La sédimentation holocène du golfe de Tarente
(Italie méridionale) : approche stratigraphique
et paléoclimatique basée sur l'étude de trois carottes de sondage

par Anna BELFOIRE *, Gioachino BONADUCE *, Freddy DAMBION **, Carlo GARAVELLI *
Patricia MASCELLARO *, Mario MASOLI *, Lorenzo MIRABILE *, Maria MONCHARMONT *
Mario MORETTI *, Gaetano NUVO *, André OZER **, Migla PENNETTA *
Tullio PESCATORE *, Bianca PACELLA *, Nievo PUGLIESE *, Bianca RUSSO *
Maria Rossaria SENATORE *, Franco Sgarrella *, Gian-Carlo SPEZIE *
Maurice STREELE **, Jacques THOREZ **, Mariano TRAMUTOLE * et Mario VULTAGGIO *

Mots clés. — Carotte, Sédiment marin, Holocène, Polynodiagramme, Argile minéral, Faune foraminifère, Granulométrie, Basilicate, Mer Ionienne (golfe de Tarente).

Résumé. — L'étude de trois sondages (78, 137, 210), localisés dans le fond du Golfe de Tarente, conduit à une reconstitution paléoclimatique du Quaternaire récent (Holocène) sur la base des minéraux argileux, pollens et Foraminifères.

The Holocene sedimentation of the Taranto Bay (South Italy) :
stratigraphic and palaeoclimatic approach based on the study of three cores

Abstract. — The study of three cores (78, 137, 210) from the Taranto Bay yields to a palaeoclimatic reconstitution of the late Quaternary (Holocene) based on clay minerals, pollens and Foraminifera.

I. — ESQUISE GÉOLOGIQUE ET MORPHOLOGIQUE.

Cette recherche pluridisciplinaire s'inscrit dans le cadre des projets « Océanographie et fonds marins » du C.N.R. Italien, réalisés lors des campagnes 1978-79-80 dans le Golfe de Tarente (Italie méridionale), et basés sur des profil sismiques (Sparker, 2 × 3 000 joules) et échographiques (Eko : 3,5 KHz), sur la récolte par bennes et par sondages par gravité de quelque quatre-vingt échantillons de surface en provenance de 41 stations et sur la mesure de différents paramètres physico-chimiques et courantologiques. Des études chimiques, minéralogiques et micropaleontologiques ont été réalisées dans une première phase dont a découlé un rapport interne [Belliore et al., 1980].

La présente communication interesse les caractères granulométriques, minéralogiques (minéraux argileux), palynologiques et micropaleontologiques (Foraminifères). Les données proviennent de l'examen de trois sondages (no 78, 137 et 210) sélectionnés en raison de leur distribution géographique particulière dans le golfe. D'autres sondages, en cours d'étude, permettront d'étendre les reconstitutions stratigraphiques et paléoclimatologiques actuelles.

* Ces auteurs appartiennent à divers laboratoires Italiens.
Toute correspondance peut être adressée à l'adresse suivante : Istituto di Geologia, Università di Napoli Largo, S. Marcelliano, 10, I — 80138 Napoli.
** Institut de géologie, Univ. de Liége, Place du Vingt-Aout, 7, B — 4000 Liége.
Fig. 1. — Position stratigraphique relative des trois sondages 78, 137 et 210, sur la base de l'étude palynologique. (N.B. Une erreur s'est glissée dans cette figure : l'échantillon 210/2 contient 35 % de pollens de Pinus au lieu de 50 %.)

Granulométrie : a : % de sable (si supérieur à 4 %) ; b : silt ; c : silt argileux ; d : argile silteux ; e : pas de grain de quartz > 105 μm ; f : rares grains de quartz > 105 μm ; g : grains de quartz > 105 μm abondants. Indice d'altération (Ia). Pollens: J : Juglans (Noyer) ; C : Castanea (Châtaignier) ; λ : plus de 500 pollens de Pinus par grappe de sédiment.

Fig. 1. — Relative stratigraphic position of the cores 78, 137 and 210, based on the palynological study. An error has occurred in the figure 1: sample 210/2 contains 35 % of Pinus pollen in place of 50 % as indicated.

Grain size: a : % of sand fraction (if higher than 4 %) ; b : silt ; c : silty silt ; d : silty clay ; e : lack of quartz grains over 105 μm ; f : rare quartz grains over 105 μm ; g : abundant quartz grains over 105 μm. Weathering Index (Ia): Pollens: J : Juglans (Walnut-tree) ; C : Castanea (Chesnut-tree) ; h : contents in Pinus pollen higher than 500 per g of sediment.
métamorphiques et intrusifs [Belfiore et al., 1980]. Ce sont là les sources des matériaux venus se déverser, par alluvionnement au cours du Plio-Quaternaire sur toute la plate-forme occidentale du golfe. L’avant-pays murgien est caractérisé par des dépôts sédimentaires, de l’actuel au Cénozoïque, atteignant des épaisseurs de 6 000 m. L’avant-fosse bradanique s’est individualisée au Pliocène grâce à un abaissement par failles développé sur les bords de la chaîne. La fosse a été comblée par des sédiments tertiaires atteignant également plusieurs milliers de mètres d’épaisseur, émergés en partie au cours du Pléistocène inférieur.

La physionomie actuelle du Golfe de Tarente s’articule ainsi sur trois secteurs distincts : à l’ouest, le secteur calabro-lucanien ; au centre, la vallée de Tarente ; à l’est, le secteur des Pouilles, dont l’évolution a conditionné la sédimentation holocène. Le secteur occidental a été alimenté par des apports fluviaux en provenance des bassins versants de l’arc calabrais, de la chaîne sud-appennine et de l’unité bradanique. Le matériau fut accumulé directement sur le talus continental ou remanié ultérieurement vers des profondeurs bathyales grâce à des incisions développées sur la partie externe du talus. Ce transport a bénéficié de courants de gravité empruntant les tracés de la Vallée de Tarente et du Canyon de Corigliano.

Dans le secteur oriental des Pouilles, le matériau d’origine continentale accumulé au large reste extrêmement réduit en volume car ces Murges sont constituées de massifs calcaires à faible relief, karstifiés, et parcourus par un réseau hydrographique insignifiant. La sédimentation danseuse essentiellement calcaire : coraux, algues, bioclastes. Sur cette plate-forme, le caractère silto-argileux du sédiment s’individualise seulement sur le talus. Des courants de gravité ont également véhiculé le matériau calcaire vers la Vallée de Tarente.

Les profils sismiques identifient clairement : la surface de régression wurmienne, la trace de la transgression holocène, les décollements « en loupées », le réseau de failles ainsi que les éboulements de terrasses sous-marines. Les trois sondages étudiés (fig. 1 et 2) dans cette note se situent respectivement à 784 m (78), à 830 m (137) et 421 m (210) sur le talus et présentent, en raison de leur localisation géographique, les caractères sédimentaires intrinsèques liés aux conditions physiographiques précitées plus haut.

II. GRANULOMÉTRIE ET MORPHOSCOPIE DES GRAINS DE QUARTZ.

Les analyses granulométriques des sédiments montrent un matériau surtout silto-argileux avec passées fines silteuses ou argilo-silteuses (fig. 1). La fraction sableuse est pratiquement inexistante à l’exception des échantillons de surface des sondages 137 et 210 dans lesquels le sable intervient respectivement pour 9 % et 7 %.

L’examen morphoscopique des grains de quartz supérieurs à 207 μm ne révèle que des grains de type anguleux-lustreux. Ces-ci témoignent d’apports torrentiels sans doute pris en relais ultérieurement par des transports sous-marins. Il n’existe aucun grain indicateur d’un modèle littoral ou d’un transport éolien. Il faut cependant indiquer que les échantillons analysés pour la morphoscopie sont ceux qui ont servi pour les études micropaléontologiques, palynologiques et minéralogiques et que ceux-ci étaient essentiellement argileux avec une très faible charge sableuse.

III. ÉTUDE PALYNOLLOGIQUE, POSITION STRATIGRAPHIQUE DES STONNDAGES ET RECONSTITUTION PALÉOC climatique.

L’étude palynologique des trois sondages – 78, 137 et 210 – a permis d’identifier entre 10 et 44 espèces de pollen selon les échantillons. Sont caractéristiques : les variations quantitatives des arbres : Pinus (Pin, Conifères), Querce (Chêne) à feuilles caduques, Oléacées (surtout l’Olivier), Juglans (Noyer), Castanea (Châtaignier) et des Herbacées telles que les Composées (Ligulifères) (fig. 1).

Dans le sondage 78 s’individualisent en une sous-zone A1 les deux premiers échantillons (no 2 et 3) : s’y observent en effet des proportions importantes (8 à 19 %) d’Oléacées (en majorité des pollens d’Olivier). Cette particularité relève vraisemblablement d’une extension des surfaces couvertes par cet arbre sur le continent proche, à la faveur des pratiques agricoles. Nous considérerons comme appartenant à une sous-zone A2 les échantillons 4 à 6 où les pourcentages de Composées sont supérieurs à 30. La zone A se développe donc sur une hauteur sédimentaire de près d’un mètre au sondage 78, alors que seuls les échantillons de surface (no 1) des sondages 137 et 210 appartiennent à cette première zone. Il est intéressant de noter que l’abondance relative de l’Olivier n’est pas observée dans les échantillons de surface des sondages 137 et 210. Cette constatation implique : soit que ces derniers échantillons représentent chacun un échantillon pris en condensé l’équivalent (en temps) des sédiments accumulés sur plus d’un mètre dans le sondage 78 ; soit qu’ils correspondent au contraire à des temps de sédimentation très courts et qu’ils soient plus anciens que A1. C’est cette dernière hypothèse qui est retenue et illustrée à la figure 1 en raison du fait que les échantillons de surface des sondages 137 et 210 contiennent de très
faibles quantités de pollens (en particulier de Pinus : 100 pollens/g de sédiment alors que tous les échantillons du sondage 78 en contiennent de 200 à 400/g), d'où on peut déduire un taux de sédimentation minérale important peu compatible avec l'idée d'une séquence condensée. Le sondage occidental (78) était déjà considéré par Belfiore et al. [1980, 1981] comme exposant un taux de sédimentation important dans cette aire et, par conséquent, compréhensible sédimentaire la plus complète.

Les échantillons immédiatement sous-jacents des sondages 137 et 210 appartiennent à une zone B présente seulement sur une trentaine de centimètres dans le sondage 78. Elle est caractérisée par des pourcentages de Composées inférieurs à 30 et des pourcentages de Pinus supérieurs à 30.

Les échantillons 6 à 9 du sondage 210 correspondent à une nouvelle zone, C, caractérisée par des pourcentages inférieurs à 30 à la fois de Pinus et des Composées, et par des pourcentages élevés (de 5 à 30) de Quercus à feuilles caduques présents uniquement dans cette troisième zone.

Les caractéristiques de la zone B sont reproduites dans l'échantillon 10 du sondage 210, sous la zone C. Nous attribuons cet échantillon à une zone D, comparable à la zone B mais située dans une position stratigraphique plus profonde et partant plus ancienne probablement.

La zone B est subdivisée en trois sous-zones. Dans le sondage 210, on peut opposer la sous-zone B 1 (éch. 2 et 3) à la sous-zone B 3 (éch. 4 et 5). Dans cette dernière, on observe 5 % de Quercus à feuilles caduques tandis que dans la zone B 1 du sondage 210, comme à la partie inférieure du sondage 78, existe une phase de transition correspondant au remplacement des pollens de Pinus par ceux des Composées. La position des échantillons 2 à 9 du sondage 137 est sujette à discussion. Leurs caractéristiques palynologiques se rapprochent autant de celles de l'échantillon 3 du sondage 210 (sous-zone B 1) que de celles de l'échantillon 10 du même sondage (zone D). Si l'on place les échantillons 2 à 9 du sondage 137 au niveau de l'échantillon 10 du sondage 210 (zone D), on doit admettre une lacune sédimentaire beaucoup plus importante entre les échantillons 1 et 2 du sondage 137. À la figure 1, nous avons retenu l'hypothèse d'une lacune sédimentaire minimale qui place la séquence 2 à 0 du sondage 137 [zone B 2] entre les zones B 1 et B 3.

Contrairement à la plupart des autres échantillons des trois sondages, ceux de la zone C dans le sondage 210 contiennent des quantités importantes de pollens de Pinus (entre 600 et 2 000 par gramme de sédiment). Cette caractéristique plaide en faveur d'un taux de sédimentation particulièrement faible qui contrastait, dès lors, avec le taux supputés élevés prenant place au sommet du même sondage. Sur la base des mêmes critères, un autre « ralentissement sédimentaire », bien que moins accusé, est également observable à la partie supérieure de la zone B 2 dans le sondage 137.

La succession des spectres polliniques reflète l'existence de trois ou quatre phases climatiques successives. La zone C correspond assurément au climat le plus tranché : les pourcentages élevés en Quercus (en particulier le chêne à feuilles caduques), mais aussi en Abies, Tilia et Ulmus indiquent un climat nettement plus humide que le climat actuel. Les zones D et B 2, marquées par la nette dominance de Pinus, identifient un climat probablement plus sec que l'actuel. Les zones B 1 et B 3 (et peut-être A) sont symptomatiques de climats de transition proches sans doute du climat actuel sur le plan de l'humidité au moins. Assurément le climat correspondant à la zone la plus superficielle, A, ne peut pas s'écarter beaucoup du climat actuel. On peut toutefois se demander si la composition pollinique de cette zone A relève bien un changement climatique par rapport à B 3, ou si, au contraire, elle n'indiquerait pas une certaine emprise humaine au travers de déboisements (d'où la diminution de Pinus), se traduisant par une ouverture du paysage (d'où l'accroissement des Composées). Une conjonction climatique et anthropique n'est évidemment pas exclue.

IV. — Distribution verticale et implications climatiques des associations de Foraminifères.

Montcharmont, Placella, Russo et Scarella [in Belfiore et al., 1980] ont répertorié quelque 248 espèces de Foraminifères planctoniques et benthiques à la fois dans les échantillons de surface (entre 0 et 10 cm) et dans une série de sondages dont les sondages 78, 37 et 210. Parmi les espèces, certaines indiquent un climat chaud à tempéré-chaud (210) (comme Globigerinoides spp., Haplophragmoides siphonifera, H. pelagica, Orbitolina universa, Globorotalia truncatuloides) ou un climat froid (137) (Globigerina pachyderma, G. quinqueloba, G. bulloides, Neogloboquadrina dilliei). Les variations de fréquence des espèces "chaudes" et "froides" mettent donc en évidence des fluctuations climatiques d'où résultent les courbes schématiques représentées aux figures 1 et 3. Le sondage 78 présente un caractère essentiellement tempéré à chaud, le sondage 137 correspond à un climat froid, alors que le sondage 210 montre des fluctuations chaud-froid. L'étude des Foraminifères dans un sondage voisin situeraient les échantillons 2 à 9 du sondage 137 stratigraphiquement à l'étude de sondage 210, acceptant de ce fait une lacune sédimentaire plus importante entre les échantillons 1 et 2 du sondage 137. Ce point fera l'objet d'une communication ultérieure.
V. — MINÉRALOGIE DES ARGILES ET IMPLICATIONS PALÉOCÉLIQUES.

Les composants argileux (10 au total) comprennent des minéraux simples : illite (I), chlorite (C), vermiculite (V), kaolinite (K), et des édifices interstratifiés irréguliers. Ces derniers sont constitués de feuilles à comportement soit illitique (10) soit chloritique (14a), et d’espaces interfoliaires religées. Parmi ceux-ci on note des comportements tantôt de vermiculite (14v) tantôt de smectite (14s ou 14m). Les interstratifiés répondent aux variétés : (10-14v), (14c-14v) et (10-14sm) ou (10-14sh). Les interstratifiés à interfoliaries gonflants présentent, par le test au Li [Thorez in Somme et al., 1978], des taux d’expansibilité croissant : 12 A : (10-14sm) ; 14 A : (10-14sm) (14 A) ; et 17 A : (10-14sm) (17 A). La dernière variété est distincte d’une smectite sensu stricto. Les illites se caractérisent par des indices de cristallinité variables [Trauth et al., 1968] : 5-7 pour des illites à pied large ; > 10 pour les illites ouvertes.

Au point de vue de la distribution quantitative, la participation de chaque composant est traduite sous forme d’une Fréquence Relative. Celle-ci est basée sur 10 unités (assemblage total = 10) et calculée à partir de l’intégrité de la réflexion basale (001) (minéraux simples) ou de la hauteur de la bande (002) (interstratifiés irréguliers). Cette quantification tient compte évidemment des modifications de distances fondamentales et des « interférences » de réflexions dues aux divers traitements diagnostiques (échantillon au naturel, glycolé, chauffé à 490°C ; traité à l’HCl ; hydrAzine ; saturé sur Le, Mg, glycolé/glycérolé, chauffé) [Thorez, 1975, 1976]. De manière à renforcer encore les variations qualitatives ou semi-quantitatives (Fréquence Relative), différents rapports d’intensité des réflexions basales sont pris en considération : smectite/illite (Sm/I) ou (17/10) ; smectite/chlorite + kaolinite (Sm/C + K) ou (17/7) ; illite/ « chlorite » + kaolinite (I/C + K) ou (10/7), enfin quartz/illite (4,25/4).

La figure 2 souligne, d’un sondage à l’autre, les variations mineraîgiqnes qualitatives et quantitatives qui n’autorisent aucune corrélation stratigraphique et latérale directe, bien que les carottes de sondage (1,5 m maximum) aient été réalisées à partir de la surface du fond marin. Les assemblages argileux sont marqués par la participation d’au moins trois groupes de minéraux. Parmi ceux-ci : des composants relativement « frais » (I et C), témoins d’un héritage direct des substrats à l’amont ; des édifices interstratifiés, issus à la fois de structures illitiques et chloritiques, indicateurs d’altérations pédogénétiques modérées ou amorcées sur le continent ; enfin des minéraux, tels que smectite, vermiculite et subsidiairement kaolinite, témoins d’étapes ou de termes d’évolutions pédogénétiques dans les amphithéâtres continentaux à proximité du récipient sédimentaire final. Dès lors ces associations complexes traduisent à l’évidence des mélanges mécaniques de matériaux en provenance de sources variées : érosion de substrat « frais » avec l’illite et la chlorite, et probablement de sédiments à smectite (parti) ; remaniement de la couverture pédogénétique, avec interstratifiés, smectite (parti), vermiculite (la kaolinite, en traces, n’étant pas prise en considération). Les interstratifiés (10-14sm) et la smectite (parti) relevé, au point de vue génétique, de conditions climatiques antagonistes par rapport à celles qui prévalent au cours de la fabrication de vermiculite : pour les premiers, on peut envisager des climats relativement chauds à saisons contrastées, au cours desquels l’intensité de la pluviosité ne peut excéder 300 mm/an. En revanche, pour la vermiculite, dont la gêne relève de conditions climatiques tempérées à chauds, les pluviosités avoisineraient ou dépasse le seuil de 800 mm/an. A première vue il paraît hasardeux de concilier en termes climatiques les minéraux argileux mèlés aujourd’hui au sein des sédiments. Il est certain que le régime pédogénétique a piloté, en amont, sur les bassins versants du continent, diverses tendances d’altération : vermicultisation, smectitisation, voire kaolinisation amorcée et ce en dépendance stricte de facteurs tels que : température, pluviosité, durée de l’altération, intensité du drainage, nature des substrats sur lesquels s’installe et se développe la pédogenèse.

Dans les trois sites étudiés, les assemblages de minéraux argileux portent en eux les marques d’évolutions pédogénétiques modérées mais également traduisent les effets d’une tectonique rajouissant les substrats (appel de minéraux frais). Au cours de la phase sédimentaire, il ne semble pas qu’il y ait eu un granulométrie permettant une ventilation importante des particules les plus fines (smectite) et plus grossière (illite, chlorite, interstratifiés, kaolinite).

En corrélant les trois sondages sur la base de l’argumentation pollinique, il est donc remarquable de constater, tout au long de la série stratigraphique reconstituée, que les successions de périodes de réchauffement et de rafraîchissement avec fluctuation correspondante des taux d’humidité relative
Fig. 2. — Caractères des minéraux argileux des sondages 78, 137 et 210.

Fig. 2. — Characteristics of clay minerals of cores 78, 137 and 210.
(humide-sec) mises en évidence par les micro-fossiles, se trouvent corroborées également dans les assemblages de minéraux argileux (fraction < 2 µ).

L'esquisse climatique et le contenu de la planche 3 illustrent ces parallélismes. Certes, en confrontant ces critères climatiques, de légères « déphasages » se ménagent tout au long de la courbe climatique. Ils sont normaux dans la mesure où il existe sur le continent un décalage naturel entre le développement de la végétation et celle de la pédogenèse. Comme il existe normalement un décalage entre le refroidissement (ou le réchauffement) en milieu marin et sur le continent voisin. De tels décalages restent faibles : les parallélismes des courbes liées à chaque parcours, ne sont pas perturbés sensiblement. Ils restent insignifiants en eux-mêmes si l'on se réfère à la « brièveté » relative des temps géologiques concernés ici.

VI. — VARIATIONS VERTICALES DE LA TENEUR EN CaCO₃.

Parmi les résultats de l'analyse chimique [Gara- velli et Nuovo, in Belfiore et al., 1980], il est intéressant de souligner le gradient décroissant de la teneur en CaCO₃ le long de la série reconstituée stratigraphiquement à partir de l'argumentation polinique (esquisse paléoclimatique, fig. 3). Ainsi, si l'on excepte les couches superficielles des sondages 137 et 210, de la base du sondage 210 au sommet du sondage 78, on note une décroissance générale du CaCO₃ passant de 31,7 % à 10,32 %. La faible teneur relative en CaCO₃ dans le sondage 78 relève certainement du caractère plus détritique de la sédimentation caractérisant le secteur occidental du golfe, alors que le secteur nord-oriental (sondages 137 et 210) présente un caractère nettement plus carbonaté en général, même au niveau des échantillons de surface [Belfiore et al., 1980, 1981].

D'autre part, les variations en CaCO₃ se calquent de manière remarquable sur les variations climatiques (chaud ou réchauffement, froid ou refroidissement) déduites à la fois de l'étude des populations de Foraminifères et du rapport smectite/illite. Il apparaît une augmentation du CaCO₃ à chaque fois que le climat devient plus chaud.

CONCLUSION.

L'étude pluridisciplinaire de trois carottes de sondage (no 78, 137 et 210) conduit à une première approche stratigraphique des sédiments holocènes du Golfe de Tarente, basée essentiellement sur les spectres poliniques. Sur le plan paléoclimatique, la comparaison des données sur les Foraminifères, les pollens et les minéraux argileux permet une reconstitution fine des fluctuations chaud-froid et humide-sec liées aux vecteurs climatiques continentaux (argiles, pollens) et marins (Foraminifères).

Références

Bull. Soc. gés. Fr., 1982, n° 3