ. At times, we shall be referring to the set M as simply lineable

if the existing subspace is infinite-dimensional.

(2) We also let λ(M) be the maximum cardinality (if it exists) of such a

vector space.

(3) When the above linear space can be chosen to be dense inX we shall say

that M is κ-dense-lineable (or, simply, dense-lineable if κ is infinite).

Let us recall that (keeping the same notation as in the previous definition)

we shall also say that M is spaceable ([2]) if M ∪ {0} contains an infinite-

dimensional closed subspace of X .

Remark 1.2: (a) Let us recall that the λ(M) from Definition 1.1 might actu-

ally not exist. It is not difficult to provide natural examples of sets which

are n-lineable for every n ∈ N but which are not lineable. For instance,

let j1 ≤ k1 < j2 ≤ · · · ≤ km < jm+1 ≤ · · · be positive integers and let

M =
⋃

m{∑km

i=jm
aix

i : ai ∈ R}. Since the sets {∑km

i=jm
aix

i : ai ∈ R}
(m ∈ N) are pairwise disjoint, M is finitely (but not infinitely) lineable

in C([0, 1]), the set of continuous functions in [0, 1].
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(b) Let us recall that, in [8], the authors introduced the lineability number

of a set M as follows:

L(M) = min{κ :M is not κ-lineable}.

This number always exists and, whenever λ(M) exists, one has L(M) =

λ(M)+ (the successor cardinal of λ(M)).

Since this concept appeared, it has attracted the attention of many authors,

who became interested in the study of subsets of RR enjoying certain special

or, as they sometimes are called, “pathological” properties (see, e.g., [2, 11,

13, 14, 15, 19] and references therein). Before the publication of [2], several

authors (when working with infinite-dimensional spaces) already found large

linear structures enjoying these type of special properties (even though they

did not explicitly use the word lineability). We believe that the earliest result

in this direction (although negative!) was due to Levine and Milman (1940,

[27]):

Theorem 1.3: The subset of C([0, 1]) of all functions of bounded variation is

not spaceable.

On the other hand, in 1966, Gurariy [23] obtained the following (positive) re-

sult within the framework of continuous nowhere differentiable functions (Weier-

strass’ monsters).

Theorem 1.4: The set of continuous nowhere differentiable functions on [0, 1]

is lineable.

Afterwards, Fonf, Gurariy and Kadeč [20] showed that the infinite-dimen-

sional subspace from Theorem 1.4 can be chosen to be closed in C([0, 1]). As

a matter of fact, Rodŕıguez-Piazza [29] showed that the space constructed in

[20] can also be chosen to be isometrically isomorphic to any separable Banach

space. More recently, Hencl [25] showed that any separable Banach space is

isometrically isomorphic to a subspace of C([0, 1]) whose nonzero elements are

nowhere approximately differentiable and nowhere Hölder. We refer the inter-

ested reader to the recent expository paper [13] where many more examples can

be found and the state of the art of this trend is presented.

Let us also recall that, recently, Bernal [12] introduced the notion ofmaximal

lineable (and that of maximal dense-lineable) meaning that, when keeping
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the above notation, the dimension of the existing linear space is equal to dim(X).

Besides asking for linear spaces one could also study other structures, such as

algebras, which motivated the following concept.

Definition 1.5 (Algebrability and Strong-algebrability, [4, 3] and [7]): Given an

algebra A and a subset B ⊂ A, we say that:

(1) B is algebrable if there is a subalgebra C of A so that C ⊂ B∪{0} and

the cardinality of any system of generators of C is infinite.

(2) When havingA endowed with a topology, we would say that B is dense-

algebrable if (in addition) C can be taken dense in A.

(3) At times we shall say that B is, simply, κ-algebrable if there exists

a κ-generated subalgebra C of A with C ⊂ B ∪ {0} (where κ is some

cardinal number).

(4) We also say that B is strongly κ-algebrable if there exists a κ-

generated free algebra C contained in B ∪ {0}.
Of course, any algebrable set is, automatically, lineable as well. In general,

the converse is false. An example of this can be the set of (improper) Riemann

integrable functions on R (see, e.g., [30]) that are not Lebesgue integrable, de-

noted R(R) \ L(R). This set is lineable (see [22]) but it is also clearly not

algebrable. Indeed, for every f ∈ R(R), either f2 /∈ R(R) or f2 = |f2| ∈ R(R)

and, therefore, f2 ∈ L(R). Some of the first examples of algebrable sets ap-

peared in [4, 10].

Remark 1.6: As we did in Remark 1.2 (b), one could also define the following

algebrability number:

min{κ :M is not κ-algebrable}.

Of course, the same definition can also be used for strong-algebrability.

Here we shall focus on a very particular class of functions, the so-called

nowhere Gevrey differentiable functions. In what follows, C∞([0, 1]) denotes

the Fréchet space of the functions of class C∞ on [0, 1], endowed with the se-

quence (pk)k∈N0 of semi-norms defined by

pk(f) = sup
j≤k

sup
x∈[0,1]

|f (j)(x)|
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or, equivalently, with the distance d defined by

d(f, g) =

+∞∑
k=0

2−k pk(f − g)

1 + pk(f − g)
.

Following [17] we have:

Definition 1.7 (Gevrey differentiable function): For a real number s > 0 and

an open subset Ω of R an infinitely differentiable function f in Ω is said to

be Gevrey differentiable of order s at x0 ∈ Ω if there exist a compact

neighborhood I of x0 and constants C, h > 0 such that

supx∈I |f (n)(x)| ≤ Chn(n!)s, ∀n ∈ N ∪ {0}.
Clearly, if a function is Gevrey differentiable of order s at x0, it is also Gevrey

differentiable of any order s′ > s at x0 (the case s = 1 corresponds to analytic-

ity). On the other hand:

Definition 1.8 (nowhere Gevrey differentiable function): A function f is said

to be nowhere Gevrey differentiable (NG from now on) on R if f is not

Gevrey differentiable of order s at x0, for every s > 1 and every x0 ∈ R.

Recall that (following [26]) a Borel set B in a complete metric linear space

E is said to be shy if there exists a Borel probability measure μ on E with

compact support such that μ(B + x) = 0 for any x ∈ E. A set is said to be

prevalent if it is the complement of a shy set. Also, if X is a Baire space, then

a subset A ⊂ X is called residual (or comeager) if A contains some dense Gδ

subset of X .

Any nowhere Gevrey differentiable function is, in particular, nowhere ana-

lytic. The set of nowhere analytic functions in C∞([0, 1]) is known to be preva-

lent ([9]), residual ([28]), lineable ([11]), and even algebrable ([18]). In [9] it was

also shown that the set of nowhere Gevrey differentiable functions in C∞([0, 1])

is

(i) a prevalent subset of C∞([0, 1]) and

(ii) a residual subset of C∞([0, 1]).

Thus (in [9]) the authors obtained “genericity” in both the measure-theoreti-

cal and the topological senses. On the other hand, nothing is known about the

algebraic structure of the set NG. One might think that since NG enjoys such

a rich Borel structure, it might also contain large algebraic structures (linear
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spaces, algebras, etc.). This is, in general, not true. For instance, in [24] it

was proved that if Ĉ([0, 1]) denotes the subset of C([0, 1]) composed by the

functions that attain the maximum exactly once in [0, 1], then λ(Ĉ([0, 1])) = 1

and, contrary to what one might expect, Ĉ([0, 1]) is a dense Gδ subset of C([0, 1])
(see [16, Proposition A]). Thus, there is no immediate implication between being

residual and containing large subspaces.

In this paper we shall settle this question for the set of nowhere Gevrey

differentiable functions. First of all, we give a direct proof of the maximal-

dense-lineability of NG in C∞([0, 1]) (Section 2). To achieve this result we use

any nowhere Gevrey differentiable function (see for example [9] for an explicit

construction). However, to tackle the problem of algebrability, a more precise

knowledge of a very particular “key” function in NG is needed. Following some

ideas from [17, 18] we are able to construct a (real valued) infinitely differen-

tiable nowhere Gevrey differentiable function. This construction allows us to

prove the maximal-dense-algebrability of the set of nowhere Gevrey differen-

tiable functions in C∞([0, 1]) (Section 3). We also obtain that λ(NG) = c (the

continuum), which is the best possible result in terms of dimension since the

set of continuous functions has cardinality c.

Throughout this paper Ck
j denotes the binomial coefficient j!

k!(j−k)! , N is the

set of strictly positive natural numbers and N0 = N∪{0}. Also, �x� stands for

the largest integer smaller than x. The rest of the notation is standard.

2. Algebrability (and dense-lineability) of NG

The aim of this section is to prove that the set NG is, both, strongly-algebrable

and dense-lineable in C∞([0, 1]) and that λ(NG) = c. The dense-lineability is, of

course, a consequence of the dense-algebrability of NG in C∞([0, 1]) (Section 3).

Nevertheless, the dense-lineability is here directly obtained, using any function

belonging to NG; this is the reason why we show it here as well, to illustrate the

differences that one might encounter when dealing with dense-lineability and

dense-algebrability.

Proposition 2.1: For every α ∈ R, let eα(x) = exp(αx), x ∈ R. If f is

nowhere Gevrey differentiable on R, if a1, . . . , aN ∈ C are not all equal to 0 and
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if α1 < · · · < αN are real numbers, then the function

g =
N∑
j=1

ajeαj ◦ f =

( N∑
j=1

ajeαj

)
◦ f

is nowhere Gevrey differentiable on R. It follows that NG is strongly-algebrable.

The proof of this previous result employs the so-called exponential-like

function method. This method was used in [21], rediscovered in [5] and,

recently, studied in depth in [6]. Using the fact that the composition of Gevrey

functions is still Gevrey (see [31]) and following the lines of the proof of [6,

Theorem 5.10], as well as the functions given in the statement of the Theorem,

the result follows (we spare the details of its proof to the interested reader, since

in Section 3 we shall give an improvement of this result).

Of course, as an immediate corollary, we have:

Corollary 2.2: NG is lineable in C∞([0, 1]).

Lemma 2.3: If P denotes the set of polynomials, then P+NG ⊂ NG.

Proof. Let us consider g ∈ NG and P a polynomial. We proceed by contra-

diction. Assume that g + P is Gevrey differentiable of order s > 0 at x0 ∈ R.

Since P is analytic at x0, P is also Gevrey differentiable of order s at x0 and

the same holds for g = (g + P )− P hence a contradiction.

In order to obtain the dense-lineability of NG in C∞([0, 1]) let us recall the

following result.

Proposition 2.4 (Theorem 2.2 and Remark 2.5, [1]): Let X be a metrizable

topological vector space and consider two subsets A, B of X such that A is

lineable and B is dense-lineable in X . If A + B ⊂ A, then A is dense-lineable

in X .

With this result at hand, we can now infer the following.

Proposition 2.5: The set NG is dense-lineable in C∞([0, 1]).

Proof. It follows directly from Corollary 2.2, Lemma 2.3, and Proposition

2.4.

Next, let us show that the lineability dimension of NG is the largest possible

one.
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Proposition 2.6: λ(NG) = c.

Proof. Let us fix a function f ∈ NG. As before, we consider

D = span{feα : α ∈ [0, 1]},
where eα(x) = exp(αx). From Proposition 2.1, we just have to show that

dimD = c. For this, it suffices to show that the functions feα, α ∈ [0, 1],

are linearly independent. Let us assume that it is not the case. Then there

exist c1, . . . , cN ∈ C not all zero, and α1 < · · · < αN in [0, 1] such that

c1feα1 + · · · + cNfeαN = 0 on [0, 1], i.e., f(c1eα1 + · · · + cNeαN ) = 0 on [0, 1].

Since the functions eα1 , . . . , eαN are linearly independent ([11, Theorem 3.1]),

there exists x ∈ [0, 1] such that c1eα1(x) + · · · + cNeαN (x) 
= 0. By continu-

ity, there exists a subinterval J ⊂ [0, 1] such that c1eα1 + · · · + cNeαN 
= 0 on

[0, 1]. It follows that f = 0 on J , which is impossible since f is nowhere Gevrey

differentiable.

3. Dense-algebrability of NG

The strategy to tackle the algebrability problem will be different from that of

the previous section. Here, we shall need a very particular NG function. We can

achieve this (see Proposition 3.1) by means of a function defined as a series, in

which the nth term is built via a special function which is Gevrey differentiable

of order n on R.

For any s > 1, let fs denotes the function defined on R by

fs(x) =

⎧⎨
⎩exp

(− x−
1

s−1

)
if x > 0,

0 otherwise.

In [17], it is proved that fs is Gevrey differentiable of order s on R. Let us

consider the function ψs defined on R by

ψs(x) = fs(x)fs(1− x).

The function ψs is Gevrey differentiable of order s on R, analytic on ]0, 1[, the

support of ψs is [0, 1] and Dpψs(0) = Dpψs(1) = 0 for every p ∈ N0 (i.e., ψ is

flat at 0 and 1). Consequently, for every n ≥ 2, there exist Dn > 0 and hn > 0

such that

sup
x∈R

|Dpψn(x)| ≤ Dn(hn)
p(p!)n ∀p ∈ N0 .
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Keeping the previous notation, we have:

Proposition 3.1: The function ρ defined by

ρ(x) =

+∞∑
n=2

Cnψn(2
nx− �2nx�)

for every x ∈ R, where Cn =
(
Dn(hn2

nn!)n
)−1

, is nowhere Gevrey differentiable

on R.

Proof. Due to the flatness of ψn at 0 and 1, the function x �→ ψn(2
nx− �2nx�)

belongs to C∞(R) for every n ≥ 2. Moreover, for every p, from the choice of the

coefficients Cn, the series
∑+∞

n=2 Cn2
np supx∈R

|Dpψn(x)| converges. Therefore,
we obtain that the function ρ belongs to C∞(R).

Let us show that ρ is nowhere Gevrey differentiable. The set Q of all points

of the form 2−mk, where m ≥ 3 is a natural number and k is an odd number,

is dense in R. Therefore, it suffices to show that ρ is not Gevrey differentiable

of any order at each point of Q. On the contrary, assume that ρ is Gevrey

differentiable of order s > 1 at some point x0 ∈ Q. Let x0 = 2−m0k0. Then for

n ∈ {2, . . . ,m0 − 1}, the function ψn(2
nx− �2nx�) is analytic at x0 and hence

Gevrey differentiable of order s at x0. Consequently, the function

Θm0(x) :=

+∞∑
n=m0

Cnψn(2
nx− �2nx�) = ρ(x)−

m0−1∑
n=2

Cnψn(2
nx− �2nx�)

is also Gevrey differentiable of order s at x0. Since Θm0 is periodic of period

2−m0 , we can assume that x0 = 0. Then, there exist ε > 0, C > 0 and h >0

such that

sup
|x|≤ε

|DpΘm0(x)| ≤ Chp(p!)s ∀p ∈ N0 .

Since each derivative of Θm0 at 0 is equal to 0, Taylor’s formula gives that for

every x ∈ R and every p ∈ N, there exists a real number ξ between 0 and x

such that

Θm0(x) =
DpΘm0(ξ)

p!
xp.

Then, we have

0 ≤ Θm0(x) ≤ Cxphp(p!)s−1 ∀p ∈ N, ∀ 0 < x ≤ ε,

and it follows that

0 ≤ Cnψn(2
nx− �2nx�) ≤ Cxphp(p!)s−1
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for every p ∈ N, n ≥ m0 and 0 < x ≤ ε. Let us fix n large enough such that

n ≥ s, n ≥ m0 and h2
−ne<1. For every p∈N, we define then xp := 2−np−(n−1).

For p sufficiently large, we have 0 < xp < ε and we obtain then

0 ≤ Cnψn(p
−(n−1)) ≤ Chp2−npp−p(n−1)(p!)s−1,

where ψn(p
−(n−1)) = e−pfn(1 − p−(n−1)). Consequently, we have

Cnfn(1 − p−(n−1)) ≤ Chp2−npep(p−pp!)s−1.

for every p large enough. The left-hand side converges to Cnfn(1) = Cne
−1 > 0

and the right-hand side converges to 0 when p → +∞. This leads to a contra-

diction.

The following proposition improves Proposition 2.1. It is the second key of

the main result in this section.

Proposition 3.2: If F1, . . . , FN are analytic on R and not all identically equal

to 0, and if ρ is the function from Proposition 3.1, then the function

g =

N∑
i=1

Fiρ
i

is nowhere Gevrey differentiable on R.

Proof. As previously, consider the set Q of all points of the form 2−mk, where

m ≥ 3 is a natural number and k is an odd number. Since Q is dense in R, we

just have to show that g is not Gevrey differentiable of any order at each point

of Q. On the contrary, assume that g is Gevrey differentiable of order s > 1 at

some point x0 = 2−m0k0.

Recall that we do not necessarily have flatness of ρ at x0. This is the reason

why we set

Am0(x) :=

m0−1∑
n=2

Cnψn(2
nx−�2nx�) and Θm0(x) :=

+∞∑
n=m0

Cnψn(2
nx−�2nx�)

for every x ∈ R. Then, Am0 is analytic at x0 and Θm0 is flat at x0. Of course,

we also have

ρ = Am0 +Θm0
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and it follows that

g(x) =

N∑
i=1

Fi(x)(Am0 (x) + Θm0(x))
i =

N∑
i=1

Fi(x)

i∑
j=0

Cj
i (Am0(x))

i−j(Θm0(x))
j

=

N∑
i=1

Fi(x)(Am0 (x))
i +

N∑
i=1

Fi(x)

i∑
j=1

Cj
i (Am0(x))

i−j(Θm0(x))
j

=

N∑
i=1

Fi(x)(Am0 (x))
i +

N∑
j=1

( N∑
i=j

Fi(x)C
j
i (Am0(x))

i−j

)
(Θm0(x))

j

=

N∑
i=1

Fi(x)(Am0 (x))
i +

N∑
j=1

cj(x)(Θm0 (x))
j ,

where for every j ∈ {1, . . . , N}

cj(x) :=
N∑
i=j

Fi(x)C
j
i (Am0(x))

i−j .

Let us fix a neighborhood V of x0 and let us show that there exists

j ∈ {1, . . . , N} such that cj is not identically 0 in V . We proceed by con-

tradiction. Assume that cj(x) = 0 for every j ∈ {1, . . . , N} and x ∈ V . This

would mean that⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 C1
2Am0(x) · · · C1

N (Am0(x))
N−1

0 1 · · · C2
N (Am0(x))

N−2

0 0
. . .

...

...
...

. . . CN−1
N Am0(x)

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1(x)

F2(x)

...

...

FN (x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

...

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for every x ∈ V . Since F1, . . . , FN are not all identically equal to 0, there is

x ∈ V and j ∈ {1, . . . , N} such that Fj(x) 
= 0, which gives a contradiction

since the matrix is invertible. Let k be the smallest element of {1, . . . , N} for

which ck is not identically equal to 0 on V . Then, in this neighborhood, we

have

g(x) =

N∑
i=1

Fi(x)(Am0 (x))
i +

N∑
j=k

cj(x)(Θm0(x))
j .
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Since
∑N

i=1 Fi(x)(Am0 (x))
i is analytic at x0 and since g is Gevrey differentiable

of order s at x0, we have that the function

Φm0(x) :=

N∑
j=k

cj(x)(Θm0 (x))
j

is also Gevrey differentiable of order s at x0. Then, there exist ε > 0, C > 0,

and h >0 such that

sup
|x−x0|≤ε

|DpΦm0(x)| ≤ Chp(p!)s ∀p ∈ N0 .

From the flatness of Θm0 at x0, we also get that Φm0 is flat at x0. Then, by

Taylor’s formula, for every x ∈ R and every p ∈ N, there is ξ between x and x0

such that

Φm0(x) =
DpΦm0(ξ)

p!
(x− x0)

p.

Consequently, we have

|Φm0(x)| ≤ Chp(p!)s−1|x− x0|p

for every x such that |x− x0| ≤ ε and for every p ∈ N.

Recall that the function ck is analytic at x0 and not identically equal to 0 in

a neighborhood of x0. Thus, there exists J ∈ N0 and dk analytic at x0 with

dk(x0) 
= 0 and such that

ck(x) = (x− x0)
Jdk(x)

in a neighborhood of x0. Let us fix n ∈ N such that n > s, n ≥ m0 and

hek2−n < 1.

As before, we consider xp := x0 +2−np−(s0−1) for every p ∈ N. Then, on one

hand, we have

Φm0(xp)

(Θm0(xp))
k(xp − x0)J

= dk(xp) +

N∑
j=k+1

cj(xp)
(Θm0(xp))

j−k

(xp − x0)J

which converges to dk(x0) 
= 0 as p goes to infinity (the second term of the sum

converges to 0 since Θm0 is flat at x0). On the other hand, for p large enough,

we have |xp − x0| ≤ ε and it follows that

|Φm0(xp)| ≤ Chp(p!)s−1|xp − x0|p.
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Moreover, for p large enough, we have 2nxp − �2nxp� = p−(n−1) and

fn(1 − p−(n−1)) converges to fn(1) = e−1 > 0 if p goes to infinity. There-

fore, we obtain that

∣∣∣ Φm0(xp)

(Θm0(xp))
k(xp − x0)J

∣∣∣ ≤ Chp(p!)s−1|xp − x0|p
(Cnψn(2nxp − �2nxp�))k|xp − x0|J

=
Chp(p!)s−12−n(p−J)p−(p−J)(n−1)

(Cne−pfn(1 − p−n−1))k

≤ C2nJ

(Cnfn(1− p−n−1))k

( p!
pp

)n−1

pJ(n−1)(hek2−n)p,

which converges to 0 as p goes to infinity. This contradiction gives the conclu-

sion.

Let H denote a Hamel basis of R, let A be an algebra generated by the

functions ρeα with α ∈ H and eα(x) = exp(αx). Then f of A if and only if f

is of the form

f =
L∑

l=1

alρ
nleβl

where L ∈ N, al ∈ R for all l ∈ {1, . . . , L}, and βl 
= βl′ if l 
= l′.

Proposition 3.3: A is a c-generated free algebra contained in NG ∪ {0}.
Proof. By Proposition 3.2, A ⊂ NG ∪ {0}. Using the periodicity of ρ and the

properties of Vandermonde determinants, we obtain that the functions ρnleβl

are linearly independent.

In order to obtain strongly dense-algebrability of NG, we are now going to

modify a little bit the definition of the previous algebra as explained in what

follows. First we need some additional notations and a lemma.

Let αm ∈ R (m ∈ N). Using the continuity of the multiplication by scalars, for

every m, we take km > 0 such that d(0, kmeαmρ) < 1/m. Let also Pm (m ∈ N)

be a dense sequence of polynomials in C∞([0, 1]).

Lemma 3.4: The family G0 := {Pm + kmρeαm : m ∈ N} is dense in C∞([0, 1]).

Proof. For every f ∈ C∞([0, 1]) and for every m, we have

d(f, Pm + kmeαmρ) ≤ d(f, Pm) + d(0, kmeαmρ) ≤ d(f, Pm) + 1/m.
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Since there is a subsequence M(k) ∈ N (k ∈ N) such that limk d(f, PM(k)) = 0,

we conclude.

Now, take a sequence of different elements αm ∈ H (m ∈ N) and define

kα = 1, Pα = 0 for α ∈ H \ {αm : m ∈ N}. The “candidate” we are looking for

is the algebra Ad generated by

G := {Pα + kαρeα : α ∈ H} .
Theorem 3.5: Ad is a is c-generated free dense-algebra (in C∞([0, 1])) and

contained in NG ∪ {0}.
Proof. On the one hand, since the set of generators G contains G0, Lemma 3.4

provides the density. On the other hand, the functions ρeα(α ∈ H \ {αm :

m ∈ N}) are generators; using Proposition 3.3 we obtain the fact that Ad is

c-generated. It remains then to show that Ad ⊂ NG ∪ {0}. An element f 
= 0

of Ad can be written as

f =

L∑
l=1

al

J∏
j=1

(Pγj + kγjeγjρ)
n(l,j)

where J, L ∈ N, al ∈ R \ {0} for all l ∈ {1, . . . , L}, γj ∈ H for all j ∈ {1, . . . , J}
(with γj 
= γj′ if j 
= j′) and where n(l, j) ∈ N0 are such that n(l, j) 
= n(l′, j)
for at least one j in case l 
= l′. As before, we set βl :=

∑J
j=1 n(l, j)γj (l ∈

{1, . . . , L}) and we have βl 
= βl′ if l 
= l′.
For each l ∈ {1, . . . , L}, the term

J∏
j=1

(Pγj + kγj eγjρ)
n(l,j)

is a “polynomial” (with coefficients which are analytic functions) in the “vari-

able” ρ; the “degree” of this polynomial is nl =
∑J

j=1 n(l, j) ∈ N and the

coefficient of ρnl is

cl =

( J∏
j=1

kn(l,j)γj

)
eβl
.

Let N = sup{n1, . . . , nL}. The function f also appears as a “polynomial”

(with coefficients which are analytic functions) in the “variable” ρ and the
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coefficient of the term with the highest power N is

FN :=
∑

1≤l≤L,nl=N

alcl =
∑

1≤l≤L, nl=N

al

( J∏
j=1

kn(l,j)γj

)
eβl
.

Since the coefficients al are not zero and since the βl are different, FN is not

identically 0. Hence the conclusion using Proposition 3.2 and the fact that the

sum of a polynomial and a NG function is still a NG function.

We would like to finish by pointing out some remarks. In the existing lit-

erature, many examples of continuous functions (enjoying certain pathological

properties) were constructed within the framework of C([0, 1]).
Of course, when it comes to spaceability, the results may differ very much

from one another depending on which subspace of continuous functions we are

considering. For instance, in 1966, a classical result by Gurariy [23] states the

following.

Theorem: The set of everywhere differentiable functions on [0, 1] is not space-

able in C([0, 1]).
On the other hand, Gurariy also proved in [23] that there actually exist closed

infinite-dimensional subspaces of C([0, 1]) all of whose members are differentiable

on ]0, 1[. However, Bernal [11, Theorem 4.4] showed that C∞(]0, 1[) is, indeed,

spaceable in C(]0, 1[).
Next, we would like to recall that Proposition 2.5 and Theorem 3.5 in this

paper can be easily adapted to the case of nowhere Gevrey differentiable func-

tions in C∞(R) (and not just [0, 1]), since C∞(R) is also a Fréchet space and the

polynomials are also dense in it (and, also, employing Theorem 2.2 and Remark

2.5 from [1] as well).
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