
Chapter 5
Gene Regulatory Network Inference
from Systems Genetics Data Using
Tree-Based Methods

Vân Anh Huynh-Thu, Louis Wehenkel and Pierre Geurts

Abstract One of the pressing open problems of computational systems biology is
the elucidation of the topology of gene regulatory networks (GRNs). In an attempt
to solve this problem, the idea of systems genetics is to exploit the natural variations
that exist between the DNA sequences of related individuals and that can represent
the randomized and multifactorial perturbations necessary to recover GRNs. In this
chapter, we present newmethods, calledGENIE3-SG-joint andGENIE3-SG-sep, for
the inference of GRNs from systems genetics data. Experiments on the artificial data
of the StatSeq benchmark and of theDREAM5 Systems Genetics challenge show that
exploiting jointly expression and genetic data is very helpful for recovering GRNs,
and one of our methods outperforms by a large extent the official best performing
method of the DREAM5 challenge.

5.1 Introduction

Networks are commonly used in biological research to represent information. In
this chapter, we focus on GRNs. These networks represent regulatory interactions
among genes that happen at the level of transcription, through transcription factors.
They often offer a simplified view of gene regulation, and are usually represented
by graphs where each node corresponds to a gene and an edge directed from one
gene to another gene indicates that the first gene codes for a transcription factor that
regulates the rate of transcription of the second gene.
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Edges in regulatory networks can be directed or undirected. An undirected edge
connecting two genes indicates that there exists a transcriptional regulatory inter-
action between these two genes, while a directed edge means furthermore that the
source gene regulates the expression of the target gene. Edges can also be signed.
When a gene is connected to another gene, a positive (resp. negative) sign indi-
cates that the former is an activator (resp. repressor) of the latter. In this chapter, we
focus on directed unsigned networks. The targeted networks are thus graphs with
p nodes, where an edge directed from one gene i to another gene j indicates that
gene i (directly) regulates, either positively or negatively, the expression of gene j
(i, j = 1, . . . , p).

The problem of the inference of regulatory networks has been studied for many
years in the literature and many algorithms already exist. The authors De Smet and
Marchal (2010) proposed a categorization of these methods. First, they distinguish
supervised from unsupervised methods. Supervised methods exploit prior partial
knowledge of the network to guide the network inference, while unsupervised meth-
ods do not assume any prior knowledge. There are also direct methods, which con-
sider only individual interactions, and module-based methods, which search for sets
of genes that are regulated by the same transcription factors. Finally, non-integrative
methods only use expression data for the inference, while integrative methods also
use other kinds of information besides expression data, e.g. counts of sequencemotifs
that serve as binding sites for transcription factors.

Among integrative methods, one can also find methods exploiting systems
genetics data. The goal of systems genetics is to exploit the natural variations that
exist between the DNA sequences of related individuals in a segregating population
and that can represent the randomized and multifactorial perturbations necessary to
recover (GRNs) (Jansen and Nap 2001; Jansen 2003). In such a study, two strains
that are widely separated in terms of genetic background are crossed and their chil-
dren are self-crossed during several generations in order to produce a recombinant
inbred line (RIL) segregating population. The genomes of the individuals of this pop-
ulation comprise random segments of the genomes of the two original parents and
genetic differences can therefore be detected between them, representing multifacto-
rial genetic perturbations. Each individual is then analyzed by microarray expression
profiling as well as by genetic marker analysis.

Multiple methods have been developed to infer GRNs from systems genetics data.
Severalmethods infer causal regulatory relationships among pairs of genes, including
procedures that rely on statistical tests to identify causal links (Chen et al., 2007) and
approaches based on the fitting of causalmodels (Kulp and Jagalur 2006; Schadt et al.
2005). Other methods are based on the analysis of the correlation between expression
profiles of genes located in a particular genomic region and expression profiles of
genes that are potentially affected by the markers located in this region (Bing and
Hoeschele, 2005). Methods that study the regulatory relationships at a systems-level
include approaches based on Bayesian networks (Zhu et al. 2007; Li et al. 2005;
Vignes et al. 2011), structural equation models (Li et al. 2006; Liu et al. 2008), and
the orientation of the edges of an undirected network using genetic markers as causal
anchors (Aten et al. 2008; Chaibub Neto et al. 2008). Random Forests have also been
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successfully used for expression quantitative trait loci (eQTL) mapping (Michaelson
et al., 2010).

In this chapter, we propose new methods, based on ensembles of regression trees,
for the inference of regulatory networks from systems genetics data. According to
the categories of De Smet and Marchal (2010), these methods are direct (we do not
search for modules) and unsupervised (we do not assume any prior knowledge of
the network).

The chapter is structured as follows. Section5.2 describes our network inference
methods. Section5.3 shows the results obtained with these methods on the StatSeq
compendium as well as on the datasets of the DREAM5 Systems Genetics chal-
lenge. Finally, Sect. 5.4 concludes the chapter and discusses some ideas for further
developments.

5.2 Methods

We assume that we have at our disposal a dataset containing the steady-state
expression levels of p genes measured in N individuals, as well as the genotype
value of one genetic marker for each of these genes in the same N individuals:

LS = {(e1, m1), (e2, m2), . . . , (eN , mN )}, (5.1)

where ek ∈ R
p and mk ∈ {0, 1}p, k = 1, . . . , N are, respectively, the vectors of

expression levels and genotype values of the p genes in the kth individual:

{
ek = (e1k, e2k, . . . , ep

k)
�,

mk = (m1
k , m2

k , . . . , mp
k)

�.
(5.2)

Note that we suppose that the individuals come from a RIL population and are hence
homozygous. Each genetic marker can thus have two possible genotype values only.

From this dataset, our goal is to infer a gene regulatory network, i.e., to make a
prediction of the underlying regulatory links between genes.Many network inference
algorithms work first by providing a ranking of the potential regulatory links from
the most to the less significant. A practical network prediction is then obtained by
setting a threshold on this ranking. In this chapter, we focus only on the first task and
the question of the choice of an optimal confidence threshold, although important,
is left open.

A network inference algorithm is thus defined in this chapter as a procedure that
assigns weights wi,j ≥ 0(i, j = 1, . . . , p) to putative regulatory links from any gene
i to any gene j, with the aim of yielding larger values for weights that correspond to
actual regulatory interactions.

To inferGRNs from systems genetics data, we propose two extensions of amethod
called GENIE3 (Huynh-Thu et al., 2010) that exploits tree-based ensemble methods
for the inference of networks from expression data. As in the GENIE3 procedure,
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our two extensions decompose the problem of recovering a network of p genes
into p feature selection subproblems, where each of these subproblems consists in
identifying the regulators of one of the genes of the network. This idea has also been
exploited in othermethods, such asMRNET (Meyer et al., 2007), theGraphical Lasso
(Meinshausen and Bühlmann, 2006), or the meta-analysis developed by Vignes et
al. (2011).

5.2.1 Network Inference as a Feature Selection Problem

To infer GRNs from systems genetics data, the two procedures that we propose make
the assumption that the expression of each gene j in a given individual is a function
of the expression and genotype values of the other genes of the network in the same
individual (plus some random noise). The first procedure, called GENIE3-SG-joint,
learns a single predictive model from both expression and genetic data, while the
second procedure, called GENIE3-SG-sep, learns two separate predictive models,
one based on the genetic markers and the other based on the expression data. Both
methods then compute, for each gene i �= j, two scores we

i,j and wm
i,j, measuring,

respectively, the importances of the expression and of the marker of gene i when
predicting the expression of gene j. Depending on the method, the computation of
we

i,j and wm
i,j is different. These two scores are then aggregated to obtain a single

weight wi,j for the regulatory link directed from gene i to gene j.
We first describe the procedures for training the predictive models and computing

the importance scores. We then discuss aggregation techniques, which are common
to both approaches, to obtain the final weights.

5.2.1.1 GENIE3-SG-Joint

TheGENIE3-SG-joint procedure assumes that a uniquemodel fj explains the expres-
sion of a gene j in a given individual, knowing the expression levels and the genotype
values of the different genes of the network:

ej
k = fj(e

−j
k , mk) + εk,∀k, (5.3)

where εk is a random noise and e−j
k is the vector containing the expression levels of

all the genes except gene j in the kth individual:

e−j
k = (e1k, . . . , ej−1

k , ej+1
k , . . . , ep

k)
�. (5.4)

We further make the assumption that the function fj only exploits the expression

levels in e−j
k and/or the genotype values in mk of the genes that are direct regulators

of gene j, i.e., genes that are directly connected to gene j in the targeted network.
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Notice that mk contains the genotype value of gene j. Indeed, it often happens that a
genetic marker contributes to the expression of the gene in which it is located (cis-
acting polymorphism). Including the marker mj of gene j in the input variables thus
avoids to wrongly attribute to another regulator the part of the expression of gene j
that is actually explained by mj.

Recovering the regulatory links pointing to gene j thus amounts to finding those
genes whose expression and/or genetic marker are predictive of the expression of
the target gene. In machine learning terminology, this can be considered as a feature
selection problem (in regression) forwhichmany solutions exist (Guyon andElisseeff
2003; Saeys et al. 2007). We assume here the use of a feature ranking technique that,
instead of directly returning a feature subset, yields a ranking of the features from
the most relevant to the least relevant for predicting the output.

The GENIE3-SG-joint procedure is illustrated in Fig. 5.1 and works as follows:

• For j = 1 to p:

– Generate the learning sample of input–output pairs for gene j:

LSj = {((e−j
k , mk), ej

k), k = 1, . . . , N}. (5.5)

– Use a feature ranking technique on LSj to compute confidence levels we
i,j(i �= j)

and wm
i,j, i = 1, . . . , p, respectively, for the expression and the genetic marker

of input gene i.
– Aggregatewe

i,j andwm
i,j to get a weightwi,j for each gene i �= j (see Sect. 5.2.1.3).

• Use wi,j as weight for the regulatory link i → j and get a ranking of all links.

5.2.1.2 GENIE3-SG-Sep

In the second proposed procedure, GENIE3-SG-sep, we assume that two different
models f e

j and f m
j can both explain the expression of a gene j in a given individual,

either from the expression levels of the other genes, or from the genotype values:

{
ej

k = f e
j (e−j

k ) + εk,∀k,

ej
k = f m

j (mk) + ε′
k,∀k.

(5.6)

The functions f e
j and f m

j are therefore, respectively, learned from two different
learning samples. The method is illustrated in Fig. 5.2 and works as follows:

• For j = 1 to p:

– Generate two learning samples of input–output pairs for gene j:

LSj
e = {(e−j

k , ej
k), k = 1, . . . , N},

LSj
m = {(mk, ej

k), k = 1, . . . , N}. (5.7)
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Fig. 5.1 GENIE3-SG-joint
procedure. For each gene
j = 1, . . . , p, a learning
sample LSj is generated with
expression levels of gene j as
output values and expression
levels and genotypes values
of all the other genes as input
values. A function fj is learned
fromLSj and confidence levels
we

i,j and wm
i,j are computed for

the expression and genotype
value of each input gene i
respectively. These levels are
then aggregated for each input
gene and a ranking of all
regulatory links is obtained
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Fig. 5.2 GENIE3-SG-sep
procedure. For each gene
j = 1, . . . , p, two learning
samples LSj

e and LSj
m are

generated. In both learning
samples, the output values
are the expression levels of
gene j. In LSj

e the input values
are the expression levels of
all the other genes, while in
LSj

m the input values are the
genotypes values. Functions
f e
j and f m

j are, respectively,

learned from LSj
e and LSj

m,
and confidence levels we

i,j
and wm

i,j are computed for
the expression and genotype
value of each input gene i
respectively. These levels are
then aggregated for each input
gene and a ranking of all
regulatory links is obtained
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– Use a feature ranking technique on LSj
e to compute the confidence level we

i,j of
the expression of input gene i,∀i �= j.

– Use a feature ranking technique on LSj
m to compute the confidence level wm

i,j of
the genetic marker of input gene i,∀i.

– Aggregatewe
i,j andwm

i,j to get a weightwi,j for each gene i �= j (see Sect. 5.2.1.3).

• Use wi,j as weight for the regulatory link i → j and get a ranking of all links.

5.2.1.3 Weight Aggregation

In both procedures GENIE3-SG-joint and GENIE3-SG-sep, we obtain for each input
gene i, two separate importance scores we

i,j and wm
i,j, corresponding, respectively, to

the expression and the marker of gene i. We propose two procedures to aggregate
these two scores and hence obtain a ranking of regulatory interactions. In the first
procedure, the final weight of the edge directed from gene i to gene j is given by the
sum of the importance scores:

wi,j = we
i,j + wm

i,j. (5.8)

The edge will thus have a high weight if either the marker or the expression of gene i
is predictive of the expression of gene j. In the second aggregation procedure, we
consider the product of the importance scores:

wi,j = we
i,j × wm

i,j. (5.9)

The edge directed from gene i to gene j will thus have a high weight if the marker
and the expression of gene i are both predictive of the expression of gene j.

5.2.2 Feature Ranking with Tree-Based Methods

As in the original GENIE3 method (Huynh-Thu et al., 2010), GENIE3-SG-joint
and GENIE3-SG-sep exploit the embedded feature rankingmechanism of tree-based
ensemble methods to compute the weightswe

i,j andwm
i,j. These methods are described

below.

5.2.2.1 Tree-Based Ensemble Methods

Among supervised learning methods, which allow to learn a predictive model or
function fj from observed data, one can find methods based on regression trees
(Breiman et al., 1984). The basic idea of regression trees is to recursively split the
learning sample with binary tests each based on one input variable, trying to reduce
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as much as possible the variance of the output variable in the resulting subsets of
samples.Candidate splits for numerical variables typically compare the input variable
values with a threshold that is determined during the tree growing.

Single trees are usually much improved by ensemble methods, which average the
predictions of several trees, such as Bagging (Breiman, 1996) or Random Forests
(Breiman, 2001). In a Bagging ensemble, each tree is built from a bootstrap sample
of the original learning sample. The Random Forests method adds an extra level of
randomization compared to the Bagging; at each test node, K attributes are selected
at random among all candidate attributes before determining the best split.

5.2.2.2 Variable Importance Measure

One of the most interesting characteristics of tree-based methods is the possibility to
compute from a tree a variable importance measure that allows us to rank the input
features according to their relevance for predicting the output. In our experiments,
we consider a measure that computes, at each test nodeN , the total reduction of the
variance of the output variable due to the split, defined by Breiman et al. (1984):

I(N ) = #S.Var(S) − #St .Var(St) − #Sf .Var(Sf ), (5.10)

where S denotes the set of samples that reach nodeN , St (resp. Sf ) denotes its subset
for which the test is true (resp. false), Var(.) is the variance of the output variable in a
subset, and # denotes the cardinality of a set of samples. For a single tree, the overall
importance w of one variable is then computed by summing the I values of all tree
nodes where this variable is used to split. Those attributes that are not selected at all
obtain a zero value of their importance, and those that are selected close to the root
node of the tree typically obtain high scores. Attribute importance measures can be
easily extended to ensembles, simply by averaging importance scores over all trees in
the ensemble. The resulting importance measure is then even more reliable because
of the variance reduction effect resulting from this averaging (Hastie et al., 2009).

5.2.2.3 Regulatory Link Ranking

In the GENIE3-SG-joint and GENIE3-SG-sep procedures, the different tree-based
models that are generated yield importance scores we

i,j and wm
i,j for each pair of genes

(i, j), computed as sums of variance reductions in the form (5.10). The sum of the
importance scores of all input features for a tree is usually very close to the initial
total variance of the output. In the case of the GENIE3-SG-joint procedure, we thus
have for each target gene j:

p∑
i �=j

we
i,j +

p∑
i=1

wm
i,j ≈ N .Varj(LS′j), (5.11)
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where LS′j is the learning sample from which the tree was built (i.e., a bootstrap
sample of LSj for the Random Forests and Bagging methods) and Varj(LS′j) is the
variance of the target gene j estimated in the corresponding learning sample.

Similarly, for the GENIE3-SG-sep procedure, we have:

{∑
i �=j we

i,j ≈ N .Varj(LS′j
e ),∑

i wm
i,j ≈ N .Varj(LS′j

m),
(5.12)

where LS′j
e and LS′j

m are the learning samples generated from the expression and
genotype data respectively.

As a consequence, if we trivially use the scoreswe
i,j andwm

i,j to order the regulatory
links, this is likely to introduce a positive bias for regulatory links directed towards
themost highly variable genes. To avoid this bias, we first normalize the expression of
the target gene j so that it has a unit variance in the training set (LSj for GENIE3-SG-
joint, LSj

e and LSj
m for GENIE3-SG-sep), before applying the tree-based ensemble

method:

ej ← ej

σ j
, ∀j, (5.13)

where ej ∈ R
N is the vector of expression levels of gene j in all N experiments

and σ j denotes its standard deviation. This normalization indeed implies that the
different importance scores inferred from different models predicting the different
gene expressions are comparable.

5.2.2.4 Computational Complexity

The computational complexity of the Random Forests and Bagging algorithms is
O(TKN logN), where T is the number of trees, N is the dataset size, and K is the
number of randomly selected variables at each node of a tree (in the case of Bagging,
K is equal to the number of input variables). The complexities of GENIE3-SG-joint
and GENIE3-SG-sep are thus of the order of O(pTKN logN) since these methods
require to build, respectively, one and two ensemble(s) of trees for each of the p genes.
The complexities are thus log linear with respect to the number of measurements
and, at worst, quadratic with respect to the number of genes (when K = 2p − 1 for
GENIE3-SG-joint and K = p for GENIE3-SG-sep).

To give an idea of the computing times, with our MATLAB®1 implementations
of the methods, GENIE3-SG-sep and GENIE3-SG-joint take, respectively, about 1
and 3h to infer a network of 1,000 genes from 300 individuals, when K is fixed to
the square root of the number of input variables and 1,000 trees are grown in each
ensemble. In the worst-case scenario (5,000 genes, 900 individuals, and K equal
to the number of input variables), GENIE3-SG-sep and GENIE3-SG-joint would,

1 http://www.mathworks.com/.

http://www.mathworks.com/
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respectively, take 4months and more than a year to infer the network on a single
computer. To reduce computing times, the two algorithms can be trivially parallelized
on a computing grid (with one separate computing process for each gene and/or tree).

5.3 Results

After a presentation of the performance metrics, this section presents the results that
we obtained when we applied the proposed procedures to two series of synthetic
datasets: the StatSeq datasets (Sect. 5.3.2) and the datasets of the DREAM5 Systems
Genetics challenge (Sect. 5.3.3).

5.3.1 Performance Metrics

Each of our algorithms provides a ranking of the regulatory links from the most
confident to the less confident. To evaluate such a ranking independently of the choice
of a specific threshold, we used the precision–recall (PR) curve and the area under
this curve (AUPR). The PR curve plots, for different thresholds on the weights of the
links, the proportion of true positives among all predictions (precision) versus the
percentage of true positives among those to be retrieved (recall). A perfect ranking,
i.e., a ranking where all the positives are located at the top of the list, yields an AUPR
equal to one, while a random ranking results in an AUPR close to the proportion
of positives (i.e., close to zero since the proportion of true links among all possible
links in a network is usually very low).

5.3.2 Experiments on the StatSeq Datasets

5.3.2.1 Description of the Data

The StatSeq compendium2 comprises 72 datasets generated from nine different net-
works. These networks can be divided into three groups of networks of 100, 1,000,
and 5,000 genes respectively. For each individual in a dataset, the gene expression
levels are provided as well as the genotype value of one genetic marker for each
gene. For each of the nine networks, datasets have been generated under eight dif-
ferent setting configurations, by combining different population sizes (300 or 900
individuals), distances between the genetic markers (large or small), and heritability
(large or small), as shown in Table5.1. All networks and datasets were generated
using SysGenSIM3 1.0.2 (Pinna et al., 2011). The reader can refer to Chap.1 for
details about the StatSeq compendium.

2 http://sysgensim.sourceforge.net/datasets.html.
3 http://sysgensim.sourceforge.net/.

http://dx.doi.org/10.1007/978-3-642-45161-4_1
http://sysgensim.sourceforge.net/datasets.html
http://sysgensim.sourceforge.net/
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Table 5.1 Setting configurations for data simulation

Configuration Marker distance� Heritability Population size

1 ∼N (5, 1) High 300
2 ∼N (5, 1) High 900
3 ∼N (5, 1) Low 300
4 ∼N (5, 1) Low 900
5 ∼N (1, 0.1) High 300
6 ∼N (1, 0.1) High 900
7 ∼N (1, 0.1) Low 300
8 ∼N (1, 0.1) Low 900
�Means and standard deviations are expressed in centimorgans

5.3.2.2 Comparison of Tree-Based Methods

We applied the GENIE3-SG-joint and GENIE3-SG-sep methods on the StatSeq
datasets, using the Random Forests algorithm with the main parameter K fixed to
the square root of the number of input variables, as well as the Bagging procedure
(equivalent to RandomForestswithK fixed to the number of input variables). Ensem-
bles of 1,000 trees were grown in each case, except when we used Bagging to infer
networks of 5,000 genes. In that case, only 100 trees were grown in order to reduce
the computational burden.4

Figure5.3 shows the AUPR scores obtained with the different combinations. Bag-
ging typically yields better performances than Random Forests, whatever the com-
bination. Lower scores are obtained only with GENIE3-SG-joint (using the product
of the weights we

i,j and wm
i,j) for some networks. Therefore, all results shown in the

remainder of this chapter will be those obtained with the Bagging procedure.

5.3.2.3 Performance of the GENIE3 Methods

GENIE3-SG-joint versus GENIE3-SG-sep

Figure5.4 shows the performances of the different GENIE3 procedures. Given an
aggregation procedure (either sum or product of the importance scores), better per-
formances are obtained when two separate models are, respectively, learned from
the two types of data (GENIE3-SG-sep), instead of one single model (GENIE3-SG-
joint). The worse performance of GENIE3-SG-joint can be potentially explained by
the fact that when the inputs comprise continuous and discrete variables (with a low
number of categories), the Bagging method has a positive bias for the continuous
variables when selecting a variable at a test node (Strobl et al., 2007). Indeed, since
a continuous variable provides more possible cut-points than a variable with a low
number of categories, it has more chance to provide the highest variance reduction

4 Note that, for the smaller networks, we do not observe significant differences in performance
when reducing the number of trees from 1,000 to 100.
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Fig. 5.3 Comparison of tree-based methods. The Bagging method typically yields better perfor-
mances than Random Forests. The AUPR values of each method were averaged over the eight
datasets corresponding to each of the nine networks

Fig. 5.4 Performances of inference methods. GENIE3-SG-sep yields better performances than
GENIE3-SG-joint and higher AUPR scores are obtained by taking the product of the weights we

i,j
and wm

i,j rather than their sum. The AUPR scores of each method were averaged over the 24 datasets
related to each network size

on the local node, and hence to be selected for the test, even if it is actually less or
equally informative globally. Therefore, in GENIE3-SG-joint, which learns a joint
model from the gene expression values (continuous variables) and from the geno-
type values (discrete variables), the importance wm

i,j of the marker of each gene i is
systematically lower than the importance we

i,j of its expression, as shown in Fig. 5.5.
Moreover, the ranking of interactions obtained from the importances wm

i,j is signifi-
cantly less accurate with GENIE3-SG-joint compared to GENIE3-SG-sep, while the
rankings obtained from we

i,j are equally good (Fig. 5.6).
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Fig. 5.5 Importance of expressions and markers. This figure shows, for each network, the average
weight we

i,j obtained from the expression profiles, as well as the average weight wm
i,j obtained from

the markers, both computed over the edges i → j that are part of the gold standard network. The
weights we

i,j and wm
i,j are those obtained on the datasets simulated with the setting configuration 1

(large marker distance, high heritability, and small population size). Despite the high heritability,
the tree-based importance values of the genetic markers, as computed in GENIE3-SG-joint, are
typically much lower than those obtained from the expression data

Fig. 5.6 AUPR scores of expressions and markers. This figure shows the AUPR scores obtained
when theweight of each edge i → j is the importancewe

i,j obtained from the expression data (left) and
the importance wm

i,j obtained from the genetic markers (right). The ranking of interactions obtained
from the markers is significantly less accurate with GENIE3-SG-joint, compared to GENIE3-SG-
sep. The AUPR values of each method were averaged over the eight datasets corresponding to each
of the nine networks

Aggregation procedures

For both procedures GENIE3-SG-joint and GENIE3-SG-sep, higher scores are
obtained when the importance scores we

i,j and wm
i,j are aggregated by taking their

product rather than their sum (Fig. 5.4), i.e., when we consider that both the genetic
marker and the expression of a regulating gene are important for the prediction of
the expression of a target gene. This conservative aggregation procedure allows to
give a lower weight to a lot of false edges, since many of them can still have a high
value of we

i,j or a high value of wm
i,j without having a regulatory effect (Fig. 5.7). By

contrast, high values for both we
i,j and wm

i,j are obtained only for true edges.
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Fig. 5.7 Scatter plot of importances of expressions and markers returned by GENIE3-SG-sep.
The red circles correspond to the true edges of the gold standard network, while the black crosses
correspond to the false edges (i.e., edges that are not part of the gold standard). In addition, each plot
shows the contour lines of the sum and product of we

i,j and wm
i,j (left and right figures respectively).

The values of the product are shown in a logarithmic scale. These results are those obtained on the
first network of 100 genes (Network 100-1), under configuration 1 (high heritability, large marker
distance, and small population size). Taking the product of the importance scores allows to give a
lower weight to a lot of false edges

5.3.2.4 Influence of Population Size, Heritability, and Marker Distance

Figure5.8 shows the AUPR scores obtained by the different GENIE3 procedures on
the networks of 1,000 genes, for each setting configuration of the simulation runs.
As expected, the performance of each method improves when the number of indi-
viduals for which data are available increases. The scores also indicate that genetic
markers are much more informative than expression data for the inference of the net-
works when the median heritability as well as the distance between the markers are
both high (configurations 1 and 2). In these configurations, only exploiting genetic
data (“GENIE3 on markers”) results in significantly more accurate predictions than
learning from expression data alone (“GENIE3 on expression”). This result is not
surprising since a higher heritability means that a higher proportion of the vari-
ance of the expression data is actually explained by the genetic markers. Moreover,
a higher distance between the markers implies an increased rate of chromosomal
crossovers between the different markers, and hence more meaningful multifactorial
perturbations (i.e., genetic variations) between the individuals, helping to recover the
networks in a more accurate way. By contrast, when the heritability and the marker
distance are both small (configurations 7 and 8), expression data aremore informative
than the markers. In the remaining configurations (configurations 3–6), the perfor-
mance obtained from gene expression is not very different from the one obtained
from genetic markers. Nevertheless, it seems that expression and genetic data contain
different and complementary information about the underlying networks, since in
all configurations the predictions can be highly improved when both types of data
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Fig. 5.8 Performances of inference methods for each setting configuration. Predictions can be
highly improved when expression and genetic data are integrated, the highest AUPR scores being
obtained byGENIE3-SG-sep, using the product of the weightswe

i,j andwm
i,j . GENIE3 on expression:

weight of edge i → j is the importance we
i,j of the expression of gene i as computed in GENIE3-

SG-sep. GENIE3 on markers: weight of edge i → j is the importance wm
i,j of the genetic marker of

gene i as computed in GENIE3-SG-sep. Her.: heritability. The AUPR values of each method were
averaged, for each configuration, over the three datasets related to the networks of 1,000 genes

are integrated, the best results being achieved by far by GENIE3-SG-sep using the
product of the weights we

i,j and wm
i,j.

The PR curves related to the first network of 1,000 genes (Network 1000-1) are
plotted in Fig. 5.9, for the configuration 1 (high heritability, large marker distance,
and small population size). As an example, the 500first regulatory links obtainedwith
GENIE3-SG-sep (product) yield a precision of 77% and a recall of 12%. Increasing
the number of considered edges to 1,000 allows us to recover more true edges (recall
equal to 18%), with however, a decrease in precision (57%). Limiting the network
to the first 200 links allows to keep a precision higher than 90% (recall equal to
6%). On the other hand, more than 800,000 links have to be considered to obtain a
recall higher than 90% (precision equal to 0.4%), which is of course of no practical
interest.

5.3.2.5 Direction of the Edges

One interesting feature of the GENIE3 methods is their potential ability to predict
directed networks. To assess the ability of each method to predict link directions, we
computed the error rate on the direction of the edges, i.e., the proportion of edges
i → j in the gold standard network such that there is no edge j → i and for which the
method wrongly predicts wi,j < wj,i. The error rates are shown in Fig. 5.10. Com-
pared to exploiting expression data alone, using information about genetic markers
greatly helps for the prediction of the direction of the edges. However, there is no
significant difference between the different methods exploiting the markers. As an
example, the GENIE3-SG-sep (product) method yields an average error rate of 27%.
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Fig. 5.9 Precision–recall curves. These PR curves were obtained for the first network of 1,000
genes (Network 1000-1), under configuration 1 (high heritability, large marker distance, and small
population size). As an example, the 500 first regulatory links obtained with GENIE3-SG-sep
(product) yield a precision of 77% and a recall of 12%. GENIE3 on expression: weight of edge
i → j is the importance we

i,j of the expression of gene i as computed in GENIE3-SG-sep. GENIE3
on markers: weight of edge i → j is the importance wm

i,j of the genetic marker of gene i as computed
in GENIE3-SG-sep

Fig. 5.10 Error rates on edge directionality. Using information about genetic markers greatly helps
for the prediction of the direction of the edges. GENIE3 on expression: weight of edge i → j is the
importance we

i,j of the expression of gene i as computed in GENIE3-SG-sep. GENIE3 on markers:
weight of edge i → j is the importance wm

i,j of the genetic marker of gene i as computed in GENIE3-
SG-sep. The error rates of each method were averaged over the eight setting configurations of
Table5.1 corresponding to each of the nine networks

5.3.2.6 Interactions Types

We adopted the same evaluation protocol as in Vignes et al. (2011), and analyzed the
performance of the GENIE3-SG-sep (product) method, as a function of the type of
interactions. We labeled a gene “cis” if the corresponding genetic marker is detected
in its promoter region, and “trans” if the marker is in its coding region. The gene
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Fig. 5.11 Frequency of the different interaction types. For each method, we selected the first 500
regulatory links of the predicted ranking and for each type of interaction, we computed its frequency
among the true interactions of the gold standard that are retrieved. Whatever the method, the top
of the ranking typically contains links directed toward trans genes. The predictions were obtained
from the datasets simulated under configuration 2 (high heritability, large marker distance, and large
population size), and the interactions frequencies were averaged over the nine networks

classification was obtained by performing an analysis of variance, as described in
Vignes et al. (2011). Genes with a corrected p-value lower than 0.001 were identified
as cis, and those with an uncorrected p-value higher than 0.1 were identified as trans.
Using the datasets simulated under configuration 2 (high heritability, large marker
distance, and large population size), 23% of the genes were predicted as cis on
average, which is close to the actual proportion of 25% announced in the description
of the data, and 63% of the genes were predicted as trans. The classification of genes
was used to define four types of interactions: cis → cis, cis → trans, trans → cis,
and trans → trans. For example, an interaction of type cis → trans is a regulatory
link directed from a cis gene to trans gene. Figure 5.11 shows that the top-ranked
predicted interactions typically contain links that are directed toward trans genes,
whatever themethod used. As explained in Vignes et al. (2011), these interactions are
predicted more reliably since the target gene does not undergo a cis-effect and hence
the variation of its expression is only due to the regulating gene (plus the noise).

Cis → trans interactions are more frequently predicted than trans → trans inter-
actions by all methods except GENIE3 on markers and GENIE3-SG-joint with the
product. This difference can be explained. In trans → trans interactions, the impact of
the marker of the regulating gene on the expression of the target gene is indeed more
direct than in cis → trans interactions, where the marker only affects the expression
of the target gene through the expression of the regulating gene. This leads to higher
scores for trans → trans interactions when GENIE3 is applied on markers only.
In GENIE3-SG-joint, the scores of markers and expressions are more balanced for
trans → trans interactions than for cis → trans, as in trans → trans interactions both
the marker and the expression of the regulating gene are directly and independently
affecting the expression of the target gene. This eventually leads to higher scores for
trans → trans interactions when taking the product of marker and expression scores.
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5.3.3 The DREAM5 Systems Genetics Challenge

5.3.3.1 Description of the Challenge

The Dialogue for Reverse Engineering Assessments and Methods (DREAM) ini-
tiative organizes an annual reverse engineering competition that comprises several
challenges5 (Marbach 2012; Prill et al. 2010; Stolovitzky et al. 2009, 2007). We
report here our results on the DREAM5 Systems Genetics challenge.6 This chal-
lenge concerned the inference of in silico regulatory networks from systems genetics
data. It was divided into three sub-challenges. The goal of each sub-challenge was to
infer five networks from populations of 100, 300, and 999 individuals respectively.
Each of the 15 networks contained 1,000 genes and were of increasing connectivity
within each sub-challenge. For each individual, expression levels of all the genes
were provided, as well as the genotype value of one genetic marker for each gene.
All data of the challenge were generated using a preliminary version of SysGenSIM.
However, the information about the configuration used to run the simulations was
not provided to the challenge participants.

5.3.3.2 Performance of the GENIE3 Methods

Figure5.12 shows the performances of the different methods. We observe results
similar to those obtained on the StatSeq datasets: the performance increases with
the number of individuals, better performances are obtained with GENIE3-SG-sep
compared to GENIE3-SG-joint, and the product of importance scores we

i,j and wm
i,j

also yields higher AUPR scores than the sum.

5.3.3.3 Comparison with the DREAM5 Best Performer

Figure5.13 compares, in terms of AUPR scores, GENIE3-SG-sep to the procedure
that was used by the official best performing team of the DREAM5 Systems Genet-
ics challenge. This procedure is a meta-analysis of different methods, respectively,
based onDantzig regression (Candès and Tao, 2007), LASSO regression (Tibshirani,
1996), and static Bayesian network learning (Friedman et al., 2000). The procedure
is described in detail in Vignes et al. (2011). The AUPR scores indicate that our
procedure significantly outperforms the meta-analysis for each of the networks.

5 http://www.the-dream-project.org/.
6 http://wiki.c2b2.columbia.edu/dream/index.php/D5c3.

http://www.the-dream-project.org/
http://wiki.c2b2.columbia.edu/dream/index.php/D5c3
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Fig. 5.12 AUPR scores for theDREAM5SystemsGenetics challenge. As for the StatSeq networks,
the best predictions are obtained with GENIE3-SG-sep, using the product of the weights we

i,j and
wm

i,j . GENIE3 on expression: weight of edge i → j is the importance we
i,j of the expression of gene i

as computed in GENIE3-SG-sep. GENIE3 on markers: weight of edge i → j is the importance wm
i,j

of the genetic marker of gene i as computed in GENIE3-SG-sep. The AUPR values of each method
were averaged over the five networks of each sub-challenge

Fig. 5.13 Comparison with the best performer and influence of network density. The GENIE3-
gen-sep (product) method outperforms the procedure of the official best performer of the challenge.
The performance of both methods, however, decreases when the number of edges in the network
increases

5.3.3.4 Influence of Network Density

Besides the study of the effect of the dataset size (number of individuals) on the
predictions returned by inference methods, the DREAM5 Systems Genetics chal-
lenge was also designed to study the effect of the connectivity of a network on the
predictions. Figure5.13 shows the effect of the network density on the predictions.
Clearly, in each sub-challenge, the ability of themethods to recover a network tends to
decrease as the number of edges in the network increases and regulatory interactions
become more complex.



5 Gene Regulatory Network Inference from Systems Genetics Data 83

5.4 Discussion

In this chapter, we proposed two procedures, GENIE3-SG-joint and GENIE3-SG-
sep, that infer (GRNs) from systems genetics data. Both procedures decompose
the problem of inferring a regulatory network of p genes into p different feature
selection problems, the goal of each being to retrieve the regulators of one of the
genes of the network. Each feature selection problem is then solved by applying a
tree-based ensemble method in order to obtain a model predicting the expression of
one gene j. In the GENIE3-SG-joint procedure, a single predictive model is learned
from expression and genetic data, while in GENIE3-SG-sep, two separate predictive
models are learned, one based on the genetic markers and the other based on the
expression data. Both methods then compute, for each gene i �= j, two scoreswe

i,j and
wm

i,j, measuring, respectively, the importances of the expression and of the marker of
gene iwhen predicting the expression of gene j. These two scores are then aggregated,
by computing either their sum or their product, to obtain a single weight wi,j for the
regulatory link directed from gene i to gene j.

The artificial datasets of the StatSeq benchmark were simulated using different
setting configurations, i.e., by combining different values of the number of individu-
als, distance between the markers, and heritability, allowing us to check under which
configurations our differentmethods perform best. Results showed that depending on
the marker distance and heritability, genetic markers bring more or less information
about the regulatory networks than expression data, and combining the two types of
data can be highly helpful for their recovering. GENIE3-SG-sep, using the product
of the weight we

i,j and wm
i,j, yields the best performances, whatever the configuration.

This method also yields the best performances when recovering the networks of the
DREAM5 Systems Genetics challenge, and actually outperforms the official best
performing algorithm of the challenge.

The StatSeq datasets and the DREAM5 challenge allowed us to make a first
evaluation of the performances of our different procedures on systems genetics data.
However, these benchmarks are solely based on networks and data that are artificial.
As future works, we thus would like to apply our methods on real datasets. Datasets
related to various organisms are publicly available, such as the S. cerevisiae dataset
of Brem and Kruglyak (2005). However, in our different procedures, we assume that
each gene whose expression is measured in N individuals is also analyzed for one
single genetic marker in each of these N individuals. Unfortunately, this situation is
usually not encountered in real datasets. We will thus have to modify our methods
in order to deal with missing data, and also to establish a procedure to aggregate the
importance scores of different genetic markers related to the same gene.

Finally, although we exploited tree-based ensemble methods, the frameworks
of GENIE3-SG-joint and GENIE3-SG-sep are general, and other feature ranking
techniques could have been used as well. In the future, we thus plan to apply and
compare different ranking techniques, and check which of them permit the best
exploitation of expression and genetic data.
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