Université
de Liége

DOCTORAL THESIS

Scalar and fermionic extensions of
the Standard Model

Author: Audrey Degée

Admanistrative supervisor: Other members of the jury:
J.R. Cudell T. Hambye
Scientific supervisors: E. Nardi
D. Aristizabal President:
1. Ivanov P. Magain

A thesis submitted in fulfillment of the requirements
for the degree of Ph.D. in Physics

m the

Université de Liege
Interactions Fondamentales en Physique et Astrophysique
Faculté des Sciences

October 2013






Acknowledgements

The contribution of many different people, in their different ways, have made this
thesis possible and contributed to the success of this study. I would like to thank all those
people.

I could not have succeeded without the guidance and endless source of ideas of my two
scientific supervisors: Diego Aristizabal S. and Igor P. Ivanov. Therefore, I am strongly
indebted to them without whose knowledge and assistance this study would not have
been possible. I would like to express my appreciation to my administrative supervisor,
Jean-René Cudell for providing necessary infrastructure and resources to accomplish my
research work and for his lesson in physics as well as for all interesting chats. All of them
gave me the opportunity to interact and work with them and provided me their personal
support throughout my Ph.D. thesis and made many useful comments and suggestions
to improve this work. Under their guidance I successfully overcame many difficulties
and learned a lot. I cannot forget the hard times of Diego reviewing my thesis, giving
his valuable suggestions and making corrections. His generosity, unflinching courage and
conviction will always inspire me. Besides of my supervisor, I also acknowledge my thesis
examiners for taking their time to read this thesis.

Moreover, most of the results described in this thesis would not have been obtained
without them and a close collaboration with Venus Keus and Jernej F. Kamenik. Because
of Diego, I had the privilege to collaborate with Jernej F. Kamenik to whom I thank very
much and I am very grateful to Venus Keus for her important contributions in this work
and for its collaboration and moral support. Further, I am grateful to all members of the
IFPA group, including the numerous visitors, for providing a stimulating and fun filled
environment. I would also like to convey thanks to the Fonds de la Recherche Scientifique
(FNRS) for providing the financial means for this project.

I am also especially indebted to Tiziana and Marjorie who offered her continuous
encouragement throughout the course of my study and of this thesis. Their continual
guidance and support was indispensable to sustain me to complete this thesis. They were
always beside me during the happy and hard moments to push me and motivate me and
were always there when I really needed. Thank for their understanding and precious
friendship. I gratefully acknowledge Tiziana and Fabio who corrected my thesis carefully,
their painstaking effort in reading the drafts are greatly appreciated.

I thank Maxime for his understanding, love, care, patience and constant support
during the course of this project, and for all the fun we have had in the years. His
encouragement was in the end what made this dissertation possible. I also would like
to extend my appreciation to Dounia for her constant moral support and care and for
creating a pleasant atmosphere for me at the University. I thank Arnaud for his useful
support in some computational issues and for his moral support and precious friendship.
I am grateful to my parents for their love, support throughout my life and encouragement
in my many moments of crisis. They have provided a carefree environment for me, so that
I can concentrate on my study. My thanks also go to my brother and my grandmother
who make a comfortable environment for me to live in. Finally, I would like to thank
some of my good friends who have played a part over the years in making who I am. I
cannot list all the names here, but you are always on my mind.









CONTENTS

Introduction 2
I Scalar extensions of the Standard Model 3
1 Multi-Higgs-doublet models 7
1.1 The SM Higgs sector . . . . . . . . . . 7
1.1.1 A minimal scalar sector . . . . .. .. ... L. 7

1.1.2  The Higgs boson at colliders . . . . . ... ... ... ... ..... 9

1.2 The 2HDM . . . . . . . e 12
1.2.1 Beyond the SM Higgs sector . . . . .. .. ... ... ... ..... 12

1.2.2  An invitation to models with extra Higgs doublets . . . . . . . . .. 14

1.2.3 The challenging case of the most general 2HDM . . . . . . ... .. 15

1.2.4 Approaches to the general 2HDM . . . . . .. ... ... ... ... 18

1.2.5 The orbit space of the 2HDM . . . . . .. ... ... ... ... .. 18

1.3 Few comments on the 3HDM . . . . . ... ... ... ... ........ 22
1.3.1 The 3HDM . . . . . . . . . . e 22

1.3.2 The orbit space of the 3HDM . . . . . .. ... ... ... ..... 22

2 Higgs masses of the general 2HDM 25
2.1 Introduction . . . . . . . .. 25
2.2 Mass matrix and mass spectrum . . . . . .. .. L. 27
2.2.1 Mass related basis-invariants and non-invariants in a toy model . . 27

2.2.2  Masses in the Minkowski-space formalism . . . . . . ... ... ... 28

2.3 Mass matrix of the most general 2HDM . . . . . . .. ... .. ... .. .. 30
2.3.1 Electroweak-symmetric vacuum . . . . . .. ... .00 31

2.3.2 Charge-breaking vacuum . . . . . . . .. ... 32

2.3.3 Neutral vacuum . . . . . .. .. ... 35

2.3.4  The extra symmetry of the neutral modes . . . . . ... ... ... 36



3 Highly symmetric 3HDM
3.1 Introduction . . . . . . . . . ..
3.2 Geometric minimization of symmetric potentials . . . . . . ... ... ..
3.2.1 Geometric minimization: the mainidea . . . . . . . . . ... .. ..
3.3 Ay and Sy-symmetric BHDM . . . . . .. ...
3.3.1 Thepotentials . . . . . . . ... ..
3.3.2 Thetoymodelcase . . . . . .. ... .. ... . ... ... . ...,
3.3.3 The orbit space in the Sy case . . . . . ... ... ... ... . ...
3.3.4 Minimization of the Sj;-symmetric potential . . . . . ... ... ..
3.3.5  Unexpected symmetry of the orbit space . . . . .. ... ... ...
3.3.6  The orbit space in the Ay case . . . . . . .. .. ... ... .....
3.3.7 Minimization of the Aj-symmetric potential . . . . . .. ... ...
3.4 DISCUSSION . . . . . . e e e e e
3.4.1 Origin of geometric CP-violation . . . . .. .. ... ... .. ...
3.4.2 Coexistence of different minima . . . . . . ... ... ... ... ..

IT Fermionic extensions of the Standard Model

4 Neutrino Physics
4.1 Neutrino flavor oscillations . . . . . . . . . ... ... o L.
4.2 Neutrino flavor oscillations: experimental evidence . . . . . . . ... .. ..
4.3 Summary of experimental data . . . . .. ... ... ... ...
4.3.1 Present status of neutrino oscillation data . . . . . ... ... ...
4.3.2 Present status of absolute neutrino masses . . . . .. .. ... ...
4.3.3 Present status of charged lepton flavor violation . . . . . .. .. ..
4.4 Neutrino masses: theoretical perspective . . . . .. .. ... ... .....
4.5 The baryon asymmetry of the Universe . . . . . . .. .. ... ... ....
4.5.1 Boltzmann equations . . . . . . ... ..o

5 MLFYV realizations of minimal seesaw
5.1 Imtroduction . . . . . . ...
5.2 Thesetups . . . . . . . L
5.3 Lepton-flavor-violating processes . . . . . . . . . ... L.
5.3.1 Iy —lgyprocesses . . ...
5.3.2 o —lglglg processes . . . . ... oL o
5.3.3 p—econversion innuclei . . ... ... oL
5.4 Primordial lepton asymmetries . . . . . .. ... oL

Conclusion

A Algebra of matrices >* and II#

37
37
37
38
39
39
40
42
44
44
46
47
47
47
48
48

51

55
25
56
60
60
61
64
65
69
70

75
75
76
80
81
82
83
85

89

91



B The S;- and Aj;-symmetric 3HDM potentials
B.1 The orbit space of the Sy-symmetric potential . . . . . . .. .. ... ...
B.2 Higgs spectra of the Sy;-symmetric potential . . . . . ... ... ... ...
B.3 Higgs spectra of the Aj-symmetric potential . . . . . . . . ... ... ...

C Standard seesaw Lagrangian
C.1 Dirac and Majorana neutrinos . . . . . . . . . . . . .. ...
C.2 RH neutrinos . . . . . . . . . .
C.3 Thermodynamic of the early Universe . . . . . . . ... ... .. ... ...

D Formulas and Feynman diagrams for LFV processes

Bibliography

93
93
96
97

101
101
102
105

107

115






INTRODUCTION

In the Standard Model (SM), ElectroWeak Symmetry Breaking (EWSB) is provided
by the Brout-Englert-Higgs (BEH) mechanism [1-4], which predicts the existence of a
scalar degree of freedom, the SM Higgs boson. Testing whether the BEH mechanism
is responsible for EWSB or whether in contrast a much more intrincated (maybe richer)
mechanism is at work is a priority in the Large Hadron Collider (LHC) program. Recently
the ATLAS and CMS collaborations have announced the discovery of a new state which
resembles to a large extent the features (production and decay properties) of the SM
Higgs [5,6]. Pinning down its nature has become of major importance, and the LHC
has already started providing the first clues. Although a comprehensive understanding of
the picture lying beneath will probably require not only time but even technical efforts
beyond LHC [7].

Regardless of whether the discovered scalar is or not the SM Higgs, theoretical-based
as well as experimental data beyond collider physics support the idea that new physical
degrees of freedom at certain unknown energy scale should be present '. Accordingly, in
relation with recent LHC results it can be said that if deviations from the SM picture are
found ? this might hint to the physics responsible for those theoretical and/or experimental
issues, otherwise the exact mechanism for EWSB would be definitively established but
nevertheless the quest for the physics responsible for those phenomena the SM cannot
account for will continue to be pursued both theoretically and experimentally in the high-
energy as well as in the high intensity frontiers.

Motivated by these observations, in this thesis several aspects of beyond SM physics
schemes have been treated. In particular, two categories of models have been consid-
ered: (i) models with extra Higgs ElectroWeak (EW) doublets (multi-Higgs-doublet mod-
els) [9, 10], (é) models with new fermion EW singlets (type-I seesaw models) [11-15].
In the first category, two problems associated with the most general two-Higgs-Doublet
Model (2HDM) and with the three-Higgs-Doublet Model (3HDM) have been tackled. In
the former case the scalar mass spectrum has been derived in a basis-invariant fashion

1. These data involve neutrino oscillation and astrophysics experiments. The former providing an
unquestionable proof that neutrinos are massive while the later establishing a precise determination of
the cosmic baryon asymmetry and supporting the existence of dark matter.

2. As of 2013, ATLAS is observing an excess in the vy channel while CMS is not [8]. However, given
current data, knowing whether this corresponds to a “genuine” deviation is not possible and further
statistics is needed.



whereas in the later, after introducing a general procedure for the minimization of highly
symmetric potentials, the minimization of an S; and of an A4 3SHDM has been analyzed.
In the second category, the possibility of envisaging seesaw-like models yielding sizeable
lepton-flavor-violating decay rates has been investigated. With the models at hand, the
corresponding charged lepton-flavor-violating phenomenology has been studied focusing
on rare muon decays, for which forthcoming lepton-flavor-violating experiments will be
able to prove large parts of their parameter space. The results of these investigations have
been published in [16-18], and constitute the main part of this thesis (Chapter 2, 3 and
4).

In order to make the manuscript much more handable and readable, the thesis has been
divided in two parts: Scalar extensions of the SM and Fermionic extensions of the SM.
Each part contains its own short introduction, where the subjects treated are motivated
and an explanation of its structure is given. An introductory Chapter covering standard
material and aiming to provide the tools used in the main chapters (2, 3 and 5) has been
also added in each part (1 and 4). It is worth stressing that these opening Chapters are
not intended to give comprehensive reviews of any of the subjects they deal with, their
aim is only to put into context the main part of the thesis. Thorough reviews as well
as textbooks on those subjects exist and the reader is referred to them for exhaustive
details [9,19-27]. Finally, lengthy calculations associated with Chapters 2, 3 and 5 have
been included in Appendices A, B, C and D.
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INTRODUCTION

Since the discovery of 3 decay, many efforts have been made in order to understand
the nature of weak interactions. The first model capable of successfully describing ex-
perimental data at low energies was the effective [ decay theory proposed by Fermi in
1934 [28]. This formulation, however, being based on an effective operator, was only suit-
able for describing low-energy data, at high energies unitarity was violated. In modern
jargon, it is a non-renormalizable theory. It was not only until 1967 that Weinberg [29],
Salam [30] and Glashow [31] proposed a successful model for EW interactions, which,
after adding strong interactions, well described by Quantum ChromoDynamic (QCD),
constitutes what is now known as the SM of particle physics. It accurately describes
many experimental results that probe elementary particles and their interactions up to
an energy scale of a few hundred GeV. Indeed, very precise experiments at CERN Large
Electron Positron Collider (LEP), at SLAC Linear Collider (SLC) and at the Fermilab
Tevatron collider, which were quite sensitive to quantum corrections that were carried out
through a great theoretical effort, demonstrated with an impressive accuracy the validity
of this model. All the parameters of the SM except the Higgs mass have been experimen-
tally determined with a huge precision and through these parameters, any physical EW
observables can be predicted and confronted with experimental data. An open question
which started being addressed first by LEP [32] and the Tevatron [33], and is currently
investigated by the LHC [34] is, undoubtedly, the mechanism for spontaneous EWSB. In
the SM, the mechanism responsible for EWSB is driven by a complex scalar EW doublet
(¢) acquiring a non-vanishing Vacuum Expectation Value (VEV). The gauge group of the
SM, SU(3). ® SU(2)r, ® U(1)y, is therefore broken according to

SU3). @ SUR2),@U(l)y = SU3).@U(1)g, (1)

via the BEH mechanism [1-4]. The renormalizable and gauge invariant interactions of
¢ allow for a scalar potential. As a consequence EW gauge bosons (W* and Z) as well
as fermions acquire a mass in a gauge-invariant way. Furthermore, the theory exhibits a
new physical scalar degree of freedom, the Higgs boson (H). Testing the properties of the
Higgs boson is crucial and the search for this particle has become one of the main goals
of particle accelerators for last two decades. The discovery of the correct mechanism
for EWSB has been as well a major priority. Recently, the ATLAS [5] and CMS [6]
collaborations have announced the discovery of a heavy boson that could complete the
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SM picture. Despite some deviations from the SM expectations, in particular in the vy
channel, the newly discovered scalar exhibits properties quite close to those of the SM
scalar. Pinning down in a definitive way its properties will require further efforts and
maybe even a high precision machine such as the International Linear Collider (ILC) [35].

If the newly discovered scalar does not feature SM properties this might hint towards
the physics responsible for the theoretical and experimental information the SM cannot
account for®. Examples of that new physics could be multi-Higgs-doublet models [9],
supersymmetry [36,37] and composite Higgs models [38], among others.

The first part of this thesis is organized in three Chapters. Chapter 1 is a review
chapter, covering standard materiel related with the SM and models involving extra EW
doublets. Chapter 2 addresses the issue of determining the scalar mass spectrum of the
2HDM in a basis-invariant fashion while Chapter 3 deals with a novel approach for the
minimization of highly symmetric scalar potentials applied to specific versions of the
3HDM.

3. Theoretically here means the instability of the Higgs mass under quantum corrections, which once
heavy degrees of freedom are added to the SM (e.g. heavy RH neutrinos accounting for neutrino masses),
implies the hierarchy problem.



CHAPTER 1

MULTI-HIGGS-DOUBLET MODELS

This chapter aims at providing a motivation for multi-Higgs doublet models as well as
the technical framework for Chapters 2 and 3. It is not intended to give a comprehensive
review of neither theoretical nor phenomenological aspects of the SM and/or extended
scalar sectors, for which the reader is referred to e.g. [9,20,21]. The Chapter is organized
as follows: first of all the SM scalar sector and the Higgs SM collider phenomenology is
accounted for in Section 1.2. Section 1.2 provides a phenomenological-based motivation
for extended scalar sectors, focusing on models with extra EW doublets. The theoretical-
based challenges of those scenarios, in particular of the 2HDM are emphasized, and the
techniques used to address those problems are discussed. Finally, in Section 1.3, the
3HDM is introduced and the corresponding techniques which allow its analysis are briefly
summarized.

1.1 The SM Higgs sector

1.1.1 A minimal scalar sector

Before discussing technicalities of extended scalar sectors some details about the SM
Higgs are worth reviewing. Rather than providing full details, this brief review aims at
giving a general picture of the SM Higgs boson, and the current status of Higgs searches at
the LHC. Comprehensive phenomenological reviews including beyond SM Higgs sectors
exist, see e.g. [20,21]. As already pointed out, in the SM, the EW gauge bosons as
well as the fermions acquire their mass via the BEH mechanism. Masses for these fields
are introduced in a gauge-invariant way by endowing the SM Lagrangian with a ¥ =1
hypercharge SU(2) complex doublet:

1 (¢ (x) )
T) = — . 1.1
o) =5 (e (L
The SM interactions in which the SM scalar participates are given by the following La-
grangian:

Ly = (D'¢)(Dug) = V(6'9), (1.2)

7



8 1.1. THE SM HIGGS SECTOR

where the covariant derivative, which guarantees the SU(2); ® U(1)y gauge invariance of
the theory, reads 4
gt . ' g/

D, =0,+ g - W, + ZEYBAL : (1.3)
with 7¢/2, the Pauli matrices, and Y the SU(2); and U(1)y generators and g,g the
corresponding gauge couplings. The pure scalar couplings are determined by the scalar
potential V(¢'¢), which because of renormalizability and gauge invariance only involves

quadratic and quartic couplings,

V(g'e) = ¢l + Mo'9)*. (1.4)

In addition, gauge invariance of the fermion bilinear couplings demands at the Yukawa
coupling level

— Ly = ERYuQL(gT + drYaQro' + [rY.lro" (1.5)

where ug, dg are the up-type and down-type quark EW singlets, [g are the lepton SU(2)
singlets and @1, and ¢, are the quark and lepton SU(2) doublets. The different quark-
quark-scalar couplings are encoded in Y, 4. which are 3 x 3 matrices in flavor space.

EWSB is triggered by the non-vanishing scalar VEV, which from the scalar potential
minimization condition® can be written as

— 2

=\ —=. 1.6
YTV (1.6)
This symmetry breaking pattern must guarantee U(1)q invariance, implying three out of
the four SU(2),®U(1)y generators are broken after EWSB. Accordingly, three Goldstone
bosons (GB’s) appear and become the longitudinal degrees of freedom of the massive EW
gauge bosons. A useful parametrization of the scalar doublet where the GB’s and the

remaining physical degree of freedom, the Higgs, are made explicit reads

i xi(@) 0
P(z) =™ ( v+H(x) ) ) (1.7)

V2

which then in turn, by rotating away the GB’s degrees of freedom, can be made real (in
technical jargon, by choosing the unitary gauge ?):

$(x) —5U® ¢(z) = ( v+2<x> ) : (1.8)
V2

With ¢(z) parametrized as in (1.8) it is now straightforward to determine the EW gauge
boson and fermion masses in terms of the SM scalar EW doublet VEV and the Higgs

1. A bounded from below scalar potential requires A > 0, which then implies a non-vanishing VEV.
develops provided ;2 < 0.

2. Tt is worth bearing in mind that while this gauge has the advantage of making the particle (physical
degrees of freedom) content of the theory explicit, the massive gauge boson propagators suffer from a
problematic ultra-violet divergence when it comes to the calculation of massive gauge boson mediated
scattering amplitudes. Though being much more involved, this however does not mean proving the
renormalizability of the theory is not possible in such a gauge
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boson mass itself. More importantly—for the following discussion—the different Higgs
couplings which determine the Higgs collider phenomenology can also be derived. When
combined with (1.6), the Lagrangians in (1.2) and in (1.5) yield

gu gu v
M —_- = M = —— [ —
v 77 2cosby s V2

(with f = quarks or charged leptons) while using (1.4) it reads

Yy, (1.9)

My = /=212 (1.10)

Some words of caution are in order regarding results in (1.9) and (1.10). The scalar
doublet VEV is measured in p decay to be v = (vV2Gp)™2 ~ 246 GeV with Gy the
Fermi constant while the weak mixing angle fy is measured via different reactions e.g.
elastic neutrino-lepton scattering: 7, +e — 7, + e. Its value at the Z mass according
to the PDG [39] is given by sin?6@y, = 0.231. Thus, the relations in (1.9) for the W
and Z mass combined with these experimental information allow the determination of
Mz and My,. For the fermion masses, it has been assumed that the fermion fields in
the Lagrangian in (1.5) have been rotated to the mass eigenstate basis. In contrast
to the weak gauge couplings the Yukawa couplings are experimentally unknown. Their
measurement requires Higgs production and precise determination of fermion channels.
Indeed, measuring Yukawa couplings strengths turns out to be a powerful strategy to
determine whether the associated scalar is or not the SM one.

As for the SM Higgs collider phenomenology the couplings HVV (with V =W, Z, v)
and Hff can be read off directly from the Lagrangians in (1.2) and (1.5) once (1.6) is

taken into account: )
M m
gHVYV = 2Z—UV7 Guyr = 1 Uf : (L.11)

1.1.2 The Higgs boson at colliders

Studying Higgs properties at colliders (as for any particle) requires first production
and then subsequent analysis of its decay modes. Higgs production depends on the specific
machine. In ete™ colliders three production mechanisms are at work: Bjorken (efe™ —
Z*H, represented in diagram (b) of Figure 1.1) and weak vector boson fusions (eTe™ —
ete"Hif V=2Zoreter - vvH if V =W, represented in diagram (a) of Figure 1.1). In
particular at LEP, due to the center-of-mass energy, the Bjorken mechanism dominated.
In hadronic machines, in particular at the LHC, the above mechanisms, controlled by
agw = ¢2?/4m are overwhelmed by mechanisms driven by ag = g¢2?/4m, namely gluon
fusion (diagram (c) in Figure 1.1). Additional mechanisms are weak boson fusion, Higgs-
strahlung (diagram (e) in Figure 1.1) and ¢t emission (diagram (f) in Figure 1.1). Once
produced, depending on kinematical thresholds, different modes will dominate. Ignoring
for the time being any collider data the following kinematical regions can be identified:

[. Heavy kinematical region (My > 2m;): Events with the vector boson channels open,
the ¢t mode being controlled by 1, ~ 1 will dominate Higgs decays.

II. Intermediate kinematical region (2Myz < My < 2my): In this kinematical window
the ¢t mode is kinematically forbidden while the vector boson channels are open, thus
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K 1)
e 20
.
y AlS
e (v)
0.q
! ! ! 2t
g t g Al
(c) (d) LR

Figure 1.1: Feynamn diagrams for H production at eTe™ ((a) and (b)) and proton-proton

((¢c)-(f)) colliders.

dominating. Between the WW and ZZ modes the WW branching fraction turns
out to be a factor 2 larger due to the ZZ mode involving unidentifiable particles. In
principle three-body decay modes involving the top quark are possible (H — tt* —
tWb), but are sub-dominant due to phase-space suppression factors.

I1I. Low kinematical region (My < 2My): Higgs boson decays are driven by the bb
mode, as the leptonic 77 turns out to have a branching ratio more than an order
of magnitude smaller due to the combined effect of the color factor and the relative
Yukawa couplings size (y2/y? ~ 16). EW-gauge-boson three-body decays are also
possible (H — WW* — Wiv(cs), H — ZZ* — Z{{(qq,vv)). In hadronic machines,
these modes despite their suppression can be even more relevant than the bb channel
(this has been actually the case at the LHC).

To complete the picture intrinsically quantum decay modes have to be accounted for.
The Higgs being charge and color neutral does not couple at the tree level with neither
photons nor gluons, the two-body decay modes H — ~vy and H — gg therefore proceed
via fermion and vector-boson loops, of which top loops give the dominant contribution
(there are subtle details when calculating the corresponding partial decay widths, see
e.g. [20,21]). The couplings in (1.11) can be recasted in terms of the Fermi constant:

guvy = 2Mp\[V2Gy, gy = —imp\/ V26, (1.12)

thus implying than when calculating the partial decay widths of the aforementioned pro-
cesses the only free parameter left is the Higgs boson mass. Figure 1.2 shows the relative
importance of the different Higgs boson decay branching ratios for the intermediate and
low energy kinematical regions (regions II and III) as a function of the Higgs mass. The
width of the corresponding bands is associated with parametric uncertainties, which orig-
inate from uncertainties in input parameters, and theoretical uncertainties, stemming
usually from missing higher orders [40]. Up to know nothing has been said about pure
scalar couplings: H? and H*. The corresponding strengths can be extracted from the
scalar potential in (1.4) after taking into account, once again, (1.6). The couplings read
My Mp

JHHH = —3i77 JHHHH = —32'7. (1.13)
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Figure 1.2: Decay branching ratios for the SM Higgs as a function of its mass width of
the corresponding curves follow from parametric and theoretical uncertainties [40] (see the
text for further details).

These Higgs boson scattering processes (HH — H and HH — HH) are crucial for the
reconstruction of the scalar potential parameters and for unravelling the mechanism of
EWSB. However, an experimental program based on Higgs scattering processes is far
beyond the LHC possibilities and might require a Higgs factory ® which could be based on
e.g. alinear 125®125 GeV eTe™ collider or a circular 125 GeV e"e™ machine. Suggestions
have already been put forward by Blondel and Zimmermann [41], and indeed much more
technical analyses have been recently carried out in Ref. [42].

In addition to theoretically based arguments such as unitarity, positivity, perturba-
tivity and minimum constraints, which constrained the Higgs boson mass to be below 1
TeV [43,44], before the LHC era the Higgs boson mass was already constrained by LEP
and Tevatron data: EW precision data favored a Higgs mass of the order of 90 GeV with
an upper limit of 152 GeV at the 95% Confidence Level (CL) [45], LEP excluded values
below ~ 114 GeV at 95% CL [46] while Tevatron closed the mass window 162 — 166 GeV
at the 95% CL [47]. Given its design and capability LHC [5,6] has gone far beyond LEP
and Tevatron making a major discovery, a new scalar particle which seems to resemble
quite closely the SM Higgs boson properties.

As of 2012, ATLAS (CMS) searching for the SM Higgs boson in the vy, ZZ* WW* 7
and bb channels, and using data samples corresponding to integrated luminosities of
approximately 4.8 fb™' (5.1 fb™!) at a center-of-mass energy of 7 TeV and 5.8 fb™*
(5.3 fb™') at /s = 8 TeV, reported an excess of events above background with a lo-
cal significance of 5.9 ¢ (50). The excess being more pronounced in the channels with
highest mass resolution: ZZ* and 7. The fit to the signals giving a mass of 126 £+ 0.4
(stat.) +0.4 (syst.) GeV [5] (1254 0.4 (stat.) £0.5 (syst.) GeV [6]). Figure 1.3 show the

3. Strictly speaking the LHC is a Higgs factory, however due to its dirty experimental conditions the
range of Higgs modes that can be measured accurately is limited.



12 1.2. THE 2HDM
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Figure 1.3:  The signal strength for the individual channel and their combination at
ATLAS (left) and at CMS (right) [4/8]. The values of combined signal strength, u =
o/oswn, are given for My = 125.5 GeV for ATLAS (u = 1.3+0.13(stat.)+0.14(syst.) [49])
and for Mg = 125.7 GeV for CMS (u= 0.8 £0.14 [50]).

results for the individual channels and their combination for ATLAS (left-hand side plot)
and CMS (right-hand side plot). In both cases 4 = o/ogy = 1 corresponds to the SM
hypothesis. In conclusion, according to these data, the discovered scalar is compatible
with the hypothesis of being the SM Higgs particle. However, it is also a fact that further
data are needed in order to pin down whether this scalar is actually the one expected
from the SM or whether it is in contrast a gate towards beyond SM physics.

Finally, as of 2013 results for both CMS and ATLAS based on samples with an in-
tegrated luminosity of ~ 25 fb™" and /s = 8 TeV exist. These results, however, are
still spread in proceedings and/or slides (presentations), mainly of the Moriond2013 and
EPS-HEP2013 conferences. An official paper from neither ATLAS nor CMS exist yet,
accordingly, apart from stressing that the picture of a SM-like Higgs remains, no further
discussion on the experimental status of Higgs searches will be done.

1.2 The 2HDM

1.2.1 Beyond the SM Higgs sector

Even if the scalar particle discovered at the LHC turns out to be the SM Higss boson,
there are deep reasons to expect manifestations of physics beyond the SM. These reasons
can be grouped into two somehow non-overlapping sets: theoretical and experimental.
Theoretically, the main motivation for beyond SM physics is certainly the hierarchy prob-
lem [51], which for more than three decades has been the subject of intense research.
Experimentally, three main observations: neutrino oscillations [52], the cosmic baryon
asymmetry [53] and astrophysical data supporting the existence of dark matter [54], im-
plying the following questions: what is the origin of neutrino masses, the origin of matter
and the origin of dark matter? Whether these facts necessarily involve beyond SM physics
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and/or whether this new physics should show up is arguable, as of course expected from
any scientific argument. The position adopted here is however that these facts, in partic-
ular those grouped in the experimental set, are a solid evidence in favor of beyond SM
physics.

The scalar sector of the SM is minimal, this means that the associated Higgs represen-
tation? is the simplest possibility allowing for non-vanishing mass terms for EW bosons
and fermions after spontaneous EWSB. However, no fundamental reason exists to claim
that the scalar sector is minimal i.e. that it contains only one Higgs doublet. Thus,
since the SM Higgs sector has not been experimentally tested yet, larger or additional
representations are still a well motivated possibility. For example, extended Higgs sectors
with extra SU(2) singlet, doublet and triplet fields can be added to the minimal Higgs
sector. Adding more scalar fields is a simple theoretical commitment while the range of
new dynamical possibilities it generates is very wide. Moreover, many new physics models
often predict extended Higgs sectors at the low-energy effective theory level [55].

Examples of beyond SM physics involving extended Higgs sector are numerous, e.g.
supersymmetry [36,37] and grand unified theories [56]. New physics models which can
explain tiny neutrino masses (see table 4.1 in the next Chapter) also often predict an
extension of the Higgs sector. For example, the type-II seesaw model [14,57-59], where
a Y = 1 Higgs triplet field is added to the SM, can generate tiny neutrino masses at the
tree level. Radiative seesaw models [60,61], that can also account for tiny neutrino masses
typically require additional scalar bosons running in the loops. Some models beyond SM
which contain an extended Higgs sector could also explain the origin of dark matter.
Indeed, very simple realizations relying on 2HDMs with an unbroken discrete symmetry
in the Higgs sector provide dark matter candidates.

There are two important experimental observables through which Higgs sectors (scalar
sectors) beyond the SM can be constrained:

[. The so-called p parameter defined as [62]
My,

=" 1.14
M2 cos Oy’ (1.14)

p
which at tree-level, within the SM, satisfies p = 1 as can be seen from the tree-level
relations in (1.9). Adding loop corrections modify this result but only slightly, the p
parameter remains of order 1 even at the quantum level in perfect agreement with
data. It turns out that by adding Higgs (scalar) multiplets with suitably chosen
weak isospin (e.g. triplets, sextets, octets) and hypercharge, the ratio My /My, can
be basically anything, in clear disagreement with data. Exceptions to this statement
are models involving SU(2);, singlets and/or extra Higgs doublets, for which in the
latter case the p parameter reads [19]

_ (LT +1) — (T79)?) vf
S VG B
where T;, T? and v; correspond respectively to the weak isospin, the third component

weak isospin and the VEVs of the doublet ¢;. Clearly, p = 1 regardeless of the
number of doublets.

(1.15)

4. The smallest representation containing the three would-be Goldstone fields associated with the
three massive gauge bosons and the Higgs scalar is a single SU(2)r doublet.
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II. Rare-process-related observables: Once going beyond the SM scalar sector, the new
Yukawa interactions induced by the new scalar degrees of freedom generally (in-
deed almost unavoidably) induce rare flavor violating transitions, which according
to flavor violating experimental data are severely constrained (e.g. K — pe, K —
U, K+ — 7M1~ — ey, u — 3e). In the SM quark sector these rare processes
are absent at the tree-level (GIM-mechanism [63]), arising only at the loop-level so
providing an explanation for their smallness. On the other hand, with neutrinos
being massless in the SM, rare processes in the lepton sector are always absent (they
can be rotated away). Experimental flavor violating data thus provides a powerful
tool to constraint the parameters of extended scalar sectors.

All in all, these experimental constraints, more importantly the p parameter constraint,
arguably favor extended scalar sectors involving extra doublets (singlets as well, but
nothing else will be added about this possibility). Indeed multi-Higgs-doublet models [9,
64—71] can be regarded as a quite conservative possibility which involves an amazingly rich
phenomenology ranging from low-energy rare decays up to high-energy collider physics,
that is to say covering both the high intensity as well as the high-energy frontiers.

1.2.2 An invitation to models with extra Higgs doublets

There is a vast literature on models involving scalar sectors with extra EW doublets,
in particular in 2HDMs (for a review see [9]). However, models involving more than two
scalar EW doublets have also been subject of intensive work. The motivations for such
an extensive amount of research is diverse, and cover several particle physics scenarios as
well as astroparticle physics and cosmology.

Arguably, nowadays, the main motivation comes from LHC physics. In the light of
ATLAS and CMS findings, the question of whether the scalar sector associated with the
discovered scalar is or not minimal (pure SM) has gained strength. However, given the
SM-like behavior of this scalar, the possible scenarios are tightly constrained, and finding
frameworks where one, out of several, degree of freedom exhibits SM-like properties has
turned out to be a non-simple task. Indeed, current data have already been used to put
stringent constraints in models involving scalar sectors largely departing from the SM (see
e.g. [72]). The 2HDM provides an ideal playground where a much more intrincated scalar
sector is at work, but one of the three neutral scalars readily have SM-like behavior °.

In the most general 2HDM the new Yukawa reactions induce rare processes with
dangerously large decay rates. Several approaches to avoid such a phenomenological in-
consistency exist, among which the following can be distinguished: (i) assume the new
Yukawa couplings obey certain structures e.g. Yofﬁ o /My, My, where f =l ,u,d and
a, B are generation indices [74]; (i) decouple the new degrees of freedom e.g. assuming
O(mg) ~ 10? TeV or so, with mg a generic scalar mass; (ii7) introduce a suitable sym-
metry which guarantees that the parameters inducing rare processes either vanish or are
suppressed. Among these categories, from the phenomenological point of view, probably
category (iii) turns out to be the most appealing, if related with a simple symmetry
choice.

5. In the conventional notation h® and HC denote the two CP-even states whereas A° the CP-odd
state. Given LHC results, the possibility that the signals are due to AY decays is already ruled out [73].
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Surprisingly, a Z, symmetry suffices to yield a relatively large variety of 2HDM real-
izations each one with its own and somehow distinctive phenomenology. Assuming one
doublet is Z5-even while the other is Z5-0dd, five models can be defined by taking the SM
left-handed fermion fields to be Zs-even and assigning different Z, parities to the right-
handed fermions. In doing so, the so-called type-1 [75,76], type-11 [76,77], leptophilic
(or type-X), type-Y [78-82] and inert [78,83] 2HDMs arise. Recently these models have
been the subject of extensive collider studies (see e.g. [84-87]), mainly motivated by the
diphoton signal excess reported by CMS and ATLAS collaborations, which though not
yet statistically significant has generated a great deal of attention.

Multi-Higgs doublet models also provide scenarios where the origin of neutrino masses,
the cosmic baryon asymmetry and dark matter can be addressed, sometimes even pro-
viding a common explanation for all of them. In the simplest approaches, typically, the
resulting pictures have the ingredients that guarantee the Sakharov conditions are quan-
titatively satisfied [53] (for more details see Chapter 4), allowing for an explanation of the
cosmic baryon asymmetry via EW baryogenesis [88,89] . Under certain simple assump-
tions viable dark matter frameworks can also be defined, the most remarkable example
being the inert 2HDM, which has been the subject of intensive investigation in the last
years. Finally, a large number of models for Majorana neutrino masses involving extended
Higgs sectors exist, in particular in scenarios where the Majorana neutrino mass matrix
arises via radiative corrections, in this case the most well studied scenario corresponds to
the radiative seesaw where the inert doublet model is enriched with fermion EW singlets
(right-handed neutrinos) [90].

1.2.3 The challenging case of the most general 2HDM

Having discussed in some details the phenomenological motivations for models involv-
ing extra doublets, it is now clear that it would be interesting going beyond particular
cases and tackling the most general problem (model). This can be guided by three main
goals: (i) identification of the phenomenological consequences parameter dependence;
(77) identification of possible symmetries and their corresponding dynamics, that is to say
whether they are always broken or whether—instead—remain exact under certain condi-
tions; (i77) identification of those properties which holding at the tree-level are not valid
once quantum effects are taken into account.

The main challenge when pursuing such a task is the large number of free param-
eters involved, with several choices yielding (defining) particular realizations. Despite
involving a large number of parameters, an appealing strategy when tackling the general
problem, which allows a rather significant simplification, consist on constructing a set of
basis-invariant quantities. Writing observables in terms of these basis-invariant quanti-
ties reduces somehow the arbitrariness of the corresponding phenomenology. Methods
for treating the 2HDM via basis-invariants are well known and different approaches and
studies exist [91-93]. These methods, when extended to include non-unitary transfor-
mations [94-96] provide—probably—the most powerful approach to the general problem,
since the most relevant qualitative features are determined by geometric properties of the
orbit space (see Section 1.2.5). Indeed these geometric techniques allowed a full treatment

6. These conditions despite being satisfied at the qualitative level in the SM, fail at the quantitative
level, see the discussion in Chapter 4.
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of the problem (at only the scalar potential level) and lead to a deeper understanding of
the 2HDM [94-97].

The 2HDM involves two identical EW doublets with hypercharges Y = £1 (here for
definitiveness Y = +1 will be taken):

.
o= (%) (116

with ¢+ = 1,2. The doublets being complex involve eight degrees of freedom from which
three will become the longitudinal components of the EW gauge bosons, thus implying the
physical spectrum involves five scalar degrees of freedom: three electrically neutral and
one charged and its conjugate. In general, unless enforced by a symmetry, both doublets
acquire a v.e.v's (¢;) = v;, s0 v = y/v} 4+ v3. The eight degrees of freedom become evident
when adopting the parametrization in (1.7), namely

w;
O = ( vithi+in, ) - (1.17)

V2

The Lagrangian accounting for the doublet interactions reads:
L= Ly + Ly, (1.18)

where the EW gauge boson and pure scalar coulings are encoded in

Lo="> (Dudi) (Duti) — Vir(, 62). (1.19)

i=1,2

The most general gauge invariant and renormalizable potential V' (¢1, ¢2) of the 2HDM
is defined in the 8-dimensional space of Higgs field and is a Hermitian combination of
the EW-invariant combinations (qb;rgb]), 1,7 = 1,2. In models of EW interactions with
spontaneously broken gauge invariance, renormalizability limits to four the degree of the
Higgs potential, terms of order greater than four have to be excluded because they are
not renormalizable, therefore, the maximum power of the combination ((bjd)j) is two. The
most general two-Higgs-doublet potential is conventionally then parametrized in a generic
basis as:

V=VW+V,, (1.20)

where

Vo =~ [mh(len) + mia(0hen) + mia(6l6n) + miy (64

Vi = %(ﬂﬁbl)z + %(@@)2 + A3(0]61) (85 82) + Aa(dl¢2) (dhhr)

1 *
+ 5 Xa(010)? + As(6h0)?| + { [Me(@l01) + M (016n)| (8l en) + Hc.}
(1.21)
This general potential with all quadratic and quartic terms contains 14 real free parameters

(in contrast to only two real parameters in the SM case): the real parameters (by hermitic-
ity of the potential) m?2,,m3y, A1, Ao, A3, Ay and the complex parameters m2,, A5, Ag, A7
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This potential accounts for EWSB and therefore for massive SM EW gauge bosons and
fermions. The problem of the large number of parameters involved, highlighted previ-
ously, at this point becomes evident. In contrast to the SM, where the choice A > 0 and
p? < 0 assures EWSB, in this case the appropriate parameter choice is far from trivial, the
large freedom implied by the 14 new parameters allows for CP-violating, CP-conserving,
electric charge and color breaking minima. Choosing the correct parameter combination
is therefore of fundamental importance, but following the standard algebraic approach
yields no further insights: minimization of the potential leads to high order algebraic
equations for which a solution in the general case does not exist. In order to see this is
actually the case, the following notation is adopted:

P, = ( j;; ) . (1.22)

Note that here both ¢, and ¢, are EW doublets themselves, so that although a = 1,2,
®, effectively incorporates four complex fields. Thus, in the definition of ®, there is a
hidden EW index. In terms of (1.22) the general Higgs potential in (1.20) can be written
in the following form:

1
V = Y,(0ld,) + §Zabcd<¢2¢b><¢>i¢>d> : (1.23)

where Y,, and Z,.q4, constructed from the Higgs potential parameters, represent mass
terms and quartic couplings respectively and the indices run from 1 to 2. The basic
objects used here (®]®;,) are EW scalar products of doublets ®, and ®;, so that (®]d;) is
a 2-by-2 matrix and has no EW indices. The number of free parameters that the tensor
Zapea Involves in tensors is restricted by the constraint (symmetry)

Zabcd = chab . (124)
Hermiticity of V also implies
Yoo = Yoa)",  Zabed = (Zbade)” - (1.25)

All in all, these relations reduce the number of parameters to 14 as it has to be (4 from
Y., and 10 from Zgpeq .

In order to guarantee that the vacuum respects the electromagnetic gauge symmetry,
only neutral components of the doublets acquire non-zero VEVs [91]:

v v
P = —0y, (DY) = —1y, 1.26
(®1) Nok (®3) Noke (1.26)
where v, = (01,02) is a vector of unit norm in the space of doublets. With the aid of
(1.20) and taking the derivative of (1.23) with respect to ®,, the covariant form for the
scalar potential extremum conditions reads

1
U (Yap + §U2Zabcdﬁc*ﬁb) =0. (1.27)

These coupled equations, unfortunately, cannot be solved explicitly which shows that in
the general 2HDM nothing can be done at the algebraic level, as it is done in the SM (or
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in constrained versions of the 2HDM). Of course a numerical approach could be followed,
but with 14 parameters to consider the task is far from trivial. There are indeed some
papers where this approach is used to study the symmetries of the vacuum [98] or the
masses of the Higgs bosons [99], but the results are far from conclusive.

A method shielding light on this problem is therefore of crucial importance, and in
fact such an observation has lead to the development of the techniques discussed in the
next Section.

1.2.4 Approaches to the general 2HDM

The basis independent treatment of the 2HDM [91-93,100-102] is based on the tenso-
rial decomposition in (1.23), where Y, and Z,;.q are considered as tensors rather than just
a collection of parameters. Algebraic independent basis-invariants are constructed as full
contractions of the available tensors. These basis-invariants then providing informations
about some of the properties the model exhibits (see e.g. [91] for a comprehensive review).
The technique, though powerful, does not yield hand-able results, thus not allowing for
an intuitive interpretation of the output expressions which generally—at the end—have
to be manipulated computationally.

The orbit space technique, based on the reparametrization freedom of the theory
[94,95], is a more appealing and—probably—more powerful description, as it allows a
much more intuitive understanding of the 2HDM properties. The realization that the
reparametrization group rather than being SU(2), as commonly accepted, is GL(2,C)
allows the construction of the Minkowski space structure of the 2HDM orbit space, from
which a deeper understanding of the 2HDM is gained. In what follows these techniques
will be discussed. Rather than providing a comprehensive treatment, the main aspects and
features, in particular those needed/used in Chapter 2 will be presented. For throughout
details the reader is referred to [94,95].

1.2.5 The orbit space of the 2HDM

The scalar potential, defined in the 8-dimensional space of scalar fields, depends on
the bilinear EW invariants (¢I¢j). A point in the space of Higgs fields can be mapped into
one other via an SU(2) ® U(1) transformation. The set of all points connected through
such a transformation define an orbit, and have the feature of being undistinguishable.
The set of all possible orbits, in turn, defines the orbit space.

With orbits classified according to SU(2) ® U(1) transformations, the natural choice
for the reparametrization group will be SU(2), and indeed this was the case until the
analysis from [94,95] where—as already pointed out—it was shown that the most general
reparametrization group corresponds to SL(2,C) C GL(2,C). This reparametrization
group reveals the Minkowski space structure of the orbit space, due to its homomorphism
with the proper (restricted) Lorentz group. This can be readily done by decomposing the
bilinears (®! ®;) (see Eq. (1.22)) in the SU(2) subset adjoint representation: 2@2 = 3®1,
which then implies the bilinears can be decomposed into a SU(2) singlet and triplet [94]:

ro = (®T®) = (¢11) + (Ph2) (1.28)



CHAPTER 1. MULTI-HIGGS-DOUBLET MODELS 19

Figure 1.4: The orbit space of 2HDM, lying along or within the Minkowsk: future light-
cone as required by r*r, > 0.

and
(651) + (61 ¢2) 2Re(¢] o)
ri=(®'0;®) = | —i((¢]da) — (d3e1)) | = | 2Im(elgy) | - (1.29)
(d1¢1) — (Bha) [P1]* — |d2]?

The scalar ry and vector r; can then be identified with an irreductible representation of
SO(1,3), namely
= (ro,7i), (1.30)

thus providing the Minkowski space structure of the 2HDM orbit space, where of course
covariant and contravariant vectors (tensors) are related through the Minkowski space
metric: g, = diag(l,—1,—1,—1). Although having a Minkowski space, as required by
the positiveness of r? = r#r, > 0. From which it becomes clear that the field configurations
are in or within the Minkowski future-light-cone (LC*) as illustrated in Figure 1.4. In
terms of the SO(1,3) irreductible representations the scalar potential in (1.21) can be
recasted in a compact way [94,96]:

V =-B,r"+ %Awr“r” : (1.31)

with the parameter tensors given by [96]
B, =Trlo,Y] and A, =4(0u)a0Zabed(00)ng s (1.32)
where the tensors Y and Z come from (1.23), for which explicit expressions for their com-

ponents can be calculated by direct comparison of (1.23) and (1.21), and 0, = (laxe, o).
Explicitly they read

1
B = Z(m% + m§27 —2Re m%27 2lm m%% _mfl + 77132) ’ (133)
atde s —Re(As+ A7) Im(Ag+ A7) — A
A o 1 —IRe(/\6 + )\7) )\4 -+ IRe)\5 —[lm)\5 [Re()\ﬁ - /\7) (1 34)
pe 2 ﬂm()\ﬁ + /\7) —Hm)\g, )\4 — [Re)\5 —Hm()\e, — )\7) ' ’

— A Re(A¢ — A7) —Im(Ag — A7) At22 — )y
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Positivity conditions

The tensor A,, has an important property, which originates from the positivity con-
dition. The potential in (1.20) is stable if its quartic part Vj increases in all directions in
the entire ¢;-space. In other words, the positivity condition leads to inequalities between
the coefficients A; in (1.21) (in the SM this is trivially satisfied by taking A > 0). Such
conditions were found explicitly only for simple potentials, for example for potentials with
X¢ = Ay = 0 [64]. For the most general case, nobody has found these explicit inequal-
ities, because the most general case is algebraically very complicated. In the formalism
described above, these conditions have to be imposed on A,,: for potentials stable in a
strong sense’, in the orbit space, Vj is positive definite if A, is positive definite on and
inside the LC™, that is, A,,r,r, > 0 on and inside the LC't. As was proved in [103], this
is equivalent to the statement that A,, is diagonalizable by an SO(1,3) transformation
and that after diagonalization it takes the form

AMV = diag(Ao, —Al, —AQ, —Ag) with AO > O, AO > Ai, 1= 1, 2, 3, (135)

where the inequalities among the eigenvalues result from the positivity constraint on the
potential. The minus signs in front of the “space-like” eigenvalues arise from the pseudo-
Euclidean Minkowski metric of the orbit space. It is obvious that if A, satisfies this
condition, the positive definiteness is assured. On the other side, it has been proved
in [103] that this condition follows from the positive definiteness of A,,. Finding the
eigenvalues explicitly in terms of \; requires solving the fourth order characteristic equa-
tion, which constitutes one of the computational difficulties of the algebraic approach.
However, fortunately these explicit expressions are never used and only the eigenvalues
of A, are needed.

Vacua in the 2HDM

Using the technique introduced in the previous discussion, the vacuum structure of
the scalar potential can be much more easily analyzed. The minimization of the scalar
potential can be rewritten (translated) in the orbit space and the ground state can be
studied without finding explicitly its location [94,95].

The extrema of the potential define the fields ¢; VEVs (¢;):

@ (@ o
¢i di=(bi) a¢’ di=(bi)

Different kinds of vacuum states with various physical properties are possible (EW sym-
metry conserving solution (¢;) = 0 or several EWSB solutions) depending on the inter-
relation among parameters [65]. Indeed, using the CP-phase freedom of the Lagrangian

7. Here the terminology of [91,92]. is used: the potential is stable in a strong sense, if its quartic
part increases along all rays starting from the origin in the Higgs field space. The potential is called
stable in a weak sense, if the quartic part has flat directions, but the quadratic potential increases along
them. For the Minkowski-space analysis of potentials stable in a weak sense, see [103], where a similar
condensed-matter problem was considered.
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and in choosing appropriately the third isospin axis, the most general EWSB VEV can
be written in the form:

(¢1) = % ( 1?1 ) , (d2) = % ( U;;g ) : (1.37)

where v; and vy are real. With the quantum numbers of the scalar EW doublets the Gell-
Mann-Nishijima formula, ) = Y/2 + I3, clearly shows u # 0 (u = 0) corresponds to a
charge breaking (conserving) vacuum. Accordingly, the potential in (1.31) exhibits three
different kinds of minima: (i) EW conserving; (i) EW breaking and charge conserving;
(771) EW and charge breaking. The four-vector VEVs configurations yielding such minima
are correspondingly (r#) = 0 (the apex of the LC™), (r*) # 0 but (r#)(r,) = 0 (the surface
of the LC™), (r*) # 0 and (r*)(r,) > 0 (the interior of the LC™").

Given that the most interesting, and actually needed, situations are those leading
to EWSB, in what follows the conditions ensuring these extrema are discussed (details
can be found in [94]). As stressed charge-breaking as well as charge-conserving extrema
are possible. In the former case, their position (denoted by (r,)q) is determined by the
minimization condition

A (1)) = B, (1.38)

which arises by enforcing the partial derivative of the potential in (1.21) to vanish. A
solution to (1.38) exists provided A* is not singular, namely

<Tu>ch - bu

(A1), B". (1.39)
Shifting the minimum to zero, the potential in (1.21) can be recasted as follows:

1
V= S =B =5+ C, (1.40)

with C a constant. The condition for the existence of a minimum (bounded from below
potential) then implies

A =) =) >0 ¥ (" — ), (1.41)

meaning that the charge-breaking stationary point is a minimum if and only if A, is def-
inite positive in the entire Minkowski space, which according to the previous discussion
(positivity conditions) requires A; > 0 for i« = 1,2,3. As for the charge-conserving ex-
tremum the minimization condition involves a Lagrange multiplier (in order to guarantee
the solutions lie along the light-cone surface). Consequently, the positions of all neutral
extrema () are the solutions of the following simultaneous equations:

A (r,y — & =B*, =) (1.42)

where ¢ is the Lagrange multiplier. This system can have up to six solutions [91,92,94,104],
among which there are at most two minima, while the other are saddle points [95].
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Kinetic terms

Up to now nothing has been said about reparametrization invariance and the kinetic
terms. In order to start with the discussion, first of all, the transformation properties of
the kinetic term have to be derived (the discussion is carried out for the total derivative,
the covariant derivative can be included in a straightforward way). Arranging the kinetic
term according to (9,®)7(9#®) it turns out to be clear that its transformation properties
allow, as in the r, case, a 3@ 1 decomposition (see Section 1.2.5) which then implies that
the kinetic term can be recasted as [94]

P = (0,®)T o’ (0'd), (1.43)

while 3 labels orbit space coordinates and pu refers to “guenine” space-time coordinates.
Reparametrization invariance can be assured provided orbit space indices of a given ex-
pression are fully contracted, thus implying the reparametrization invariant kinetic term
should be written as

K, (1.44)

with K, the kinetic term clearly has a non-canonical form, enforcing a canonical form
requires K, = (1,0,0,0), which then fixes a preferred frame.

1.3 Few comments on the SHDM

1.3.1 The 3BHDM

Until now the discussion has been limited to the 2HDM, mainly because the orbit
space formalism can be readily described in a rather intuitive way avoiding most of its
technicalities. Indeed, after this intuitive understanding is gained some features of the
formalism can be readily extrapolated to more intricated cases involving more than two
Higgs doublets, even to the general case of the N-Higgs-Doublet Model (NHDM) [105—
107]. This Section does not aim to discuss such an ambitious framework, and though
results from the NHDM will be somehow used in Chapter 3, instead some aspects of
another specific multi-Higgs-doublet model will be covered, namely the SHDM. At this
point, it should be clear that a treatment of the 3HDM based on the conventional algebraic
approach, where minimization conditions are worked out by brute force, will not render
any useful conclusion. So, as in the 2HDM case, the orbit space method is expected
to provide an appealing insight into the features of the scalar potential. From now on
and based on the results from the previous Sections the orbit space of the SHDM will be
introduced, mainly aiming to settle the playground for Chapter 3.

1.3.2 The orbit space of the SHDM

The 3HDM involves three EW doublets with identical EW quantum numbers, and, as
in the 2HDM case, hypercharge is chosen as Y = 1:

wi ,
b =\ wvithitim |, 1=1,2,3. (1.45)
V2
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The total number of degrees of freedom is twelve of which, as usual, after EWSB three are
absorbed by the EW gauge bosons thus leaving nine physical degrees of freedom in the
spectrum: five electrically neutral and two electrically charged and their corresponding
charge conjugated.

As in the 2HDM case, any simultaneous SU(2), ® U(1)y transformations inside all
doublets without changing the Lagrangian can be performed. In applying all possible
such transformations to a point in the Higgs field space, the 12-dimensional space of
Higgs fields is naturally “sliced” into non-intersecting orbits. The resulting set of orbits
is the 8-dimensional orbit space. Indeed, using the phase freedom of the Lagrangian
and choosing appropriately the third isospin axes, the most general EWSB VEVs can be
written in the form:

o= ) a=( ) a=(10) (1.46)

Therefore, a point in the orbit space is defined by 8 real parameters. A point with us # 0
or ug # 0 corresponds to the charge-breaking vacuum, whereas a point with uy = 0 and
uz = 0 is a neutral vacuum and therefore the dimensionality of the neutral orbit space is
equal to 5.

As in the most general 2HDM, the general renormalizable Higgs potential of 3HDM is
constructed from the gauge-invariant bilinear combinations (¢!¢;) [108], which describe
the gauge orbits in the Higgs space. The orbit space can be represented as a certain
algebraic manifold in the space of these bilinears which is more complicated than the
Minkowski space structure of the 2HDM orbit space. As in Section 1.2.5, it is convenient
to decompose the bilinears according, in this case, to the SU(3) product decomposition
3®3 =8 1, provided the scalar potential bilinears are constructed for the hyperspinor

1
(I)a = ¢2 ) a = 17273' (147)
b3

With this decomposition it is now clear that [105-107]

— t
o = \/§<CI)T \/—Z¢ ¢Z7

ri o= (BTN = Zgb* Aa)ijb;, a=1,...,8. (1.48)

Explicitly the nine components read

L (010) + (00) + (8hds) _ (610) — (0hn) _ ($61) + (616n) — 2(¢hos)
0 — \/§ y 13— 9 )y 18 — 2\/§
=Re(¢]¢2), 711=Re(@hér), 75 =Re(¢hos).

ry =Im(dlgn), 15 =Im(¢lg1), 17 =Im(g}ds), (1.49)

where )\, are the SU(3) generators.
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To

T

Figure 1.5: The orbit space of 3HDM defined by two forward cones as determined by the
SU(3) 3® 3 decomposition.

With the results in (1.48) at hand, in particular the numerical factor entering in ¢, the
shape of the 3HDM orbit space turns out to be determined by the following boundaries

ro>0, —rg < <rg, (1.50)

A

which yield the geometrical representation illustrated in Figure 1.5. In addition, neutral
vacua always lie on the surface of the outer cone 7 = rZ, while charge-breaking vacua lie
strictly inside, 7 < rZ.

In the orbit space formalism, the Higgs scalar potential takes the form of a general
quadratic form of rq and r;:

1 1
V = _M(]TO - Mﬂ’i + §A007"g + AOiTOTi -+ §Aijrirj .
Mt At (1.51)

The minimization of the potential can then be cast into a geometric condition of contact
of two algebraic surfaces constructed in R?: the orbit space and the equipotential surfaces
defined by V = const, see details in [106].

Summary

In this Chapter several subjects related with scalar sectors have been treated. For
completeness, and also because the LHC results, the main aspects of the SM scalar sector
as well as the corresponding SM Higgs phenomenology have been discussed. Motivations
for extended scalar sectors have been presented, in particular motivations arising from
phenomenological aspects for which the SM does not provide a successful description.
Focusing on the 2HDM, the challenges of the scalar potential minimization and thus of
the intrinsic problems when dealing with 2HDM phenomenology, have been emphasized.
With this in mind, the orbit space method has been reviewed, highlighting its advantages
and at the same time fixing the playground for the forthcoming discussion in Chapters 2
and 3.



CHAPTER 2

HIGGS MASSES OF THE GENERAL 2HDM

2.1 Introduction

In Chapter 1 the reparametrization symmetry inducing the Minkowski-space structure
of the 2HDM orbit space was reviewed. Following this Minkowski-space approach, the
geometric properties of the most general two-Higgs-doublet potential in the orbit space
in Eq. (1.31) and its minima were investigated (see Section 1.2.5). This formalism is
a powerful tool in the analysis of the existence and number of extrema of the scalar
potential and their classification. The geometric constructions appear naturally in the
orbit space and allow to prove various theorems concerning the number, the coexistence
and the nature of the extrema, and also to find conditions for which the symmetry is
broken and establish the phase diagram of the scalar sector of the 2HDM [94, 95]. The
next step towards a comprehensive study of the general 2HDM consist in understanding
its dynamics. This includes the mass spectrum of the physical Higgs bosons, the pattern
of their interactions, as well as their couplings to the gauge bosons and fermions.

The dynamics of a quantum system can be expressed via the correlation functions.
The scalar Lagrangian of the most general 2HDM, including a generic kinetic term, can
be written in terms of the two complex EW doublets ¢; and ¢s:

L=K—Vo—Vi=(0a¢;) K;;(0°¢;) — ¢] Bijj + %Z@kz@@)(m) : (2.1)

Here all indices run from 1 to 2. After spontaneous EWSB these doublets acquire non-
trivial VEVs, so that the physical scalar bosons ¢; can be introduced according to

¢i = (i) + @i - (2.2)
If the VEVs are known, this Lagrangian can be rewritten using the physical scalar fields:
L(i, 0ati) — L{(d:) + @i, Oatpi) - (2.3)

Then, using this Lagrangian, in principle various n-point correlation functions of physical
scalar bosons can be calculated:

Vialin, da, ooy in) = (0T (4,)-. 0, (24,)]0) . (2.4)

25
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This notation is rather schematic because the n indices iy, ...,%, do not only give the
number of doublets, but also specify the fields. Besides, similar correlation functions with
conjugate fields can be considered. The most important among them is the two-point
correlation function V5, that is, the propagator. Three-point and four-point correlation
function V3 and Vj are given, at the tree level, by the couplings of the potential, while
even higher order correlation functions are given by some specific convolutions of these.
With Va5, V3, Vy, Feynman rules of the model can be formulated and, in principle, any
scattering process in the scalar sector can be calculated. These correlation functions, V,,,
however, have the same important problem as the Lagrangian itself: their general form is
redundant. Indeed, each V,, contains elements which depend on the basis for representing
the Higgs fields, so they do not reflect the physical content of the model, but just depend
on the way it is described. These elements, which are not basis-invariant, are unphysical.
On the other hand, there are several basis-invariant combinations in each V,,, which are
truly important for the physical content of the most general 2HDM. It is these invariant
quantities that are aimed to be found. Unfortunately, it is very difficult to compute
them working in the space of the scalar fields. A straightforward approach fails for the
most general 2HDM, which calls upon more involved techniques for the analysis of its
properties.

The mass spectrum of the general 2HDM was studied in a number of papers. If a
restricted Higgs potential is chosen, for example, an explicitly C'P-symmetric one, the
entire calculation is drastically simplified. The minimum of the potential can be found
explicitly and the masses and the interactions of the Higgs bosons calculated. For example,
in [96,109,110] the mass matrix was explicitly calculated in a specific basis. An interesting
study of the general 2HDM was presented in [99], where certain bounds and relations
between the masses and the parameters of the potential were observed, however that
work relied only on numerical analysis. Finally, a very detailed account of the dynamics
of the general 2HDM was presented in [93] and in [9]. Among other results, explicit
expressions of the mass matrix were derived in a U(2)-invariant way in terms of various
full contractions of tensors Yy, and Zpqq introduced in (1.23) as well as vacuum expectation
values. As has been seen in Chapter 1, this task is simplified if a shift from the space
of Higgs fields to the orbit space is done. In this formalism, all basis-invariant quantities
can be represented via full contractions of K, A,, and B, (see Eq. (1.33), (1.34) and
(1.43)) and invariant tensors g,, and €,,,,. Therefore, a natural task is to find these
basis-invariant quantities. However, this is a very intricated and complex program which
is not to be addressed here. Instead, in this chapter efforts focus on V5, that is to say on
the masses of the physical scalars degrees of freedom of the most general 2HDM.

The rest of this Chapter (based on [16]) is organized as follows: mass matrix related
subjects are treated. First, the basis dependence (independence) of the mass matrix (mass
spectrum) is discussed in a simple toy model and secondly the methods of the Minkowski
space formalism for the mass spectrum is introduced. In Section 2.3, the mass-matrix for
each possible 2HDM vacua is derived (see Section 1.2.5), and powers of the mass matrix
traces are calculated in a reparametrization-covariant way.
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2.2 Mass matrix and mass spectrum

2.2.1 Mass related basis-invariants and non-invariants in a toy
model

In order to illustrate the essence of the task, a very simple model is considered: a free
scalar theory with two complex scalars. An important fact is that the mass matrix itself
is a basis-dependent quantity. Consider the Lagrangian for two complex scalar fields, ¢,
and ¢, in matrix form:

Lo=K =V =3 |@:00)("¢:) - misloi] (2.5)

i=1,2

In this case there is no interaction between the fields ¢; and ¢y, so that m? and m?2 rep-
resent the physical squared masses of these particles. As seen in Section 77 of Chapter 1,
transformations from the reparametrization group GL(2, C) of the Higgs fields modify the
Higgs kinetic term. The full Higgs Lagrangian can therefore includes kinetic terms which
can be off-diagonal in the general case. Therefore, a Lagrangian in the following general
form is considered:

L= (aa¢i)TKij(aa¢j> - ‘ZﬁzTBijébj ) (2'6)

where the potential V' = ng;rBijngj has an extremum at (¢;) = 0. Now the mass matrix in
two specific bases is derived and it is shown that they are different. First, the Lagrange
equations from Lagrangian (2.6) is calculated:

il o o
the following equations of motion are obtained:
K;;0¢; + B;j¢; = 0. (2.8)
If this equation is multipied by K !, it reads
O¢; + (K 'B);j¢; = 0. (2.9)

Therefore, a set of Klein-Gordon equations for fields ¢; is obtained. Their mass matrix,
in this basis, is
M;; = (K 'B),;. (2.10)

Now the mass matrix is calculated in another way, by performing a transformation of
the fields which makes the kinetic term of the Lagrangian (2.6) diagonal. So, a transfor-
mation on the fields is performed:

¢ — bi =T, o — ol = LT}, (2.11)
where T is some invertible 2-by-2 matrix, i.e. T" € GL(2,C). The Lagrangian becomes:

L = (0a0i) T}, KijTj51(0°0y) — 0L T3 BijTiy by - (2.12)
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T is choosen so that the kinetic term becomes diagonal, that is, T7TKT = I and therefore
TT? = K~'. Therefore, in this new basis, the mass matrix becomes:

M, = (T'BT);; . (2.13)
Since matrices T" and B do not necessarily commute
Mi; # Mj;, (2.14)

which confirms that the mass matrix is a basis dependent quantity. As a consequence, V5
is also a basis-dependent quantity.

Nevertheless, it can be easily proved that the masses of the physical scalar bosons,
my and ms, being the eigenvalues of the mass matrices, are the same for these two bases.
Indeed, these masses can be calculated from the traces of powers of the mass matrix:

Tr(T'BT) = Te(TT'B) = Tr(K'B). (2.15)
Here the relation 77T = K~! and the cyclic property of the trace are used. So,
m} +mj = Tr(M) = Tr(M'). (2.16)
The trace of the square of the mass matrix is also calculated:
Te(T'BTT'BT) = Te(TT'BTT'B) = Tr(K *BK'B), (2.17)
so that
mi 4+ mj = Tr(M?) = Tr(M'?). (2.18)

The same equality is also valid for any power of the mass matrices. It is noted that what
is basis independent is the eigenvalues of the mass matrix. The determinant of the mass
matrix can also be calculated via the traces,

2Det(M) = [Tr(M)]?> — Tr(M?) = [Tr(K'B)]?> — Tr(K'BK'B)
= [Te(M"))? — Te(M'?). (2.19)
Therefore,
Det(M) = Det(M') = m3imj. (2.20)

2.2.2 Masses in the Minkowski-space formalism

Anticipating work with 2HDM, the way the masses in this simple problem can be
calculated in the four-vector formalism is illustrated. The Lagrangian (2.6) can be written,
in the orbit space in a compact form as

L=K-V=K,p'—B,", (2.21)

where p* = (0,®)T0#(0%®). The minimum of the potential is at (r*) = 0, since r* =
(®To#®). The theory is thus reformulated using quantities defined in the orbit space. In
particular, the following correspondence follows:

degrees of freedom (93, 05) — T
reparametrization group SL(2,C) — SO(3,1) (2.22)
parameters Kij, Bij — K., B,
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What is the analogous table for the masses?

m? +m3 Tr(Kl-;lBjm) — 7 (2.23)
mi +mj Tr(Kingijlnglm) — 7 '
The matrix K;; and B;; are 2-by-2 Hermitian matrices, so they can be expressed in
the covariant notation, using o, = (09, 0,) with o9 = I and o, the Pauli matrices with
a=1,2,3, as
Kij = KMO'M = K(]Uo - Ka0a7 (224)

Bij = BMO'u = B()O'O - BaO'a (225)

where K, = (Ko, K,) and B,, = (By, B,). This inverse of K;; exists and can be written,
using ¢, = (I, —0,), as
N (K*a,,)i
(KN = 5 (2.26)
where K? = K, K" = 1. The traces of the mass matrix can now be calculated in the
four-vector formalism.

Tr(M) =Tr(K'B) =Tr < B”UV) = KHBVTT(ﬁudy) : (2.27)

K2
Using Tr(6,0,) = 2¢,, and K* =1, it follows that:

Tr(M) =m} +m3 =2K"B, = 2(KB). (2.28)
In order to calculate masses, Tr(M?) needs to be derived.

Tr(M?) = Tr(K'BK™'B)=Tr(K"5,B"0,K"6,B%0;)
K'B"K™B°Tr(6,0,6,05) . (2.29)

Using the following relation
Tr(6%07570%) = 2(¢™ g™ — gh" g + g"g"T — iehd) (2.30)
it eventually follows that
Tr(M?) = mi +mj = 2(KB)(KB) — K*B?, (2.31)

where (K B) = K,B". Now, the determinant can be calculated

Det(M) = mim3 = = [[Tr(M)]* — Tr(M?)] = B>, (2.32)

| —

Now, as the trace and the determinant of the mass matrix are known, the masses them-
selves, m? and m2, can be derived. To this end, the following system of equations need
to be solved

mim; = B*, mj+m3=2(KB). (2.33)

It follows that
m3, m5 = (KB)++/(KB)? — B2. (2.34)
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The quantity (KB)? — B? is always positive because K, lies inside the LCT. Indeed,
this quantity is Lorentz-invariant which can calculated it in a particular frame in which
K, = (1,0,0,0). In this frame, this quantity becomes B2 + B2 + B2 = |B|?, which is of
course positive. Therefore, in this frame the masses take a simple form:

m?, m? = By +|B|. (2.35)

Now conditions in terms of B* for which this is the minimum of the potential are derived.
An extremum is a minimum if all the eigenvalues of the mass matrix, the squares of the
particles masses, are positive. Therefore, it is a minimum if Det M > 0 and TrM > 0.
Looking at (2.35), both m2 are positive if By > 0 and By > |B|. It means that B* lies
inside the LC'". This is a basis-invariant statement. The phase transition happens when
one of the eigenvalues becomes zero, that is Det(M) = 0. So, the phase transition takes
place if

B} = B} + By + B . (2.36)

Therefore, the phase transition takes place on the surface of the forward light-cone.

2.3 Mass matrix of the most general 2HDM

The aim of this Section is to make a step towards fulfilling the study of the dynamics of
the most general 2HDM in an reparametrization-covariant way. As illustrated previously,
although the masses are physical observables and are reparametrization-invariant, the
mass-matrix is basis-dependent. For intermediate calculations a switch back from the
bilinears to the Higgs fields themselves is made, then the mass-matrix is derived in a
specific basis, and finally, after some manipulations on the mass-matrix, the results are
expressed in the Minkowski-space formalism.

The complex fields are denoted as ¢; o, where ¢ = 1,2 indicates the doublet, while the
index a =7, indicates the upper and lower components in a given doublet. Then the
8-component real vector of scalar fields ¢,, a = 1,...,8, is introduced with the following
components:

©q = (Repr 4, Imy 4, Regor, Imea 4, Redy |, Imey |, Regs |, Imes ) . (2.37)

The four-vector r* can be rewritten in terms of ¢, as
rH = 02t oy . (2.38)

Here, ¥# are four real symmetric 8-by-8 matrices; X9 is just the unit matrix, while explicit
form of Y! can be immediately reconstructed from the definitions in Appendix A. Since
the upper and lower components of the doublets are not mixed by the Higgs potential,
matrices >* have a block-diagonal form, composed of identical 4-by-4 matrices. Below,
these 4-by-4 matrices will be used denoting them by the same letter ¥#. Which set of
matrices is being used, 4-by-4 or 8-by-8, should be clear from the context. In contrast
to o, the matrices ¥ do not form a closed algebra, but they belong to a larger algebra
(34, T1*), described in Appendix A. They also share with o# an important property:

(229} = 26% - g, (2.39)
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where brackets denote the anticommutator. It follows then that if a regular real symmetric
8-by-8 matrix A is written as a,>*, then its inverse is

SR
a2 _

, Y= (X0 —x%Y). (2.40)

ATl =

“w
a,a

Below products of matrices ¥’s and ¥’s will be encountered. When simplifying these
products, the following results prove useful:

1 _ _

5(zﬂzv + TSR = g" - g, (2.41)
1 _ _

3 (SHEPEY 4 BVEPEH) = gMEY 4¢Pk — gt Er .

With this notation, the formalism illustrated above can be used and a compact expression
for the mass matrix in a specific basis can be given. The expansion of the scalar Lagrangian
near an extremum is written as

1 0*V
200, Oy’

L~ (KPEZb)(aasoa)(aawb) - Hab(spa - <§0a>)((pb - <90b>) ) Hab (242)

where the Hessian H,;, is calculated at the extremum. The 8-by-8 mass matrix can then
be expressed as B
Mac = (szp);blec = KpEZbec' (2.43)

In the rest of this Section this mass matrix is calculated and its eigenvalues are analyzed
for the three possible types of vacua mentioned in Section 1.2.5: electroweak-symmetric,
charge-breaking and neutral.

2.3.1 Electroweak-symmetric vacuum

The masses of the Higgs bosons in the EW-symmetric vacuum are determined only
by the quadratic term of the potential and can be easily calculated in a straightforward
way. The eight masses are grouped into two quartets with values (1.21) are

1
2 2 2
mty =1 ((Cmh)+ (o)l — g apma) . 2
These masses squared are positive, if m?; < 0, m2, < 0 and m? m3, > |mis|>. However,
it useful to work out this simple case in the reparametrization-covariant formalism just to
illustrate how it works. The Hessian H,, comes only from the B,r#* term of the potential
in (1.31) and is equal to —B,¥",. The mass matrix is then

My = K, (—B,)(E°5H) 4p - (2.45)

Matrices ¥’s have a block-diagonal form, and therefore so does the mass matrix (2.45). It
is built of two identical 4-by-4 blocks (My)ap, with a,b = 1,2, 3,4, whose form is still given
by the same expression but now with 4-by-4 matrices ¥#. In order to find its eigenvalues,
mimicking what has been done in the previous section, the trace of its successive powers
is calculated:

TrM,] = K,(—B,)Tr[SSH] = —4(KB),
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Tr[(/\/l4)2] = Kp(_Bu)Kp’(_Bﬂ’)Tr[SPEHSPIE#/]
= 2(KB)K,B,Tr[2Y"] — K, K, B*Tr[2r%F] = §(KB)* — 4K*B?,
Tr[(M4)"] = —2(KB)Tr[(My)" ] — K2B*Tr[(M,)"?]. (2.46)

These relations among the traces prove the mass matrix has only two independent eigen-
values. A simple analysis shows that there are two pairs of different eigenvalues, which
are equal to
miQ = —(KB)++/(KB)?- B2, (2.47)
where the relation K? = 1 is used. This expression is reparametrization-invariant and can
be calculated in any frame. In particular, in the original frame, where K* = (1,0,0,0),
it reads
m?, = —By % |B]. (2.48)
Using the definition of B* in (1.33), Eq. (2.44) can be immediately recovered and these
masses can be calculated in terms of m?,, m2,, m%,. Indeed, from the expression for B* it
follows that

I | 1 1
|B| = 1(4|mf2|2 +miyy My, — 2miymy,)2, By = Z(mfl +m3,) .

Therefore the masses become:

1 1
mi, m =~ (miy +mdy) £ (4l [+l mg, — 2mimd,)3. (2.49)

The conditions in terms of B* when this is the minimum of the potential are: DetB > 0
and TrB > 0. Looking at (2.48), both m?2 are positive if By < 0 and |By| > | B|. Therefore,
in order for the EW-symmetric extremum to be minimum, the four-vector B* must lie
inside the backward-light-cone, LC™.

2.3.2 Charge-breaking vacuum

Firstly, in what follows the mass matrix of the general 2HDM in the case of a charge-
breaking vacuum is now derived. Using Eq.(1.39), the mass matrix can be calculated.
According to (2.7), the second-derivative of the potential is first calculated:

ov B ort oV B ort
0, N Opg Ort N 0pa

where £, = (=B, + A,,r”). Therefore,

o’V ) ( o’V ) ort or?
(agoaﬁgob ch agpaa(pb £,=0 890a 830b g ( )

Therefore the Hessian has the following form:

&y (2.50)

Hype = 20,50 50 oy g - (2.52)

Then, the second derivative of the kinetic term, which gives the same result as before, is
computed:
0*L
9(0aPa)0(Dutpr)

= K5 = Kq. (2.53)
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All fields here must be understood as VEVs (p,), but to keep the notation simple, the
brackets will be suppressed. Thus, the mass matrix can be written as

Mg =2K,A,,SPYH (p ® p)T". (2.54)

By construction, this is a 8-by-8 matrix. However, it must have four flat directions
corresponding to the Goldstone modes. Now to get rid of these four flat directions it
can be shown that there exists a 4-by-4 matrix M, such that trace of any power of Mg
is equal to the trace of the same power of M,. The trace of Mg is considered. Using
Eq. (1.39) and the properties of ¥’s it reads

Tr[My] = 2K,A, oS/ S50 = 2K, A, (978 + g6 — g™'1¥)
= 2K,b, (2A,, —TrA g,,) = 2T [S - A], (2.55)

where the cyclic property of the trace is used and the antisymmetric part of L¥SP¥H ig
neglected since A, is symmetric. Here, the matrix S'- A is a symbolic form of the tensor
St Ao, = SP*A,,, where

SU = KW+ K'Y — (Kb)g™. (2.56)

The matrix S - A is defined in the euclidean space, and although it contains the tensors
St and A, they are contracted according to the usual rules of matrix multiplication.
The trace of the square of Mg is now considered:

Tr [(Ms)?] = 4K, A Ky A - 95 S S o - RV SP5Hp . (2.57)

This expression does not factorize because A, and A, couple the first and the second
threads of ¥’s. For example, if one of these threads is considered

(2727 ) apipp - (2.58)

This is a quadratic form in ¢,; therefore, only the ab-symmetric part of the product of
Y’s survives. This effectively leads to the v «<» 1/ symmetrization, and (2.41) can again
be applied to obtain

Ky (Z”ip'E”')ab op = U (2.59)
The trace of the square of the mass matrix is then
Tr [(Ms)?] = 48, 5" Ay S”F = Tr [(25 - A)?] . (2.60)
This calculation is easily generalizes to any power of the mass matrix:
Tr[(Mg)"] = Tr (25 - A)"] . (2.61)

The fact that the trace of any power of Mg is equal to the trace of the same power of
the 4-by-4 matrix 25 - A, means that there are four zero-modes in Mg and that all the
four non-zero eigenvalues of My coincide with the eigenvalues of 25 - A. Thus, the four
eigenvalues of the matrix 25 - A gives the masses squared of the physical Higgs bosons in
the charge-breaking vacuum.
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There is no simple way to calculate the masses themselves. However, the product of
all four masses squared can be easily inferred from the above expression:

[[m? = det(25 - A) = 16 detS - detA. (2.62)

Both tensors here are written in the euclidean space. Determinant of euclidean A%g
is the product of the eigenvalues® of Minkowski A#: detA = AgA;AsA3. In order to
calculate the other determinant, a closer look at S is taken. The way it is defined,
Eq. (2.56), allows to immediately find its eigenvalues. Indeed, a reduced version of this
tensor, K*b” + KVb*, is first considered. In general, K* and 0* are non-parallel four
vectors, both lying strictly inside the forward light-cone. Within the subspace spanned
by them, two eigenvectors of this reduced tensor can be identified,

K“ib’”

whose eigenvalues are (Kb)+ v K2b%. Note that e lies inside the forward light-cone, while
e lies outside it. In addition, there are two eigenvectors in the subspace orthogonal to K*
and b*, with zero eigenvalues. Since adding a term proportional to g,, does not change
the eigenvectors but just shifts all the eigenvalues by a common constant, the following
result is obtained: S is diagonalizable by an appropriate SO(1,3) transformation, and
after diagonalization it take form:

elf = ete_, =0, (2.63)

St = diag(Sy, —S1, —Sa, —S3), So= Vb2, Sy = —Vb?, Sy =S5 =—(Kb). (2.64)
Therefore it reads:

[ m? = 16A0(=A1)(—As)(=As) - P (KD)*. (2.65)

(]

As stressed in Chapter 1, a charge-breaking extremum exists, if b* lies inside the LCT,
ie. if b > 0 and (Kb) > 0. It is also known that the charge-breaking extremum is a
minimum if the tensor A* is positive-definite in the entire Minkowski space, i.e. if all its
spacelike eigenvalues A; 23 are negative?. Thus, all factors in (2.65) are positive.
Another observation concerns cases when the potential has an explicit symmetry.
Consider, for example, the lowest possible explicit symmetry, a Z,-symmetry®, which
consists in reflection of, say, with axis ry.This explicit symmetry means that Ky = 0,
By =0, and that Ay, = 0 for o # 2. It is known that the position of the charge-breaking
minimum preserves all the discrete symmetries, so that my is also zero. In this case the
mass squared of the excitation that violates this symmetry can be immediately calculated:

m2 = 2(—Ay)(bm) . (2.66)

1. There is a subtlety here: in a generic basis, the eigenvalues of the Euclidean matrix A“g, which
is not even symmetric, are different from the eigenvalues of the Minkowski tensor A*” ie. Ag and A;.
However, the product of all the eigenvalues of these two matrices are equal.

2. These conditions can be also inferred from the positive-definiteness of the mass matrix just derived.

3. This symmetry is known in the literature as a generalized CP-symmetry. The “conventional Z5”
corresponds, strictly speaking, to a (Zz)%-symmetry of the potential, see details in [95].
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2.3.3 Neutral vacuum

In the case of a neutral vaccum, as it has been emphasized in Chapter 1, the four-vector
r# must lie on the surface of the forward light-cone (again, the brackets (- - -), referring to
the VEVs, are implicitly assumed) [94]. Therefore, the minimization procedure involves
a Lagrange multiplier ¢, which brings up a new light-cone four-vector, (,, defined as
Cu=Nuwr” — B, =(-ry,, see Eq. (1.42). This new four-vector gives rise to an additional
term in the mass matrix:

Mg =2K,A,, 55 (0 @ )8 + K,(, S5 (2.67)

This matrix is again an 8-by-8 real symmetric matrix. However, it can easily be splitted
into two 4-by-4 matrices corresponding to the charged (the first four components of ¢, )
and neutral (the last four components of ¢,) modes, which do not mix. Essentially this
expression for the mass matrix of the most general 2HDM, but with a trivial kinetic part,
was obtained in other works, [93,94,109]. All these papers followed then the standard
procedure: a switch to the basis where only the first doublet has non-zero VEV is made
(the Higgs basis), and then the entries of the mass matrix can then be written in a
simple way via the parameters of the potential in this specific basis as well as v2. In
this subsection, the basis-invariant features of the mass matrix will be written in an
SO(1, 3)-covariant way, without referring to any specific basis. The power of the covariant
expression is that the result can be analyzed in any desired basis, e.g. in the A, -diagonal
basis. In the canonical basis, the results reproduce those of [93,94].
First the charged excitations are considered. Their masses arise solely from the last
term in (2.67):
MP = K, 55", (2.68)

where ¥’s are now 4-by-4 matrices. Explicit calculations and the fact that ¢ = 0, read
TMS = 4(KC), Tr[(MP)?] =8(K¢)?,  Tr[(M)"] = 2[2(KQ)]" . (2.69)

It means that this matrix has only two non-zero eigenvalues, which are identical and equal
to

me = 2(K(). (2.70)
This implies, in particular, that in order for the extremum to be minimum, ¢ must lie on
the surface of the forward, not backward-light-cone.

For the neutral modes the same expression as in (2.67) is obtained, but with 4-by-4
matrices XH:

MG =2K,A,, 55" (o @ 9) 5 + K,(, 52" (2.71)

The trace of the mass matrix of the neutral Higgs bosons is calculated:

TrM] = 2K,A,,@X" S5 o + 4(K() = 4A,, K'r” — 2TrA (Kr) + 4(K¢)
=24, — TrA g ) KPr” — 4(KB). (2.72)

Among the four neutral modes one Goldstone is expected, which makes the determinant
of Mj zero. To check it explicitly, the matrix K7 is first factored out and then by a
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direct calculation its determinant is checked to be equal to (K, K*)* = 1. The remaining
determinant

det [2A,, 2" (¢ ® @)X + (, 2] (2.73)
is equal to zero, which can be best seen in the Higgs basis, where the second row and
the second column have only zeros. In the generic basis, the Goldstone mode is w; =
(I1°);;¢;, where the matrix II° is the generator of the SO(2) rotations between the real
and imaginary parts (see Appendix A).

2.3.4 The extra symmetry of the neutral modes

The appearance of the tensor 4A,, — TrA g, in (2.72) is not accidental, but reflects
an extra symmetry of the neutral mass matrix. If the neutral vacuum is considered and
only neutral excitations are analyzed, which correspond to the surface of the light-cone,
only r* such that g,,r7#r" = 0 is considered. This means that if the tensor A, is shifted

in the potential as
A = AN +Cgp (2.74)

with an arbitrary C', the purely neutral contribution to the potential does not change,
and neither does the neutral mass matrix. The tensor 4A,, — TrA g,, is precisely the
combination that is invariant under such a shift. In terms of the original parametrization
of the quartic potential (1.21), this symmetry means that the neutral Higgs boson masses
do not depend on the value of TrA = A3 — A4.

This extra symmetry can be used to simplify the neutral Higgs boson mass matrix.
First, the neutral mass matrix (2.71) is invariant under the transformation (2.74) thanks
to the following relation:

20,2 (0@ @)X + 1,2 =0. (2.75)

Then, since ¢, is proportional to r,: ¢, = ¢ - r,, where ¢ is the Lagrange multiplier of the
minimization problem the two terms in (2.71) can be grouped together:

MG =2K,A,, 55 (o ® )" where A, = A — Cgu - (2.76)

It is remarkable that the new tensor A, is itself invariant under (2.74) as this shift is
accompanied by ¢ — ( + C"

¢t =t =Ar, — BY - (AW +Cg")r, — B¥ =+ Cr* = ((+ O)rt. (2.77)

With this expression at hand, the trick from the analysis of the charge-breaking vacuum
can again be used and all the neutral boson masses are given by the eigenvalues of the
following matrix written in a manifestly covariant form:

A0 =25 - A, where S*, = K"r, + K,r* — (Kr)d". (2.78)
Therefore, the trace of any power of the mass matrix can immediately be written as:
Tr[(M3)F] = 2kSm, A, - 5P, AVE (2.79)
and the determinant of S, using (2.64) reads:
detS = —r?(Kr)? =0, (2.80)

which proves the existence of a Goldstone mode in a basis-invariant fashion.



CHAPTER 3

HIGHLY SYMMETRIC 3HDM

3.1 Introduction

As already mentioned in Chapter 1, many non-minimal Higgs sectors motivated by
either theoretical-based or experimental results have been considered in the literature
[111]. Typically, these sectors involve several Higgs fields subject to scalar interactions
determined by a scalar potential, which is often invariant under a group of Higgs-family
transformations. Once the potential is written, to a large extent, the analysis consists
in minimizing it and finding the VEV alignment, then the potential has to be expanded
near this point and finally the phenomenologically relevant quantities can be calculated.
Models with extra EW doublets were motivated in Chapter 1, where it was shown that the
orbit space formalism provides an appealing treatment of the 2HDM. However, despite
being powerful, the complexity of the problem is such that a thorough analysis does not
exist.

When analyzing scalar potentials beyond the SM, the complexity arises from the large
number of parameters involved e.g. the most general 3HDM involves 54 parameters at the
scalar potential level. So, of course, regardless of the method employed, deriving definite
predictions in the most general cases is hopeless. However, in highly complex scenarios
the orbit space formalism proves again to be a powerful approach provided the scalar
potential is highly symmetric, which implies a significant reduction of the parameters
involved. In this Chapter, it is shown to be the case by sticking to specific versions of the
3HDM where the scalar potential is invariant under either S or A4 Higgs transformations.

The structure of the Chapter, based on [17], is as follows: in Section 3.2 the main idea
is formulated for convenience in the context of multi-Higgs-doublet models. The general
construction is then illustrated in Section 3.3, where the S;- and Aj-symmetric SHDM is
discussed in detail. In Section 3.4 various additional aspects of the method are discussed.

3.2 Geometric minimization of symmetric potentials

Although the method proposed is rather general and can be applied to a broad range
of extended Higgs sectors and perhaps beyond, it is exposed in the context of NHDMs.

37
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This method will allow to keep the notation simple and, at the same time, get prepared
for the particular applications in SHDM.

3.2.1 Geometric minimization: the main idea

The crucial feature of passing from fields to bilinears, reviewed in Chapter 1, is that
the Higgs potential is simplified; it becomes a quadratic form of these new variables (see
Eq. (1.31)). This transition was used in the 2HDM [108], and it has allowed to observe and
exploit interesting geometric features of the potential both in 2HDM [94, 95] as detailed
in Section 1.2 and in multi-Higgs-doublet models [106] briefly viewed in Section 1.3 in
the Chapter 1. Here to go further in this direction, new variables in terms of which the
potential becomes a linear function are introduced.

To this end, an NHDM potential with a sufficiently high symmetry so that M; = 0 in
(1.51) is considered. For the NHDM the potential has the same structure than (1.51), of
course with r, = (®TT#®) with T}, the SU(N) generators and ® a N-component “hyper-
spinor”, for details see [105]. Absence of this term is a hallmark of so-called “frustrated
symmetries” in NHDM which were discussed in [71]. The quartic part of the potential
contains k different terms, k usually being rather small for a highly symmetric potential.
The potential is generically written as

k
V= —Mo'l"o +T(2)ZA15EZ (31)
i=0
Here z; are the quartic terms divided by r3, with o = 1 by convention, and A; are

coefficients in front of them.

Now the variables x;, which can always be chosen real, are considered. Calculating
them for all possible field configurations (or for all possible values of r’s inside the orbit
space) fills a certain region in the space R¥. This region, which is denoted by T', is the orbit
space “squashed” into the x; space. Note that the map from r’s to z; is not, generally
speaking, injective because different 7’s can correspond to the same point x;.

Suppose the geometric shape of I' is known. Then the minimization of the potential
proceeds in three simple steps. First, since the potential (3.1) is a linear function of x;,
the “direction of steepest descent” of the potential can be introduced, 7 = —(Ay,... , Ag).
The potential can then be written as

V= —M()?"O + 7"3 (AO — ﬁf) . (32)

Then the minimum of the potential is achieved at the points of I' which protrude farthest
in the direction of 7. Once these points x; are known, their realizations in terms of fields
can be found, and, finally, the value of ry can be found. Note that the positivity conditions
require that Ay — 17 > 0 everywhere in T'.

Some phenomenologically relevant properties of the minima follow from this geometric
picture, which is illustrated in Fig. 3.1 with a two-dimensional example. If I' has a smooth
and strictly convex local shape, Fig. 3.1a, then the minimum is unique in the x; space.
It is also seen that the minimum point continuously changes if parameters A; are varied.
If T, instead, has vertices, see Fig. 3.1b, then the minimum point becomes stable within
certain regions of A; variation (or alternatively, regions of possible directions of 7). Note
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Figure 3.1: Two-dimensional illustration of the geometric minimization method. Shown
are four cases with the same orbit space I' (represented by the shaded region) but with
different values of the parameters A;, which define the direction of steepest descent 1.
The four cases show how the local geometry of I' determines the stability and degeneracy
of the global minimum; (a): locally convex geometry leads to a single global minimum
indicated by the dot, whose position is sensitive to the exact values of A;; (b): a minimum
at a vertex is stable against variations of A;; (c): cusps separated by a concave region
allow two distinct minima to coexist and be degenerate; (d): straight segments can lead
to a continuum of global minima (shown by a thick line) for the special values of the
parameters, implying presence of massless bosons.

that such a feature is the origin of geometric CP-violation in multi-doublet models, see
the discussion in Section. 3.4.1. At the borders of these regions, two concurrent minima
become degenerate and coexist, Fig. 3.1c; crossing this border causes a first order phase
transition between the two vacuum configurations. Finally, if I' contains straight segments,
Fig. 3.1d, then for the borderline parameters A; a continuum of global minima is obtained,
which means that the model contains additional massless scalars.

In this picture, the key object becomes the shape of I" rather than the parameters of
the potential. Once the symmetry group is fixed and I is constructed, many properties of
the potential (points of minimum, their degeneracy and coexistence, patterns of symmetry
breaking, the phase diagram of the model and phase transitions) can be immediately read
from its shape.

3.3 As- and S;-symmetric SHDM

In this Section an illustration of how the general method works with the example of
Ay and Sy-symmetric 3HDM is presented.

3.3.1 The potentials

The Ay-symmetric SHDM can be represented by the following potential
Mo
V3
+% (8161)? + (8102)” + (816)? = (8]61)(8h02) — (6102 (0hn) — (¢ha)(@]01)
A1 [(Reglg2)? + (Reolon)? + (Regfon)?]

A
Vo= 22 (gl61+ 6ls + algs) + 52 (8101 + Sl + o)
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Ay | (0m6]6)? + (Im@hss)” + (Imoler )

A4 | (Reg]62) (o] 62) + (Reahos) (Imofes) + (Reglen) (molon) | | (3:3)
or, in terms of the bilinears defined in (1.49),
Vo= =Moro + Morg + Aa(r + 75+ 76) + Ao + 75+ 72) + Ag(rs + 1)
+A4(’f’17“2 + T4Ts + 7’6’/“7) . (34)

Here the parameters M, and A; are assumed to take generic values. This potential is sym-
metric under the full achiral tetrahedral group Ty isomorphic to A4 x Z5 of order 24. This
group is generated by independent sign flips of individual doublets, by cyclic permutations
of the three doublets, as well as by a specific type of generalized-CP transformation (the
CP-conjugation combined with exchange of any two doublets).

An alternative way to parametrize the potential was used in [112—-114]. The coefficients

introduced here are related with the coefficients of the alternative parametrization used
in [114] as

M,
—7§:/,L2, A():?))\l—i-)\g, Agz—)\g, A172:)\4:i:)\5COS€, A4:—2)\5sine.
(3.5)

If Ay = 0, the Sy;-symmetric 3HDM is obtained. In the alternative parametrization,
this is equivalent to setting ¢ = 0. The potential becomes now symmetric under the full
achiral octahedral group Oy, isomorphic to Sy x Z5 of order 48, which is generated by sign
flips of the individual doublets, by their permutations, and by the CP-conjugation.

The classification of the finite realizable symmetry groups of the scalar sector in 3SHDM
is now known [115]. The word realizable stresses that when imposing such a symmetry
group, a potential that is exactly symmetric under this is obtained and restricting the
parameters further will never produce any larger finite symmetry group. It can only lead
to continuous symmetry groups, which are necessarily frustrated and must therefore be
spontaneously broken and produce massless scalars [71]. This situation is disregarded on
phenomenological grounds. It is therefore interesting to check what are the phenomeno-
logical consequences of such a high symmetry of the potential.

3.3.2 The toy model case

Before tackling the full problem in both scenarios, it is worth illustrating the method
described in the previous Section by using a simplified toy model, as this will give insight
about the subtleties expected.

Suppose only real-valued fluctuations in all three doublets are allowed (1o = 5 = r7 =
0). Then the potential simplifies to

V= —M()T(] + 7“(2) (A() + All' + AgZ) s (36)

with the vector (z, z) playing the role of z; where z = n? + n? + nZ and z = n3 + n2. It is
clear from (1.50) that > 0, 2 > 0, and 1/4 < .+ 2 < 1, which defines a trapezoid shown
in Figure 3.2. The four vertices of this trapezoid correspond to the following patterns of
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Figure 3.2: The orbit space of the toy model projected on the (z,z)-plane.

the three doublets (here only the relative magnitude of the VEVs are given):

o (D(2)-(2)
o (0)00)-02)
v (0)0)(0)
s (0)(2e).(22)

with o = —f = %. The first two points correspond to neutral vacua while the last two
are charge-breaking minima. All points inside this trapezoid are realizable by fields (in
other words, when the full orbit space is projected on the (x, z)-plane, it covers the entire
trapezoid).

The positivity have then to be derived. It is known from Chapter 1 that it is necessary
and sufficient to require that the quartic part of the potential is positive inside the orbit
space. Since the potential (3.6) is a linear function in x and z defined inside this trapezoid
and therefore convex, it is sufficient to write the positivity conditions at the four vertices
(3.7); then they will be automatically satisfied at all points inside the trapezoid. Thus,
the positivity conditions for this toy model read:

Ao+Ar >0, Ag+A3>0, 4Ag+A >0, 4Ag+A3>0. (3.8)

In general, none of these inequalities can be removed because Ag can be positive or neg-
ative. However, it is shown in [106] that in 3HDM the situation with Ay < 0 always
corresponds to the charge-breaking minimum. Therefore, since in this Chapter only neu-
tral minima will be considered, the assumption that Ag > 0 is made. In this case only
the first two conditions in (3.8) are retained.

The global minima can now be found for different values of the parameters using
the method explained previously. On the (z, z)-plane, the direction of steepest descent
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Figure 3.3: Various possible directions of steepest descent and the corresponding minima.

is given by vector (—Aj, —A3). By checking all possible directions of steepest descent,
situations where vertices or edges of the trapezoid correspond to the global minimum (see
Figure 3.3) are established. If the direction of steepest descent is parallel to direction
1, which happens at Ay = A3 > 0, then the entire edge AB corresponds to the global
minimum. If the direction of steepest descent is between directions 1 and 2 (A; > A3z > 0),
point A is the minimum. When the direction of steepest descent is along direction 2
(A1 > 0,A3 = 0), all the points on the AD edge are minima. When the direction of
steepest descent rotates further from direction 2 to direction 4, point D becomes the
minimum. When the direction of steepest descent reaches direction 4 (A; = Az < 0),
then all the points on the DC' edge become minima of the potential. And so on. In this
way, the full phase diagram of the model can be reconstructed in the A; parameter space.

3.3.3 The orbit space in the S; case

The more restricted model, the S;-symmetric 3HDM, is first presented. Written in
terms of bilinears, the potential takes form

Vo= —Myro+ Aorg + Ai(ri + 75 +78) + Ao(r3 + 72 +72) + As(rs +713)
= —Moro +r5(Ao + Mz + Ay + Az2), (3.9)

with the vector (z,y, z) playing the role of x;, the definition of z, z are the same as in the
toy model and y = n2 + n? + n2. The positivity conditions for the potential require that

AO + Az + Agy + AgZ >0 (310)

everywhere in the orbit space. Using the properties of bilinears mentioned in Section 1.3.2,
the conclusion is that the three-dimensional orbit space I' must lie inside the truncated
pyramid defined by

x,y,z >0, <z4+y+z<1, (3.11)

|
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meaning that the orbit space sits inside a 3-dimensional pyramid in the (z, y, z)-space but
does not fill the entire pyramid. In addition, it turns out that y < 3/4. Indeed, y can be
rewritten as

y=—|1-— (3.12)

3 ] 2(K12 + Ko + Ka1) + Qaﬁ@ig}
4 (p1+ p2+ p3)? 7

where

pa=(040a) 20, Ka = papp — 05> >0, Qup = 301, (3.13)

with a = 1,2,3 numbering the doublets and «, 8 = 4,0 denoting the upper and lower
components inside doublets. The largest value of y equal to 3/4 is attained when, first,
all kg, = 0 which selects the neutral vacuum, and then when the lower components of the
doublets sum up as > (¢%)% = 0.

The exact shape of the orbit space which is found by numerical methods'® is rather
complicated, see Figure 3.4, left handside plot. It has the form of a wedge with the edge
at x+ 2z = 1, y = 0 and the convex backside at small values of  + z. However if only the
phenomenologically relevant case of neutral vacuum is taken into account, then only one
of its faces defined by z+y+2 = 1 is to be considered. Indeed, as the potential is a linear
function of x, y and z thus as already mentioned, the points on the border of the orbit
space corresponds to the minima of the potential. If the potential is not a linear function
of x, y and z, such as the Aj-symmetric potential detailed below, there could be other
minima inside the orbit space and it requires further investigation. Here only the neutral
minima are considered. They correspond to the points on the AB line in Figure(3.4)(b).
The rest of I' corresponds to charge-breaking vacua and is disregarded.

y y
D C D C
"
X
Z A B A B
G F T x

Figure 3.4: Left: sketch of the orbit space T' of the Sy-symmetric SHDM in the (x,y, z)-
space. Right: the neutral orbit space in the (x,y)-plain. On each plot, the four dots A,
B, C, and D mark the positions of the possible neutral global minima.

This neutral part of the orbit space has the shape of a trapezoid, which can be estab-
lished analytically using (B.1) and (3.12). It is shown in Fig. 3.4, right, on the (z, y)-plane
(with 2z defined as z =1 —x — y).

The VEV alignments corresponding to the four vertices of the trapezoid are (here

1. One million points with random up and down components of the three doublets were generated.
For each point the values of x, y, and z were calculated and then all points were plotted. By looking at
the resulting 3D scatter plot from different angles, the shape is reconstructed and the sketch drawn in
Figure 3.4.
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again only the relative magnitude of the VEVs are given)

A: (1,0,0), B: (1,1,1), C=(e"3e7™3 £1), D= (e* e /4 0)~(1,4,0),

while the straight segments joining them are
AB : (vi,vy,v3) with all v; €ER, BC: (e, e*2 ¢5),

AD : (vy,iv9,0) with allv; € R, CD: (e, e, r) with cos2¢ = —%.(3.15)

The details of the derivation of these points are given in Appendix B.1. Note that, in
each case arbitrary permutations of the doublets are allowed. For example, vertex D
corresponds to six degenerate minima (1, +4,0), (1,0, %), (0, 1, £i).

3.3.4 Minimization of the S;-symmetric potential

Applying the method of Section 3.2.1, the Sy-symmetric 3SHDM can have only four
types of neutral minima without producing massless scalars, which correspond to the
vertices (3.14). Thus, all possible positions of the global minimum are located without
the need to calculate any derivatives.

It is also possible to obtain conditions on A; which lead to a minimum at each of these
four points just by looking at the orbit space. For example, the VEV alignment of the
type (1,0,0) becomes the global minimum, when Az < 0 and Ay, Ay > A3. When these
conditions are satisfied, the point A indeed lies farthest along the direction 7. In addition,
the positivity condition (3.10) in this case implies that Ag + A3z > 0.

3.3.5 Unexpected symmetry of the orbit space

The S4-symmetric 3HDM possesses a curious feature which could be noticed but would
receive no explanation with the usual calculations.

The field content of the scalar sector, after EWSB; is the following: apart from the
usual three “would-be” Goldstone bosons, there are two pairs of charge-conjugate Higges
H¥ and five neutral scalars (see Section 1.2.3 for a more detailed counting). The os-
cillation mode in the direction of VEVs will be denoted as h, while the other neutral
Higgses are generically labelled as H;. In (generalized) CP-conserving cases, these can be
additionally classified as (generalized) CP-even and CP-odd states.

The masses of the physical Higgs bosons are now calculated in the two VEV align-
ments: (1,1,1) and (1,0,0). In both cases v? = v} + v3 + v3 is used. The alignment
(1,1,1) becomes the global minimum of the potential if

A1 < 0, AO > |A1| > —AQ, —A3 . (316)
The minimum point is then parametrized as (v, v,v)/v/6 with

2 \/gMO

1 M, A
mi{f = §|A1|u2 = \/32 0 i |—1||A1| (double degenerate) ,
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1 My |A A
miy, = (A + A0’ = \/§>2 0 |A01|_+|A12| (double degenerate) ,
1 MQ |A1| -+ A3
—(JA1| + A3)v* = — ~————= (double degenerate) ,
3(| 1| 3) \/§A0—|A1| ( g )
2 2
o= (Ao — [A])P = =M. 3.18
mp 3( o — [A1])v /3 0 (3.18)

The alignment (1,0, 0) becomes the global minimum if
A3 <0, A(] > |A3’ > —AQ, —A;. (3].9)
Expanding the potential around the point (v, 0,0)/v/2, reads

2 \/§M0

U= 3.20
Ao — |As] (3.20)
1 3M, A
quii = 5|A3|v2 = \/_2 0 A |—3]’A3\ (double degenerate) ,
1 V3My |As| + Ay
o= S(As]+ A = double d t
My, 2(| 3| + Ag)v 2 Ay — Ny (double degenerate) ,
1 V3My [As] + Ay
—(|A Ao? = double d t
2(‘ sl + Ayv > Ao — Ay (double degenerate) ,
%ZgW—MWZi%- (3.21)
3 V3

It is hard to miss a remarkable symmetry between these mass spectra: upon exchange
A <> As they almost turn into one another. The only quantity that violates this otherwise
perfect symmetry is the mass of one pair of neutral Higgses.

The bizarre aspect of this almost perfect symmetry is that it is not a symmetry of
the model. It would be a symmetry if there existed a transformation of fields that could
swap x and z while keeping y unchanged. But such transformation does not exist. This
is also consistent with the fact that A; <> A3 does not lead to an exact matching of the
two Higgs spectra.

The origin of this near symmetry can be traced from the shape of the orbit space I in
the (x,y, z) space. The numerical study offers very strong hints that this shape is indeed
T <> z symmetric; unfortunately, there is no analytic proof of this fact. Provided this is
true, it explains why conditions (3.16) and (3.19) and the charged Higgs masses (which
are also related with the shape of the orbit space) are exactly symmetric.

It is interesting to notice that, for both VEV alignments, the spectrum of the Higgs
bosons is 2HDM-like. Namely, there are only one value for the charged Higgs masses and
three values for neutral Higgs masses, just as expected for the generic 2HDM. How this
situations can be distinguished from the true 2HDM experimentally, and which observable
quantities should be looked at, is a separate issue worth investigating further. However
the origin of this 2HDM-like spectra is different in these two cases. In the VEV alignment
(1,1,1) it comes form the unbroken S3-symmetry of the model, [116], while for the (1,0, 0)
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alignment, the origin is the O(2)-symmetry mixing the second and third doublets, which
is manifest in the VEVs and the mass terms. These two symmetry arguments are non-
equivalent and cannot be related to each other. After all, the two VEV alignments also
differ in the number of degenerate vacuum points: four for the (1,1,1) and three for
(1,0,0).

The same relation holds between the other two possible VEV alignments, see Ap-
pendix B.2. It would be interesting to see if this approximate symmetry leads to other
phenomenological similarities between these pairs of minima.

3.3.6 The orbit space in the A, case

The generic potential of the Aj-symmetric 3HDM (3.4) is written in the way suggested
in Sec. 3.2.1:
V= —M()TO + ’I“g(AO + All’ + Agy + AgZ + A4t) s (322)

with the same z,y, 2z as in Eq. (3.9) and with t = (ryry + 7475 + r677) /78

C \ t
C
x —
- Y D
xty B
C' C'

Figure 3.5: Sketch of the neutral orbit space in the tetrahedral 3SHDM viewed from two
angles. Uniformly shaded regions correspond to flat faces, graded shading indicates curved
faces.

Again, the neutral orbit space I' is considered, for which z, y, and ¢ are chosen as
independent variables, and then z = 1 —x —y. The shape of I which arises from numerical
study is shown in Fig. 3.5 in the (z,y,t) space. Despite being rather complicated, it
displays a remarkable triangle symmetry. Basically, it is a right circular cone oriented
along the direction x —y = ¢t = 0 with the apex at the origin and with opening angle /2
and with directrix lines of length 1. Parts of this cone starting from distance 3/4 from
the apex are carved out. It has four flat faces which have the shape of deltoid (3-vertex
cusped closed curve). These are located at the bottom face (defined by z = 0) and at
three side faces (one is y = 3/4 and the remaining two are obtained by the 27 /3 rotation
of the cone). Directrix lines opposite to these three side faces have length 1 and extend up
to the points B, C' and C” where three flat deltoid regions meet. The remaining portions
of I' are concave regions. The two-dimensional neutral orbit space for the S;-symmetric
model, Fig. 3.4, right, is simply the (z,y)-projection of this I'; correspondence between
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the vertex points in the two shapes should be clear. Point D, which was a vertex in the
S, case, becomes a regular point on the rim of the cone in the A4 case.

The conical shape of the orbit space can be understood in the following way. Two real
vectors are introduced as

L1 - 1
a=—(ri,r4,76), b=—(ro,rs5,17), (3.23)

To T'o
and the angle between them is denoted by &. Then, x = a2, y = 52, t= (El;) = /xycosé.
If it is possible for a given point (x,y) to find two parallel vectors @ and b, then the
orbit space extends in the t-direction up to ¢t = /xy, which precisely defines the cone.

It turns out that parallel vectors a and b exist within the triangle 0 < z 4+ y < 3/4
(VEV alignment is (v1, v2€"*,0)), and along the straight segments defined by y = 0 (VEV
alignment (vy,v,v3)) and defined by y/z = 3 (alignment (vie"™3 voe™"/3 v3)).

The emergent triangle symmetry of the orbit space is not related to the symmetry of
the potential, but is a feature of the orbit space itself. There is simply no field trans-
formation that realizes rotations of the cone. In this aspect, this emergent symmetry is
similar to the (z, z) reflection symmetry of the orbit space in the Sy-symmetric model.

3.3.7 Minimization of the A,;-symmetric potential

The shape of the orbit space immediately leads to the list of possible phenomenolog-
ically acceptable global minima (i.e. minima not leading to additional massless scalars).
These are: the apex of the cone (point A), the three vertices (points B, C' and C”), and
the rim of the cone (z +y = 3/4, t* = zy). Any other point either leads to additional
Goldstone bosons or is never a global minimum.

In Appendix B.3, all these points are analyzed in some detail and the Higgs mass
spectra is given. Comparing these spectra for different minimum points also shows an
intriguing relation with the triangle symmetry of the orbit space.

This is the first complete solution of the minimization problem in the Aj-symmetric
3HDM.

3.4 Discussion

3.4.1 Origin of geometric CP-violation

The possibility for spontaneous CP-violation is one of the motivations behind study-
ing multi-Higgs-doublet models. In this context it is often proposed not only that a
Higgs-family symmetry should allow for spontaneous CP-violation but also that it should
stabilize the VEV phases in the global minimum against variation of the free parameters.
This situation is known as geometric CP violation, [117,118] and was originally found in
the A(27)-symmetric 3BHDM (though the true Higgs-family symmetry group of that model
is A(54)/Zs, see discussion in [115]). The relative VEV phases arising in geometric CP-
violation are called calculable because their values follow from group theoretic arguments
and do not depend on the exact values of the parameters of the potential.

Using the method described in the present Chapter, the mathematical origin of calcu-
lable phases in such models can be pinpointed. They arise due to the presence of vertices
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in the orbit space I, see Fig. 3.1b,c,d, or to be more specific, vertices at points correspond-
ing to non-zero relative phases. Absence of geometric CP phases would imply convexity
of the orbit space, Fig. 3.1a. So, it is not the symmetry of the model per se that allows
for calculable phases but the choice of coordinates x; selected by the symmetry, in which
the orbit space has vertices.

It is noticed that the higher the finite symmetry group, the simpler is the geometric
shape of the orbit space I', and the more vertices linked by straight segments it possesses.
This explains why it is natural that geometric CP violation starts to appear only for
sufficiently large finite symmetry groups.

3.4.2 Coexistence of different minima

A priori, it might happen that, for some values of the parameters of the potential,
two (or more) different types of the global minimum coexist and are degenerate. Fig. 3.1c
illustrates this situation. Upon small variation of the parameters around this special point,
one minimum point becomes the global minimum while the other turns into a local one,
and it is clearly possible to make either of them the global minimum. This feature leads
to a possibility of a first order phase transition upon smooth variation of the parameters,
leading to important phenomenological consequences. It is therefore desirable to know,
which models allow for such a possibility.

It can be inferred from Fig. 3.1c that this can happen if the orbit space vertices
separated by a concave region, that is, if it has cusps. If instead the orbit space is a
convex body, this possibility is excluded. Possibility of a first order phase transition is,
therefore, linked to the non-convexity of the orbit space.

The above analysis shows that the orbit space of the S;-symmetric 3SHDM is convex.
Therefore, phenomenologically relevant global minima of different type cannot coexist in
this case.

In the As-symmetric SHDM, this possibility arises. Namely, generic points on the rim
of the cone and one of the three vertices B, C', or C’ in Fig. 3.5 can be degenerate. It is also
possible to make two among these three points degenerate, but not all three. Examples
of such potentials can be readily constructed from geometric analysis of Fig. 3.5.

3.4.3 How general is the proposed method?

In which cases does the geometric minimization method proposed in this Chapter be-
come useful? Strictly speaking, it has no intrinsic limitation. For example, in the context
of the multi-Higgs-doublet models an absolutely general Higgs potential can be defined,
a GL(N,C) transformation can be performed in the space of doublets that brings the
quadratic term to the form Myry and then the procedure as discussed in Section 3.2.1 can
be applied. Of course, the potential will contain very many different terms, so that the
orbit space becomes a highly non-trivial multi-dimensional shape. However comprehend-
ing it is only a human limitation, and a hypothetical computer algorithm could be able
to analyze this shape looking for edges, cusps and vertices.

This method becomes much more useful when the number of distinct terms becomes
small. In particular, when the dimension of the neutral orbit space is three or less, the
shape can be relatively easily visualized, and one can develop a much more intuitive
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picture of the model than from the usual algebra. For example, in the SHDM, this
situation takes place for the following finite Higgs-family symmetry groups (based on the
classification of [115]): Ay, Sy, A(54)/Z3, and X(36) (the last two cases are not discussed
in this Chapter). It would be interesting to see if other useful examples appear in other
models.
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INTRODUCTION

In 1930, W. Pauli proposed a solution to the missing energy problem in nuclear
decays [119]. He proposed that this energy was carried by a new neutral particle with spin
1/2 in order to save energy and angular-momentum conservation. Fermi, in 1933, named
the particle the neutrino and built a theory out of them to calculate the simultaneous
emission of an electron with a neutrino. In 1956, the electron neutrino was discovered
(indeed, due to the experimental setup it was the electron antineutrino) by Reines and
Cowan through the inverse-3 decay reaction (7, +p™ — n+e™) by using the neutrino flux
stemming from a nuclear reactor [120]. After this discovery, and during several decades,
neutrinos produced in the Sun, the atmosphere and in Supernovae were detected. During
the same period, the theoretical possibility of neutrino flavor oscillations was pointed out
in a milestone work by Bruno Pontecorvo [121]. After a first experimental observation of
neutrino oscillations in the 60’s [122], it is now well known, thanks to recent experimental
results [123-128], that at least two neutrinos are massive and have non-vanishing mixing
angles among the different generations. Since in the SM neutrinos are massless these
experimental results can be regarded, in addition with the cosmic baryon asymmetry, as
the most solid evidence that at certain energy scale new degrees of freedom should be
operating.

Neutrinos being electrically neutral can be either Dirac or Majorana particles. Ex-
perimentally determining their nature requires measuring lepton number violating ob-
servables, of which neutrinoless double-5 (0v33) decay provides—certainly—the most
sensitive probe. Observing a Ov/3 decay signal constitutes a demonstration that lepton
number is not conserved in nature and, according to the Schechter-Valle black-box theo-
rem [15], that neutrinos are Majorana particles. The non-observation, however, does not
prove otherwise. The Ov(3 decay rate is highly sensitive to the neutrino mass spectrum:
for an inverted mass spectrum (m,, < m,, < m,,) there is sizeable lower limit for this
rate whereas for a normal mass spectrum (m,, < m,, < m,,) the leptonic CP phases can
conspire leading to a vanishing rate [129]. Thus, only in the case of neutrinos having an
inverted spectrum definitive conclusions can be drawn from the non-observation of Ov54.

Given the absence of a Ov3f signal the two possibilities are viable. If neutrinos are
assumed to be Dirac particles, the addition of fermion EW singlets to the SM content
allows the construction of new renormalizable Yukawa operators. After EWSB, neutrinos
as any other SM fermion acquire mass. If instead neutrinos are assumed to be of Majorana

23
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nature their masses are well described by the dimension-five effective operator Q5 ~
Yiilil;jp¢ (the so-called Weinberg operator) [130]. Although Dirac neutrinos are a suitable
possibility, the working hypothesis in the second part of this thesis is that neutrinos are
Majorana particles.

Any possible “incarnation” of the Weinberg operator corresponds to a model for Ma-
jorana neutrino masses, described by a beyond SM set of renormalizable interactions.
Among these realizations the type-I seesaw [11-15] is certainly the most widely consid-
ered, due to its simplicity and “well-grounded” motivations?. Despite all its appealing
features, the type-I seesaw—in its most simple version—has a serious drawback: it cannot
be experimentally tested either in high-energy or in high-intensity experiments. More-
over, an attempt of reconstructing its parameter space through low-energy neutrino data
fails, due to the mismatch between the low-energy observables and the number of param-
eters the model contain. Any approach leading to a seesaw variation leading to sizeable
observables of any kind is therefore welcome

The second part of this thesis is organized as follows. Chapter 4 deals with generali-
ties of neutrino physics. Starting with some non-exhaustive historical aspects of neutrino
oscillation experiments, it gives the current values of the different neutrino oscillation
parameters briefly discussing what it is at present known about absolute neutrino masses
(mainly reporting the current upper limits). Some comments and upper bounds for dif-
ferent lepton-flavor-violating processes are given. Finally, this Chapter finishes with a
general discussion about Majorana neutrino masses, starting with the Weinberg operator
and emphasizing on general approaches that can be followed in the construction of testable
neutrino mass models. In Chapter 5, the implications of the global U(1) factor of the
seesaw kinetic Lagrangian (the remaining two can be identified with global lepton number
and hypercharge), assumed to be slightly broken, are discussed. The analysis focus on the
consequences that this slightly broken symmetry has for lepton-flavor-violating processes,
in particular for rare muon decays. This analysis is complemented by the determination
of the regions of parameter space where the resulting schemes are compatible with pre-
serving a preexisting B — L in the range required to fit the indirectly measured baryon
asymmetry [132-134]. This Chapter contains the novel contributions of the second part
of this thesis.

2. In addition, the type-I seesaw constitutes a rather natural framework for baryogenesis via leptoge-
nesis [25,26,131]. The Sakharov conditions [53] are both qualitatively and quantitatively satisfied, thus
providing a common framework for the origin of neutrino masses and the cosmic baryon asymmetry.



CHAPTER 4

NEUTRINO PHYSICS

4.1 Neutrino flavor oscillations

Neutrinos are produced in weak interactions and therefore are produced as weak eigen-
states, |v,) with a = e, 1, 7. Since the mass eigenstates (|v;) with i = 1,2, 3) are different
from the flavour eigenstates, this implies that the probability of finding a neutrino created
in a given flavor to be in the same state (or in a different flavor state) oscillates with time.
The weak and mass eigenstate basis are related via the lepton mixing matrix, namely

V) = Z ). (4.1)
The time evolution of a given flavor eigenstate |v,), created at ¢t = 0, is thus given by

[va(t) Z

which then implies that the probability of finding the neutrino at the time ¢ in a flavor
state |vg) is

(4.2)

P(vg — vp,t) = | § Usie FtUL (4.3)
i
In the two flavor case, that is to say

(2)-0(2)

with the leptonic mixing matrix in this case given by

U:< cqs@ sin ) ’ (4.5)

—sinf cosf

the v, — v, flavor transition probability simplifies to

P(ve = v, E) = sin® (20) sin (Am %) (4.6)

95
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Here Am? = m2 — m? is the mass-squared difference, 6 is the mixing angle and L is the
distance travelled by neutrinos from the source to the detector. From Eq. (4.6) it becomes
clear that neutrino oscillation experiments allow the determination of the mass splittings
and the mixing angles.

In the realistic 3-flavor case the transition probabilities involve two mass-squared dif-
ferences:

2 2 2 2 _ 2 2
ATnsol = My — My, A,rnatm =Mmg — My, (47)

and three mixing angles encoded in the leptonic mixing matrix which is conventionally
parametrized in a CKM way:

0

C12C13 512C13 S13€
_ 1) 19
U= —512C23 — C12513523€" C12C23 — S12513523€" C13523 )
1) )
512523 — C12513C23€" —C12523 — S12513C23€" C13C23

where ¢;; = cos;; (s;; = sinf;;) and where 015 = Os1, 023 = Gatm, 013 = Oreactor and 0 is a
CP violating phase.

4.2 Neutrino flavor oscillations: experimental evi-
dence

The experimental determination of the neutrino flavor oscillation phenomena was the
result of the combination of different pieces coming from different experimental sources
and setups. In the Earth neutrinos are produced either by natural or artificial sources: the
Sun (solar neutrinos), the atmosphere (atmospheric neutrinos), nuclear reactors (reactors
neutrinos) and accelerators (accelerator neutrinos). Although regardless of its origin, at
the fundamental level, the production is to a large extent driven by EW charged and
neutral current processes the properties of the produced neutrinos strongly depend upon
the particular source.

In the Sun neutrinos are produced via (-decay and electron capture processes in
different sub-chains of the pp chain, the main reaction chain in the Hydrogen-Helium
thermonuclear fusion process

4p + 2e —* He + 2v, + v (4.8)

which is responsible for about 99% of the solar energy. More specifically, solar neutrinos
are produced in the following processes [137]:

pp: p+p—dt+et +u, (4.9
pep: p+e +p—d+v, (
hep: *He+p —* He+e™ + 1, (
Be: ™Be+e =" Li+uv, (4.12
B: ®B —=*Be+e' +u,, (

of which the "Be and pep reactions produce monochromatic neutrinos while the remaining
yield continuous energy spectra, as can be seen in Fig. 4.1.
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Figure 4.1: Spectrum of solar neutrinos arising from the pp chain as predicted by the
standard solar model. The different bands indicate the threshold of the different detection
techniques, while the lines and curves the characteristic neutrino energy spectra, The
neutrino fluzes are given in units of cm™t st MeV™! for continuous spectra and cm™*
s71 for line spectra. The numbers associated with the neutrino sources show theoretical
errors of the fluzes, [135, 136].

Atmospheric neutrinos instead are produced as by-products of hadronic showers re-
sulting from collisions of cosmic rays with nuclei in the upper atmosphere. Production of
electron and muon neutrinos is dominated by pion and subsequent muon decay:

T =+ ()
e + ve(7e) + (V) + vu(Z) - (4.14)

In contrast to solar neutrinos, which have order MeV energies (see Fig. 4.1), atmospheric
neutrinos have energies in the order GeV range, as a consequence of being indirectly
produced by high-energy cosmic rays events.

Reactor neutrinos stem from nuclear reactor cores as by-products of fission chains
of nuclear isotopes: 23°U, 28U, 23Pu and ?*'Pu, and their average energies are—as for
solar neutrinos—of order few MeV. Finally, accelerator neutrinos are produced by proton
beams interacting on a target. The pions and kaons produced in the collision are extracted
and their decay by-products, except neutrinos and antineutrinos, are then stopped by
absorbers. As a result, a muon neutrino beam with a rather small electron neutrino
contamination (due to the kaon semileptonic decay K+ — 7 + e* + 1) is produced.
As atmospheric neutrinos, accelerator neutrinos being produced by “high-energy” sources
have as well order GeV average energies.

Once produced, the physical process through which they can be detected, which in
turn determines the experimental setup, strongly depends on their (average) energy, E,.
Three main reactions can be identified:
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e Neutrino-nucleon scattering: These processes are driven by charged current reac-
tions, and so the lepton flavor of the scattered neutrino depends on its energy. For
order MeV neutrinos, as those stemming from the Sun or reactor cores, the relevant
processes are

Vet+p—et+n, vetn—e +p. (4.15)

Above the threshold for muon production (O(FE,) ~ GeV) these processes become
also useful for muon and antimuon neutrino detection via

Vutp—=pt+n, va+tn—u +p. (4.16)

e Neutrino-electron scattering: it is a purely weak reaction which is different for v, and
other neutrino flavors. Indeed, both charged current and neutral current processes
contribute to the neutrino-electron cross section (o(v,)) whereas for the muon and
tau neutrino only the neutral current process contributes. This renders the neutrino-
muon and neutrino-tau scattering cross sections ((o(v, ,))) suppressed with respect
to o(ve).

e Neutrino-nucleus scattering: These reactions turn out to be important for low en-
ergy neutrinos

ve+A(Z,N) w e +A(Z+1,N),
v.+ A(Z,N) — et +A(Z—-1,N) . (4.17)

Neutrino production from all the aforementioned sources and their further detection
through (mainly) the reactions in (4.15)-(4.17), have lead to a clear picture were neutrino
flavor oscillations have been proved to be one of their fundamental properties. Although
a large number of specific experiments have been carried out and are still undertaken—
certainly—the historically conclusive experiments are (chronologically) related with atmo-
spheric neutrinos (Super-Kamiokande (SK)) and solar neutrinos (the Sudbury Neutrino
Observatory (SNO) and the Kamioka Liquid Scintillator Anti-Neutrino Detector (Kam-
LAND)) .

In SK (a water Cherenkov experiment), atmospheric neutrinos are detected through
charged current processes interactions of neutrinos on nuclei (neutrino-nucleon scattering
in (4.15)):

v+N—=I1+N, (4.18)

the flavour [ of the outgoing lepton tags the flavour of the incoming neutrino. The
SK collaboration reported a deficit in the muon-like events [123] which confirmed the
previous results of the water Cherenkov detectors Kamiokande [Kamiokande] and Irvine-
Michigan-Brookhaven (IMB) [139] as well as the Soudan-2 iron-calorimeter experiment
[140]. SK also found a zenith angle deficit in the muon-like events which is well described
by neutrino oscillations. Further experimental results of the SK collaboration (1489 live-
day exposure data) [138], in which the survival probability of muon neutrinos as a function
of L/E [km]/[GeV] was studied, showed that the neutrino survival probability obeys a
sinusoidal function as predicted by neutrino oscillations. Furthermore, this result show
that other hypothesis, such as neutrino decay [141] and neutrino decoherence [142], that

1. Tt can be argued as well that Homestake [122], understood as a pioneer experiment, is historically
the most relevant one.
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Figure 4.2: Ratio of the data to the Monte Carlo (MC) events without neutrino oscillation
(points) as a function of the reconstructed L] E together with the best-fit expectation for 2-
flavor v, < v, oscillations (solid line). The error bars are statistical only. Also shown are
the best-fit expectation for neutrino decay (dashed line) and neutrino decoherence (dotted

line). Figure taken from [158].

could also explain the zenith-angle dependent deficit, were disfavored (see Fig. 4.2). The
SK results—indeed—were the first to establish conclusively that atmospheric neutrinos
oscillate.

In contrast to SK, SNO [143] uses heavy water (D20), so providing deuterons as a
target for charged current (CC) and neutral current (NC) interactions, as well as electrons
for elastic scattering (ES) processes with solar neutrinos:

CC: vVe+td—p+p+e (4.19)
NC: vo+d—n+p+u, (4.20)
ES: vio+e —v,+e. (4.21)

Due to background kinematical thresholds, in SNO, as in Kamiokande and in SK, the
primary solar neutrino signal comes from the pp chain ®B reaction in Eq. (4.13).

In the SNO experiment the CC reaction is exclusively sensitive to v, while the NC
interaction is sensitive to all active neutrino flavours. The ES on electron is sensitive to all
active flavours as well, but with a further reduced sensitive to v, and v, due the the sup-
pressed (v, .) cross sections, as previously argued. SNO results found that the measured
total v, flux (through the NC channel) was greater than the measured v, flux (through
the CC channel and in ES with electrons), thus providing a conclusively demonstration
that solar neutrinos are subject to flavour transformation since their production in the
solar core.

Despite being conclusive, the SNO results could not shed light on the underlying
mechanism responsible for solar neutrino transformation. It was not until KamLAND that
the neutrino oscillation hypothesis was proved to be the correct one [144]. KamLAND is
a reactor experiment which detects 7., produced by a network of nuclear reactors, via the
inverse  decay process

ve+p—et+n, (4.22)
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Figure 4.3: Ratio of the observed v, spectrum to the expectation for no oscillation versus
Lo/E. The curves show the expectation for the best-fit oscillation, best-fit decay and best-
fit decoherence models taking into account the individual time-dependent flux variations
of all reactors and detector effects. The data points and models are plotted with Lo=180
km, as if all anti-neutrinos detected in KamLAND were due to a single reactor at this
distance (taken from [1]5]).

For that aim, a neutrino detector/target of 1 kton of ultrapure liquid scintillator placed

in a 13-m-diameter spherical balloon made of 135-um-thick transparent nylon/EVOH
(ethylene vinyl alcohol copolymer) is used. KamLAND results showed a deficit of neu-
trinos with a distribution in L/E ([km]/[MeV]) consistent with the neutrino oscillation
hypothesis with oscillation parameters in the Large Mixing Angle (LMA) region [145],
thus providing a conclusive demonstration that the solar neutrino flavour conversion is
due to the LMA-MSW neutrino oscillation mechanism (see Fig. 4.3).

4.3 Summary of experimental data

4.3.1 Present status of neutrino oscillation data

Precise acknowledge of the neutrino oscillation parameters arises from global fits to
available neutrino oscillation data. The analysis from which the values shown in Ta-
ble 4.1 and Figure 4.4 (extracted from Ref. [146]) include the following data: For at-
mospheric neutrinos, results from Super-Kamiokande from phase SK1-4 [147]. For long
baseline accelerator experiments, K2K [148], MINOS [149], and T2K [150]. For reac-
tor experiments, results from the finalized experiments CHOOZ [151], Paolo Verde [152],
Double CHOOZ [126], Daya Bay [153], RENO [128] and KamLAND [154]. For solar neu-
trinos, results from radiochemical experiments: Chlorine [122] and Borexino [155, 156],
Gallex/GNO [157], SAGE [158], as well as results from SK-1 [159] and SNO phases I-
IIT [160].

It is worth mentioning that the values of the atmospheric and reactor parameters suffer
from an ambiguity determined by whether the neutrino mass spectrum follows a normal

or an inverted mass hierarchy, if Am2, = Am?2, > 0, then neutrinos follow a normal
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parameter best fit lo range 20 range 30 range
Am2, [107°eV?] 7.62 7.43-7.81 7.27-8.01 7.12-8.20
2.55 2.46 — 2.61 2.38 — 2.68 2.31 —2.74
2 —3.1/2
|Ami | {1077V 2.43 2.37 — 2.50 2.29 — 2.58 2.21 —2.64
sin? 019 0.320 0.303-0.336 0.29-0.35 0.27-0.37
<in2 0 0.613 (0.427) &064(5)250’81%25 0.38-0.66 0.36-0.68
23 (5. . &
0.600 0.569-0.626 0.39-0.65 0.37-0.67
0.0246 0.0218-0.0275 0.019-0.030
. 2 —
sin”fhs 0.0250 0.0223 0.0276 | 0.020-0.030 | C0170033
0.807
0 _0.03% 0—27 0—27 0—2m
Table 4.1:  Neutrino oscillation parameters summary as reported by [1/6]. For Am3,,

sin? 03, sin® @3, and & the upper (lower) row corresponds to a normal (inverted) neutrino
mass hierarchy [52].

spectrum in which

my < mg = /mi+ A2 <mz=/m}+AZ . (4.23)
Otherwise the mass spectrum is inverted (Am?2,, = Am3, < 0) in which case
my = y/m3 4+ A% <my = /m?+ A2 <mj. (4.24)

4.3.2 Present status of absolute neutrino masses

Neutrino oscillation experiments are only sensitive to squared-mass differences. Ac-
cessing this quantity requires other facilities and in some cases even physics beyond that
directly related to neutrinos. The absolute neutrino mass scale can be determined through
three possible experimental means:

e Kinematic experiments: Nuclear or particle-decay processes through ordinary

decay, e.g. through tritium decay [161-163];
e Neutrinoless double § decay experiments [164—166];
e Astrophysical and cosmological observations [167, 168].

Bounds from kinematical experiments

Direct information on the electron neutrino mass can be obtained in a precise and
model-independent way through a kinematical analysis of the final region of the S decay
spectra [169]. These types of experiments are based on measurements of the end-point
behavior of the $-decay tritium spectrum:

‘H—"He+e +1,, (4.25)
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Figure 4.4: Global 3v oscillation analysis including all available neutrino oscillation
data. The different contours correspond to the two-dimensional allowed regions at 1o,

90%, 95%, 99% and 30 CL. [1/6].

and the observable places bounds on

m(ve) = /Z UL [2m2 . (4.26)

Current limits come from Troitsk [170] and Mainz [171] experiments which have estab-
lished the limits: m, < 2.05 eV at 95% CL (Troitsk); m, < 2.2 eV at 90% CL (Mainz).
The KArlsruhe TRItium Neutrino experiment (KATRIN), using the same measurement
technique, is aiming at improving present bounds or perform a measurement of the elec-
tron neutrino mass [172]. According to their proposal, unprecedented sensitivity of 0.2 eV
at 90% CL is expected to be reached improving present limits by one order of magnitude,
or discovery of the actual mass will be possible if it is larger than 0.35 eV.

Bounds from neutrinoless double [ decay

Neutrinoless double 5 decay (0v203) is a rare nuclear process in which two neutrons in
a parent nucleus are simultaneously changed into two protons emitting two electrons but
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without emitting any antineutrinos:
(A, Z) - (A, Z+2)+2¢ . (4.27)

This process, that violates lepton number by two units, is only possible if neutrinos are
massive Majorana particles (see Appendix C.1). A signal would provide information on
the neutrino nature and on their absolute mass scale. The signature for such a process
would be a peak in the energy spectrum deposited in the detector by the 2 electrons at
the endpoint energy. Constraints on the (0v2f) lifetime, which can be written as

(T1)™" = Gou| Moy |*m, , (4.28)

where G, is a phase-space factor, My, is the nuclear decay matrix element (which depends
on the kind of isotope used) imply indirectly bounds on (or a measurement of) the effective
neutrino mass matrix element m..:

Mee = (My) = | Z Uezzmz| . (4.29)

Before the Enriched Xenon Observatory (Exo-200) experiment [165] released their data,
the most stringent bounds on the 0v2/ lifetime was derived from the Heidelberg-Moscow
Double Beta Decay (HMBB) experiment [166] from which the bound is,

mgs < (0.29 —0.35) eV, 90% CL. (4.30)
At present the tightest limit comes from EXO-200:

Bounds from cosmology

Cosmology at present yields some of the strongest bounds on the overall scale for
neutrino masses. The small perturbations in the early Universe, which possibly come from
quantum fluctuations, evolve to the large scale structure of the present Universe. After
neutrinos decouple, shortly before electron-positron annihilation, the neutrino becomes a
free-streaming particle that can have effects on the growth of large scale structures and so
influence the structure formation of the early Universe. So massive neutrinos with masses
much larger than the present temperature are, at present time, non-relativistic and thus
contribute to the cosmological matter density. The neutrino density €2, is related to the
number of massive neutrinos, namely

2 DL
Wl = G eV (432)
where h is the reduced Hubble parameter in units of 100 km/s/Mpc. Limits on Q,h?
therefore, constraint the observable ). m,. The Wilkinson Microwave Anisotropy Probe
(WMAP) collaboration combining CMB, baryon acoustics oscillation, and supernovae
type-la data has provided an upper bound on the neutrino masses sum assuming three
neutrino species [173]:

> m;<06 eV,  95% CL. (4.33)
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Reaction Current upper bound Collaboration
T 2.4 x 107" MEG [179]
u- —eete 10712 SINDRUM [180]
uo = 2ey 10711 [180]
S en 33x10°° MEG [181]
e T 4.4 x107° MEG [181]
T —eete” 2.7x 1078 [182]
T =t 2.1x 1078 [182]
TT = e putpuT 1078 [182]
T = uete” 1078 [182]
uwAu — e Au 7x 1071 SINDRUM 1T [183]
T e T 13x10° 7 SINDRUM I [183]

Table 4.2: Present experimental upper bounds on lepton-flavor-violating processes for pure
leptonic decays. All the limits are given at 90% CL [39].

Recently Planck measurements [174] of the CMB gave another bound which is comparable
to the one reported by WMAP:

0.05 <Y m, <015V,  68% CL. (4.34)

Future experiments including PLANCK lensing [175] and CMBpol lensing [176] are aiming
to reach sensitivities of 0.05 eV.

4.3.3 Present status of charged lepton flavor violation

The observation of neutrino flavor oscillations constitutes an experimental proof of
lepton flavor violation (LFV) in the SM neutral sector [52]. Once the SM is extended
to account for neutrino masses LFV should also take place in the charged lepton sector
(for a review see [177,178]). However, until now, charged lepton flavor violating signals
have not been observed despite the impressive experimental efforts. Table 4.2 shows the
current experimental upper bounds on lepton flavor violating processes involving charged
leptons.

Ongoing experiments and near future plans will reach sensitivities well below the value
reported in Table 4.2 (for a review see [184]). Rare decays are expected to be measured
in Super B factories with sensitivities reaching values two orders of magnitude smaller
than present bounds. Rare p decays, in particular, y — e, is expected to be measured
in MEG final stage with precisions exceeding 107'* [185]?, while the Mu3e experimental

2. Recently the MEG experiment released its result for 4 — ey reporting the following upper limit,
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Figure 4.5: Dimension five effective operator (Weinberg operator) responsible for Majo-
rana neutrino masses.

proposal at PSI aims at measuring p — 3e with sensitivities reaching levels of order
10716 [187]. Finally, intensity upgrades at Fermilab and the proposal PRISM/PRIME at
J-PARC are expected to improve the ;1 — e conversion branching fractions to values below
10717 [188-190).

4.4 Neutrino masses: theoretical perspective

In this Section the issue of Majorana neutrino masses is discussed. The approach
followed is to a certain extent novel, since it partially involves unpublished results which
will make part of a future publication [191].

As has been already pointed out in the introduction, a model independent approach
to the origin of neutrino masses is provided by the Weinberg operator

Os = % ((ECiry7ls) (9T imaT) | (4.35)
which diagrammatically can be represented as shown in Fig. 4.5. In principle, below
the EW scale this operator suffices to account for neutrino data, the different couplings
as well as the scale can be precisely fitted yielding a consistent effective phenomenolog-
ical description of neutrino masses and mixings. Addressing the issue of the ultraviolet
(UV) completion responsible for this operator, rather than being driven by a “simple”
phenomenological requirement is given by a fundamental question, the precise origin of
neutrino masses. The goal of finding the exact UV completion, implies finding the renor-
malizable Lagrangian which when added to the SM Lagrangian yields a complete picture.

The Weinberg operator can be understood as a “tower” of operators appearing at
different orders in perturbation theory:

Os =) 05", (4.36)

where the order up to which the sum can be extended has to be determined by phe-
nomenological requirements. Dimensional analysis combined with the loop suppression
factors can be used in a quite generic way to deduce at which point the sum (4.36) should
be truncated. In order to proceed, the four-loop diagram in Fig. 4.6 can be considered.
Taking a generic trilinear scalar coupling p for the three-point scalar vertices, as well as
a generic Yukawa coupling y for the fermion-scalar-scalar couplings in the diagram, the

Br(u — ey) < 5.7 x 10713 at the 90% CL [186].
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Figure 4.6: Four-loop order realization of the Weinberg operator from which is has been
argued the phenomenologically inconsistency of those realizations.

mass matrix can be estimated to be:

my, ~ )
1672) \mg) "

~ 10%° eV , (4.37)

where in the last step the fermion mass (mp), the scalar mass (mg) and the pu parame-
ter have been taken to be universal and equal to 1 TeV. Taking the heavier neutrino to
have a mass of 1 eV, this expression shows that consistency with neutrino data requires,
in these setups, the Yukawa couplings to be order one. Unavoidably, in these schemes,
the presence of the new Yukawa couplings induce lepton-flavor-violating processes, which
when combined with order one Yukawa couplings and order TeV degrees of freedom ren-
der these models phenomenologically inconsistent. Although these arguments are not at
all a rigorous proof, they can be used to argue that four-loop realizations of the Weinberg
operator are ruled out by data. The same procedure applied to three-loop order real-
izations, shows that despite being still viable a certain tension appears when reconciling
neutrino data with lepton-flavor-violating current limits.

From the statements given above a quite reasonable truncation turns out to be 7 =
2. Arguing a certain operator within that tower determines Oj requires the absence of
leading realizations, which is typically accomplished by either the particle content or the
presence of a certain symmetry®. In the literature, the usual approach for Majorana
neutrino mass generation has been the consideration of particular UV completions. Such
approach, although interesting by itself, is limited to the predictions (phenomenological
consequences) of the corresponding realization. A much more interesting option would
be that in which the analysis is not limited to a specific realization and instead at a
certain level (tree level, one-loop level or two-loop level) all the possible realizations are
determined. Indeed, at the tree level this “program” was already carried out, finding that
there are three and only three tree level UV completions of the Weinberg operator [192]:
type-1 seesaw [11-15], type-II seesaw [14,57-59] and type-II1 seesaw [193], for which the
corresponding diagrammatic representation of the neutrino mass matrix are shown in
Fig. 4.7

In the type-I seesaw model as well as in the type-III seesaw model the Majorana
neutrino mass matrix arises due to the interchange of new fermions (generally three), EW
singlets (RH neutrinos, Ng) in the former case while EW triplets (7') in the latter case.
A thorough discussion of the type-I seesaw Lagrangian, used in Chapter 5, is presented in
Appendix C.2. The type-I1, in contrast, relies on a UV completion where the new degree of

3. An example corresponds to the radiative seesaw|[Ma-RAD-SS], where due to the presence of an
exactly conserved Z5 symmetry the type-I seesaw neutrino mass matrix is forbidden. The mass matrix
is then generated via a one-loop realization of the Weinberg operator (see the discussion below).
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Figure 4.7: Tree level realizations of the Weinberg operator which define the type-1, type-I11
and type-11I seesaw models.

L

Figure 4.8: Feynman diagrams accounting for the Zee model (left plot) and the radiative
seesaw (right plot).

freedom (one is sufficient to fit neutrino data) is a scalar EW triplet (A). These scenarios
lead to quite a few interesting possibilities. For instance, the type-I seesaw provides a
natural playground for baryogenesis via leptogenesis (see next Section) whereas the type-
IT and type-III seesaws, involving states with non-trivial EW quantum numbers, open the
possibility of “testing” the origin of neutrino masses at the collider level, provided they
have order TeV masses.

At the one-loop level the “program” was initially undertaken in Ref. [192], by con-
sidering only irreducible topologies. And was recently completed by considering as well
reducible topologies [194]. In contrast to Ref. [192], where the analysis was carried out by
hand, in Ref. [194] a novel strategy for tackling the problem was developed. It is based on
a “certain” algorithm which is somehow inherited from FeynArts [195], which is indeed
the tool used by the authors to exhaustively cover all possibilities. When determining all
possible realizations of Q5 at the one-loop level the following “recipe” proves to be useful:

A. Determine with the aid of FeynArts all possible topologies associated with Os.

B. Once all possible relevant topologies are determined, proceed with fermion and scalar
propagator insertions.

C. By using the SM gauge quantum numbers of the external lines determine the gauge
quantum numbers of the fields flowing in the loop.

D. Calculate one-loop integrals.

In that way the analyses in Ref. [192,196] covers all the possibilities which—of course—
include well known one-loop realizations: the Zee model [60] and the radiative seesaw [90].
The UV completions in these two cases are such that a tree level neutrino mass cannot
be constructed: (i) in the Zee model case, the beyond SM field content involves an extra
scalar EW doublet and a single-charged scalar EW singlet, which render the construction
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T2 T4

7 T8

Figure 4.9: Some examples of two-loop topologies associated with two-loop realizations of
the Weinberg operator.

of a tree level mass matrix impossible; (iz) in the radiative seesaw the new particle content
involves in addition to the RH neutrinos a second scalar EW doublet, however by enforcing
the SM (beyond SM) fields to be even (odd) under Z, the standard type-I seesaw tree

level neutrino mass matrix is forbidden, leading to a one-loop setup (see Fig. 4.8).

Providing a full picture for Majorana neutrino masses implies carrying out the same
“program” for the two-loop case. This task is obviously much more demanding and
involves much more topologies and possible diagrams, which from naive considerations
might lead to the conclusion that the number of possibilities is so large that a comprehen-
sive study will end up being useless. This however is not the case, as it is now discussed.
The “recipe” sketched in items A-D is readily extended to the two-loop analysis case.
Accordingly, with the aid of FeynArts and following those steps, a reduced number of
topologies is found. Focusing on irreducible topologies, 29 inequivalent topologies are
found. By renormalizability and the criteria of dealing with “genuine” two-loop realiza-
tions (meaning two-loop diagrams for which a leading tree or one-loop level contribution
does not exist), this number is reduced to 11 topologies. Some examples are shown in Fig.
4.9, where the notation used is T7X (X =1,...,11). With the full list of topologies, item
A in the recipe is over. When moving ahead to item B, it has been found that the number
of Feynman diagrams for each topology is still under control, being in the “worse” case
17. To complete the classification, items C and D should be addressed. This is something
in which there is still some work to be done.

As expected, among the topologies found well known two-loop models have been found.
For example, with the appropriate field insertion and gauge quantum numbers topology
T7 in Fig. 4.9 corresponds to the Cheng-Li-Babu-Zee model [61,197,198]. This two-loop
UV completion of the Weinberg operator includes one singled-charged and one doubled-
charged scalar EW singlets. It turns out that with this particle content there is no way
of constructing either a tree level or one-loop level neutrino mass matrix. Thus, implying
this model correspond to a “genuine” two-loop realization of the Weinberg operator where
the particle content constraints neutrino masses to be generated at the two-loop order as
shown in Fig. 4.10.

This analysis corresponds to the most simple approach. A much more intrincated
possibility, but anyway viable, will be that in which a certain unknown mechanism e.g.
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Figure 4.10: Feynman diagram accounting for light neutrino masses in the Cheng-Li-
Babu-Zee model

a certain symmetry fordids the Weinberg operator. In that case, the next lepton number
violating effective operator (the dimension seven) will account for neutrino masses. These
approaches are to a large extent not very natural, since a priori there is no reason for
this to be the case. However, those constructions have certain interest, in particular
because due to the intrinsic suppression of the operator (A=) the UV completions are
naturally light (order TeV) and the involved couplings large. Scenarios of this kind almost
unavoidably lead to a rich high-energy as well as high-intensity phenomenology e.g. in
these schemes a rich lepton-flavor-violating phenomenology is always expected.

4.5 The baryon asymmetry of the Universe

There is robust observational evidence that the Universe is made of matter, and not
antimatter. The Earth, the Sun and the Moon are made of matter. In cosmics rays, the
antiproton-proton ratio is about 107* [199,200] and the antiprotons are supposed to be
secondaries produced by cosmic-ray collisions with the interstellar medium. Therefore,
there is no indication of antimatter in the galaxy. At larger scales, no strong y-ray emission
from nucleon-antinucleon annihilations from galaxies colliding with antimatter galaxies in
the same cluster, have been observed [201]. Since matter is made of electrons orbiting
neutrons and protons (both a type of baryon), this is a clear indication that there is a
baryon asymmetry in the Universe. Precise measurements of the acoustic peaks of the
CMB as well as of the relative abundance of light-elements (‘He, *He, D and Li) have
allowed an indirect experimental determination of the baryon asymmetry (see e.g. [39] for
a review) [132-134]:

Yap = @ = (8.75£0.23) x 107" | (4.38)
where ng, nz and s are, respectively, the number densities of baryon, antibaryons and
the entropy density (see next Section and Appendix C.3).

The conventional wisdom is that the baryon asymmetry is generated by a dynamical
mechanism (baryogenesis), for which the fundamental rules, the so-called Sakharov rules,
are well known [53]. In short, a baryonic asymmetric Universe is possible provided the
following conditions are satisfied:

A. Baryon number (B) violating interactions exist.

B. Those interactions violate the C and CP symmetries.
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C. During the evolution of the primordial Universe, an stage where these interactions are
out-of-equilibrium exist.

Any particle physics model in which these conditions are satisfied provides a framework
where the cosmic asymmetry puzzle can be addressed. Given the precise value of Yap, it
turns out that certain scenarios, although satisfying the conditions at the qualitative level
fail quantitatively. The most remarkable example is certainly the SM, where baryon num-
ber is violated at the non-perturbative level via EW sphaleron reactions, CP violation is
provided by the CKM CP violating phase and departure from thermodynamical equilib-
rium is given by the EW phase transition. However, despite containing all the ingredients
required by the Sakharov conditions, at the quantitative level in the SM framework a
baryon asymmetry with a value given by (4.38) cannot be generated. This fact is indeed
a clear and strong evidence in favor of beyond SM physics.

Scenarios for baryogenesis are plenty, and cover quite a large number of particle physics
models. Despite the large number, they can be classified into two categories, depending
on how the departure from thermal equilibrium is achieved: baryogenesis models where
departure from thermal equilibrium is attained via a phase transition (associated with
the breaking of a gauge or global symmetry) and baryogenesis models where departure
from thermal equilibrium is provided by the expansion of the Universe.

A viable possibility within baryogenesis scenarios, is that in which the B (or B — L,
depending on the model) asymmetry is generated at a very high-energy scale. Regardless
of the high-energy scenario, what is known is that the dynamics of the heavy degrees of
freedom at some stage will cease to produce an asymmetry i.e. the asymmetry will be
frozen. If the asymmetry matches the observed one, and below the freeze-out temperature
(Tw,) there are no extra degrees of freedom that can wipe out what was generated, an
explanation (physics model) for (4.38) is given. However, even if the produced Y g falls in
the indirectly measured range, if new degrees of freedom below Tf, are present this is not
necessarily the case. Indeed, such an observation can provide an useful tool to constraint
the parameter space of TeV scale particle physics models (as it is done in Chapter 5). For
that aim an analysis relying on the Boltzmann EQuation (BEQ) is needed.

4.5.1 Boltzmann equations

With the aim of putting into context the discussion of the last section of Chapter 5
in this section a rather general discussion of the BEQ is presented. This section does not
aim to provide an exhaustive review of technical and/or physical aspects of the BEQ,
instead only few qualitative aspects are discussed.

The Boltzmann equation (BEQ) determines the evolution of a particle phase space
distribution function, f(p#,z*). In its more general form it can be written according to

L{f] = Clf] (4.39)

where L is the Liouville operator and C is the collision operator. From its covariant
relativistic generalization and using the Robertson-Walker metric, the Liouville operator
has a rather simple form:

L) = B - 5| oL (4.40)
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In terms of the number density

9 3
) = / &1l F(BL1) | (4.41)

where ¢ is the number of degrees of freedom of the corresponding species, the BEQ can

be recasted as ) ,
d R g d°|pl
— —nx = . 4.42

ax TR (mﬂ&/ 5 Cl (4.42)

The second term in the left-hand side accounts for the expansion of the Universe, for
it can be expressed in terms of the Hubble expansion H = R(t)/R(t) (with R(t) the
scale factor). The collision term in the right-hand side has a rather involved form, and
nevertheless for the following discussion its explicit structure is not relevant. Given a
specific set of interactions, the number density of a species X can then be calculated by
integration of (4.42). There are, however, a couple of convenient change of variables:
* The Universe expansion effects can be scaled out by replacing the number density
by the number density-to-entropy ratio (Yx = nx/s), as can be readily seen by
using the conservation of entropy per comoving volume (s R = constant):

R
SYX:h+3En

— i+ 3Hn (4.43)

* Since the collision term usually depend explicitly upon T rather than time, intro-
ducing the dimensionless temperature parameter

== (4.44)

turns out to be convenient. In that case the time derivative can be replaced by
derivative in z through

dz Mx . dz

i = = = zH(z) . (4.45)

With those changes the BEQ can then be rewritten according to

o= | s [amein] (4.46)

Studying the evolution of the number density-to-entropy ratio for a given species is there-
fore entirely determined by particle physics processes, encoded in the collision term.

If there are no further @) violating reactions, asymmetries Yaq generated via X and X
decays can be produced in the thermal bath if the decay by-products carry a () charge, its
reactions violate C and CP and departure from thermal equilibrium. In that simplified
scenario, the BEQ accounting for the evolution of YAq can be sketched without loss of
generality as follows:

d
—Yrno=S+W 4.47
PR + W, (4.47)
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where the factor (s H z)~! has been absorbed in the source, S, and washout, W, terms.
The source term contains those reactions that “feed” the asymmetry while the washout
those that tend to wipe it out, and their explicit form depend is model dependent.

In the case in which in addition to X, there is another species Y with () breaking
interactions as well the situation is different. Depending on the mass differences between
the two species, Mx and My, three cases can be identified:

* Comparable My, My masses (Mx ~ My): in that case the @) asymmetry will be
determined by both X and Y dynamics: Yaq = Y3, + Y. The evolution of Yaq
is then dictated by a system of coupled BEQs, which schematically can be written
as:

d%YAXQ = Sx +Wx and %YKQ =Sy + Wy . (4.48)
* Either My > My (or My > Mx): the generation of the () asymmetry will undergo
two stages. First, production via X dynamics at T' ~ Mx. The asymmetry produced
in that stage (YAXQ), after freeze-out will remain frozen until Y dynamics becomes
effective. At that stage, Y-related processes will tend to wipe out YAXQ, and the final
Yaq asymmetry will be basically entirely determined by ¥ dynamics. A particular
interesting case (Chapter 5) is that in which Sy is either vanishing or negligible. In
that case, if any ) asymmetry is to be present at low temperatures (T < My ) will
be solely to YAXQ circumventing the Y-related washout effects, which are determined

by

%YAQ =Wy . (4.49)
In models with TeV RH neutrinos (TEV scale seesaw models), as those considered in
Chapter 5, @ turns out to be lepton number L (more precisely B — L). Production of
the B — L asymmetry can proceed via their dynamics, provided resonant enhancements
of the source term are present®. Barring that possibility a lepton asymmetry cannot
be generated through RH neutrino dynamics. However, that dynamics can affect (and
even completely wipe out) a preexsiting asymmetry generated at higher temperatures by
heavier different degrees of freedom. In that case, the RH neutrino induced washouts are
quantified by an equation having the form (4.49). Explicitly, the following equation [203]:

d o
—Ya, = 1l Z C'C(Q)YABKI(Z)Z?’ (4.50)

where the k., parameter determines the strength of washouts in each lepton flavor and its
value is in turn determined by Yukawa couplings, the matrix C'© (so-called flavor coupling
matrix) is determined by those reactions which are in thermal equilibrium when the RH
neutrino dynamics become effective, K;(z) is a Bessel function (see Appendix C.3) and
A, = Lo+ B/3 with L, = e, + 2{,. The precise definitions of the the different quantities
are given in Chapter 5, Appendix C.3 and more precisely [25].

4. Technically speaking, whenever the CP violating asymmetry, more precisely the wave-function
correction, is resonantly enhanced (see e.g. [202]).
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Summary

In this Chapter several aspects of neutrino physics have been treated. Aiming to give
a motivation for Chapter 5 a historical discussion of neutrino oscillation experiments has
been presented as well as the current status of neutrino oscillation data has been pro-
vided. Some comments on absolute neutrino mass measurements have been done, paying
special attention to their current experimental upper limits. The theoretical approach to
Majorana neutrino masses, based on the Weinberg operator have been discussed, focusing
on certain specific realizations. Finally rather general statements about the BEQ have
been elaborated, in order to fix the notation and technical aspects needed at the end of
Chapter 5.
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CHAPTER b

MLFV REALIZATIONS OF MINIMAL SEESAW

5.1 Introduction

Neutrino flavor oscillations provide an unquestionable experimental proof of LFV.
While it is a fact in the neutral sector, until now LFV in the charged sector has escaped
all experimental scrutinies, thus implying only upper limits on the different lepton-flavor-
violating rates exist. The size of lepton-flavor-violating effects is tightly related with the
mechanism responsible for neutrino masses, so from that point of view predictions for LE'V
physics are entirely model dependent. Models for Majorana neutrinos masses yielding
sizable lepton-flavor-violating effects have a common feature: tiny neutrino masses do not
require neither tiny couplings nor decoupled degrees of freedom.

The type-1 seesaw, already introduced in Chapter 4, is a clear example where the
smallness of neutrino masses is due to either heavy degrees of freedom or tiny Yukawa
couplings, and accordingly SM charged lepton-flavor-violating rates within this framework
have values far below any foreseen experiment. Scenarios where neutrino data can be
fitted and at the same time LFV becomes observable can be grouped in three categories:
(1) models where neutrino masses arise through a specific radiative realization of the
Weinberg operator (see Chapter 4); (i7) models stemming not from the Weinberg operator
but instead by the next lepton number violating effective operator (D = 7); (iii) models
with slightly broken lepton number.

Besides the SU(3)? global flavor symmetry, the type-I seesaw kinetic terms are also
U(1)? invariant. Two of these U(1) global factors are readily identifiable with hypercharge
and lepton number, the remaining U(1) is an additional global symmetry for which a
“clear” identification is not possible, but that anyway it is explicitly broken at the Yukawa
coupling level, and so probably for that reason has not received too much attention.

In this chapter, the role played by this additional factor (from now on denoted U(1)g)
is explored under the following assumptions: (a) The different SM lepton fields as well as
the RH neutrinos have non-trivial R charges; (b) U(1)g is slightly broken. The analysis
is carried out in a minimal RH neutrino seesaw model (2 RH neutrinos), focusing on the
possible implications this slightly broken symmetry can have on lepton-flavor-violating
effects. Interestingly, among the families of possible models that can be envisaged (via

75
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R charge assignments), there is a category which realizes the Minimal Lepton-Flavor-
Violating (MLFV) hypothesis in the sense that all the couplings are entirely determined
by low-energy neutrino data. Moreover, is for that category that with TeV RH neutrino
masses lepton-flavor-violating effects turn out to be sizable, in particular rare muon de-
cays: ut — ety, ut — efeFe® and p — e conversion in nuclei. So, from that point of
view it can be fairly said that these models are within a new class of models where LF'V
is not due to any of the mechanisms defined in items (i) — (4i7).

This Chapter is organized as follows: in Section 5.2 the scenarios arising from the
different R-charge assignments are discussed in detail. In Section 5.3 the phenomenology
of charged-lepton-flavor-violating decays in the emerging models is discussed. In Sec-
tion 5.4, as a complementary analysis, the implications of such constructions for scenarios
of high scale baryogenesis are studied. Instead of assuming that the baryon asymme-
try is produced by the out-of-equilibrium and CP-violating decays of the TeV RH states
(via resonant leptogenesis), the constraints on the Yukawa couplings imposed by the re-
quirement of not erasing an existing asymmetry (produced at much higher scales by an
arbitrary mechanism) are derived.

5.2 The setups

Though several realizations of the MLFV hypothesis exist in the literature [204-207]
all of them are based on the same approach: first, the full flavor group G is determined by
the global flavor invariance of all the SM gauge and kinetic terms. G can be decomposed
into a product of global U(1) phase rotations and a non-Abelian subgroup Gr. Next, the
charged lepton and neutrino Yukawa couplings are promoted to dimensionless auxiliary
fields (spurions) with definitive flavor group transformation properties that leave the cor-
responding Yukawa terms in the Lagrangian invariant under G'p. It is then required that
the entire Lagrangian also respects G . This includes any higher-dimensional effective
operator contributions, which should thus be constructed from appropriate spurion inser-
tions !. With the operators at hand and—if needed—under certain restrictions on G the
lepton-flavor-violating effects can be estimated by means of low-energy neutrino data (see
Table 4.1 and ref. [204,207]).

The kinetic and gauge interaction Lagrangian of the SM extended with two RH neu-
trinos exhibits a global G = U(3). x U(3), x U(2)y symmetry. Factorizing three U(1)
factors from G, the global symmetry can be rewritten as U(1)y x U(1l), x U(1)g X GF
where U(1)y,, can be identified with global hypercharge and lepton number whereas
the U(1)g is a new global symmetry [207,208]. The remaining direct product group
Grp = SU(3). x SU(3); x SU(2)n determines the flavor symmetry which is explicitly
broken in the Yukawa sector.

As explained above, the usual procedure is based on an effective-theory approach.
Here, instead, the seesaw Lagrangian is explicitly considered with a slightly broken U(1)g
and the possible realizations according to the R-charge assignments are classified. Under
these considerations, in the models featuring sizable lepton-flavor-violating effects, the
flavor structure is determined by low-energy observables as well (up to a global normal-
ization factor), not as a consequence of a restricted MLFV hypothesis but by the intrinsic

1. An exception are the explicit MLFV models discussed in Ref. [206].
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structure of the resulting models, thus realizing in that way the MLFV hypothesis.

Models for which the R charges allow for large Yukawa couplings and TeV RH neutrino
masses should lead to sizable charged-lepton-flavor-violating processes. Consistent models
of O(TeV) RH states and large Yukawa couplings are achievable if cancellations among
different pieces of the light neutrino mass matrix are allowed, and the RH neutrino mass
spectrum is not strongly hierarchical [209] 2. The TeV-scale seesaw models arising from the
presence of the U(1) g symmetry are expected to be in that sense different: no cancellations
are needed because the suppression in the effective light neutrino mass matrix is no longer
constrained to be related with the heaviness of the RH neutrinos. Indeed, depending on
the R-charge assignments two classes of generic models can be identified: models in
which the mechanism that suppresses the light neutrino masses propagates to lepton-
flavor-violating observables, thus rendering their values far below planned experimental
sensitivities; and models in which the mechanism decouples in such a way that lepton-
flavor-violating effects become sizable. This is in contrast to models where U(1) is slightly
broken so that lepton number and LFV occur at the same scale.

Depending on the R-charge assignments two classes of generic models can be identified.
This is discussed in more detail just below. Requiring U(1)g invariance of the charged
lepton Yukawa terms determines R(e) in terms of R(¢) and R(¢). After fixing R(¢) = 0,
to avoid charging the quark sector, the remaining charges can be fixed by starting with
R(N;2). In order to have sizable lepton-flavor-violating effects both the N, Majorana
mass terms should be suppressed by R-breaking parameters (generically denoted by €),
so R(Ni2) # 0. Thus one has only three possibilities: (A) R(N1) = R(Nz), (B) R(Ny) =
—R(Ny) and (C) |R(Ny)| # |R(N3)|. The phenomenology of case (C), however, is expected
to be similar to the one arising from models with R-charge assignments of type (A). The
reason is that in that case the Ny — Ny mixing is always U(1)g suppressed, which in turn
implies suppressed charged lepton-flavor-violating processes (equivalently, the effective
neutrino mass matrix will not be e suppressed, forcing tiny Yukawas or heavy N o states).
This is to be compared with models based on R-charge assignments of type (B), where
the N; — N, turns out to be maximal and a set of unsuppressed ¢ — N Yukawa couplings
can always be obtained by properly choosing R(¢) (in these models the effective neutrino
mass matrix involves extra e suppression factors).

In summary depending on the R-charge assignments two classes of generic models
can be identified: models in which the mechanism that suppresses the light neutrino
masses propagates to lepton-flavor-violating observables, thus rendering their values far
below planned experimental sensitivities; and models in which the mechanism decouples
in such a way that lepton-flavor-violating effects become sizable. In what follows, in
order to illustrate this is actually the case, two examples of models of type A and B are
discussed.

Type-A models [207]: R(Ng,) = +1 and R(¢;,) = R(er,) = R(¢) =0
In this case, in the basis in which the charged lepton Yukawa couplings and the Majorana
RH neutrino mass matrix are diagonal, the Lagrangian in Eq. (C.12) reads

,C:—éyA;GQﬁ—EE/\*NQE—%EQ}LNTCYNN-FH.C.. (5.1)

2. In the case of a large hierarchy among the different RH neutrino masses the one-loop finite correc-
tions to the light neutrino mass matrix can exceed the corresponding tree-level contributions. Neglecting
such corrections can in this case lead to a model inconsistent with neutrino data [210].
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where Y,, A* and Yy = diag(Yy,, Y,) are the Yukawa coupling matrices. The dimension-
less parameter ¢ < 1 slightly breaks U(1)r whereas, due to the assignment L(N) = 1,
the lepton number U (1), factor is broken by p. With this setup the 5 x 5 neutral fermion
mass matrix in Eq. (C.18) can be written as

0 €VA
My = (ev/\T €2 /AA/N> ’ (5:2)

where for convenience the VEV has been rescaled according to v — v/y/2, with v given
by Eq. (1.6). Using the notation introduced in Appendix C, in the seesaw limit, which in

this case reads vA < epyN the effective light-neutrino mass matrix in Eq. (C.26), is given
by

m; = —— : (5.3)

with Ag = (Aea, Ayas Ara). The corresponding light neutrino masses are obtained from the
leptonic mixing matrix (Eq. (4.8)):

U'm&U = meff (5.4)

In the 2 RH neutrino mass model the constrained parameter space enforces one of the
light neutrinos to be massless. Thus, in the normal hierarchical (see Eq. (4.23)) mass
spectrum case m,, = 0 and m,, < m,, whereas in the inverted case (see Eq. (4.24))
m,, = 0 and m,, < m,,.

Since the dimension five effective operator (see Eq. (4.35)) is U(1)g-invariant, the
neutrino mass matrix does not depend on ¢€; the suppression ensuring light neutrino
masses is solely provided by the lepton number breaking parameter . On the other
hand, the RH neutrino mass spectrum is determined by

MN 262,LLYN. (55)

From this expression it can be seen that as long as the U(1)gr global symmetry is an
approximate symmetry of the Lagrangian (¢ < 1) the RH neutrino mass scale is decoupled
from the lepton-number-violating scale. Thus, the RH neutrino masses do not lie at the
same scale as that at which lepton-number breaking takes place.

Assuming Yy, A < O(1) an estimation of the lepton number breaking parameter p
can be made, pu ~ 10 GeV using \/Am3, ~ 0.05 eV as an estimate of the largest light
neutrino mass [39]. From this estimation and Eq. (5.5) it can be seen that values of € of
the order of ~ 107° allow to lower the lightest RH neutrino mass below 1 TeV.

Formal invariance of the Lagrangian under G is guaranteed if the Yukawa matrices,

promoted to spurion fields, transform according to
Yo~ (3,30, 1y), X~ (1.,3,2y), Yn~(1.,1,3n). (5.6)
The constraints imposed by Gz imply

A=A @Ay, (5.7)
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where Ag is a SU(3), triplet and Ay a SU(2)y doublet in flavor space. Accordingly, in
this kind of models an unequivocal determination of the flavor structure via the MLFV
hypothesis is possible by means of a restrictive flavor symmetry G C Gr. Though several
possibilities may be envisaged we do not discuss further details since, as shown below, in
this type of models, contributions to lepton-flavor-violating processes of charged leptons
are always negligible.

Type-B models: R(Ng,) = R({1,,) = R(er,) = +1, R(Ng,) = —1, R(¢) = 0. Changing
R charges to L charges, this case resembles models where lepton number is slightly broken
(see for example [206,211]). The Lagrangian is given by

. _ - _ -1 1
L=—lY,ep— X" Nip—exl A" Nogp — 5NlT CM Ny — §ENN§ CMyy Ny +Hee.. (5.8)

The €\ v parameters determine the amount of U(1)g breaking and are thus tiny. The
diagonalization of the Majorana RH neutrino mass matrix leads to two quasi-degenerate
states with masses given by

My + Mo

5 €N - (5.9)

My, , =M T
In the basis in which the RH neutrino mass matrix is diagonal the Yukawa couplings

become
s\ a

_ 7
and the 5 x 5 neutral fermion mass matrix is similar as in type A models. However, due to

the structure of the Yukawa couplings the effective light neutrino matrix, up to O(exe3),
has the following form

)\ka —

Akt + (—1)%xAg2] (k=e,u,7 and a=1,2), (5.10)

met = V- EA|,\1|\A\ (,\1 oA A ok ) (5.11)
with M M
A =5 — #_NA . (5.12)

Here aiming at relating the flavor structure of these models with low-energy observables,
and following ref. [206], we expressed the parameter space vectors A1, A in the light neu-
trino mass matrix in terms of their moduli [Ay], |A] and unitary vectors Ay, A.

Note that in these models lepton number is broken even when U(1)g is an exact
symmetry of the Lagrangian. However due to the Yukawa structure and degeneracy of
the RH neutrino mass spectrum at this stage mef = 0. Although a non-zero Majorana
neutrino mass matrix arises only once the R breaking terms are present this does not imply
that in the absence of lepton-number-violating interactions a Majorana mass matrix can
be built. In that case—as can seen from Eq. (5.8)—only Dirac masses (see Appendix C.1)
can be generated, as must be.

Since €y < 1 small neutrino masses do not require heavy RH neutrinos or small
Yukawa couplings, thus potentially implying large lepton-flavor-violating effects. In that
sense, as already stressed, these models resemble those in which lepton number is slightly
broken but with lepton number as well as LF'V taking place at the same scale M.
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In contrast to models of type A, in this case due to the structure of the light Majorana
neutrino mass matrix the vectors A; and A can be entirely determined by means of the
solar and atmospheric mass scales and mixing angles, up to the factors |A1| and [A],
without invoking a restrictive MLFV hypothesis. The relations are different for normal
and inverted light neutrino mass spectra [206]:

e Normal hierarchical mass spectrum

Y

/\1 = |)\1| Al = % (\/1 +pU3* + 1— pU2*> s (513)
- A

A=|AlA= % <\/1+pU3* . \/l—pU2*> , (5.14)

where U; denote the columns of the leptonic mixing matrix and

Vl—i_,’a_\/F m12/2
= r=—=2_
SRRV eV mz, —m,

e Inverted hierarchical mass spectrum
N A
AL = ’Aﬂ/\IZ%(\/1—|—pU2*—|—\/1—pUl*> , (516)
N A
A:|A\A:%<\/1+pU2*—\/1—pU1*>, (5.17)

(5.15)

with ) )
vVi+r—1 m, —m,
p= —, r=—_—. (5.18)
Vi+r+1 m;,
With these results at hand, the most relevant lepton-flavor-violating processes, which we
discuss in turn, can be calculated.

5.3 Lepton-flavor-violating processes

In type A models the RH neutrino masses can be readily at the TeV scale for e ~ 1076,
Since the Yukawa couplings scale with € as well, type A models are—in that sense—on the
same footing as the canonical type-I seesaw model (discussed in Appendix C), i.e. TeV RH
neutrino masses imply tiny Yukawa couplings and thus negligible charged-lepton-flavor-
violating-decay branching ratios. The main difference is that in the canonical case, sizable
charged LFV via fine-tuned cancellations in the effective neutrino mass matrix, while no
such effects are possible in the minimal type A models, since the relevant couplings are
completely determined by light-neutrino mass and mixing parameters.

Type-B models, in contrast, may exhibit naturally large Yukawa couplings even for
TeV-scale RH-neutrino masses (or even lighter masses, depending on the value of the
U(1)g breaking parameter €,). Accordingly, several charged-lepton-flavor-violating tran-
sition rates—induced by the RH neutrinos at the 1-loop level—can in principle reach
observable levels. In what follow the allowed mass and Yukawa-normalization-factor
ranges are studied by considering the following lepton-flavor-violating processes: 1, — l37,
lo — 3lg and p — e conversion in nuclei.
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5.3.1 [, — lgy processes

Among these lepton-flavor-violating processes, presently the p — ey transition is the
most severely constrained. The MEG collaboration recently established an upper bound
of 2.4 x 10712 at the 90% CL [179]. For 7 — ey and 7 — py on the other hand, the bounds
are 3.3 x 107® and 4.4 x 107% at 90% CL [181], respectively. In the limit m;, < my, the
partial decay width for [, — lg7y processes reads [212]

a omd
102474 My,

aad, md
256 72 M,

5 2 2
D(ly — 1g7) = ‘ Lalg ’(/\G’.,)\T)aﬁ’ , (5.19)

where My, is the W mass, ay = ¢g?/4m and the elements of the diagonal matrix G, are
given in Eq. (D.1) in Appendix D. This function is such that in the limit My, > My,
(Gy)aa = MG, /2M3, . The corresponding decay branching ratios are determined from
the partial decay width after normalizing to T, = k7, , with 7, the I, charged lepton
mean lifetime. In the limit r, < 1, using Eq. (5.5) and taking into account the Yukawa
rescaling A — e\ the decay branching ratio in type A models can be written as

a md 1

BR(ly = lgy) ~ ¢
( 57) 40967 ptet The

2
-2y
(AYn A )aﬁ

(5.20)

Thus, assuming O(X,Yx) ~ 1, for which g ~ 10 GeV and taking € = 107%, the value
required for O(TeV) RH neutrino masses, reads BR(u — ey) ~ 1073°. As this behavior
is extensible to other lepton-flavor-violating processes, this shows that in type-A models
lepton-flavor-violating effects are negligibly small.

In type-B models in contrast such lepton-flavor-violating effects may be sizable. Using
expression (5.10) for the Yukawa couplings, neglecting the piece proportional to €y and
taking the limit My, > My, the decay branching ratios can be expressed in terms of the

parameters Aj:
2

~ ~

*

al 81

a  md A\
BRUa = 157) > Top 0zt a1
ot

(5.21)

Since the components of the unitary vector A\ are entirely determined by low-energy
observables (see Eqs. (5.13) and (5.16)) the size of these branching ratios—and that all
the others discussed below—are controlled only by the parameters M and |A;|, thus
implying that for sufficiently light RH neutrino masses and large |A;| these processes may
be measurable.

In order to quantify the size of these lepton-flavor-violating effects we randomly gener-
ate neutrino masses, mixing angles and Dirac and Majorana CP violating phases in their
20 ranges for both normal and inverted hierarchical light neutrino mass spectra [52]. We
also randomly generate the parameters |[A;| and M in the ranges [107°,1] and [10%, 10°]
GeV allowing RH neutrino mass splittings in the range [107%,107%] GeV. With the nu-
merical output we calculate the different lepton-flavor-violating decay branching ratios
from Eq. (5.19), using the full loop function given in the Appendix, Eq. (D.1).

We find that radiative 7 decay rates are always below their current bounds and barely
reach values of 107 for RH neutrino masses around 100-200 GeV (values exceeding the
current bounds are not consistent with the seesaw condition, that for concreteness we
take as mpMpy~' < 1071), we thus focus on the y — ey process. The results for the
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Figure 5.1: Decay branching ratio BR(u — ey) normalized to |M|* for a normal light
neutrino mass spectrum as a function of the common RH neutrino mass (left-hand side
plot). The upper horizontal dashed line indicates the current limit on BR(u — e7y) from
the MEG experiment [179], whereas the lower dotted one marks prospective future ex-
perimental sensitivities [213]. The corresponding bounds on |A| from the present [179]
(upper gray band) and prospective future [213] (lower brown band) experimental searches
are shown in the right handside plot. The widths of the bands are due to the uncertainties
in the neutrino mass matriz parameters. The results for the inverted neutrino spectrum
are very similar and are thus not shown separately.

normal mass spectrum case are displayed in Figure 5.1 as a function of the common
RH neutrino mass, My = M. We observe that BR(u — e7v) can reach the current
experimental limit reported by the MEG experiment [179] for RH neutrino masses My <
0.1 TeV,1 TeV, 10 TeV provided |A| = 2 x 1072, 1071, 1, respectively. The results
for the inverted light neutrino mass hierarchy are very similar and consistent with these
values. Finally we note that the widths of the bands in Figure 5.1 (and similarly for
all the other considered processes below) are solely due to the uncertainties in the light
neutrino mass matrix parameters (mainly 6,3 and the CP violating phases) and can thus
be improved with more precise light neutrino data.

5.3.2 [, — lglgls processes

The decay branching ratios for these processes have been calculated in [212]. The most
constrained process in this case is u~ — eTe~e~ for which the SINDRUM experiment has
placed a bound on the decay branching ratio of 1072 at 90% CL [180]. For 7= — eTe"e™
and 77 — putp~p” the current bounds are 2.7 x 1078 and 2.1 x 1078, respectively [182].
The decay branching ratios for these lepton-flavor-violating reactions are given by [212]

044 m5 1
BR(l; — l51515) = oW T
( o BB /3) 2457673 M{}V F’lf.“otal

1 a3 Lol lol i |2
{2‘§FBOXB+FZ 7 - 25y <FZ P B B)

1

2
45k, ‘F;‘*lﬁ . Féﬂlﬂ‘ +165% Re [(F;“’B + iFggilﬁ) Glflﬂ*}
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Here sy = sinfy, where Oy is the weak mixing angle, and the functions F»ly“lﬁ,
F é"lﬁ and F]l;;ilﬁ are form factors that involve the Yukawa couplings and loop functions
arising from the v, Z penguin and box diagrams that determine the the full process (see
Appendix D for a compilation of these expressions and ref. [212] for their derivation).

Following the same numerical procedure as in the [, — lgy case and using the form
factors given in the Appendix D we evaluate the u™ — ete7e™, 77 — eTe7e™ and
7t — ptp~p~ decay branching ratios for both, the normal and inverted light neutrino
mass spectra. We find that 77 — ete"e™ and 77 — putu~p~ processes are always
below ~ 1079 (due to the constraint enforced by the seesaw condition when [A1] > 1071),
so in Figure 5.2 we only display the results for u* — efe"e”. We observe that the
branching ratio can saturate the current experimental bound for RH neutrino masses
My < 0.1 TeV,1 TeV, 10 TeV provided |A;| = 2 x 1072, 1071, 1, respectively, very
similar to the u — ey case. The results for the inverted light neutrino mass hierarchy
are again very similar and consistent with these values. As can be seen by comparing
Figures 5.1 and 5.2, with the sensitivities of the planned future experiments® this process
has the potential to probe considerably larger values of the RH neutrino masses (compared
with u — e7), reaching RH neutrino mass scales in excess of O(10° GeV) for |Ay| ~ 1.
Finally we note that due to the strong |A;| dependence, values of |A1] below 1073 are
not expected to yield observable rates at near future experimental facilities even for RH
neutrino masses of the order 100 GeV.

5.3.3 i — e conversion in nuclei

Competitive LF'V constraints can also be obtained from searches for y — e conversion
in nuclei. Currently the strongest bounds on BR,. = I'conversion /T capture Were set by the
SINDRUM collaboration from experiments on titanium with BREE) < 4.3 x 10712 [215]
and gold target setting BRU2" < 7 x 10713 [183], both at 90 %CL. The y — e conversion
bounds are expected to be further improved in the future by several orders of magnitude.
According to proposals [188] and [189,190], one can expect a sensitivity of 107'% or even
107! by the PRISM/PRIME experiment.

To get the constraint in the g — e channel from these experiments, one needs to
compute the relevant transition matrix elements in different nuclei. A detailed numerical
calculation has been carried out by [216] and their formula in Eq. (14) are used to calculate
the desired conversion rates. They receive one-loop contributions from photonic penguins
contributing to both effective dipole (Ag) and vector (g(L“‘}d)) couplings, as well as Z
penguins and W box diagrams (these only contribute to g(Lu‘}d)). Using the notation of [216]
we thus have

2
* u d u d n
Fconversion = ZG% ARD + (QQEX} + gé&)v(p) + (Q(L\} + 2929/)‘/( ) ) (523)

3. The proposed Mu3e experiment at PSI aims for a sensitivity of 1071° in its first phase and 10716
in its second phase [214].
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Figure 5.2: Decay branching ratio BR(u~ — e eTe™) normalized to |M|* for normal
light neutrino mass spectrum as a function of common RH neutrino mass (left-hand side
plot). The upper horizontal dashed line indicates the current bound on the p~ — etee™
rate placed by the SINDRUM experiment [180], whereas the lower dotted one illustrates
prospective future experimental sensitivities of the MuS3e experiment [21}]. The corre-
sponding bounds on |A1| from the present [180] (upper gray band) and prospective fu-
ture [214] (lower brown band) experimental searches are shown in the right-hand side
plot. The widths of the bands are due to the uncertainties in the neutrino mass matric
parameters. The results for the inverted neutrino spectrum are very similar and are thus

not shown separately.

Nucleus D[mi 2] V@) [mi 2] 4% [mi 2] [ capture[10%s71]
Tig 0.0864  0.0396 0.0468 2.59
Auty’ 0.189 0.0974 0.146 13.07

Table 5.1: Data taken from Tables I and VIII of [216].

where G is the SM Fermi coupling constant and Ag, g(ﬁ’/d) are found to be (Quq =

2/3,—1/3):
\/§ aw

Ap = 5 oG 5.24
R 8GpME 8n (5.24)
u \/§a2 € € € e

g = SGF—MW2 [(Fg +2F§§x(1)> — 4Qusyy (F)° — F )} ; (5.25)

%%
V20 S . .
9 = ——SGFA% KFg +5 Fggxm) +4Qqsyy (F4° — F! )} : (5.26)
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Following the same numerical procedure as in Sections 5.3.1 and 5.3.2 the resulting
{1t — e conversion branching ratios are evaluated. Since both Ti and Au processes feature
the same flavor structure, the differences between them are entirely determined by the
numerical factors quoted in table 5.1. The Ti parameters entering in the conversion rate
are on average a factor ~ 2.5 smaller than the ones for Au, whereas the capture rates
differ by a factor ~ 5. Accordingly the difference between these branching ratios is a
factor of ~ 2. Due to its more stringent experimental upper bound we thus display only
the results for Au in Figure 5.3 for the case of the normal light-neutrino mass spectrum
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Figure 5.3: Branching ratio BR(u~Auly’ — e~ Auly’ ) normalized to |\ |* as a function of
the common RH neutrino mass for the light neutrino normal mass spectrum (left-hand side
plot). The upper horizontal dashed line indicates the current bound on this process settled
by the SINDRUM experiment [183], whereas the lower one indicates future experimental
sensitivities of the PRISM/PRIME experiment [188-190]. The corresponding bounds on
|A1| from the present [183] (upper gray band) and prospective future [188-190] (lower
brown band) experimental searches are shown in the right-hand side plot. The widths of
the bands are due to the uncertainties in the neutrino mass matrix parameters. The results

for the inverted neutrino spectrum are very similar and are thus not shown separately.

(the differences with the inverted mass spectrum case are again tiny). For My ~ 2.5 TeV
the three pieces in Eq. (5.23) cancel. The dip in Figure 5.3 is due to this cancellation.
From Figure 5.3 it can be seen that the current experimental bound on this process
imposes a constraint on the RH neutrino mass (as a function of |A]), which is roughly
a factor of 2 stronger compared to bounds from p — ey and p — 3e (except for the
region around My ~ 2.5 TeV, as explained above). Furthermore, given the expected
future sensitivities, = Autg’ — e~ Auty’ (and p~Tij; — e~ Tigy) could probe RH neutrino
masses up to O(10% TeV) , far above the values accessible in u — ey and u~ — e~ ete™,
and thus constitutes the primary search channel for such scenarios of heavy RH neutrinos.

5.4 Primordial lepton asymmetries

The issue of primordial lepton asymmetries and the dynamics of the RH neutrinos
are now examined. As already discussed, different R-charge assignments allow to define
two types of models of which type B may yield sizable charged-lepton-flavor-violating
decays. For these effects to take place, RH neutrino masses below 1 TeV as well as
Yukawa couplings of order 1072 or larger are needed. The washouts induced by such
couplings, in that mass range, are so large that any lepton asymmetry generated via the
out-of-equilibrium decays of the RH neutrinos will always yield a baryon asymmetry much
smaller than the observed one [132].*

Either producing a baryon asymmetry consistent with the observed value or not erasing
a preexisting one via the dynamics of the RH neutrino states (in case the RH neutrinos

4. In models with a slightly broken lepton number the washout is tiny, as it is determined by the
amount of lepton-number violation [217]. In the case discussed here since lepton number is broken even
in the U(1)r symmetric phase the washouts are dominated—as usual—by Ng, , inverse decays.
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are still light and the resonant condition My, — My, ~ Iy, is not satisfied) requires
small Yukawa couplings, thus rendering charged-lepton-flavor-violating decay branching
ratios negligibly small. The phenomenological requirements of sizable charged-lepton-
flavor-violating effects and the generation of a B — L asymmetry (or the preservation of
a preexisting one) are therefore mutually exclusive. Since these requirements cover non-
overlapping regions in parameter space they are from that point of view complementary.

The generation of a B— L asymmetry in the type-B models discussed here follows quite
closely the analyzis done in Ref. [218]. Thus, this issue is not discussed here and instead
the constraints on parameter space derived from the condition of not erasing an assumed
preexisting B — L asymmetry are studied. In type-I seesaw models with flavor symmetries
in the lepton sector, as for example in MLFV models, the CP-violating asymmetry in RH-
neutrino decays vanishes in the limit of exact flavor symmetry [219]. However, since in
type-B models the MLFV hypothesis is a consequence of the intrinsic structure of the
model this does not happen.

In order to quantify these effects from now on only the normal hierarchical light
neutrino spectrum is considered. Results for the inverted hierarchical case resemble quite
closely the ones reported here. It is first recalled that the washouts induced by both
RH neutrino states (at T~ M) on any primordial B — L asymmetry are determined by
the set of kinetic equations defined in Eq. (4.50). The matrix C® is determined by the
chemical equilibrium conditions imposed by the reactions that at the relevant temperature
regime (1" ~ M) are in thermal equilibrium [220]. The parameter r,, that determines the
strength of the flavored washouts, is given by

Mq

Rqg =

2
v

where 1, = 2—|\a1]?. 5.27
e Pl (5.27)
The factor m, ~ 1.1 x 107'2 GeV. In the basis in which the RH Majorana neutrino mass
matrix is diagonal Ng, , couple to the lepton doublets with strength A,1, the factor 2 in
Mg is due to this fact. According to the parametrization in Eq. (5.13) the k, parameters
can be written as

2
V3t pUs+V1-pUs,

Thus, after fixing low-energy observables the values of the parameters ., depend only on
M and |Aq]. Figure 5.4 (left-hand side plot) shows an example for the values of k., (the
k. is smaller than s, by less than a factor 10) obtained by enforcing neutrino data to lie
within their 20 experimental ranges [52,221] and fixing for concreteness [A;| = 107°. As
can be seen, if the RH neutrinos are sufficiently light and the preexisting asymmetry is
sufficiently large for a sizable asymmetry in the electron flavor to be kept.

An estimation of the N; o washout effects can easily be done in the one-flavor ap-
proximation by taking C® =1 in Eq. (4.50). The resulting equation can be analytically
integrated yielding the following result for the final baryon asymmetry:

(5.28)

’U2 A12
o= Gl = 2
*

12 ) —35e/8
Ya, = ﬁyngL ¢3S (5.29)
Taking for k = > _, o R values as the ones shown in Figure 5.4, it becomes clear a
primordial asymmetry may always survive the N, related washouts and yield a value
consistent with the observed one.



CHAPTER 5. MLFV REALIZATIONS OF MINIMAL SEESAW 87

10t 106
107
3
10 108
107 10 =
-10
— 10
s >§] 10—11 Lo
- 10—12 L
] . 10—13 | E—
101,, B 10—14,,
102 ‘ ‘ 107 ‘
10° 10* 10° 10° w
MN [GGV} MN [GGV]

Figure 5.4: Left-hand side plot: washout factors for muon and electron lepton flavors as a
function of the common RH neutrino mass in the case of a normal hierarchical spectrum.
Right-hand side plot: |Ya,| as a function of the common RH neutrino mass for several
values of the assumed primordial B — L asymmetry. The solid (black) horizontal line
indicates the observed value of the baryon asymmetry.

A precise treatment, however, requires the inclusion of flavor. In the mass range we are
interested in ([10,10%] GeV) all the standard model Yukawa processes (quarks and lep-
tons) are in thermodynamical equilibrium [220]. Neglecting order one spectator processes,
the kinetic egs. (4.50) consist of three coupled differential equations accounting for the
evolution of the A, , . asymmetries. Defining the asymmetry vector Yo = (Ya., YA, Ya,)
the system of coupled equations can be arranged in a single equation

d v? IM|? A
—Ya = _R% CO YK, (2)2°, (5.30)

where C’gg = \5\011]2032 and the matrix C), at this stage, is given by [220]

. [221 —16 16
(J(‘):m -16 221 —16] . (5.31)
~16 —16 221

By rotating the asymmetry vector in the direction in which C® becomes diagonal (YA =
PYA) the system of equations can be decoupled and thus solved analytically for Y} as in
the unflavored regime:

d 2 )\ 2 N ~ ~
YA = —4U | ]\14‘ Oy YAK1(2)2® with PCUP~! = 0O, (5.32)
z My
The solution reads e N
YAQ -V (;n) 6—37r/£ca/8 7 (533)

where the ¢é,’s (¢ = T,p,e) are the eigenvalues of the matrix C®. The final baryon
asymmetry in this case is therefore given by

12 12 — "(in)  —3mkéq
Vaw=gz 2 Ya =g > (P valle ™™™, (5.34)

J=T,1€ B,a=T,u.e
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In order to illustrate the effects of the Ny, related washouts on a preexisting B — L
asymmetry the light neutrino mixing angles and the atmospheric and solar scales are fixed
to their best fit point values [52,221], § = 7/2, ¢ = 0 and again |A;| = 107°. Assuming
the same primordial A; asymmetries in each flavor, varying them from 10~® — 1072, and
using Eq. (5.34) the resulting YA, asymmetry is calculated. The results are displayed in
Figure 5.4 (right-hand side plot). It can be seen that for the set of parameters chosen a

YA, in the observed range can always be obtained.



CONCLUSION

As it has been argued, several motivations for expecting new physical degrees of free-
dom to be present at certain unknown energy scale exist. Along this thesis quite a few
arguments supporting that idea have been stressed (Chapters 1 and 4), and although it
is true that those statements do not provide definitive conclusions about whether those
degrees of freedom will at some point show up, they do provide strong reasons supporting
that claim. Motivated by these observations, in this thesis several aspects of beyond SM
scalar and fermion sectors have been studied.

In Part I, 2HDMs and 3HDMs were studied as well motivated cases of extended Higgs
sectors. The results derived in each case as well as what they lead to are summarized
below.

The main result of Chapter 2 is the demonstration that the mass spectrum of the
general 2HDM can be studied in a reparametrization-invariant way within the Minkowski-
space formalism [94,95]. The traces of the powers of the mass matrix and its determinant
for all types of vacuum that can exist in the 2HDM were calculated. These results can
now be used to get even more insight into the properties of the general 2HDM. The scalar
propagators can be now written explicitly and can be used, for example, to improve the
thermal one-loop calculations of [97]. In addition with these results it is now possible to
address up to which extend the perturbativity and tree-level unitarity bounds, placed on
the scalar potential, constraint the scalar masses. In the SM, there is a strong correlation
between the value of the quartic coupling constant A and the Higgs boson mass. Therefore,
an upper limit on A\ implies a corresponding upper limit on My. In the 2HDM, due to
a large number of free parameters, the situation is much more complicated. In certain
cases the scalars can be rather heavy without implying violation of the tree-level unitarity
conditions [222]. With an explicit expression for the trace of the mass matrix, this problem
can now be attacked in the most general case within the Minkowski-space technique.
The only piece still missing is a reparametrization-covariant expression for the tree-level
unitarity constraints.

In Chapter 3, a simple yet powerful and very intuitive geometric approach to min-
imization of highly symmetric potentials of non-minimal Higgs sectors was presented.
These scenarios of highly symmetric Higgs potentials often need to be minimized. A
geometric way of tackling the problem was proposed, which, surprisingly, is often much
more efficient than the usual algebraic-based method. By construction, it gives the global
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minimum for any set of free parameters of the potential, thus offering an intuitive under-
standing of how they affect the VEVs. For illustration, this method was applied to the Sy
and Aj-symmetric 3HDMs. Coexistence of minima of different types were discussed, and
comments on the mathematical origin of geometrical CP-violation and on a new symme-
try linking different minima were made. It has been shown that this method is capable
of giving the positions of the global minima with very little calculations; in particular, it
avoids the need to differentiate the potential, solve for stationary points, and check the
positivity of the Hessian. In a single picture, it shows all points which can be the global
minimum for any values of the parameters of the potential. It has been pointed out that
this method constitutes a rather powerful tool in all situations where minimization of
highly symmetric functions is required.

In Part II, the consequences for LFV of the extra U(1)g global factor appearing in
the seesaw kinetic term have been studied. The analysis has been carried out under three
assumptions: (i) The U(1)g symmetry is slightly broken; (i) The leptons as well as the
RH neutrinos carry non-trivial R-charges; (i7¢) RH neutrinos are assumed to be ”light”,
My, < 10% Tev. The results are summarized below.

A quite generic category of models where lepton-flavor-violating effects have large
decay rates has been identified. In particular, it has been shown that given future exper-
imental prospects, there is a high probability of observing rare muon decays if it turns
out that these schemes are indeed realized in nature. This analysis has been completed
with the derivation of further constraints on the parameter space of the corresponding
models. These constraints have been derived by enforcing the RH neutrino dynamics to
not wipe out a preexisting B — L asymmetry (assumed to be generated at en energy scale
much more above the RH neutrino scale) below the value required to address the cosmic
baryon asymmetry puzzle. The findings show that both requirements: sizable LFV and
preserving a B — L in the correct amount so to generate the observed B asymmetry are
mutually exclusive requirements.



APPENDIX A

ALGEBRA OF MATRICES »#* AND II#

In this Appendix the algebra (3#, IT#) formed with the matrices ¥# and I1# introduced
in Chapter 2 is described.

The four-vector of matrices # is introduced via Eq. (2.38). The full 8-by-8 matrices
>* have block-diagonal form and are built from two identical 4-by-4 matrices, which are
also denoted by the same letter >’s and whose properties are described here.

Y9 is just the unit matrix, while the explicit expressions for 3¢ are:

0010 0 0 0 1 10 0 0
1 10001 > |0 0 =10 s |01 0 0
> = 100 0|~ = 0o -1 0 0]’ = 00 -1 0
0100 1 0 0 0 00 0 -1
(A.1)
These matrices satisfy the Clifford algebra condition:
{3039} = 261, (A.2)

The set of ¥’s is not closed under taking commutators. Instead, they can be expressed
via real antisymmetric matrices I

0 1 0 O
' =11°%°,  where II° = _01 8 8 (1) (A.3)
0 0 -1 0

The matrix IT° is the generator of the simultaneous SO(2) rotations between the real and
imaginary parts of the two doublets; it commutes with all X and its square is equal to
—1. The set of matrices Y% and IT* now forms the algebra:

(26, %9] = 269FTIF | [BF 1] = —269F%k ) [ITF, T1Y] = —269FTT* (A.4)

Note that II* do form a closed algebra.
The algebra of 3¢ and IT* is isomorphic to the usual Poincaré algebra of the generators
of boosts and rotations. Using this, the following matrices can be introduced

X = i (£ —4T') (A.5)
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which satisfy the following commutation laws:
(XL X4 = et X, [XE X5 =0. (A.6)

Finally, note that any four-vector a, can be associated with a real symmetric matrix
A = a,>", which has the following properties:

S _ |
detA = (a,a")?, A‘1=Z”aw with $# = (20, —%F). (A7)
“w




APPENDIX B

LTHE Si- AND A,-SYMMETRIC 3SHDM POTENTTALS

In this Appendix, the constraints on the borders of the orbit space of the S ;-symmetric
potential presented in Chapter 3 are derived (see Figure 3.4). Moreover, for completeness,
the Higgs mass spectra for all global minima possible in S4- and As-symmetric 3HDM are
presented.

B.1 The orbit space of the S;-symmetric potential

In Chapter 3, it is claimed that the three-dimensional orbit space of the S;-symmetric
potential, I', must lie inside the truncated pyramid defined by

x,y,z >0, <z+y+z<1, (B.1)

|

meaning that the orbit space sits inside a 3-dimensional pyramid in the (z,y, z)-space.
However, it does not fill the entire pyramid. Below, the constraints on the borders of the
orbit space inside the pyramid, which are represented in Figure 3.4, are presented.
These constraints are the following:
e Points F' and B:
The X Z plane was studied in detail in the toy model introduced in Section 3.3.2.
From 1/4 < x4 z < 1, the minimum and maximum values of = on the X-axis are
respectively zp = 1/4 and g = 1, which are realized with

() (et (i) =) 0)0).
e Points G and A: (

Resulting from 1/4 < x + z < 1, the minimum and maximum values of z on the
Z-axis are respectively xg = 1/4 and 24 = 1, which are realized with

(DGR #(DE)E) e
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B.1. THE ORBIT SPACE OF THE S;-SYMMETRIC POTENTIAL

e Point E:

On the Y-axis z = 0, which in terms of the doublets translates to |¢!¢;| = v®. The
most general case satisfying this condition is realized with VEVs of the form

0 v sin a v sin Be’™
v v cos ae’? vcos fet™ )
With this VEV z can be calculated

1
x = = [cos® avcos® i + (cos o cos B cos(ny — 12) + sin asin B cos n3)* + cos? 3 cos? M)

3
(B.4)
Since it is situated on the Y-axis, z = 0. The following four sets of conditions vanish
x:

cosne =0, cosmy =0, sinasinfcosng = —cosacosf, (B.5)
cosa =0, cosff=0, cosny=0,

cosa =0, cosny =0, sinfcosn; =0,

O

cosng =0, cosf =0, sinacosn;=0.

Substituting any of these sets in y

y = % [cos® asin® 1, + (cos avcos Bsin(ns — 12) + sin a sin 8 sin n3)” + cos? B sin? Ta]

(B.6)
results in y = 1/3, which proves that this point is the only point for which the orbit
space touches the Y-axis. This point is realized at point E with

I i in3
E- < 0 ) ( vsin a ) (vsmﬁe )’ cosacos B+ sinasin fcosng = 0.

w v COS (v v cos [

Point D:
In the Y Z-plane & = 0, which in terms of the doublets translates to Re(¢!¢;) = 0.
The most general case satisfying this condition is realized with VEVs of the form

() () (5)- ©

With this VEV y can be calculated

_’(glgy)  3(viw)?
y - 7"8 - (U12 +U22)2 ) (B8)

which has maximum value y,.. = 3/4 at v; = vy. Therefore, point C in the
Y Z-plane realizes a vertex of the orbit space with

n(1)(2)(2)
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e Point C":
In the XY-plane z = 0, which in terms of the doublets translates to |pl¢;| = v2.
The most general neutral VEV satisfying this condition is realized with

0 0 0
EOIES IO N
With this VEV y can be calculated

y = = (sin® 2 + sin®(nz — o) + sin®n3) . (B.11)

W

Trying to maximize y, one gets the condition sin(2ny) = — sin(2n3) = sin 2(n3 — n2),
which requires 1y = —n3 or 79 = nw/2 £ n3, for ny = nw/2 or 9y = nw/2 + 7/6.
Substituting each of these four conditions in y, leads t0 Y,uq: = 3/4, which is realized

in
0 0 0
e () (W2 ) () oy
e Edge CD;

The border of the orbit space at y = 3/4 represents neutral vacua, therefore the
upper components of the most general VEV satisfying this condition are all zero.
With y = 3/4, the condition x + z = 1/4 which is satisfied in the most general case

hold with
0 0 0
(o) Lo ) (1) o3

With this VEV y can be calculated as

CIm?(elg) 3
Y= r% o (1 + 27’)2 [

2rsin® € + r?sin*(2¢)] | (B.14)

where (vy/v1)* = 2. To maximize y, cos(26) = —r2/2. Substituting this value in y,
results in y = 3/4 for any value of r, which means that = + z = 1/4 for any value of
r. This condition represents the edge C'D.

e Edge AB:
In the X Z-plane y = 0, which in terms of the doublets translates into I]m(gzﬁ(bj) =0.
The most general case satisfying this condition is realized with VEVs of the form

() (o) ()

With this VEV z can be calculated as

3(v102)? + 3(vav3)? + (v3v1)? v + vy +v5 — vivg — v3v — Vg

e CEETE o7 (V2 + 02 + 03)?

(B.15)
For every value of vy, vy and vs, z+2z = 1, which represents the AB edge in Figure 3.4.
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e Edge AD:
In the Y Z-plane x = 0, the most general case satisfying the condition [Re(gzﬁquj) =0

is realized with
0 0 0
V1 iUQ 0 '

With this VEV y can be calculated as

y — 3(U1U2)2 o= ’Uil + U% B U%US (B ]_6)
(012 + vy2)? (12 4+ %2 '

2
Introducing (:j’—f) =12, y and 2z can be rewritten

32 1 4 .2
V= r o (B.17)

T+2)2 77 (A1

Thus, for any value of r, y(r) + z(r) = 1, which represents the border line in the
Y Z-plane, the AD edge.

e Edge BC:
In the XY-plane z = 0, the most general VEV satisfying the condition |¢j¢i| = 0?2

is realized with
0 0 0
ve' vels vels )7
0 0 0
v ve'n? ve™ |-

With this VEV y and x can be calculated as

which can be rotated to

(cos® s + cos®(nz — n2) + cos®n3)
(B.18)
For every value of 1, and 73,  +y = 1, which represents the BC' edge in Figure 3.4.

Yy = (sin2 N2 + sin2(n3 — 7]2) + SiIl2 773) I

Wl
Wl =

B.2 Higgs spectra of the S;-symmetric potential

In the case of Sy-symmetric SHDM analyzed in Chapter 3 the two simple VEV align-
ments were shown to be approximately related to each other by an unexpected symmetry
of the orbit space. The remaining two points also follow this pattern. The alignment
(1,4,0) becomes the global minimum if

A2 <O, ’AQ‘ > ’A3|, A1 >A3, 4A0+A3 >3|A2| (B19)
At this point the minimum condition and the charged Higgs masses read

- 4v/3 M,
T 4Ny + Az — 3|A,|

v

1 1
) mfg} = §|A2|UQ7 Z(!MI — As)v?, (B.20)
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and the neutral Higgs masses are
2 1 2
my, = Z(Al — A3)v®  (double degenerate)

1 1
§(|A2| + A3)0?, §(|A2| + Ap)o?

1

S

The alignment (41, e"™/3, e7"/3) is the global minimum if
Ay < 0, |A2| > |A1| , A3 > Al, 4A0 + A > 3|A2| . (B22)

At this point the minimum condition and the charged Higgs masses read

4v/3M, 1 1
2 0 2 2 2
= =—|A —(|[Ag| = A B.23
T AT A Ay ghalt”s Z (el = A0, (B.23)
and the neutral Higgs masses are

A A As — A
mlzq = (a+b++Va2+b2)v? (double degenerate), a = W% , b= % ,

ANy + Ay — 3|A 2
m2 — 2hotf | 2|v2:—M0. (B.24)
6 V3

Again, the perfect A; ++ A3 symmetry in v? is observed, in the minimum conditions and
in the charged Higgs masses.

B.3 Higgs spectra of the A,-symmetric potential

For completeness the Higgs mass spectrum at all four possible points of global mini-
mum found in Chapter 3 are written.
e The VEV alignment (1,1, 1) remains stable in the presence of non-zero A, if it is
not too large:

A2 <1272 A2 < 2(As 4 |AL))(Ag + [Ay]). (B.25)

The value of v? is the same as in (3.17), while the masses become

1 1 2
m?{} = (§|A1! + EM) v, mj = g(Ao — [As])o?,

[5|A1| 380+ 20 £ /(M| + Ay — 204)2 4 1203

v
12

2
2 _

where the masses m%i are double degenerate. Note that the presence of Ay splits
the charged Higgs masses while it preserves the degeneracy of the neutral Higgses.
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e The vev alignment (1,0,0) is also stable if A4 satisfies

AT < 4(A1+ [As]) (Mg + [Ag]) . (B.26)

The value of v? and the masses of the charged Higgs and the non-degenerate neutral
bosons are the same as in (3.20), while the neutral Higgses from the second and third
doublets get masses

2

my, = UZ A+ Ao+ 2|A3) £ \/(Al —Ny)? + Ai} (double degenerate) .

Note that this Higgs spectrum remains 2HDM-like as it was in the S, case.
The alignment (1,e™,0) for a generic o parametrizes the points around the rim
of the cone. For a given value of A4, the value of a corresponding to the global
minimum is fixed by the relation

A4 Al - A2

sin 2a = — , Cos2a= — . B.27
V(A= Ag)?2+ A V(A — Ag)?2+ A (820

Geometrically, this result means that the global minimum lies on the rim in the
same direction as the vector 7 projected on the plane of the rim. In this case the
minimum condition is
vi= 4v3M =
4Ny + Ay — 3A°

(B.28)

K= —(A1c? + Aos? + Ascasa) = W (A — Ao) + A3 — (A + A2>] >0, (B.29)

N —

and the mass spectrum is

1.~ 1.+
?—Ii = §U2A, ZUQ(A—A:;),

qu = ilﬂ [-(Ag + A) + (1 =+ cos 30[) \/(Al — A2)2 + AZ:| s

1 - 1 -
—UZ(Al + A2 + 2A) , 51}2(/\3 -+ A) s

2
2
9 v - 2M,

= —(4A A —3A) = —.
my, 6( o+ A3 ) \/g

Note that presence of cos3a in one pair of masses is natural and it reflects the
triangle symmetry of the A4 orbit space shown in Figure. 3.4. All other quantities
are rotationally invariant, corresponding to the rotational symmetry of the cone.
In the limit Ay — 0, the minimum is obtained at o — 7/2, A — —A,, and these
spectra turn into the Sy-spectra found in Section 3.3.5. Note also that the three
points on the rim with cos3a = 41 can never be “good minima” because mass
terms are obtained with coefficients +(As + A), which cannot be made positive
simultaneously. These three points lie, in fact, on the three long directrices of the
cone.

(B.30)
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e Finally, in the case of the alignment (&1,e™, e™™) with o = /3, a convenient
notation is introduced

A cosy = A — s
VA= A2+ AT VA= A)2+ A%

(B.31)

siny =

and

A=A +Ns2+Mcosa = = | A + Ay + cos(2a — 7)\/(A1 —Ap)2 + AZ] . (B.32)

N |

Then, the value of v? is

2 \/§M0

vt = e (B.33)
0
the charged Higgs masses are
1 3 1 2
mzli = —52)2 (AQ + §A4> and — Z/UZ (Al + Ag + EAZJL) . (B34)

The neutral Higgs spectrum contains, as usual, h with mass m2 = 2M,/ v/3 and two
pairs of degenerate Higgses with masses

2 v?
"= g

3 -
As+ S(A +Ag) 44

4 \/<A3 _ %(Al L Ag) + 2]\)2 +3[(Ay — Ag)? + A2 sin?(2a — ’y)] |
(B.35)

In the Sy-symmetric case (A4 = 0 and v = 0), the results of Section 3.3.5 is recovered.
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APPENDIX C

STANDARD SEESAW LAGRANGIAN

In this Appendix some well standard results as well as the notation used in Chapter 4
and 5 are presented. It mainly deals with the type-I seesaw Lagrangian but it also covers
some details about early Universe thermodynamics [223].

C.1 Dirac and Majorana neutrinos

In relativistic quantum field theory, a massless fermion is described by a two-component
Weyl spinor field, x1, r, whereas a massive fermion consists of a four-component spinor:

X =Xz + Xr = PLx + PrX, (C.1)

with Pp, r the chirality projector operators obeying P27 r=PrLr, PLPr = PrPr, PL+Pr =
1, and y, for the moment, a four-component Dirac fermion. Accordingly, the mass term
has the form

mxx = m(xr + xr)(xr + xXr) = m(XzXr + XBXL) ; (C.2)

which means the mass term couples the LH and RH components of the fermion field,
and therefore a massive field must have both components and couple fields of opposite
chirality.

In the Dirac case the LH and RH components are independent. The field defined in
that way involves four independent degrees of freedom: xr, xr, X, X% With

X© = Cx" =X, (C.3)

X = xX'C, (C.4)
and where the particle-antiparticle conjugation operator C' is defined according to
C =iy, (0'5)
and satisfies the following relations:
ct=c"=-c, C?=-1, Cry,C71 = —fyf. (C.6)
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From Eq. (C.3), (C.4), (C.6) and from the anti-commutation properties of the vy matrices,
it can be seen that the C' operator produces chirality flips when acting on fermion fields,
namely

(xr.r)® = (X)rz = PrrX"
X°Lr = X°PLr (C.7)
In the Majorana case, the Weyl spinors are subject to the constraint xyg = (x1)¢ =
(x°)r ans so Eq. (C.1) becomes

X =X+ 1)r =Xz +1(xe)", (C.8)
where 1 = € is a phase factor with an arbitrary phase o. Thus, for a C-conjugate field
x“ = n"x holds. Consequently, for Majorana fermions with x§  given by X7 p = CX:£7 R
the mass term in (C.2) turns out to have the form

1 — T c brd 1 Tt * T
=L = 5hm (o) + X pmxg] + Hee. = S(mX PROX™ —mx" CPrx). (C.9)

Note that charged particles can only have a Dirac mass term. The Majorana mass term
is not invariant under U(1) transformations and thus breaks U(1) charges.

Few words are in order before proceeding with the seesaw Lagrangian. If neutrinos
were to be Dirac particles, of course their mass terms must have Dirac form i.e. must have
a structure given by (C.2). This observation, coupled with their gauge quantum numbers,
requires an extension of the SM fermion sector to include RH neutrinos Nr. Once this is
done, the Yukawa couplings are determined by the following Lagrangian

— Ly =, ANgo +He.. (C.10)
This means that after EWSB the neutrino mass matrix will have the form:
m,/l.j = U>\7Zj . (Cll)

Consistency with data (see Table (4.1)) then requires the largest Yukawa coupling to be
of order O(A) ~ 107", On the other hand, the RH neutrinos being SM singlets allow
the introduction of a Majorana mass term, that if added completely changes the resulting
picture, as it is now discussed in turn.

C.2 RH neutrinos

In the basis where the RH neutrinos mass matrix as well as the charged lepton Yukawa
matrix are diagonal, the most general Lagrangian, once RH neutrinos are included, reads

— Ly = U X\*Npo + gNgcY;NR +He., (C.12)

where the RH Majorana mass matrix has been written as My = ,LLYN. With the SM
scalar doublet parametrized as !

1 Gt
¢ = V2 ( (R® +4iG° +v) /2 ) ’ (C13)

1. In order to follow the usual notation used in seesaw contexts, from now on the notation adopted in
Chapter 1 (Egs. (1.17) and (1.45)) is changed.
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and with ¢ = im¢*, the different pieces of the Lagrangian in C.12 read

— Em = ﬁLmD*NR + NRmDTVL + %NRCYNNQ + %NgCYN*NR, (014)
A _
Eho = W(EL/\*NR + NRATVL), (C15)
_ZGO — y* AT T
EGO = \/§ (VL)\ NR — NR)‘ VL)7 (C16)
G~ Gt —
Loe = EZL/\*NR + ENR,\TJL. (C.17)

In order to facilitate the following calculation, in Eq. (C.14) the full Lagrangian, including
the Hermitian conjugate part, has been written, and as usual the Dirac mass matrix has
been defined as mp = vA where (v/2)~! factor has been absorbed in the VEV so now
v ~ 174 GeV. The Lagrangian in (C.14) can be expressed in terms of the flavor vector
L L = (VL, Ng)

- ‘Cm = NRmDTI/L + gNROYNNQ + H.c.

1 1 e
= ENRmDTVL + éNRmDTVL + g(CNg)TOYNCNE + H.c.
1 —— ]_ — — A —
- §(CN£)TCmDTI/L v §y§cmDCN§ + g(CNﬁ)TCYNCNﬁ +He.
1 1 .
= S(NR)Cmp"vy + Sv[ Cmp NG, + g(Ng)TCYNNg + He.

1 03x3 mp
= —yT ~ | ¥+ H.c.
2 LC <mDT ILLYN L + C

= UIOMNY, +He.. (C.18)
In terms of the mass eigenstates defined as

XL =W, (C.19)

with W a 6 x 6 unitary matrix, the Lagrangian in (C.18) can be recasted according to
]. T ~
- Em = §CXLMNXL —+ H.c.

6
1 x
) Z M (XgiCXLi + XTL@'CTXL")
i=1
1S
= 3 Z My, (YEiXLi + YLﬂoCT%%XL)
i=1

1 6
- 3 > my (XX +Xexg,) - (C.20)

=1
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With the aid of Eq. (C.8) finally the Lagrangian in (C.20) can be written in a quite
compact form:

6
1 —
i=1
with x; = xz, + Xz, The 6 x 6 neutral mass matrix My in the limit

—&=mp(¥y)' <1, (C.22)

can be perturbatively diagonalized via the mixing matrix given by

W= ( "Z;? < ) , (C.23)

I]3><3

where l343 is the 3 x 3 identity matrix. From (C.19) and (C.23), the massive Majorana
fields can therefore be regarded as a superposition of EW doublets and singlets namely

6
X = U+ Y &V, i=1,23 (C.24)
j=4
3
X = =Y &V, +¥,,  i=456
j=1

The perturbative block-diagonalization of the mass matrix leads to

_ 17 meg 0
L, = 2XLC< 0 Py )XL + H.c., (C.25)

with the effective neutrino mass matrix given by

v YN_l T Y1\71
mlg = —mp p mp = — Z “mp, @ mp,,, (C.26)

a=1,2,3

where in the last equality the mass matrix has been written as the outer product of
the parameter space vectors m}, = (mp,,,mp,,,Mp,,). The diagonalization of this
mass matrix through the leptonic mixing matrix U gives rise to the LH neutrino mass

spectrum:

m* = U 'm%U . (C.27)
Splitting the mixing matrix W according to
I’VL)?,XG ) ( “3x3 "6* )
wo (| _ 3 ) C.28
( (vvh*)3x6 65;3 "3x3 ( )

where W, and Wg account for the doublet and singlet components of the massive Majo-
rana fields, the LH and RH fields can be expressed as

v, = Wixr=WLPpx, (C.29)
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N]% = WR*XL = WR*X% = N = WRPRX~ (C.SO)

In terms of the expressions in (C.29) and (C.30), the Lagrangian in (C.15), (C.16) and
(C.17) can be rewritten as follows:

hO
Ly = _EY(WLT)\*WRPR —i—WRT)\TWLPL)X, (C31)
iGO— Ty* IBVA
ﬁgo = —EX(WL A WRPR — WR A WLPL)X; (032)
G\, Gy
Lot = El/\ WgrPrx + EXWR AN Prl. (C33)

Due to the field rotation in (C.29) the gauge boson interactions in (?7) and (?7?) get
modified as well. The resulting Lagrangians read:

Lys = —% (VWL PLIW} + I W P W) (C.34)
,CZ = - J Y’VMWLTWLPLXZM. (035)
cos Oy

C.3 Thermodynamic of the early Universe

In this Appendix the conventions and the relevant equations that have been used in
Section 4.5.1 and in Chapter 5 for the discussion of leptogenesis are presented. Using
Maxwell-Boltzmann distribution functions for massless (relativistic) as well as massive
species, and expressing the temperature dependence with the dimensionless temperature
variable z = My, /T, the equilibrium number densities are namely:

MR, Ko(2) 2M3 1
LT = (C.36)

z w2 23

B
nN(;I (2) = -
where K5(z) is the modified Bessel function of the second type. With this approximation
the energy density p(z) and pressure p(z) become

?)Mj{,R M ]‘{,R
where g, = > ._.y species 91 18 the number of SM relativistic degrees of freedom (118, for
T > 300 GeV). Accordingly, the expansion rate of the Universe and entropy density can
be written as

4M ]3\7R
_ 1

2
= fRe e 1

H(z) =

l ., C.38
™ MPlanck 22, 237‘-2 g ( )

with the Planck mass given by Mpianac = 1.22 x 10' GeV. Using the expression for the
entropy density in (C.38), the number-density-to-entropy ratio for both non-relativistic
as well as relativistic species reads

B
”Nil B 22 Ky(2)

s(z)  4g.

1

V= —.
) / 29*

(C.39)

YE () =
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Finally, the decay reaction density, that is to say the number of reactions per unit volume
and per unit time, is given by

1 MR, Ki(z)

Yp(z) = T 2 >

ml ) (040)

with K (z) the Bessel function of first type and the parameter 7, defined according to

M
g = —L (AT (C.41)

02



APPENDIX D

LFORMULAS AND FEYNMAN DIAGRAMS FOR LFV
PROCESSES

In this Appendix the formulas used for the calculation of the charged lepton-flavor-
violating decays discussed in Sections 5.3.1 and 5.3.2 are summarized. The results pre-
sented here were extracted from Ref. [212] and adapted to our notation. In what follows
the parameters r, are defined according to r, = M3, /M]%,Ra.

The Feynman diagrams contributing to the [, — [z process in the type-1 seesaw
model are illustrated in Figure D.1. The various contributions to the [, — l3lglg process
can be divided in two classes: penguin and box diagrams. The former proceeding via
either v or Z penguins are illustrated in Figures D.1 and D.2 (taking into account that
two external fermion lines should be attached to the corresponding vector boson line). The
latter are illustrated in Figure D.3. For u — e conversion in nuclei the relevant Feynman
diagrams are shown in Figure D.4, where the calculation involves in addition extra nuclear
form factors (see Chapter 5 and [216] for precise details).

The v penguin contribution can be split in two pieces corresponding to the photon
being either on-shell or off-shell. For the on-shell piece, the one that determines the
lo — lg7y process, the following functions are used

N 2
nylﬁ — E(’\'G'Y')‘T)aﬁ’ (D.1)
ny(ra) = ﬁ (2 + 37“@ — 6TZ + TZ + 6lra log Ta) ) (D2)

whereas for the off-shell photon piece

lal 2
B = e (A Fy A1) 5 (D.3)
ra

B =y

[7— 8rq — 1172 4+ 1273 — (2 — 20r, + 2477) log 1] - (D.4)
The Z penguin contribution can be split in two parts, namely
Fte = plete) 4 plate@) (D.5)
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I/ \
1 1
lo Ng, lg o Ng, lg

Figure D.1:

Feynman diagrams contributing to l, — lgy, and, with external fermion

legs attached to the « line, to l, — lglgls processes (see Figure D.3) in the type-I seesaw

model.

where the first piece can be written as

2 . .
R0~ 2 (B 6) ]

57,
FZ(TCL) == m(l —Ta+10gTa),
G(Zl)(ra) = _1 iar logra,

while the second contribution according to

FlalB (2) .

Z =

4 - ~ ~ ~
. [,\- (G‘Z"’) +G(Z3)+G(z4)+Hz> -/\TLﬁ,
G (o) = AT N)wGZY (ram)  with A =2,3.4,

I—m —r
Gy S 1 “]
7 (ra,7p) e =) \T=p, 087e = 7=, 1087 |
3 Tal'y
GY (ra,mp) = mlogra,
4 Tal'd
G(Z)(T'a, Tb) = m log Tp,

Hy(rg,m) = (AT X)), Hz(ra,m),

/Tals rp(1 — 4ry) ro(1 — 4ry)
H as - — 1 .=
2(7a,7s) A(ry —rp) 1—r, © 1—mr

log rb] .

(D.9)
(D.10)
(D.11)
(D.12)
(D.13)
(D.14)

(D.15)

Note that due to the constraint implied by the SU(3)s, 1n, flavor symmetry the off-

diagonal elements of the matrices @(ZA)(TQ, ) and H (ZA)(TQ, 7p) vanish.
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lo NRa lﬁ lo NRa l@ lo w* l/g

Figure D.2:  Z penguin Feynman diagrams contributing to l, — lglglg processes, once

fermion external lines are attached to the Z boson line (see Figure D.3 ).

The box diagram contributions can be split in three parts as follows

la 315 o la 315
Box Box

A=1,2,3

The first part reads

2 N
Flaglﬁ(l) - E |:A : F]gg( ) AT] )

Box ij
Ja (rq) = _ e (1 =rq+r4logry) .
Box (1 _ Ta)
The second is given by
lo31 4
F - 4 o (R H) ]
Fox(ras 1) (B) = A Fid(rams) Ay with  A=2,3,
@) rary  [1—4ra(2—7s) L= 42 — 1)
B (ra,ms) = toga - !
BOX(T T‘b) 4(7“a — rb) [ (1 — TQ)Q ogr (1 — Tb)2 0g Ty
Ta —Tp
7—4r, ;
)

(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)
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Figure D.3:  Bozx ((a)-(d)) and v and Z penguins ((e)) Feynman diagrams contributing
to l, — lglglg processes in the type-I seesaw model.

u, d u,d u,d do u,d u,d dy u,d
d,u d,u Z,y
’ (a) (b) (c)
>.< oW w- W W W W
i e
K Ng, R Ng, e K Ng, ¢

" w- €

Figure D.4: Box and Z and v penguins Feynman diagrams contributing to p to e con-
version in the type-1 seesaw model.

Ty

a=n)y (1 —ry+rylogr,)| ,

(D.22)

Féi)x(ra, Tp) = 21Ty [ (1 =71y +logry) +

(1 —1,)?

where in Féfl(ra,rb)(ﬁ) no summation over the indices a,b is performed. Finally, the

third term in (D.16) can be written as

Fil () = = [\ Gaun(3) V] (D.23
éBox(raa 7ab)(ﬁ) = Aﬁa GBox(raa 7ab) Ajg’ba (D24)
Con(1a.1) = _;/—737;; {ra il _(12ib(7~1); 2ra)] gy, 7ol _(127:1(7“11,); 2] 1o,

(Ta — 1)
+ A= =10 (1+ va“b)] ; (D.25)

where, again, in ég‘(&(r&, 75)(f) no summation over the indices a and b is performed.

For completeness the Feynman diagrams for ;1 — e conversion in nuclei are shown as
well. The process proceeds also via Z and v penguins and box diagrams as displayed in
Figure D.4.
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