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Abstract

This thesis introduces a new data structure, the Implicit Real Vector Automa-
ton (IRVA), suited for representing symbolically polyhedra, i.e., regions of
n-dimensional space defined by finite Boolean combinations of linear inequali-
ties. IRVA can represent exactly arbitrary convex and non-convex polyhedra,
including features such as open and closed boundaries, unconnected parts, and
non-manifold components. In addition, they provide efficient procedures for
deciding whether a point belongs to a given polyhedron, and determining the
polyhedron component (vertex, edge, facet, . . . ) that contains a point.

An advantage of IRVA is that they can easily be minimized into a canonical
form, which leads to a simple and efficient test for equality between represented
polyhedra. Elementary IRVA representing primitive polyhedra, such as linear
(in)equations and vector spaces are easily constructed and algorithms have
been developed for computing Boolean combinations as well as projections of
polyhedra represented by IRVA.

These algorithms are illustrated by complete examples of executions as a
support for the comprehension of their mechanisms.

Another contribution is a first prototype implementation of an IRVA li-
brary, containing functions for building and manipulating arbitrary n-dimen-
sional polyhedra. We reinforce the presentation of the implementation by
discussing some design choices. Such choices include the use of exact arith-
metic.

Finally, experimental results are presented and discussed. These experi-
ments pave the way to future adaptations and improvements.
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Résumé

Cette thèse introduit une nouvelle structure de donnée, appelée automate im-
plicite à vecteurs de réels, ou Implicit Real Vector Automaton (IRVA), destinée
à représenter symboliquement des polyèdres, c’est-à-dire des ensembles définis
par une combinaison booléenne d’un nombre fini de contraintes linéaires dans
un espace à n dimensions.

Les IRVA sont capables de représenter avec exactitude des polyèdres quel-
conques aussi bien convexes que concaves et permettent, entre autres carac-
téristiques, de représenter des faces ouvertes ou fermées, de présenter des par-
ties non connectées, etc.

De plus, ils disposent de méthodes efficaces pour décider de l’appartenance
ou non d’un point donné à un polyèdre, ainsi que pour désigner dans quelle
composante du polyèdre (parmi les sommets, les arrêtes, les faces, . . . ) le point
est situé.

Un avantage des IRVA est qu’ils peuvent facilement être réduits à une forme
canonique, ce qui permet de tester l’égalité de deux polyèdres représentés par
des IRVA de façon très efficace.

Des IRVA élémentaires représentant des polyèdres primitifs, tels que des
contraintes linéaires ou des espaces vectoriels, sont faciles à construire. Des
algorithmes ont été développés pour calculer des combinaisons booléennes et
des projections de polyèdres représentés par des IRVA.

Ces algorithmes sont illustrés au travers d’exemples d’exécutions complètes
afin cerner leurs mécanismes avec davantage de facilité.

Une autre contribution est le développement d’une librairie prototype four-
nissant des fonctions de construction et de manipulation de polyèdres quelcon-
ques dans un espace à n dimensions.

La présentation de ce prototype est accompagnée d’une discussion des
choix qui ont été opérés lors de son développement, tels que l’utilisation de
représentations de nombres entiers de taille arbitraire.

Enfin, des résultats expérimentaux sont présentés et analysés. Ceux-ci
ouvrent la voie à de futurs travaux et de futures améliorations.
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Chapter 1

Introduction

The representation and the study of geometric objects have played an impor-
tant role in scientific and technical history.

Polyhedra are one of the most encountered class of geometric figures. Yet
a polyhedron does not have the same properties for everyone, depending on
the context of application. Frequent constraints imposed on polyhedra are to
have a non-zero volume, a bounded volume, or topologically closed bound-
aries. Such restrictions on polyhedra forbid the definition of a theory closed
under Boolean operations and call for complex methods in order to regularize
polyhedra obtained as the result of combination operations [Req80, Sha02].

Nef-polyhedra [Nef78] is a class of geometric entities that corresponds to
regions of n-dimensional space delimited by finitely many planar boundaries.
Formally, it corresponds to the class of sets definable by a finite Boolean com-
bination of linear constraints. Such polyhedra enjoy interesting properties.
Indeed, they can be non convex, have zero volume or present disjoint parts.
Moreover, this definition is closed under Boolean operations. Nef-polyhedra
are the class of polyhedra considered in this work.

Since polyhedra are defined over a dense domain, we can immediately ex-
clude representations that explicitly enumerate all of their points.

A good symbolic representation should be expressive enough to represent
effectively arbitrary polyhedra, and should make it possible to carry out ef-
ficiently operations such as computing Boolean combinations or projection of
polyhedra, to decide whether a point belongs or not to a polyhedra and to
decide in which part of the polyhedron the point is located.

Designing such a structure can be beneficial to a large variety of areas of
computer science, such as Computer-Aided Design, calculation of a trajectory
of a mobile object that avoids obstacles into an environment, physical simula-
tion systems, etc.

Another, more historical, motivation behind developing such a data struc-
ture comes from computer-aided verification. The aim of verification of pro-
grams is to provide automated techniques for verifying that specified problem-
atic situations do not occur during any execution of a program or system. In
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2 Chapter 1. Introduction

model checking, the system to be verified is transposed into an abstract model
[CGP00], and its reachable state space can be represented by a state machine,
in which states are tuples containing a control location of the program as well
as a value for each of its variables.

The state space of such system are thus sets of vectors in which one has to
verify that some forbidden states do not occur. Such a test is called a safety
property. One can explore the state space explicitly, by starting in an initial
state and by following every transition [Wes78].

This approach is only possible when the number of states is finite, for exam-
ple when the program uses only bounded integer variables, and small enough
for the exploration to finish in a reasonable amount of time. When dealing
with systems of impractical size, or when dealing with hybrid systems, i.e.
systems adding real variables to simulate the flow of time [HRP94, AKNS95,
BMP99, KLSV10] or simply when unbounded variables are used, one has to
represent the set of states symbolically [McM93].

A symbolic representation of the state space of programs that use inte-
ger and real variables on which linear operations are performed can be based
upon n-dimensional polyhedra where n is the number of variables. In order
to perform symbolic state space exploration using such symbolic representa-
tions, one must be able to easily manipulate the represented polyhedra. Such
manipulations consists in tests of inclusion or emptiness, and basic operations
such as union, intersection, complement, Cartesian product and projection.

Over the years, different data structures have been defined to create and
manipulate polyhedra. Among others, we can name Boundary-Representations
[Edm60], Constructive Solid Geometry [Hof89, Req80], Cell Decompositions
[Mau91] and Selective Nef Complexes [BN88, GHH+03].

While each representation have its strengths and weaknesses, none per-
fectly fits our context of application, sometimes because they are restricted to
objects with non zero volume, or forbid the definition of an efficient test for
point membership. Another limitation can be a difficulty to be reduced to a
canonical form, resulting in a data structure on which testing equality is diffi-
cult. Finally some data structures are inadequate for our application because
they are restricted at representing only two or three dimensional polyhedra
[Hof89, GHH+03, Mau91].

A different approach for representing polyhedra consists in the Real Vector
Automaton (RVA) [BBR97, BJW05]. A RVA is essentially a Büchi automaton
[Büc62] used for representing sets of real vectors by employing an encoding
scheme that maps those vectors into infinite words over a finite alphabet.

The advantages of RVA are that computing Boolean combinations of poly-
hedra reduces to applying similar operations on the languages recognized by
the automata, for which simple algorithms are known. Also, RVA are an in-
teresting choice for testing point membership, since they reduce to generating
an encoding for the point coordinates and checking whether the encoding is
accepted or not by the RVA.
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Another good property of RVA is that they can easily be minimized into a
canonical form [Löd01]. By being able to minimize RVA even for intermediate
results, one ensures that the number of states does not depend on history of the
creation of polyhedra. Furthermore, comparing represented polyhedra reduces
to a syntactic comparison on the representing RVA.

Unfortunately, RVA are inefficient at representing polyhedra characterized
by linear constraints with large coefficients since their size grows linearly with
the value of those coefficients. Recent studies of RVA have brought to light
valuable insight about the connection between the internal organization of RVA
and the structure of their represented polyhedron [BBL09, BBB10, Bru11].
In this work, we introduce a new data structure, the Implicit Real Vector
Automaton (IRVA) which keeps the good aspects of RVA by operating on
similar principles, but replaces some internal structures of RVA by introducing
the concept of implicit states.

The IRVA data structure enjoys interesting properties. It can straightfor-
wardly represent linear constraints. A general product algorithm has been de-
veloped for applying Boolean combinations of represented polyhedron. More-
over, IRVA admits an easily computable canonical which reduces the test of
equality of represented polyhedron to direct syntactic comparison. Another
advantage of this canonical form is that it corresponds to a minimal size for
the IRVA. A projection algorithm has also been developed in order to compute
the projection of the represented polyhedron.

Earlier versions of the work done in this thesis have been published [BBD10,
BBD12].

1.1 Outline of This Work
Chapter 2 : We present the basic concepts used in the rest of this work.

First we present some algebraic notions by introducing set notations,
defining linear constraints, affine and vector spaces and the concept of
conical set. Then, with topology, we explain notions like neighborhood of
points. And finally, we present language theory and recall the definitions
of symbols and alphabets, words, languages and finite automata over
finite and infinite words.

Chapter 3 : We define polyhedra, polyhedral components, pyramids and lo-
cal pyramids and generalize the concept of polyhedron to polyhedral
partitions.

Chapter 4 : This chapter begins with a survey of other works that propose
data structures to represent polyhedra. We compare them with respect
to a set of desirable operations on polyhedra. We then introduce the RVA
data structure, along with the insights recently gained of their organiza-
tion to represent polyhedra. We connect this organization to polyhedral
components defined in Chapter 3.
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Chapter 5 : We define the IRVA data structure. First, with an abstract and
simple data structure. It is based on the same principles than RVA. We
show how this abstract structure can be organized in order to opera-
tionally be able to manipulate it by the use of the test of inclusion of a
point, the point decision problem as a case study. We show the design
choices that enable to keep the fundamental mechanics of RVA on this
abstract data structure. We then introduce the IRVA data structure by
first defining how the previously made choices translates concretely in
IRVA. Then, a formal and complete definition of the syntax of the struc-
ture is given. We enumerate a set of syntactic constraints that IRVA
must respect in order to be syntacticly valid. After those considerations,
we give a semantics to the data structure with the point decision proce-
dure. We then give a property that each IRVA must satisfy in order to
be well formed. The chapter ends with a complete example of creation
of an instance of the data structure for a particular polyhedron.

Chapter 6 : We present the canonical form of IRVA. We motivate our need
for such canonical form and make some observations about the reasons
why two IRVA representing the same polyhedron can take different forms.
We then propose an algorithm that computes the canonical form of any
IRVA. Additionally we present a complete and detailed execution of the
algorithm on a given example.

Chapter 7 : This chapter presents a technique to combine two IRVA in order
to perform some combination operation like, for example, the union, in-
tersection or difference, of their represented polyhedra. First, we explain
how elementary IRVA can be constructed from linear constraints or vec-
tor spaces. Then, we present the concepts of product of two IRVA and
color function as the general scheme to define any combination operation.
We then propose an algorithm to compute the product of two IRVA. Fi-
nally, an execution of this algorithm on two given IRVA is detailed as an
example.

Chapter 8 : We define two different type of projections. First, we propose
an algorithm to compute a lower dimensional IRVA from an input IRVA
as an image by a particular case of projection, the aligned projection.
We then see a complete example with an execution of the algorithm on
a given IRVA. Second, we analyze our algorithm to see how it could be
adapted to compute images of the input IRVA by a generalized notion
of projection.

Chapter 9 : A prototype implementation of the IRVA data structure and
its manipulation algorithms has been developed. We first present the
features of this library. Then, we detail and discuss design choices made
in this implementation. We then explain how the data structure itself is
implemented, and what data types and organization it uses.
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We identify a set of primitive tools that are used in multiple parts of
the program and present how and when they are used, in order to point
out which procedures are critical in order for a future package to be
practical. After that, we present additional secondary data structures
used in the implementation of the procedures presented by algorithms
inside this work.
Then, we show the measured results based on practical tests. We describe
some case studies in order to give meaning to the measures. We propose
an analysis of those results.





Chapter 2

Basic Notions

2.1 Algebra
Although we assume that the reader has knowledge in basic set theory, we will
present notations for sets of numbers used in this work.

The symbols N,Z,Q and R denote, respectively, the sets of natural num-
bers, integer numbers, rational numbers and real numbers. Also, we use the
notation S#x with S ∈ {N,Z,Q,R}, # ∈ {≤, <,=, 6=, >,≥} and x ∈ R to rep-
resent {x′ ∈ S | x′#x}. For example, the set of strictly negative real numbers
is noted R<0.

A point in the Euclidean n−dimensional space Rn is characterized by a
vector with n components.

If ~v = (v1, v2, . . . , vn) ∈ Rn is a point, then ~v[i] denotes its ith component
vi.

In contexts where the dimension n is clearly defined, we use the symbol ~0
for (0, 0, . . . , 0︸ ︷︷ ︸

n

).

Definition 2.1 Let ~p = (p1, p2, . . . , pn) be a point of Rn. The aligned pro-
jection of ~p onto the coordinate component different from i, or in short w.r.t.
i, noted ~p|6=i, is the point

~p|6=i = (p1, . . . , pi−1, pi+1, . . . , pn).

�

Definition 2.2 Let n ∈ N be a dimension. A linear constraint over points
~x ∈ Rn is a constraint of the form

~a · ~x#b

with ~a ∈ Zn, b ∈ Z and # ∈ {<,≤,=,≥, >}. �

When a linear constraint is of the form ~a ·~x = b, we call it a linear equality.
Otherwise, it is a linear inequality.

7
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2.1.1 Affine and Vector Spaces
Definition 2.3 A vector space X over Rn is a set of vectors closed under
arbitrary finite linear combinations or, equivalently, the set of all linear com-
binations of a given finite set of vectors. �

A basis of the vector space X is a minimal set of vectors V ′ ⊆ V such that
the coordinates of every point of Rn can be expressed as a linear combination
of vectors of V ′.

Definition 2.4 A set S ∈ Rn is a vector subspace of a vector space X if it
is a vector space that is a subset of X. �

Definition 2.5 The set of the solutions of a finite conjunction of linear equal-
ities is an affine space. �

Property 2.6 Let n ∈ N be a dimension, a set A ⊆ Rn is an affine space iff
there exist a vector space S ⊆ Rn and a vector ~v ∈ Rn such that

A = S + ~v.

Sometimes, it can be useful to find the smallest affine space that contains a
particular set S. For example, for a segment [AB], with A 6= B, it corresponds
to the (infinite) line passing by A and B. Such a superset is called the affine
closure of S.

Definition 2.7 Let n ∈ N be a dimension. The affine closure of a set
S ⊆ Rn, noted aff(S), is the intersection of all affine spaces that contain S. �

At some point of this work, we will study sets that preserve their shapes
at any zoom factor around some points.

Definition 2.8 Let n ∈ N0 be a dimension. A set S ∈ Rn is conical with
respect to the apex ~v ∈ Rn if and only if for all ~x ∈ Rn and λ ∈ R>0, we have :

~x ∈ S ⇔ ~v + λ(~x− ~v) ∈ S.

�

A cone can have more than one apex. We have the following property :

Property 2.9 The set of apexes of a cone forms an affine space.

By extension, if a cone has ~0 for apex, the set of its apexes is a vector
space.
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2.2 Topology
Topology is an important tool for the study of local properties of shapes of
sets. In this work, we use Euclidean distance as base metric.

Definition 2.10 Let n ∈ N be a dimension and ~x,~y ∈ Rn be two points. The
Euclidean distance between ~x and ~y is :

d(~x, ~y) =
√√√√ n∑
i=1

(~x[i]− ~y[i])2.

�

We are now ready to define the notion of neighborhood of a point of space.
Intuitively, any open region that contains the point is a neighborhood of this
point.

In this work, we introduce a particular type of neighborhood for a point :
the cubic neighborhood. It consists in a cubic region centered on the point and
characterized only by this point and a size. We obtain the following definition :

Definition 2.11 Let ~v be a point in Rn and ε ∈ R>0. The cubic neighbor-
hood of size ε of ~v is the set

Nε(~v) =
(
~v[1]− ε

2 , ~v[1] + ε

2

)
×
(
~v[2]− ε

2 , ~v[2] + ε

2

)
×· · ·×

(
~v[n]− ε

2 , ~v[n] + ε

2

)
.

�

The notation (a, b) refers to the open interval {x | a < x < b}.
A point is a boundary of a set S iff it is arbitrarily close to points in S as

well as points not in S. Formally we have the following definition :

Definition 2.12 The boundary of a set S of points of Rn, is the set

{~v | (∃~v′, ~v′′ ∈ Nε(~v))(~v′ ∈ S ∧ ~v′′ /∈ S))}

with ε ∈ R>0. �
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2.3 Words, Languages and Automata

2.3.1 Words
A word is a sequence of symbols taken out of a finite set, called an alphabet.
A word can either be finite or infinite. The length of a finite word, denoted by
|w|, is the number of symbols it contains.

Definition 2.13 A finite word of length k over an alphabet Σ is a finite
sequence σ1σ2 . . . σk such that for all i ∈ {1, 2, . . . , k}, σi ∈ Σ. �

Definition 2.14 An infinite word over an alphabet Σ is an infinite sequence

σ0σ1 . . .

where for all i ∈ N we have σi ∈ Σ. �

A word composed of no symbols at all it is said to be empty and is denoted
by ε.

Let w1 be a finite word and w2 be a finite or infinite word. The concate-
nation of w1 and w2, in this order, is denoted by w1w2.

2.3.2 Languages
Sets of words are called languages. We have the following definition :

Definition 2.15 A finite (infinite) language over an alphabet Σ is a finite
(infinite) set of words, each defined over Σ. �

When a language is finite, it can be represented just by enumerating its
content. With an infinite one, this is not possible. Let us introduce a represen-
tation of languages that enables the definition of all finite languages and some
infinite languages. The family of those languages is called regular languages.

A regular language can be

• empty,

• a single word composed of one symbol taken out of the alphabet,

• a combination of two other languages.

Languages can be combined by union, difference, concatenation or Kleene
closure.

Definition 2.16 The union of a language L1 and a language L2 is the lan-
guage :

L1 ∪ L2 = {w | w ∈ L1 ∨ w ∈ L2}.
�
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Definition 2.17 The difference of finite-word language L1 and a language
L2 is the language :

L1 \ L2 = {w | w ∈ L1 ∧ w /∈ L2}.

�

Definition 2.18 The concatenation of a language of finite words L1 and a
language L2 is the language :

L1L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}.

�

The Kleene closure of a finite non-empty language L is the infinite language
L∗ that contains the empty word and all possible concatenations of words of
L. More formally, we have :

Definition 2.19 The Kleene closure of a finite language L of finite words
is the language L∗ such that :

L∗ = {w | (∃k ∈ N)(∃w1, w2, . . . , wk ∈ L)(w = w1w2 . . . wk)}.

�

In this work, we also use two variants of the Kleene closure operator. The
first one is noted L+, where L is a language of finite words. It is defined as
follows :

L+ = LL∗.

The second one is noted Lω, with L a language of finite words. It is used to
generate infinite languages from finite ones and is defined as :

Lω = {w0w1w2 . . . | (∀i ∈ N)(wi ∈ L ∧ wi 6= ε)}.

2.3.3 Automata
An automaton is a finite-state machine that recognizes a language. It consists
of a set of states linked by a transition relation. Each transition is character-
ized by a symbol and a pair of states, the origin and the destination of this
transition. Some states are initial states. Every state can be either accepting
or not accepting. Without loss of generality, we will only consider automata
with a unique initial state. Indeed, automata with more than one initial state
can always be adapted to have only one initial state and still accept the same
language [HU79].
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Definition 2.20 A finite automaton is a tuple (S,Σ, δ, s0, F ) with :

• S : a finite set of states,

• Σ : an alphabet,

• δ : S × Σ→ S : a (partial) transition function.

• s0 ∈ S : an initial state,

• F ⊆ S : a set of accepting states,

�

We will now study how automata accept finite-word languages and infinite-
word languages.

Finite-word languages : For a finite word w = σ1σ2σ3 . . . σk with k = |w|
and, for all i ∈ {1, 2, 3, . . . , k}, σi ∈ Σ to be accepted by an automaton
(S,Σ, δ, s0, F ), there must exist a sequence of the form q0q1q2 . . . qk with
qk ∈ F such that q0 = s0 and for all i ∈ {0, 1, . . . , k} we have qi ∈ S, and
such that for all i ∈ {1, . . . , k}, we have δ(qi−1, σi) = qi. If the word is ε,
s0 belongs to F .

Infinite-word languages : There exists different conditions for accepting in-
finite words. One of them has been proposed by Büchi in [Büc62]. We will
use this accepting scheme in this work. It can be explained as follows :
for an infinite word w = σ1σ2σ3 . . . with σi ∈ Σ to be accepted by an
automaton (S,Σ, δ, s0, F ), there must exist an infinite sequence E of the
form s0s1s2 . . . such that for all i ∈ N>0 we have si ∈ S, δ(si−1, σi) = si
and E contains an infinite number of occurrences of states of F .

Reading a word of size k into an automaton from a state s1 identifies a
sequence of the form :

s1
σ1−→ s2

σ2−→ . . .
σk−→ sk+1

Such sequence is called a run of the automaton.
By following transitions of a finite automaton, it is possible to wander from

state to state. When there exist a path leading from one state s1 to another s2,
we say that the later is reachable from the first. It means that it is possible to
find a word such that reading it by the transition function from s1 terminates
into s2.
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a

b

bb

a

1 2

3 4

a

Figure 2.1: Example of finite-word automaton accepting the language (ε ∪
b)(a+b) ∪ (bb).

1 2

a

b, c

ab, c

Figure 2.2: Example of automaton accepting the language ((b ∪ c)∗a)ω.

Definition 2.21 Let (S,Σ, δ, s0, F ) be a finite automaton. A state s′ ∈ S

is reachable from a state s with respect to δ (noted s
δ−→ s′) iff one of the

following conditions is satisfied :

• s = s′

• (∃σ ∈ Σ)(δ(s, σ)→ s′)

�

Example 2.22 Figure 2.1 shows an automaton accepting the finite-word lan-
guage (ε∪ b)(a+b)∪ (bb). The alphabet is {a, b}, the set of states is {1, 2, 3, 4},
the initial state is state 1, the set of accepting states is {4}, and the transition
function δ is given by the following table :

s δ(s, a) δ(s, b)
1 2 3
2 2 4
3 2 4
4 ⊥ ⊥

�
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Example 2.23 Figure 2.2 shows an automaton accepting the infinite-word
language ((b ∪ c)∗a)ω. This is the language of words over the alphabet {a, b, c}
containing the words with an infinite number of a. The set of states is {1, 2},
the initial state is state 1, the set of accepting states is {2}, and the transition
function δ is given by the following table :

s δ(s, a) δ(s, b) δ(s, c)
1 2 1 1
2 2 1 1

�

As mentioned previously, Büchi automata accept infinite-word languages.
It appears clear that, since the number of states in such an automaton is finite,
their transition function must contain cycles. A run reading an infinite word
must then end in a set of states visited infinitely many times. Let us now
study briefly how those sets of states can be characterized more precisely.

With the notion of reachability, we can identify maximal subsets of states
such that every state from this subset can be reached from any other state of
it by following transitions defined by the transition function. Such a subset is
called a strongly connected component.

Definition 2.24 A Strongly Connected Component (SCC) of a finite
automaton (Σ, S, s0, F, δ) is a maximal subset S ′ ⊆ S such that :

(∀s, s′ ∈ S)(s→ s′)

�

Note that a single state that does not belong to any cycle of an automaton
forms a SCC composed only of itself. Such a SCC is called a trivial strongly
connected component.



Chapter 3

Polyhedra and Polyhedral
Partitions

3.1 Polyhedra and Pyramids
A polyhedron is a set of points in Rn that satisfies linear constraints, but the
precise definition of a polyhedron can vary greatly depending on the context
in which it is used. A painter could consider a single point to be a very simple
polyhedron, an architect could be a little more restrictive and impose that a
polyhedron must always have some volume and a mathematician could declare
the previous two uninteresting because they exclude infinite or empty sets. All
of them will, however, agree on the fact that they correspond to a region of
space delimited by planar boundaries.

Over the years, different classes of polyhedra have been defined by various
authors. The lack of a unified definition is in fact quite surprising for a class
of geometric entities that is so ubiquitous. A possible reason for this resides
on the fact that polyhedra are often considered as solid or continuous entities
and that they always have a representation in our spatial environment [Bru90].
Although it is true that three-dimensional polyhedra can be used to represent
solid objects with planar boundaries, limiting their definition to such solids is
somehow problematic. Indeed, if we need polyhedra to be closed under Boolean
operations – intersection, union, complement and difference – we quickly come
to realize that a definition depicting polyhedra as solid objects is inconsistent.
For example, the intersection of two cubes sharing only a vertex has zero
volume, although it is not empty. This need for a precise and clean theory of
polyhedra is however of great importance for computer graphics or computer
assisted design (CAD) amongst other fields.

A class of polyhedra closed under Boolean combinations has been studied
by W. Nef [Nef78], and corresponds to the class of polyhedra that we will
consider in this work. We therefore define a polyhedron as a set satisfying a
finite Boolean combination of linear constraints over Rn.

15



16 Chapter 3. Polyhedra and Polyhedral Partitions

Definition 3.1 A polyhedron π ⊆ Rn is a set defined as follows :

k

B
i=1

(
~ai · ~xi #i

~bi
)

where B is a finite Boolean combination of k linear constraints, and for all i,
~ai and ~bi ∈ Rn and #i ∈ {≤, <, =, >, ≥}. �

With this definition, we have a theory of polyhedra closed under Boolean
operations, which is precious for their construction and manipulation. Indeed,
the properties of polyhedra are such that they can have open and closed bound-
aries as well as non-convex, unconnected, dangling and non-manifold parts.

Let us analyse those properties and explain their impact on the shapes of
polyhedra.

Open boundary means that points of the boundary of a polyhedron does
not belong to the polyhedron itself. A boundary is a set of points such
that, every neighborhood of these points, contains points belonging to
the polyhedron and points that do not belong to it. Figure 3.2(a) shows
a 2-dimensional polyhedron with an open boundary (labeled c).

Closed boundary means that points of the boundary does belong to the
polyhedron. Figure 3.2(b) shows a 2-dimensional polyhedron with three
closed boundaries.

Non-convex means that it is possible to find two points inside the polyhe-
dron such that the segment connecting them contains a point outside
the polyhedron. Figure 3.2(c) shows a non convex 2-dimensional poly-
hedron. We can see that the segment linking ~x and ~y, two points of the
polyhedron, contains both points inside and outside the polyhedron.

Unconnected parts refers to polyhedra composed of disjoint parts. Figure
3.2(d) shows a 2-dimensional polyhedron with two distinct parts.

Dangling parts or regions of the n-dimensional polyhedron that contain points
but have no volume in Rn. Figure 3.2(e) shows a 2-dimensional polyhe-
dron with a dangling edge.

Non-manifold refers to a property of the boundary of the polyhedron. A
boundary is said to be a d-manifold, if there exists, for each point of this
boundary, a neighborhood such that the boundary inside this neighbor-
hood is homeomorphic to a d-dimensional space [Per01]. Intuitively, it
means that there is a way of deforming the boundary enclosed in the
neighborhood in such a way that it coincides with a hyperplane of d-
dimension. If one can not deform the boundary of a polyhedron without
tearing it apart, this polyhedron is said to be a non-manifold. Figure
3.2(f) shows such a 2-dimensional polyhedron.
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x

x = 2

y ≥ 1

x > y
x ≤ 8

y

y = 7

π

x

y

Figure 3.1: The polyhedron π ⊂ R2 represented by (x = 2 ∧ y = 7) ∨ (x >
y ∧ x ≤ 8 ∧ y ≥ 1).

Example 3.2 Figure 3.1 shows the polyhedron π ⊂ R2 corresponding to the
set : (x = 2 ∧ y = 7) ∨ (x > y ∧ x ≤ 8 ∧ y ≥ 1). This polyhedron has
two unconnected parts, one is an isolated point (and is thus a non-manifold
component), the other is a triangle with one open and two closed boundaries.

�

In the context of this work, we are interested in pyramids, a particular
type of polyhedra that shows a local invariance by scaling operation around
particular points.

Definition 3.3 A pyramid is a conical polyhedron. �

Or, said otherwise, a pyramid is a conical set defined by a finite Boolean
combination of linear constraints over points of Rn.

As a consequence, we can observe the following property.

Property 3.4 The set of apexes of a pyramid forms an affine space [BN88].

3.1.1 Polyhedral Components
It is known that the structure of every polyhedron π ⊆ Rn is pyramidal in ar-
bitrarily sufficiently small neighborhoods of any point ~v ∈ Rn [BN88, BBL09].

Formally, we have the following theorem :

Theorem 3.5 Let π ⊆ Rn be a polyhedron. For every point ~v ∈ Rn, there
exists ε ∈ R>0 and a pyramid π′ ⊆ Rn of apex ~v, such that

π ∩Nε(~v) = π′ ∩Nε(~v).

Definition 3.6 Let π ⊆ Rn be a polyhedron, and ~v ∈ Rn be an arbitrary point.
The local pyramid adjoined to π in ~v is the pyramid Pπ(~v) such that

π ∩Nε(~v) = Pπ(~v) ∩Nε(~v)

with ε ∈ R>0 being small enough for the local pyramid to be defined. �
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(a) (b) (c)

(d) (e) (f)

c
~x

~y

Figure 3.2: Examples of 2-dimensional polyhedra with (a) An open boundary.
(b) Closed boundaries. (c) Non-convex shape. (d) Unconnected parts. (e)
Dangling part. (f) Non-manifold polyhedron.
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N3(~v)

N1(~v) N1(~v)

~v ~v

π

(b)(a)

Pπ(~v)

Figure 3.3: Example of (a) a polyhedron π and (b) the adjoined local pyramid
Pπ(~v) in ~v.

The local pyramid adjoined to a polyhedron in a point of space is what an
infinitely small observer would see within a bounded horizon. Local pyramids
make it possible to decompose an arbitrary polyhedron into a set of local
pyramids and it has been established that a finite number of distinct pyramids
are sufficient to describe the whole structure of any polyhedron [BN88, BBL09].

Theorem 3.7 [BN88] For each polyhedron π ⊆ Rn, the set

{Pπ(~v) | ~v ∈ Rn}

is finite.

Example 3.8 Figure 3.3 shows the pyramid π′ coinciding with a polyhedron
π in the cubic closed neighborhood of size 1 of the point ~v ∈ Rn. We can see
that there exists no pyramid coinciding with π for the dashed neighborhood of
size 3 of point ~v. �

We know that for any polyhedron π ⊆ Rn, and every point ~v ∈ Rn a local
pyramid Pπ(~v) is defined. It is then possible to regroup points of Rn into a finite
number of equivalence classes, based on the adjoined local pyramid associated
to each of them. We call those equivalence classes polyhedral components, or
more simply components of π.

Definition 3.9 Let π ⊆ Rn be a polyhedron and ~v, ~v′ ∈ Rn two points. The
relation π∼ over Rn × Rn is defined as ~v π∼ ~v′ iff Pπ(~v) = Pπ(~v′). �

Theorem 3.10 Let π ⊆ Rn be a polyhedron and ~v, ~v′ ∈ Rn two points. The
relation ~v

π∼ ~v′ is an equivalence relation.

Definition 3.11 A polyhedral component of a polyhedron π ⊆ Rn is an
equivalence class of the relation π∼. �



20 Chapter 3. Polyhedra and Polyhedral Partitions

π

(a) (b) (c)

Figure 3.4: (a) polyhedron π from Fig. 3.1, (b) equivalence classes based on
local pyramids, (c) incidence between equivalence classes.

Since all points of a component have the same adjoined pyramid, it is
possible to define the unique adjoined local pyramid in a component of a
polyhedron.

Definition 3.12 Let π ⊆ Rn be a polyhedron, the local pyramid adjoined to
π in a polyhedral component C is the pyramid :

Pπ(C) = Pπ(~v)

with ~v ∈ C. �

For a polyhedron π ⊆ Rn, and a polyhedral component C of π, all the points
of C are apexes of the unique local pyramid π′ associated to every point of C.
The set of all apexes of π′ forms the characteristic affine space of the component
C, denoted aff(C). The dimension of this space defines the dimension of
the component, denoted dim(C). Intuitively, for three dimensional-polyhedra,
the dimension of a component characterizes the number of degree of freedom
among its points. Components of dimension 0, 1, 2 thus correspond to the
classical notions of vertexes, edges and facets of polyhedra.

3.1.2 Incidence Relation
When we consider components of a polyhedron with concepts such as vertexes,
edges and facets, it is usual to consider that some of them are connected. For
example, it is common to think that a vertex is the result of the intersection
of two (or more) edges.

Formally, the components of a polyhedron are connected by an incidence
relation defined as follows.

Definition 3.13 A component C2 of a polyhedron π ⊆ Rn is incident to a
component C1, which is denoted C1 � C2, if for every point of C1 and every
ε > 0 there exist points of C2 that belongs to Nε(~v). �
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If we look at our previous example of a vertex being the intersection of two
edges, it seems quite clear that any neighborhood of the vertex will always
contain points belonging to both edges.

The reverse property also holds. It is not true that this vertex is present
in any neighborhood of every point of any of the two edges.

This observation leads us to the following theorem.

Theorem 3.14 For every polyhedron, the incidence relation � is a partial
order over its components. This relation is such that

C1 � C2 ⇒ aff(C1) ⊆ aff(C2)

Proof : The relation � is :

Reflexive : Let C be a component, having C � C defined would mean that
in every neighborhood of any point of C, we have points of C. This is
trivially true as a point always belongs to any of its own neighborhood.

Antisymmetric : Let C2 be a component incident to another component C1.
We known, by definition, that C1 is a set of apexes of the set of apexes of
C2. Let us show that C1 � C2 ∧ C2 � C1 ⇒ C1 = C2. Would C2 � C1
be defined, it would mean that in any neighborhood of any point of C2,
there is always a point of C1. Which would mean that C2 is a set of
apexes of the set of apexes of C1. It can only be true if C1 = C2.

Transitive : Let C1, C2 and C3 be components of a polyhedron π ⊂ Rn. If
C1 � C2 is defined, it means that in any neighborhood of any point of
C1, there is always a point of C2. If C2 � C3 is defined, it means that
in any neighborhood of any point of C2, there is always a point of C3. A
neighborhood N of C1 is an open set, and it contains at least one point
of C2. As N contains a point of C2, it is also a valid neighborhood of
this point of C2, which implies that there is always a point of C3 in N .
We obtain that there is always a point of C3 in any neighborhood of C1.
We have C1 � C3.

�

3.2 Extension to Polyhedral Partitions
The complement of a polyhedron π ⊆ Rn is the set {~v ∈ Rn | ~v /∈ π}, which
is also a polyhedron. Thus, a polyhedron and its complement form a binary
partition of Rn.

We can extend this idea to more general partitions of Rn by introducing a
notion of color (or symbol) associated to a polyhedron.
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π1

π2

π3

Figure 3.5: Example of a polyhedral partition Π = {π1, π2, π3} of R2.

Definition 3.15 A polyhedral partition Π = {π1, π2, . . . , πm} is a partition
of Rn such that each part πi is a polyhedron. �

By definition, parts of a partition are collectively exhaustive, this means
that their union covers Rn and mutually exclusive, this means that parts are
mutually disjoint.

Polyhedral partitions also be seen as coloring functions. If a color is as-
sociated to each part of a polyhedral partition Π = {π1, π2, . . . , πm}, then Π
associates a color to every point of Rn. More formally, a polyhedral partition is
a function Π : Rn → {1, 2, . . . ,m} of points of Rn, where the color corresponds
to an integer in [1,m].

Note that a polyhedron is a particular instance of a polyhedral partition,
associating only two colors to points of Rn, which can be called in and out.

If a polyhedral partition is not affected by a uniform scaling operation
around a point ~v ∈ Rn, then it is also said to be pyramidal with respect to the
apex ~v.

Definition 3.16 A pyramidal partition Π = {π1, π2, . . . , πm} over Rn is
pyramidal with respect to the apex ~v if for every ~x ∈ Rn and λ ∈ R>0, we have

Π(~v) = Π(~v + λ(~x− ~v))

�

Definition 3.17 Let Π = {π1, π2, . . . , πm} be a polyhedral partition of Rn, and
~v ∈ Rn be an arbitrary point. The local pyramidal partition of Rn adjoined
to Π in ~v is the pyramidal partition

PΠ(~v) = {π′ ⊆ Rn | (∃0 < i ≤ m)(π′ = Pπi(~v) ∧ Pπi(~v) 6= ∅)}

�
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π1

π2

π3

~v

Figure 3.6: Example of a pyramidal partition Π = {π1,π2,π3} of R2 of apex ~v.

Theorem 3.18 For each polyhedral partition Π of Rn, the set

{PΠ(~v) | ~v ∈ Rn}

is finite.

Proof : A local pyramidal partition of Rn is, by definition, a set of local
pyramids. By Theorem 3.7, we know that for any polyhedron only a finite
number of local pyramids will be associated to the whole set of points of Rn. We
can then conclude that if the number of parts is finite, the set {PΠ(~v) | ~v ∈ Rn}
is finite. �

Another proof can be found in [Nef78].

Definition 3.19 Let Π be a polyhedral partition of Rn and ~x, ~y ∈ Rn two
points. The relation Π∼ over Rn×Rn is defined as ~x Π∼ ~y iff PΠ(~x) = PΠ(~y). �

Theorem 3.20 The relation Π∼ is an equivalence relation.

Definition 3.21 A polyhedral component of a polyhedral partition Π of Rn is
an equivalence class of the relation Π∼. �

Again, we will just call component a polyhedral component of a polyhedral
partition of Rn.

Definition 3.22 A component C2 of a polyhedral partition Π of Rn is incident
to a component C1, which is denoted C1 � C2, if for every point ~v ∈ C1, there
exist points of C2 inside Nε(~v), for any value of ε. �

3.3 Minimum Polyhedral Component
We have seen that a pyramidal polyhedron is conical with respect to a certain
set of apexes. This brings the following theorem on pyramidal partitions :
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Theorem 3.23 If a polyhedral partition Π of Rn is pyramidal, then it contains
a unique polyhedral component C that is minimum with respect to the incidence
relation �. Formally, it means that for all component Ci of Π, we have C � Ci.
This minimum component corresponds to the set of apexes of Π.

Proof : Let Cm be the set of apexes of Π. The local pyramidal partition
associated to every point of Cm is Π. Indeed, the local pyramidal partition
adjoined to a point a is invariant to scaling around a, which is precisely the
definition of a pyramidal partition having a as apex. Thus, Cm is a polyhedral
component. Each polyhedral component of a pyramidal partition is a pyra-
mid (again, polyhedral components are invariant by scaling around points in
their set of apexes). This implies that every polyhedral component has points
arbitrarily close to points of Cm. By the definition of the incidence relation,
we deduce that each polyhedral component C of Π is such that Cm � C. This
proves that Cm is the minimum element with respect to the incidence relation.

�

This theorem is true for pyramidal partitions, but is not always true when
considering only a certain region of space covering a certain subset of the
components of a pyramidal partitions. We have the following definition for
the minimum component of a subset of components of a polyhedral partition.

Definition 3.24 Let Π be a pyramidal partition of Rn, C be the set of com-
ponents of Π, � be the incidence relation between them and C ′ ⊆ C a subset
of the components. A component Cm ∈ C ′ is the minimum component of
C ′ iff :

(∀Ci ∈ C ′)(Cm � Ci).
�

This component Cm can be undefined for certain subsets of C.
The function min component(C) returns the minimum element of C, or ⊥

if such an element is undefined.

Definition 3.25 Let Π be a pyramidal partition of Rn, C be the set of com-
ponents of Π, � be the incidence relation between them and R ⊆ Rn be a
non-empty convex region. A minimum covered component of Π by R is
Cm = min component ({Ci ∈ C | Ci ∩R 6= ∅)}). �

Note that this component can be undefined for some regions.



Chapter 4

Symbolic Representations of
Polyhedra

4.1 Motivation
With the rise of Computer-Aided Design (CAD), the need for good data struc-
tures for representing solids has grown in the past decades. The Solid Modeling
community is devoted to develop good representations of solid objects. An-
other framework is Computational Geometry, which is more focused on solving
geometrical problems, such as convex hull computation or Delaunay triangula-
tion. The problem of defining good data structures for representing polyhedra
is relevant to both approaches.

The purpose of those data structures is to be implemented into actual
software libraries. Those software libraries are mainly intended to be part of
CAD programs or other geometric software packages.

We motivate the need for a good representation by presenting some key
operations that have to be performed on polyhedra.

A first operation consists in building incrementally a polyhedron by mak-
ing combinations of simple objects, such as Boolean operations. We call this
problem incremental construction.

Second, in many situations, detecting collisions between objects is an im-
portant problem. For such an application, being able to test whether or not
a given point belongs to a given polyhedron is a key operation. This is the
point decision problem. Moreover, it is also interesting to determine to which
polyhedral component a given point belongs. For example, one could ask in
which component of a cube a particular point of space is located, amongst the
vertexes, edges, facets or interior of this cube. We will call this problem the
classification problem.

Testing equality between polyhedra is another essential operation. For this
operation, having a structure with an easily computable canonical form has a
major advantage. Indeed, if a given set always have the same representation,
testing equality between sets simply reduces to a syntactical comparison.

25
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Recall that in this work we use Nef polyhedra, a definition of polyhedra
that allows to have features such as dangling parts or non-manifold boundaries.
In Solid Modeling or Computational Geometry, having such properties is not
always the priority. When an application requires the polyhedra to have some
physical reality, considering polyhedra with no volume can be problematic.
This explains why a large amount of effort in order to present regularized
operations [Req80, Män88, Hof89, Bru90], or advanced techniques to deal with
inconsistencies.

4.2 State of the Art
As mentioned before, Solid Modeling is focused on developing good represen-
tations of solids. The two structures in the domain are Constructive Solid
Geometry (CSG) and Boundary Representation (B-REP). As presented and
explained by C. Hoffmann in [Hof89], the benefit of using one structure over
the other depends on the application, and therefore, general CAD libraries of-
ten use both representations simultaneously. Other representations have also
been defined. In particular, some are based on an idea of space partitioning.

Let us now have a brief view at some popular representations.

Constructive Solid Geometry (CSG) : is a binary tree with nodes rep-
resenting Boolean or geometric operations and leaves being solid primi-
tives [Req80, Hof89]. Those primitives can include, for example, spheres,
cubes or any geometric object. The Boolean combination of the prim-
itives defines a non ambiguous shape. To represent polyhedra, a CSG
scheme using linear constraints as primitives is sufficient. With this rep-
resentation, performing an incremental construction is trivially easy, as
it only requires to build the tree corresponding to the specified combi-
nation. The point decision problem is immediate, since it can be car-
ried out by testing the given point against the primitives and checking
whether the constraint corresponding to each node is satisfied – provided
that the point decision problem is easily solvable on the primitives them-
selves. However, we can see that the point classification problem and the
canonical form become two rather difficult problems. A long justification
is given in [Hof89]. Briefly, the problem lies in the fact that classifying
point only over the primitives and the operations of the nodes only is
not sufficient to classify the point on the represented model. Indeed, if
a point lies on the boundary of two planar half-spaces, it is impossible
to tell where the point must be classified inside their intersection. It
depends on the respective spatial positioning of the two primitives. The
result can either be a universal set, a hyperplane or a wedge. So the local
shape of the sets around the point must be taken into account. A lot of
elaborated rules are derived from all the possible cases and making a set
of rule for only 3-dimensional set is already a sensible task. The compu-
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tation of a canonical form is also not straightforward, because it requires
to be able to establish a minimal set of primitives. Consider for instance
a simple example that consists of a union of four 3-dimensional cubes
assembled to form a bigger one, and the same set, defined directly with
one primitive cube. We can easily imagine the large amount of different
configurations of primitives all producing the same set. Being able to
identify an exact correspondence in order to express the CSG with other
primitives in a canonical way is not an easy task.

Cell Decomposition (CD) : Another possible representation for polyhedra
is the Cell Decomposition (CD) [Req80, Mau91, Tam07]. A set of hyper-
planes subdivides the space into cells. If the space is n-dimensional, then
cells can be of any dimension between 0 and n included. A single hyper-
plane cuts the space into two n-dimensional cells, the hyperplane itself is
a (n − 1)-dimensional cell, the intersection of two hyperplanes can be a
(n− 2)-dimensional cell, etc. . . The idea behind the representation is to
describe each polyhedron component by a cell or a union of cells. Each
point of space is thus associated to a cell. The polyhedron is represented
as an enumeration of cells. The representation of a cell takes the form
of a selection function inside the set of hyperplanes. Given a set of k
hyperplanes {h1, h2, . . . , hk} and a normal vector for each of them, each
point can be classified as either belonging to the hyperplane, being on
one side of it or on the other side of it (referring to a normal vector). Two
different points sharing the same selection function of hyperplanes will be
associated to the same cell. With this representation, the point decision
problem and the point classification problem are both straightforward
and efficient. The iterative construction is also very easy as it only re-
quires to adapt the selection functions associated to each class and add
hyperplanes to the set. Notice that the iterative construction, to be fast,
must be simple and thus is prone to be history-dependent. This implies
that keeping a canonical form becomes problematic as there is a need
for being able to identify and maintain a canonical set of hyperplanes
[Tam07].

Binary Space Partition (BSP) : In Computational Geometry, several rep-
resentation of polyhedra are based on a partitioning scheme of Rn. Such
schemes include Binary Space Partition [Nay90]. A BSP is a tree in
which each node recursively subdivides Rn. A BSP tree divides a set into
two subsets using a hyperplane. If a point lies inside this hyperplane,
the point is considered belonging to both subsets. Building a balanced
tree is difficult as it requires the use of a backtracking algorithm that
builds several partitioning schemes and selects the best one, or at least
the one giving one of the smallest possible tree in term of depth. In-
deed, having a small depth can guarantee to keep good performances for
the point decision procedure. For this reason BSP is not suited for the
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incremental construction problem although methods for merging BSP
trees have been proposed [NAT90]. The point decision and classification
problems are quite efficient, as requires only a few recursive simple tests.
Computing a canonical representation is once again a difficult problem.

Boundary Representation (B-REP) : This data structure represents im-
plicitly a solid by its boundary[Edm60]. This boundary is used to sep-
arate points of space into the interior and the exterior of a represented
volume.

The representation technique for the boundary itself is quite flexible, as
long as the boundary is a complete and oriented shell. This boundary
is not limited to be a flat surface; it can be any kind of curved surface,
such as Non-Uniform Rational Basis Splines (NURBS) [Pie91]. Since
the boundary is used to separate points belonging to the inside and the
outside of the set, a first limitation is that the represented set must have
a non zero volume. A discussion about adequate methods of representing
the boundaries can be found in [Wei85]. A good overview of this struc-
ture is given in [Sha02, Hof89]. The point classification problem can
be sketched without fixing a particular representation for the boundary.
When the membership of a point is to be assessed from the known sta-
tus of another point, the number of times a path linking the two points
intersects the boundary determines if both points have the same mem-
bership status. From this, it is very common to use a point projected
at infinity to reduce the point decision problem to a test of intersections
between the boundary and a half-line. But this procedure is only ap-
plicable to boundaries defining finite sets. Moreover, the efficiency of
this kind of search is dependent to the organization of the adjacency
between elements composing the boundary. Nevertheless, some studies
have discussed the inherent cost of the general representation scheme as
opposed to some particular implementations [NB94]. The canonical rep-
resentation of the boundary leads to a canonical representation of the set
itself but this unique representation of the boundary can be difficult to
compute and maintain with the application of successive Boolean com-
binations. Indeed, a consequence of the way the representation works is
that there must be a notion of valid and invalid boundaries. This problem
is described in details in [Hof89]. In order to represent a valid polyhedra
with a non zero volume, the boundary has to be valid, in the sense that
it must be complete (all inside and outside points must be separated by
a boundary) and the orientations of its elements have to be collectively
consistent. For example, two adjacent faces of a cube must have an ori-
entation that are not conflicting with each other. With this notion of
validity of boundaries in mind, we can understand that representing non
manifold objects can become very problematic and difficult, but not im-
possible [LL01]. In practice however, popular boundary representations,
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because of the restrictions, use quite a large amount of case by case local
solutions [Hof89] to detect and avoid problematic situations and are thus
not general enough to represent arbitrary n-dimensional polyhedra.

It is worth mentioning that B-REP method probably owe a part of their
popularity to the fact that they are well suited to be represented by
drawing method such as rasterisation [Pav79].

Würzburg Structure / Selective Nef Complexes : This data structure
has been proposed in [BN88] to represent Nef polyhedra. The principle
is based on a decomposition of the represented polyhedron into local
pyramids. There are known algorithms to manipulate this data structure
but those are not very efficient in practice. Some variants of the structure
such as, for example, the addition of incidence information, have been
studied later to overcome this issue and have improved efficiency, but
even those variants remained impractical in certain situations [GHH+03].

Over the years, more usable data structures have been derived and stud-
ied from those results in a more restricted context of three dimensional
polyhedra. One of the latest is presented in [GHH+03] along with a brief
history of previous work leading to this idea. The limitation to three
dimensional polyhedra is a consequence of the use of ad-hoc sub data
structures to represent vertexes and higher dimensional polyhedral com-
ponents. Indeed, this latter representation uses a Sphere Map (called
local graphs in [DMY93]) to represent local pyramids of each vertex of
the polyhedron and subsequent local pyramids are represented by the
use of a data structure called Selective Nef-complexes (SNC). A Sphere
Map is a virtual arbitrary small sphere centered on a vertex of the rep-
resented polyhedron that intersects all polyhedral components incident
to the vertex.

A SNC is a decomposition of the space into cells by the use of planes and
is basically the identical to the previously presented cell decomposition.
The difference lies in the selection function that associates arbitrary la-
bels to each cell instead of just selecting or excluding cells from the set.
Cells are of multiple nature and each type of cell is represented differ-
ently. There can be edges, facets, volumes and some more information
to link those elements with respect to the incidence between them. This
later information is useful to guarantee a certain efficiency of the manip-
ulation algorithms, although the point decision problem is quadratic in
the size of the polyhedron [Hac07].

This representation is by nature not suited for representing general n-
dimensional polyhedra. The lack of a unified way of representing pyra-
mids of any dimension with one single structure does prevent any attempt
at using Sphere Maps in a more general n-dimensional space.
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4.3 Real Vector Automata
Another approach to represent symbolically polyhedra is to build a finite au-
tomaton on infinite words that recognizes encodings of points. This structure
is called the Real Vector Automaton (RVA) [BBR97, BJW05].

4.3.1 Encoding Vectors
Since automata are finite state machines recognizing words, one must define a
mapping between points of Rn onto words over some finite alphabet.

The encoding scheme is based on the positional numeration system, using
symbols in the alphabet Σr = {0, . . . , r − 1}, with r ∈ N>0 being a chosen
base. An additional symbol ? is used to separate the integral part from the
fractional part of encodings.

In a given base r, a number z ∈ R≥0 is encoded by infinite words of the
form :

ap−1ap−2 . . . a0 ? a−1a−2 . . .

such that p > 0 is the length of the integer part, ai ∈ Σr for all i < p and
z = ∑

i<p air
i. Negative numbers are encoded by their r’s complement : to

encode a number z ∈ R<0, we just encode z + rp where p is the length of its
integer part. The number of symbols of the integer part must be chosen so
that −rp−1 ≤ z ≤ rp−1.

This results in having 0 as the leading symbol of encodings of positive
numbers (or zero) and (r − 1) for negative numbers. Moreover, every number
admits infinitely many encodings as this leading symbol can be repeated at
will.

Furthermore, repeated symbols corresponding to the sign of the number
asside, some real numbers admit two different encodings. Such numbers are
said to admit dual encodings. For instance, the real number 3

10 , when encoded
in base 10, admits the two following families of encodings :

0+ ? 3(0)ω and 0+ ? 2(9)ω

RVA requires that the encodings of a point are either all accepted or all
rejected. This question of dual encodings is not the object of this work, but
we mention that having this requirement introduces some artifacts in the data
structure. It is worth mentioning that a study has been conducted in order to
avoid those dual encodings [EK08] and that a complete study of this problem
is made in [Bru11].

In order to keep this presentation simple, we will not consider further the
special cases associated with dual encodings in RVA.

Example 4.1 The encodings of 1 in base 2 form the language 0+1 ? 0ω
The encodings of −69

8 in base 3 form the language 2+00 ? (10)ω �
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To encode a point ~z = (z1, z2, . . . , zn) ∈ Rn in a base r, one encodes each
component zi with an identical length p for their integer parts such that :

(∀i ∈ {1, 2, . . . , n})(−rp−1 ≤ zi ≤ rp−1)

The encodings of all components can then be merged into a single infinite
word over the alphabet {1, . . . , r − 1}n ∪ {?} by synchronously reading their
encodings one symbol at a time. Since the separator symbol ? is read only
once and at the same time in all encodings of the components, the tuple (?, ?,
. . ., ?) can be replaced by a single occurrence of ?. This method of encoding
vectors is called synchronous encoding.

The main disadvantage of this method is its intrinsic exponential explosion
of the size of the alphabet with respect to the number of dimensions. It
is possible to address this problem by serializing the encodings. Instead of
reading one symbol (σ1, σ2, . . . , σn) ∈ {0, 1, . . . , r − 1}n, one reads the word
σ1σ2 . . . σn expressed over {0, 1, . . . , r − 1}. This method is called serialized
encoding.

Example 4.2 The word 0
9
0


 1

9
0


 8

9
0

 ?
 0

3
3


 0

0
3


ω

encodes the vector (18,−0.7, 1/3) in base 10.
The serialized encoding of the same vector, in base 10, is

090190890 ? 033(003)ω.

�

From the prefix of a synchronized encoding of points, it is possible to char-
acterize the set of points that admit an encoding thet shares this particular
prefix :

Definition 4.3 Let r, n ∈ N be a base and a dimension, and u?v be a word
with u ∈ {0, . . . , r − 1}+, and v ∈ {0, . . . , r − 1}∗.

If ~x is the point encoded by u?w~0ω in base r, then the hypercube

Hu?v = ~x+ [0, 1
r|v|

]n

contains exactly all the points that admit an encoding prefixed by u?v. �

This definition is limited to synchronized encodings, it can be adapted to
serial encodings, by keeping the length of w a multiple of n. For the case where
w is not a multiple of n, the set of points sharing this prefix for their encodings
is not an hypercube, but an orthotope1.

Also, we only consider prefixes containing the symbol ? to only deal with
defined integer parts which always bound a region of space.

1A set defined as the Cartesian product of intervals
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4.3.2 Syntax
Definition 4.4 A Real Vector Automaton representing a set V of vectors
in Rn in base r is a Büchi automaton that recognizes the language of all the
encodings of elements of V . �

The expressiveness of RVA is large enough to represent all sets definable
in 〈R, Z, +, ≤〉, the first-order additive theory of real and integer numbers
[BBR97]. As polyhedra are definable in 〈R, Z, +, ≤〉, every polyhedron can
be represented by a RVA.

It has been established that it is possible to restrict the syntax of RVA to
weak deterministic RVA, a subclass of general RVA. This class corresponds to
the set of all RVA such that every state belonging to a given strongly connected
component (SCC) has the same accepting status. An interesting fact is that
this restricted class is still expressive enough to represent any set definable in
〈R, Z, +, ≤〉 [BJW05].

The weak deterministic RVA have several practical advantages over general
RVA, but mainly they are more easily manipulated.

In particular, computing Boolean combinations of their represented sets,
projecting or computing Cartesian products between them becomes feasible
in practical applications. Another very interesting fact is that they admit an
easily computable canonical form as explained in [Löd01]. Performing those
operations on general RVA is feasible, but more difficult, as discussed in [Var07]
for weak deterministic Büchi automata versus general Büchi automata.

From now on in this work, we use the term RVA in place of weak deter-
ministic RVA.

Example 4.5 Figure 4.1 shows a RVA accepting synchronized encodings of
points (x, y) ∈ R2 satisfying (x = 1

3 ∧ y ≥
1
3 ∧ y ≤

2
3). �

4.3.3 Point Decision with RVA
As discussed before, each word read by a RVA is infinite and its acceptance
condition is based on the fact that the reading of this word ends in an infinite
cycle composed of accepting states. This infinite cycle is, by essence, located
inside a strongly connected component (SCC) of the RVA.

Consider A, a deterministic weak RVA representing a polyhedron π ⊆ Rn

in a base r ∈ N>0.
In order to check whether a point p belongs to the polyhedron represented

by A, a simple solution consists in generating an encoding e of ~p in base r. The
next step is to check if e is accepted by A. As A is deterministic, at most one
path of the automaton corresponds to the reading of e. This path, if any, will
inevitably end in one SCC of A. If the states of this SCC have an accepting
status, e is accepted by A, otherwise, it is not.
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1 2

3

4

5

6

7 8?

0, 0

1, 0

1, 0

0, 0
0, 0 1, 1

1, 0 0, 1

0, 1

0, 0
1, 0

1, 1

0, 0

0, 0

0

Figure 4.1: Example of synchronized RVA representing the set {(x, y) ∈ R2 |
(x = 1

3 ∧ y ≥
1
3 ∧ y ≤

2
3)}.

?

S1

s

Slast. . .

u1
u2 u3

u4

u′ = (u3u4)∗u = u1 ? u2

Figure 4.2: A pause in the point decision procedure of RVA.

It has been shown in [BBL09, BBD10, Bru11] that the SCC of a RVA
representing a polyhedron are related to the components of this polyhedron.
If certain situations are carefully avoided, then each SCC can be associated to
a polyhedral component. This can be explained intuitively as follows.

First, we can make a general observation. When one checks whether a word
is accepted by a RVA and pauses after having read an arbitrary prefix of this
word, the only memory of the run kept so far is the current reached state. One
still has to check if the remaining suffix is accepted from that state. It is clear
that the outcome of this latter test does only depend on this state and this
suffix to read.

Now, consider again the procedure that tests whether a point ~p (encoded
in a base r by the infinite word e) belongs to a polyhedron π ⊆ Rn represented
by the RVA A. Let us pause after having read a finite prefix u ∈ Σ+

r ?Σ∗r of
e that leads to a state s which, without loss of generality, belongs to a non
trivial SCC S1 (see Figure 4.2).

The prefix u characterizes the set Hu of the points prefixed by u. Since
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the possible infinite suffixes accepted from s only depend on s, we can deduce
that the shape of π inside Hu does also only depend on s. Remember that s
is in S1, a SCC of A, it implies that it is possible to find points of Rn such
that they admit an encoding of the form uu′ such that reading uu′ also end
in s. Finding such points is indeed feasible as it reduces to read u and then
follow an arbitrary number of cycles inside S1 from s to s. As the shape of
π inside Huu′ does also only depend on s, we conclude that the set of points
whose encoding suffixes are accepted from s is the same inside Hu as in Huu′ ,
up to scaling. This has been established in [BBL09], and the invariance of the
shape of π inside Hu and Huu′ actually holds for arbitrary scaling factors of π,
wich implies that the sets represented by states of SCC are pyramidal.

A path generally visits several different SCC before cycling infinitely into
a final one. It depicts the following procedure : in order to decide whether
to accept or not the encoding of a point ~p ∈ Rn, the RVA first chooses de-
terministically a polyhedral component C1 of π in the vicinity of which this
decision can be carried out. This component is represented by the first SCC
that the encoding of the point visits after reading a prefix u1, and the vicinity
is given by Hu1 . Then the RVA checks whether of not the point ~p belongs to
C1, which amounts to checking if the encoding of ~p stays forever inside the
SCC. In the affirmative, the procedure concludes that the point belongs to
π. If the negative, the RVA chooses a component C2 incident to C1 and the
same procedure is repeated from there. It means another prefix u2 is read until
reaching the next SCC in the RVA, and this procedure repeats until a final
SCC is encountered.

From a different perspective, the principle of the point decision procedure
carried out by RVA associate a SCC (which corresponds to polyhedral compo-
nent) to every point of space in the vicinity of which the decision can be made
and performs such an association recursively. This means that when a SCC
is reached, if the tested point does not belong to the polyhedral component
represented by this SCC, the search will continue further. An interesting fact
is that we are already sure that the point belongs to a polyhedral component
incident to the one chosen.

Example 4.6 Figure 4.1 shows a RVA having three different non trivial SCC
in its fractional part. Those SCC are S1 = {3, 4}, S2 = {5, 6} and S3 = {7, 8}.
Following cycles in S1 corresponds to reading the point (2/3, 1/3). Following
cycles in S2 corresponds to recognizing the point (1/3, 1/3) and following cy-
cles in S3 corresponds to reading the points belonging to the open segment
((1/3, 1/3)(2/3, 1/3)). In this example, we see that the three polyhedral components
corresponding to the segment and its two extremities, are each associated with
SCC of the RVA. Notice that the fourth polyhedral component, the empty set,
is not shown in the RVA, but is also associated to a SCC of the RVA, as it
corresponds to a non accepting cycle. �
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4.3.4 Limitations of RVA
Although RVA are expressive enough to represent arbitrary polyhedra and have
efficient algorithms to manipulate them, they have some major drawbacks. The
size of a RVA representing the set of solutions of a linear constraint ~a~x#b with
~a ∈ Zn, b ∈ Z and # ∈ {≤, <,=, >,≥} grows logarithmically with the value of
b but linearly with the values of the components of ~a [BRW98]. Representing
a polyhedron by combining several RVA representing a linear constraint, will
most of the time only worsen the situation.

Another weakness of the data structure is that its size grows exponentially
with the number of dimensions.

In this work, we tackle the first drawback by presenting a new data struc-
ture that inherits the qualities of RVA but avoids the size blowup of the rep-
resentation of linear constraints.
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Implicit Real Vector Automata

The main purpose of the Implicit Real Vector Automaton (IRVA) is to provide
a new data structure for representing the components of a polyhedron and the
incidence relation between them, that inherits the strengths of RVA such as an
efficient point decision procedure and large expressive power, but represents
polyhedral components more concisely. Another advantage is that it admits
an easy computable canonical form.

5.1 Principles of IRVA
We now introduce the main principles of IRVA, first intuitively by defining an
abstract data structure, and then more formally. For clarity sake, we address
the problem of representing polyhedra as opposed to the more general case
of polyhedral partitions (as introduced in Section 3.2), that will be discussed
later.

We have seen in Chapter 3 that a polyhedron partitions the space into
polyhedral components. Moreover, every such component associates a single
local pyramid to all of its points (see Definition 3.11). Since the set of apexes
of a pyramid forms an affine space [BN88], the affine closure of a polyhedral
component is the set of apexes of the local pyramid associated to the points
belonging to this component.

Example 5.1 Figure 5.1(a) shows a polyhedron π ⊂ R2 which is the union of
a triangle and an isolated point. This polyhedron can be decomposed into as
set of polyhedral components, each corresponding to a specific local pyramid.
Figure 5.1(b) shows such a decomposition. �

We naturally obtain the following decomposition scheme for polyhedra :
every polyhedron decomposes the space into a set of polyhedral components,
hence a set of local pyramids. There exists a partial order between polyhedral
components : the incidence relation (see Section 3.1.2).

From these principles, let us sketch an abstract data structure for repre-
senting polyhedra. This data structure is a graph containing implicit states

37
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π

(a) (b)

Figure 5.1: Example of (a) a polyhedron π ⊂ R2 and (b) the set of polyhedral
components and local pyramids.

π

(a) (b)

Figure 5.2: Example of (a) a polyhedron π and (b) an abstract structure
representing π by implicit states and a transition function.

linked by an acyclic transition function. An implicit state represents a poly-
hedral component of the polyhedron and the transition function represents
the incidence relation between those components. A polarity is associated to
each implicit state in order to represent the fact that a polyhedral component
belongs or not to the represented polyhedron.

An example of such a decomposition, augmented with incidence informa-
tion, is given in Figure 5.2(b).

From Chapter 4, where valuable insight was obtained on the way polyhedra
are represented inside RVA, we can see our abstract data structure as a very
simplified RVA. Implicit states correspond to non trivial SCC of the RVA and
the transition relation represents the transitions between them.

We have also seen in Section 4.3.3 how RVA make it possible to solve the
point decision problem. We now consider the high-level steps of the procedure
solving the point decision problem on RVA and see how those steps could be
translated in order to build such a procedure on our proposed data structure.
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The point decision procedure consists in executing these steps when decid-
ing whether a point p belongs to the represented polyhedron.

Point Decision Procedure 1

Step 1 : The encoding of p visits a first non trivial SCC inside
the RVA. On our structure, this corresponds to selecting
an initial implicit state.

Step 2 : If the encoding of p does not leave the current SCC, then
the procedure terminates. p is accepted if the SCC is
composed of accepting states, or rejected if the SCC is
composed of non accepting states. In our structure this
test can be achieved by algebraic means. The exact na-
ture of this test will be addressed later. p is accepted or
rejected depending on the polarity of the implicit state.

Step 3 : If p does not belong to the current polyhedral compo-
nent, a path corresponding to an encoding of p is fol-
lowed inside the RVA until reaching another non trivial
SCC. The procedure returns to Step 2 from this im-
plicit state. Termination is guaranteed because RVA is
finite-state, hence a final SCC will always be reached.
In our structure, we have to perform some kind of de-
cision by following the transition relation until reaching
another implicit state and then return to Step 2 from
this state, too. Once again the procedure is guaranteed
to terminate since it will eventually end up in states of
the automaton that correspond to universal or empty
polyhedral components.

Example 5.2 Let us consider again the polyhedron π of Example 5.1. We
describe a simple execution of the point decision procedure with the point p.

First, the initial state is s1 selected, by a mechanism not discussed here.
Intuitively, it appears clear that the point decision procedure can be carried out
from s1. This implies that only considering the pyramid associated to s1 is
sufficient for the procedure to arrive at a right conclusion. State s1 represents
a vertex of π. Since p does not belong to the affine closure of this vertex, the
procedure continues by navigating into the transition structure outgoing from
s1. Potential transitions are shown in the next illustration by solid arrows.
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π

s1

~p

Then, the next state s2 is reached. Once again, it appears clear that the
procedure can effectively continue from s2, by only navigating inside its asso-
ciated pyramid. Notice that state s2 represents an edge of π. Since p does
not belong to the affine closure of this edge, the procedure continues further by
moving into the transition relation from s1.

~p

s2

s1

Finally the state s3 is reached and the procedure terminates there because p
belongs to is associated polyhedral component (in the present case, the universal
set). Since the polarity of s3 is in, p is accepted, which concludes that it belongs
to π.

~p

s3

s2

s1

�



5.1. Principles of IRVA 41

Conceptually, the structure that we have just sketched has some nice prop-
erties as far as the point decision procedure is concerned : the number of
visited implicit states is small and the procedure is deterministic. From an
operational point of view, however, it raises three questions :

Question 1 : How is the initial implicit state chosen ?

Question 2 : What information could be associated to implicit states ?

Question 3 : What is the nature of the transition function ?

Question 1 will be addressed in Section 5.1.1 and Questions 2 and 3 will
be addressed respectively into Sections 5.1.2 and 5.1.3.

5.1.1 Selecting an Initial State
In the previous section, we have seen that in order to test whether a point
belongs or not to the polyhedron represented by our abstract data structure,
the first step consists in choosing an initial implicit state from which to start
the exploration.

An obvious observation is that this choice becomes trivial when there is
only one initial implicit state. Also, having exactly one initial implicit state,
correspond to the case of a polyhedron that has a pyramidal structure.

We show that any non pyramidal polyhedron can be transformed without
loss of generality into a representing pyramid. The representing pyramid of a
polyhedron is defined in an higher dimensional space.

Definition 5.3 Let n ∈ N be a dimension and π ⊆ Rn be a polyhedron. The
representing pyramid of π is the polyhedron

π′ ⊆ Rn+1 = {λ(x1, . . . , xn, 1) | λ ∈ R>0 ∧ (x1, . . . , xn) ∈ π}

�

This definition implies that ~0 is always an apex of every representing pyra-
mid.

Applying elementary operations over polyhedra, such as computing Boolean
combinations, testing equality or inclusion, and solving the point decision and
point classification problems, can be straightforwardly translated into similar
operations over their representing pyramids.

The inverse operation, which is the retrieval of the represented polyhedron
π ∈ Rn from its representing pyramid π′ ∈ Rn+1 is the calculation of the set

π = {(x1, . . . , xn) | (x1, . . . , xn, 1) ∈ π′}

and it corresponds to the intersection of π′ with the plane xn+1 = 1.
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So, in summary, the test that establishes if ~p belongs to π can be reduced
to testing whether the point (~p[1], ~p[2], . . ., ~p[n], 1) belongs to the representing
pyramid of π.

As a consequence, from now on, we will consider without loss of
generality that the polyhedra we represent are pyramidal with apex ~0.

B

C

A

x1

x2

x3 = 1
x2

x1

x3

B

A

C
~0

(a) (b)

Figure 5.3: (a) Triangle with vertexes A, B and C of Example 5.4 (b) The
representing pyramid of this triangle.

Example 5.4 Figure 5.3(a) shows a 2–dimensional polyhedron, formed by
three vertexes A = (1/2, 1/2), B = (4/3, 4/3) and C = (2, 0) delimiting a closed
filled triangle.

The representing pyramid of this polyhedron is defined as :

−x1 + x2 ≤ 0 ∧ x1 + 3x2 − 2x3 ≥ 0 ∧ 2x1 + x2 − 4x3 ≤ 0

and is shown in Figure 5.3(b) (note that it is a subset of R3). The plane x3 =
1 is depicted in the figure to emphasize the construction of the representing
pyramid and also decide how the original triangle can be retrieved from its
represented pyramid. The pyramid admits the apex ~0 and is built upon three
rays A, B and C, which are the extensions of the original vertexes A, B
and C. The directions of those rays are A = (1/2, 1/2, 1), B = (4/3, 4/3, 1)
and C = (2, 0, 1). The three edges of the triangle AB, BC and AC become
respectively the three 2–faces AB, BC and AC of the pyramid. The interior
of the triangle is a 3–space. �

Representing only pyramids with apex ~0, besides of eliminating the need
for a particular first step in the point decision procedure, simplifies substan-
tially the represented polyhedra : the incidence relation always has a unique
initial polyhedral component, to which all other components are incident (cf.
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Theorem 3.23). This implies that, although ~0 is not necessarily a component
of the represented pyramid, every pyramid admits ~0 as apex and thus every
component of every non-empty pyramid contains points that are arbitrarily
close to ~0. As a consequence, all those components are pyramids centered on
~0. This implies that the affine closure of any component is a vector space.

Representing only pyramids renders the first step of procedure 1 trivial,
and thus answers our first question.

5.1.2 Definition of Implicit States
In this section, we study the exact nature of the information that needs to be
associated to implicit states.

As explained before, our abstract data structure is composed of an acyclic
graph of implicit states linked together by a transition relation. Each implicit
state represents a pyramid, the set of apexes of which forms a vector space.

Let us consider an implicit state s representing a polyhedral component C
representing a pyramid ρ. Since all polyhedral components of ρ have to be
represented by implicit states reachable from s, it is sufficient to associate s
with a representation of the affine closure of C, which has been shown to be a
vector space. In addition, one must also store a polarity for representing the
fact that points of C belongs to ρ or not. With this scheme, the character-
ization of the pyramid represented from s is distributed among the implicit
states reachable from s, as well as inside the transition function linking s to
its successors.

Let us come back to the point decision procedure. The test that establishes
whether a point p belongs or not to the polyhedral component associated to s
reduces to testing whether p belongs to the vector space associated to s. If p
belongs to the vector space, then the procedure terminates and p is accepted
if and only if the polarity associated to s is accepting. If the polarity is non
accepting.

From an operational point of view, we represent vector spaces by associating
a vector basis to each implicit state, along with its polarity. This vector basis
is a generator of the vector space corresponding to the affine closure of the
polyhedral component associated to this implicit state.

In summary, the test carried out in the second step of Procedure 1 reduces
to testing whether a point belongs or not to a vector space. We have answered
the second question.

5.1.3 Nature of the Transition Function
In Step 3 of Procedure 1, since p does not belong to the vector space of s,
following the transition relation must induce a decision by selecting the next
implicit state to visit. From now on, we will call the transition relation origi-
nating from s the outgoing decision structure from s.
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Since the set represented from s is a pyramid, only the direction of p with
respect to the vector space of s is relevant. By Definitions 2.8 and 3.3, we
know that if a point belongs to a pyramid, all scalings of this point around
one of its apexes also belong to that pyramid.

Operationally, we define an encoding scheme for directions in order to ad-
vance in the decision structure. This encoding scheme, in order to be practical,
has to rely on a finite alphabet. This calls for a second type of states inside
IRVA, which are called explicit states. Taking a decision inside the decision
structure is made by reading a word from an implicit state s1, visiting only
explicit states and arrive in another implicit state s2.

Definition 5.5 A decision path of an IRVA is a sequence of the form :

s1
σ1−→ s2

σ2−→ . . .
σk−1−−−→ sk

where s1 and sk are implicit states, each si with 1 < i < k is an explicit state
and σj for 0 < j < k are symbols. �

Since space is dense, there are infinitely and even uncountably many possi-
ble directions. Recognizing each of them individually would require an infinite
structure, which is of course impossible. Instead, the decision structure re-
groups together directions that do not need to be distinguished. These groups
of directions have to be small enough to unambiguously identify the next poly-
hedral component that needs to be visited by for the point decision procedure.

So, as only directions are considered, every label in the decision structure
corresponds to a region of Rn that is pyramidal and composed of points having
a direction whose encoding is prefixed by that label. Each subsequent reading
of a symbol refines this region further.

Moreover, since all the possible directions are to be handled by the decision
structure, words labeling paths inside this decision structure from s describe
regions that have to cover all the possible directions from C. From now on we
will call such regions path regions.

Example 5.6 Figure 5.4 (a) shows, a pyramidal 2-dimensional polyhedron π,
representing three half-lines C2, C3 and C4 all incident to a point C1 = (0, 0).
C5 is the exterior of the polyhedron. Figure 5.4 (b) shows five path regions of
R2, that corresponds to groups of directions, that are labeled R1, R2, R3, R4
and R5 and are delimited by dotted lines. Figure 5.5(b) sketches the structure of
an IRVA representing this set. In this sketch, rounded boxes are implicit states
{s1, s2, s3, s4, s5}. Vector spaces and polarities associated to implicit states are
not shown. The implicit states represent respectively the pyramids having for
set of apexes the components C1, C2, C3, C4 and C5. The decision procedure is
not represented explicitly here, only the regions induced by the outgoing decision
structure from the implicit state s1 are represented as transition labels. For
example, the decision path labeled R2 has s3 as destination, so we know that
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C5

C1

C2

C4

C3 C3

C4

R2

R4
R1

C5

C1

R3 C2

R5

(a) (b)

Figure 5.4: (a) A polyhedron ⊂ R2 and (b) the set of path regions {R1, R2,
R3, R4, R5} from Example 5.6.

from s3 is represented Pπ(R2), which is the coinciding pyramid with π over
R2. The regions identified by R6 and R7 are shown in Figure 5.5(a). Regions
R8, R9, R10 and R11 are not shown, but are easy to deduce. �

C2R6

R7

s1

s5

s3s2 s4

R6

R5

R3

R8
R10

R1
R2

R7

R9

R4

R11

(a) (b)

Figure 5.5: (a) The polyhedral component C2 and the set of path regions {R6,
R7} from Example 5.6. (b) The structure representing the set given in Figure
5.4.

Without having defined precisely the actual encoding scheme for directions,
we have answered our third question by explaining at a high level the operation
of the transition structure.

Technical details aside, we now have a complete view of our proposed data
structure.
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5.1.4 A Second Look at the Point Decision Procedure
We have mentioned that implicit states are linked by a decision structure that
recognizes encodings of directions. Before explicitly explaining this encoding,
we now study how the incidence relation is represented inside our abstract
data structure.

As it has already been explained, when a polyhedron π is represented, each
of its polyhedral component corresponds to an implicit state. Let us consider
a particular implicit state s representing a polyhedral component C ⊂ Rn.
Recall that the paths that can be followed from s correspond to the local
pyramid Pπ(C). Moreover, each of these paths corresponds to a cover region
of space.

Let us consider such a path outgoing from s. Its destination of can either
be an implicit or an explicit state. If it is an explicit state, then we can
follow more transitions and extend the path further. If, on the other hand, the
destination is an implicit state, then it means that the path identifies a path
region in which Pπ(C) is pyramidal. This pyramid has the affine closure of
C2, a polyhedral component of π incident to C, as set of apexes. In fact, the
component C2 is the minimum covered component of Pπ(C) by this region, see
Definition 3.25.

In other words, when trying to establish whether a point belongs or not to
the local pyramid Pπ(C), all the points belonging to the path region defined
by the labels of the path α leaving s, will belong to one of the components of
PPπ(C)(C2), hence the implicit state s2, that corresponds to C2 will be marked
as destination for α.

Let us now see what the point decision procedure becomes with respect to
our structure.

Recall that the problem is to decide whether of not a point p ∈ Rn belongs
or not to a represented polyhedron.

Point Decision Procedure 2

Step 1 : Set the initial implicit state as current state.
Step 2 : If p belongs to the vector space associated to the current

state, terminate and return the polarity associated to
the current state.

Step 3 : From the current state, follow a path inside the decision
structure leading to another implicit state. This path
must identify a region containing p. Set this new implicit
state as current state and go to step 2.

The procedure terminates when it reaches an implicit state associated to
a vector space that contains p. At worse, since an implicit state associated to
Rn always exists, it will eventually be reached.

The central operation in Step 2 is to find a path inside the decision structure



5.2. Definition of IRVA and Syntax 47

outgoing from a state s in order to identify the next implicit state to visit.
To know which path can be followed inside the decision structure, one first
computes a direction in which the point can be reached from points inside
the vector space associated to s, then the resulting direction is encoded by an
infinite word over a finite alphabet and this word is followed until an implicit
state is reached.

Generalization to pyramidal partitions

We have so far considered that our abstract data structure represents a pyra-
mid. In fact, this structure can serve as symbolic representation of pyramidal
partitions of space.

Indeed, the previous presentation is easy to generalize to pyramidal par-
titions, simply by generalizing the concept of polarity to the more expressive
notion of color as explained in Section 3.2.

In other words, in the previous presentation of the data structure, the
concept of represented pyramid is straightforwardly valid for any chosen color.

5.2 Definition of IRVA and Syntax

In Section 5.1, we have sketched an abstract data structure for representing
polyhedra. This structure is composed of implicit states that represent polyhe-
dral components, along with a transition function that describes the incidence
relation between them. Several questions had to be addressed, which we have
answered by presenting design choices.

We will now see how these design choices are organized inside the IRVA
data structure.

Section 5.2.1 will present the implicit states inside IRVA. Section 5.2.3 will
define the encoding scheme used by IRVA in order to recognize directions.
Before that, we define precisely what we call direction in Section 5.2.2.

5.2.1 Implicit States

The implicit states in IRVA are exactly the same as presented in Section 5.1.2.
In summary, each implicit state represents a polyhedral component. A vec-

tor space equal to the affine closure of the represented polyhedral component
is associated to each implicit state. This vector space is the set of apexes of
the local pyramid associated to the points inside the polyhedral component.

We associate a vector basis and a polarity (a color) to each implicit state.
This vector basis is a generator of the vector space associated to the implicit
state.
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5.2.2 Computing Directions
In Step 2 of point decision Procedure 2, we conclude that ~p does not belong
to the vector space of the current implicit state s. It is equivalent to say that
~p does not belong to the set of apexes A of the pyramid represented from s.
The decision structure leaving s associates ~p with one or several decision paths
that lead to another implicit state. As mentioned before, each prefix read
from s corresponds to a pyramidal region of space. Furthermore, this pyramid
has A as set of apexes. This implies that the decision structure considers as
equivalent two vectors ~u and ~v such that ~v = λ(~u−~x) with λ ∈ R>0 and ~x ∈ A.

This last property holds two important aspects. First, the direction of p
does not depend on its magnitude. Second, this direction is independent of
any translation inside A.

Therefore, in order for the structure to present this property, one expresses
~p in another lower dimensional vector space, such that it is complementary to
A and then normalizes the result. Notice that A is equal to the affine closure
of the vector space associated to s.

Definition 5.7 Let n ∈ N be a dimension and V be a vector space of Rn. A
vector space W ⊆ Rn is complementary to V if V ∩W = {~0} and every
vector ~p ∈ Rn can be expressed as ~p = ~v + ~w, with ~v ∈ V and ~w ∈ W . �

Since the decision structure fully covers all space and ~0 always belongs to
the set of apexes of any path region1, we know that if a point ~p belongs to a
path region, then λ~p (with λ ∈ R>0) also belongs to that region.

We obtain :
(~p ∈ P )⇔ (λ(~p− ~x) ∈ P )

with λ ∈ R>0 and ~x ∈ A.
To summarize, if a point belongs to a path region R, then any uniform

scaling of this point centered on any apex of R does also belong to the path
region.

In order to define an encoding of ~p, the decision structure leaving an implicit
state s needs only to consider directions inside a vector space W , complemen-
tary to the vector space V associated to s. Let {~v1, . . ., ~vm} be a basis of
V .

When m = n, no decision structure leaves s, since V = Rn hence having
~p /∈ Rn is impossible.

On the contrary, when m < n, a variable change operation is applied i.e.
the point ~p is expressed in another coordinates system

S = {~v1, . . . , ~vm, ~w1, . . . , ~wn−m}

where {~w1, . . ., ~wm−n} is the canonical basis of the complementary vector space
of V .

1A path region is pyramidal with respect to a set of apexes equal to a vector space
associated to an implicit state.
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Definition 5.8 The canonical basis of the complementary vector space of
a vector space V , noted CVS(V ), is a basis of the complementary vector space
of V formed by selecting among the rows ~e1, . . ., ~en of the identity matrix of
size n, in order, n−dim(V ) vectors linearly independent with V where ~e1, . . .,
~en are

�

The new coordinate of ~p inside S forms the vector
~p′ = {p1, . . . , pm, pm+1, . . . pn}

One then keeps only the n−m last components of ~p′, to obtain a vector ~p′′
with n−m components. This operation can be formalized as the application
of a projection that maps every point of Rn in V onto ~0 (in a (m − n)–
dimensional space) and then expresses the resulting points into the coordinate
system formed by the basis of {w1, w2, . . ., wn−m}.

To get rid of the magnitude of the resulting vector ~p′′, which is not relevant
since the problem is invariant by scalings, a normalization operation is applied
to it. This operation replaces the vector by its intersection with the faces
of a normalization hypercube, also called normalization cube for the sake of
readability. This closed set is given by :{

(x1, . . . , xn−m) ∈ Rn−m) |
(∃0 < i ≤ n−m)(∀0 < j ≤ n−m)(i 6= j)

((xi ∈ {−1/2, 1/2}) ∧ (xj ∈ [−1/2, 1/2]))
}

and it is, by this definition, centered on the origin, and of size 1.

5.2.3 Encoding Scheme for Directions
Let us now study the encoding scheme applied to a normalized point ~p ∈ Rn−m

in order to follow transitions inside a decision structure. The scheme is based
on labeling subdivisions of the surface of the normalization hypercube.

The first symbol of the encoding identifies a face of the cube in which the
normalized point belongs (it always belongs to at least one face and at most
n −m faces). Formally, the encoding of a normalized point ~p ∈ Rn−m begins
with a symbol σ ∈ {−1,+1,−2,+2, . . . ,−k,+k} with k = n −m. If σ = −i
with 0 < i ≤ n − m, then ~p[i] = −1

2 . If σ = +i with 0 < i ≤ n − m, then
~p[i] = 1

2 . Remark that ±i is a single symbol of the alphabet.
The suffix is an infinite word w ∈ {0, 1}ω that encodes the position of ~p

inside the face of the normalization cube that corresponds to σ. If the leading
symbol is +i or −i, then ~p[i] = 1

2 or ~p[i] = −1
2 . The suffix following the face

symbol is a serial binary encoding of the vector ~p|6=i +
[

1
2

](n−m)−1
∈ Rn−m−1.

To summarize, the following procedure computes an encoding of a point
~p ∈ Rn−m.
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Encoding Procedure

Step 1 : Select i ∈ {1, 2, . . ., n−m} such that ~p[i] ∈ {−1
2 ,

1
2}.

Step 2 : The first symbol σ ∈ ±(N) is +i if ~p[i] = 1
2 and −i

otherwise.

Step 3 : Let ~p′ = ~p|6=i +
[

1
2

]n−m−1
.

Step 4 : Subsequent symbols are the fractional part of the clas-
sical serial binary encoding of p′.

This encoding scheme allow points to have multiple encodings which, as it
will be discussed in Section 5.4.2, turns out to be an essential property. It is
nevertheless important to guarantee that following paths labeled by different
encodings of the same point lead to identical decisions.

We denote by 〈~x, V 〉 the set of encodings of a point ~x in the canonical
complementary vector space of the vector space V .

Example 5.9 We give some examples of face numeration inside Rn. In each
example, ~ei is the ith vector of the Cartesian basis of Rn. The normalization
hypercube is represented with dotted lines.

• n = 1 : The vector basis is {~e1}. There are two faces +1 and −1.

0

x1

−1 +1

• n = 2 : The vector basis is {~e1, ~e2}. There are four faces +1, +2, −1
and −2. In the following figure, light gray areas shows all the points of
R2 having as face decision in their encoding +1 or −1. Dark gray areas
shows those with +2 or −2.

x2

x1

+1

+2

−2

−1
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• n = 3 : The vector basis is {~e1, ~e2, ~e3}. There are six faces +1, +2, +3,
−1, −2 and −3. In the following figure, the white area shows the +1
face of the normalization cube. Light gray shows the face +2 and dark
gray shows the face +3. −1, −2 and −3 are not visible in the figure, but
their emplacement are suggested with arrows.

x2

+2

+3
+1

−2

x1 x3

−1

−3

�

Example 5.10 We now illustrate the encoding of points in R2.

Let ~p1 = (1/2, 1/4) and ~p2 =
(−3/8, 1/2) be two normalized points.
An encoding of length 2 for ~p1 is
+1 1. An encoding of length 3 for
p2 is −2 00. The infinite encod-
ings of ~p1 are given by +1 101ω and
+1 110ω and for ~p2 by −2 0001ω and
−2 0010ω.

x2

x1

~p2

~p1

�
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Example 5.11 We now show how the normalized point ~p = (−1
8 ,

1
4 ,−

1
2) is

encoded in R3 up to 4 symbols.
~p belongs to the face −3, so its encoding starts by symbol −3. It is followed

by symbol 0 since ~p|6=3 ∈ [−1
2 , 0] × [−1

2 ,
1
2 ]. The next symbol is 1, as ~p|6=3 ∈

[−1
2 , 0]× [0, 1

2 ] regions, followed by 1 because ~p|6=3 ∈ [−1
4 , 0]× [0, 1

2 ], etc.

x2

x1

~p

x2

x1

~p ~p

x2

x1

x2

x1

0 1

x2

x100

01 11

10

x2

x1

011
110
111

101
100
001
000

010

�

5.2.4 Syntax
Let us now introduce precisely the syntactic definition of IRVA.

Definition 5.12 An Implicit Real Vector Automaton (IRVA) is a tuple (n, SI ,
SE, s0, δ,VS, col), where

• n ∈ N is a dimension,

• SI is a finite set of implicit states,

• SE is a finite set of explicit states,

• s0 ∈ SI is an initial state,

• δ : (SI × ±N>0) ∪ (SE × {0, 1}∗) → SI ∪ SE is a partial transition
function,

• VS : SI → 2Rn associates a vector space to each implicit state,

• col : SI ∪ SE → N>0 associates a color to each implicit state.

�
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Definition 5.13 Let (n, SI , SE, s0, δ,VS, col) be an IRVA. The set of symbols
that labels the outgoing transitions of an implicit state s ∈ SI , noted Σ(s), is
the set :

Σ(s) =
⋃

1≤i≤n−dim(VS(s))
{+i,−i}

�

In addition, to facilitate the presentation of concepts for the rest of this
work, we define the following functions :

• δ∗ is the reflexive and transitive closure of δ. We thus have : δ∗(s, ε) = s
and ε the empty word, and

δ∗(s, w) = δ(. . . (δ(δ(s, σ1), σ2), . . .), σk)

with s ∈ SI ∪ SE, w = σ1σ2 . . . σk and (∀i ∈ {1, 2, . . . , k})(σi ∈ ±N ∪
{0, 1})

• δ∗(s) is the set of all reachable states from a state s ∈ SI ∪ SE.

δ∗(s) = {s′ ∈ SI ∪ SE | (∃w ∈ (±N ∪ {0, 1})∗(δ∗(s, w) = s′)}

• δI(s) is the set of the first reachable implicit states from a state s ∈
SI ∪ SE :

δI(s) =
{
{s′ ∈ SI | (∃w ∈ {0, 1}∗)(δ∗(s, w) = s′)} if s ∈ SE
{s′ ∈ SI | (∃w ∈ Σ(s){0, 1}∗)(δ∗(s, w) = s′)} if s ∈ SI

• Lδ(s, s′) the set of words labeling paths from a state s to a state s′, with
s, s′ ∈ SI ∪ SE :

Lδ(s, s′) = {w ∈ ((±N) ∪ {0, 1})∗ | δ∗(s, w) = s′}

5.2.5 Syntactic Constraints
All the structures that can be produced from this syntax does not correspond
to valid IRVA. For this reason we will give a set of syntactic rules that an IRVA
candidate must fulfill to be syntactically valid.

An IRVA (n, SI , SE, s0, δ,VS, col) has to satisfy the following syntactic con-
straints :

1. The transition function must be acyclic, i.e. such that :

(∀s, s′ ∈ SI ∪ SE)((s′ ∈ δ∗(s)) ∧ (s 6= s′)⇒ s /∈ δ∗(s′))
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2. The transition function must be complete :

(∀s ∈ SI)(∀σ ∈ Σ(s))(∃s′ ∈ SI ∪ SE)(δ(s, σ) = s′)

(∀s ∈ SE)(∃s′, s′′ ∈ SI ∪ SE)(δ(s, 0) = s′ ∧ δ(s, 1) = s′′)

3. Each state must be reachable from the initial state :

(∀s ∈ SI ∪ SE)(s ∈ δ∗(s0))

4. When an implicit state s′ is reachable from another implicit state s, the
associated vector space of s must be proper a subset of the one of s′ :

(∀s, s′ ∈ SI)(s′ ∈ δI(s)⇒ VS(s) ⊂ VS(s′))

Note that this implies dim(VS(s)) < dim(VS(s′)).

5. Each word that can be read from one implicit state s to another s′ must
be a prefix of an encoding of at least one point that belongs to VS(s′) :

(∀w ∈ Lδ(s, s′))(RVS(s),w) ∩ VS(s′) 6= ∅

with s, s′ ∈ SI .

5.3 Semantics
In order to associate a semantics to this syntactic definition, we will introduce
a notion that associates a path leaving an implicit state with a region of space
in which every point can be encoded locally by the labels of the transitions
composing this path. It corresponds to what we have called path regions since
Section 5.1.3. We now define them more formally.

5.3.1 Path Regions
For each word that can be followed inside a decision structure leaving an
implicit state s of an IRVA, we consider the set of points that admit an encoding
prefixed by this word.

More formally, given a prefix w and a vector space V the path region of w
with respect to V , noted RVS(s),w, is the set of points that admit an encoding
prefixed by w.

Definition 5.14 Let V ⊂ Rn and w ∈ ±N{0, 1}∗ be a word. The path region
RV,w is the set :

{~x ∈ Rn | (∃e ∈ 〈~x, V 〉)(∃w′ ∈ {0, 1}ω)(e = ww′)}

�
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Such path regions are useful in order to consider at once all the points that
share a path from a particular implicit state. Such paths begin in an implicit
state and follow transitions inside the decision structure from this implicit
state. Once another implicit state is reached, the encoding scheme is reset,
and thus reading more symbols without changing the encoding is not possible.
Indeed, the transitions in the decision structure of the newly reached implicit
state have symbols corresponding to encodings of points expressed with respect
to the vector space of this new state.

Let us point out that for a point ~x ∈ Rn and an IRVA (n, SI , SE, s0, δ,VS,
col), it is possible to define a path that starts in an implicit state s of the IRVA,
follows some transitions that corresponds to one encoding e ∈ 〈~x,VS(s)〉,
until reaching a second implicit state s′. From s′, it is possible to extend
further the path by following some transitions that corresponds to one encoding
e′ ∈ 〈~x,VS(s′)〉 and so on.

This leads us to the characterization of a combined path region defined by an
implicit state s1 and a word w = w1, w2, . . . , wk ∈ ±N{0, 1}∗. The combined
path region of a word read from an implicit state s1 and visiting implicit states
s2, . . . , sk is the set of points ~x such that, for each state si, there exists wi, a
prefix of at least one element of 〈~x,VS(si)〉 and such that w1w2 . . . wk = w.

Definition 5.15 Let A = (n, SI , SE, s0, δ,VS, col) be an IRVA, s1 ∈ SI an
implicit state and w be a word in (±N{0, 1}∗)k such that k ∈ N>0 and such
that reading w from s1 visits k implicit states. We have the following sequence :

s1
w1−→ s2

w2−→ . . . sk
wk−→

The combined path region CRA,s1,w is the set

CRA,s1,w =
k⋂
i=1

RVS(si),wi

�

5.3.2 Point Decision in IRVA
Let A = (n, SI , SE, s0, δ,VS, col) be an IRVA and ~x ∈ Rn be a point.

Definition 5.16 A run of A over ~x is a finite sequence

(s0, w1)(s1, w2) . . . (sm−1, wm)(sm, ε)

where 0 ≤ m ≤ n, s0, s1, . . . , sm ∈ SI , w1, w2, . . . , wm−1, wm ∈ ±(N>0{0, 1}∗
and such that ~x ∈ VS(sm), and for every i ∈ {0, 1,m − 1}, ~x /∈ VS si and
~x ∈ RVS(si),wi+1. �
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5.3.3 Well-Formed IRVA
Some syntactically valid IRVA can nevertheless be inconsistent. Indeed, since
a point can admit multiple encodings, inconsistencies appears if the reading of
those encodings are not coherent with one another.

Those IRVA are called badly formed. Well formed IRVA are defined as
follows :

Definition 5.17 An IRVA A = (n, SI , SE, s0, δ,VS, col) is well-formed if it
is syntactically valid and if, for every ~x ∈ Rn, each of its runs over ~x ends up
in the same implicit state. �

Note that the RVA data structure has similar restriction, since it requires
that all the encodings of a point have to be recognized accordingly.

5.3.4 Coloring Function of an Implicit State
We have seen that a color information is associated to each implicit state
of IRVA. The use of two colors permits the definition of classical pyramidal
polyhedra and the use of more colors enables the representations of pyramidal
partitions. Use have extensively used binary color scheme for clarity sake. In
this section we are in the context of the more general arbitrary color scheme.

An IRVA representing a pyramidal partition associates, to each point of
space, a part containing this point. We can formalize this association by
defining the coloring function of the IRVA. In order to do so, we associate a
unique color for each part.

Technically, we will associate a coloring function to each implicit state, as
it is possible to consider only a fraction of the IRVA from one implicit state as
another IRVA.

Theorem 5.18 Let (n, SI , SE, s0, δ,VS, col) be an IRVA and s ∈ SI be an im-
plicit state. The coloring function of s, noted COLORs is such that COLORs :
Rn → N>0 as :

COLORs(~x) =
{

col(s) if ~x ∈ VS(s)
COLORs′(~x) if ~x ∈ RVS(s),w

with ~x ∈ Rn, s′ ∈ δI(s), w ∈ Lδ(s, s′).

We now have a constructive description of the coloring function associated
to each implicit state of the IRVA. The coloring function of the initial state s0 is
then the partition represented by the IRVA. We obtain the following theorem :

Theorem 5.19 Every well-formed IRVA (n, SI , SE, s0, δ,VS, col) represents a
pyramidal partition of Rn.
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5.3.5 Sets Represented from an Implicit State
The following formula gives, constructively, the set represented from a partic-
ular implicit state s of an IRVA (n, SI , SE, s0, δ,VS, col) for a particular color
c :

SET(s, c) =


⋃

s′∈δI(s)

⋃
w∈Lδ(s,s′)

(
RVS(s),w ∩ SET(s′, c)

)
∪ VS(s) if col(s) = c⋃

s′∈δI(s)

⋃
w∈Lδ(s,s′)

(
RVS(s),w ∩ SET(s′, c)

)
if col(s) 6= c

5.3.6 Point Classification in IRVA
Let A = (n, SI , SE, s0, δ,VS, col) be an IRVA, s, s′ ∈ SI be two implicit states
and ~x ∈ Rn be a point.

The expression
s′ = class(A, s, ~x)

states that the run of A over ~x from s terminates in s′.

5.4 Minimum Element
Let s1 be an implicit state and w ∈ ±N{0, 1}∗ be a word. We have seen that
reading w from s1 defines a path region RVS(s1),w containing all points of space
such that w is a prefix of one of their encodings.

This means that, in order to classify any point of RVS(s),w from s1, one can
follow the path labeled with w and take a decision from the destination of the
path labeled by w. If this path leads to an implicit state s2, the classification
procedure can be carried out from s2.

As it is possible to have points of RVS(s),w that do not belong to VS(s2),
the runs of those points over the IRVA from s will eventually end into another
implicit state. This other implicit state is necessarily reachable from s2.

This leads us to the notion of minimum element, similar to the notion of
minimum polyhedral component introduced in Section 5.1.4.

Let A = (n, SI , SE, s0, δ,VS, col) be an IRVA and S ⊆ SI a selection of
implicit states of this IRVA. An implicit state s is the minimum element of S
iff :

(∀si ∈ S)(si ∈ δ∗(s))

This minimum element may not be defined. When it is the case, it is
denoted by the use of a distinguished symbol ⊥.

We have :

minelset(S) =
{
s ∈ S if (∀si ∈ S)(si ∈ δ∗(s))
⊥ otherwise.
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5.4.1 Minimum Covered Element
Later in this work, we will need to find the implicit state of an IRVA that
corresponds to the minimum covered component of the pyramidal partition
represented from an implicit state of an IRVA with respect to a region of
space.

We have presented the notion of minimum covered component (see Defini-
tion 3.25). We will now see how, given an IRVA A and an implicit state from
where a pyramidal partition Π is represented, we can find the implicit state
representing the minimum covered component of Π by a region R. We call this
implicit state the minimum covered element by R from s in A. This operation
is noted minel(A, s, R).

Let A = (n, SI , SE, s0, δ,VS, col) be an IRVA, R ⊆ Rn be a non empty
convex region and s ∈ SI be an implicit state. The minimum element of A
covered by R from s is the implicit state sm ∈ SI , which is the minimum
element of the set :

{si ∈ SI | (∃w ∈ Lδ(s))(CRA,s,w ∩VS(s′) ∩R 6= ∅)}

the set of reachable implicit states from s such that VS(s) has an non empty
intersection with CRA,s,w and the convex region (w labeling paths which lead
from s to these implicit states).

Theorem 5.20 For an IRVA A = (n, SI , SE, s0, δ,VS, col), two implicit states
s, s′ ∈ SI (s and s′ can be the same state) and a region R ⊆ Rn, we have :

s′ = minel(A, s, R)⇒ (∀~x ∈ R)(class(A, s, ~x) = class(A, s′, ~x))

Proof : In the case where s and s′ is the same state, the result is straightfor-
ward.

Otherwise, the state returned by the classification procedure of ~x over A
from the state s, noted class(A, s, ~x), can only be an implicit state that belongs
to the set δ∗(s).

The fact that we have s′ = minel(A, s, R), ensures us that :

(∀~x ∈ R)(class(A, s, ~x) ∈ δ∗(s′))

Otherwise, it would be possible to find a point ~x′ ∈ R such that class(A, s, ~x′) =
s′′ with s′′ /∈ δ∗(s′). But as ~x′ ∈ VS(s′′) and ~x′ ∈ R, we obtain that VS(s′′)∩R 6=
∅. And thus that RVS(s),w′ ∩ VS(s′′) ∩ R 6= ∅ with w′ ∈ Lδ(s, s′′) being an en-
coding of ~x′ from s. s′′ would then have made impossible for minel(A, s, R)
to return s′ in the first place, which was not the case.

As a consequence, it is clear that we can search for class(A, s, ~x) from s′

and thus that we will obtain : class(A, s, ~x) = class(A, s′, ~x) �

Now, let us examine the case were minel(A, s, R) is undefined. When it
is the case, it is due to the fact that a set of polyhedral components of the
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pyramidal partition represented by A from s have a non empty intersection
with R but have a common parent (with respect to the incidence relation)
with no intersection with R. This indicates that the search for a minimum
element is a particular case of a more general procedure that calculates the set
of minimal covered elements of A, from state s by region R and we will need
this operation later in this work to identify the components that prevents the
minimum to be defined.

Let A be an IRVA, s be an implicit state and R be a non empty convex
region of Rn. If C is the polyhedral component represented by s and if Π is the
pyramidal partition represented by A from s, it is always possible to calculate
the set Q of implicit states of A such that each element q ∈ Q represents a
polyhedral component of Π having a non empty intersection with R and being
incident or equal to C, and such that there is no other member of Q to which
it is incident to.

This set is the set of minimal covered elements of A from s by R and is
calculated by the procedure minimals(A, s, R).

Algorithm for Finding Minimal Covered Elements

We will now develop algorithms to find the set of minimal covered elements
and the minimum covered element of an IRVA A = (n, SI , SE, s0, δ,VS, col)
from a state s for a non empty convex region R.

First, let us make two observations : the set of minimal covered elements
is always non empty, and when the minimum covered element is defined, it
is due to the fact that the set of minimal covered elements contains only one
element (and it is of course the minimum).

A first function will address the problem of keeping a set of minimal ele-
ments after merging two sets of implicit states. The function merge takes two
sets of implicit states S1 and S2 and is defined as :

merge(S1, S2) = {s ∈ S1 ∪ S2 | (@s′ ∈ (S1 ∪ S2) \ {s})(s ∈ δ∗(s′)}

The second function is called minimals and calculates the set of minimal
covered elements of A from s by the region R.

It is defined as :

minimals(A, s, R) = search minimals(A, s, R, ε)

See Algorithm 1 for a complete definition of search minimals.
Finally, the last function, called minel is the function that finds the mini-

mum element inside an IRVA A from a state s covered by a non empty convex
path region R. It is defined as

minel(A, s, R) =
s′ if minimals(A, s, R) = {s′}.
⊥ if |minimals(A, s, R)| > 1.
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input : An IRVA A = (n, SI , SE, s0, δ,VS, col), a state s ∈ SI , a non
empty convex polyhedron R ⊂ Rn and a word
w ∈ {ε} ∪ ±N{0, 1}∗

output: A set of implicit states of A
if VS(s) ∩R 6= ∅ then

return {s};
else

S := ∅;
foreach σ ∈ succ(s′) do

w′ := wσ;
R′ := RVS(s),w′ ∩R;
if R′ 6= ∅ then

s′ := δ∗(s, w′);
if s′ ∈ SI then

if R′ ∩ VS(s′) 6= ∅ then
S := merge(S, {s′});

else
S := merge(S, search minimals(A, s′, R′, ε));

end
else

S := merge(S, search minimals(A, s, R, w′));
end

end
end
return S;

end
Algorithm 1: Computation of search minimals(A, s, R, w)
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5.4.2 Property of a Good Encoding Scheme

We have mentioned before that a point admits multiple encodings with respect
to the outgoing decision structure from an implicit state. This is due to two
reasons. First, each encoding of a point starts by a face selection among the
faces of an hypercube of normalization. The normalization of the direction in
which the point leaves the vector space can belong to multiple faces, hence
there will be at least one encoding for each face. Second, each subsequent
symbols decomposes the face into two pieces along one axis. We have seen
that each piece is a closed set. Every point that belongs to the boundary of
such piece will admit at least two encodings.

We have claimed in Section 5.2.3 that this particular property is mandatory.
We will see why and how it is linked to the notion of minimum covered element
by considering a counter example.

As presented in the beginning of this chapter with the abstract data struc-
ture, we consider the encoding scheme to be a tool aimed at organizing the
outgoing decision structure from implicit states. Imagine that a different en-
coding scheme that generates exactly one encoding for each point is used. It
implies that, when a symbol is read, space is partitioned into distinct parts.
Some of those parts have open boundaries.

For example, in Figure 5.6, we consider a square and one of its possible
partitions. In the figure, plain lines indicate closed boundaries and dashed
lines indicate open ones.

Figure 5.6: Partitioning of a square.

Recall that we have seen in Section 5.1.4 that when a path w links two
implicit states s1 and s2 inside an IRVA indicates the fact that the polyhedral
component corresponding to s2 is the minimum covered component inside the
path region RVS(s1),w.

Let us consider, as an example, that we are constructing an IRVA repre-
senting a 3–dimensional set and let the square in Figure 5.7 correspond to the
intersection of a path region R∅,w defined by reading a word w from an implicit
state representing ~0. On Figure 5.7, we show this region and the polyhedral
components a and b, corresponding to planes, visible inside it. Remark that
P , which is the ray of intersection of the planes, is not visible in this region.
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P

a

b

b

b

a
a

P

Figure 5.7: Partitioning of a square containing the polyhedral components a
and b, but not P .

The decomposition on the right shows that the situation has not changed
at all. More subdivisions of the upper right part are necessary because a
minimum element is not defined. The problem is that this construction does
not terminate. Indeed, in this situation, the distance between a and b is zero,
but their intersection P does not belong to the region. Subdividing the regions
further will never change this fact. That is precisely the problem with encoding
schemes that allow open boundaries for spacial subdivisions.

With our encoding scheme, the problem does never occur, because if some
elements are separated by a distance equal to zero, then their intersection has
to be visible in this region as well.

5.5 Example of IRVA
We now illustrate a complete example of IRVA. We consider an IRVA repre-
senting the 3–dimensional pyramid already introduced in Example 5.4. Let
(~e1, ~e2, ~e3) be a Cartesian coordinate system of R3.

x3 = 1
x2

x1

x3

b

a

c
~0

The pyramid is composed of nine polyhedral components : the origin ~0,
the three rays a = (1/2, 1/2, 1), b = (4/3, 4/3, 1) and c = (2, 0, 1), the three planes
ab, bc and ac and the two 3–spaces in and out, respectively the inside and
the outside of the pyramid. We assign color gray to the whole pyramid –
boundary and interior – and white to its outside.
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The IRVA representing this polyhedron has nine implicit states s0, sa, sb,
sc, sab, sbc, sac, sin, sout representing respectively the polyhedral components
~0, a, b, c, ab, bc, ac, in, out.

The initial state of the IRVA is s0.
The set of implicit states is :

SI = {s0, sa, sb, sc, sab, sbc, sac, sin, sout}

The vector spaces associated to those implicit states are given in the fol-
lowing table :

VS(s0) ∅
VS(sa) {(1/2, 1/2, 1)}
VS(sb) {(4/3, 4/3, 1)}
VS(sc) {(2, 0, 1)}
VS(sab) {(1/2, 1/2, 1) , (4/3, 4/3, 1)}
VS(sbc) {(4/3, 4/3, 1) , (2, 0, 1)}
VS(sac) {(1/2, 1/2, 1) , (2, 0, 1)}
VS(sin) {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
VS(sout) {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

To define the transition function, we need to know the canonical basis of
the complementary vector spaces of each state. Remember that it defines in
which coordinate system the directions going out of each implicit state are
going to be expressed. This of course also defines their encodings.

CVS(s0) {~e1, ~e2, ~e3}
CVS(sa) {~e1, ~e2}
CVS(sb) {~e1, ~e2}
CVS(sc) {~e1, ~e2}
CVS(sab) {~e1}
CVS(sbc) {~e1}
CVS(sac) {~e1}
CVS(sin) ∅
CVS(sout) ∅

It remains to define the transition function and the set of explicit states.
Let us examine the intersection of the pyramid and the normalization cube
[−1

2 ,
1
2 ]3 (Fig. 5.8) in order to establish the successors of the initial state. As

dim(VS(s0)) = 0, we have Σ(s0) = {−3,−2,−1,+1,+2,+3}. Each of those
symbols identifies a face of the normalization cube. The following table shows
the set of polyhedral components that each face intersects and the minimum
component of those sets. When the minimum covered component is defined for
the path region corresponding to the word, the implicit state representing this
component can be set as destination by this word. When there is no minimum
covered component defined, one simply makes the word longer until it defines
a path region fine enough for a minimum covered component to be defined.
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b

c

a

x2

x1 x3

Figure 5.8: The intersection of the pyramid with the normalization cube
[−1/2, 1/2]3.

state word path region components min. component
s0 +1 RVS(s0),+1 {b, c, bc, ac, in, out} ⊥
s0 +1 0 RVS(s0),+1 0 {c, out} c
s0 +1 1 RVS(s0),+1 1 {b, c, bc, ac, in, out} ⊥
s0 +1 10 RVS(s0),+1 10 {out} out
s0 +1 11 RVS(s0),+1 11 {b, c, bc, ac, in, out} ⊥
s0 +1 110 RVS(s0),+1 110 {c, bc, ac, in, out} c
s0 +1 111 RVS(s0),+1 111 {b, bc, in, out} b
s0 +2 RVS(s0),+2 {b, ab, in, out} b
s0 +3 RVS(s0),+3 {a, ab, ac, in, out} a
s0 −1 RVS(s0),−1 {out} out
s0 −2 RVS(s0),−2 {out} out
s0 −3 RVS(s0),−3 {out} out

The face +1 intersects both a and b, hence deciding between them is im-
possible after having read only the symbol +1. Therefore, δ(s0,+1) directs
to an explicit state and its successors need to be explored. Each of the other
faces, however, identify a minimum covered component, so their destination
will be the implicit states representing those components.
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x2

x1

ac

ab
x2

x1

bcab

x1

bc

x2

ac

(a) (b) (c)

Figure 5.9: Geometrical situation of (a) component a in CVS(sa) (b) compo-
nent b in CVS(sb) (c) component c in CVS(sc).

Now we develop the successors of the states sa, sb and sc. An illustration of
the situation is represented, respectively, in Figures 5.9(a), 5.9(b) and 5.9(c).
Here is the result of the exploration :

word components min. component
δ∗(sa,+1) {ab, ac, in, out} ⊥
δ∗(sa,+1 0) {ac, in, out} ac
δ∗(sa,+1 1) {ab, in} ac
δ∗(sa,+2) {ab, out} ab
δ∗(sa,−1) {out} out
δ∗(sa,−2) {out} out
δ∗(sb,+1) {out} out
δ∗(sb,+2) {out} out
δ∗(sb,−1) {ab, out} ab
δ∗(sb,−2) {ab, bc, in, out} ⊥
δ∗(sb,−2 0) {ab, in} ab
δ∗(sb,−2 1) {bc, in, out} bc
δ∗(sc,+1) {out} out
δ∗(sc,+2) {bc, in, out} bc
δ∗(sc,−1) {ac, in, out} ac
δ∗(sc,−2) {out} out

Since the canonical basis of the complementary vector spaces of the states
sab, sbc and sac is {~e1}, Figure 5.9 can be used to define their successors. Indeed,
the x1 axis is there represented, making it quite easy to determine, for each
plane, if leaving this plane from any of its points in a positive direction. And
finally, here is the result of the exploration of the successors of states sab, sbc
and sac :
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word components min. component
δ∗(sab,+1) {in} in
δ∗(sab,−1) {out} out
δ∗(sbc,+1) {out} out
δ∗(sbc,−1) {in} in
δ∗(sac,+1) {in} in
δ∗(sac,−1) {out} out

This exploration teaches us that we need five explicit states. We have :

SE = {s1, s2, s3, s4, s5}

And, in summary, we have this complete definition of the transition func-
tion :

δ +1 +2 +3 −1 −2 −3 0 1
s0 s1 sb sa sout sout sout
sa s4 sab sout sout
sb sout sout sab s5
sc sout sbc sout sac
sab sout sin
sbc sin sout
sac sout sin
s1 sc s2
s2 sout s3
s3 sc sb
s4 sac sab
s5 sab sbc

Figure 5.10 shows the graph representation of this IRVA. From now on
in this work, representations of IRVA will use the following conventions. Im-
plicit states are represented with rounded boxes and explicit states are ovals.
Name and associated vector space of each implicit state is included inside each
rounded boxes, and color is shown by the color of the box. The vector spaces
are presented in a matrix-style notation. Each column of the matrix is a basis
vector and are separated by a vertical line. The set of vectors on the left of
the vertical line is the basis of the vector space associated to the implicit state.
The canonical complementary vector space is generated by the set of vectors
a the right of the vertical line. Although this latter set of vectors can be de-
duced from the associated vector space itself, it is shown in order to facilitate
the reading of encodings of points in the outgoing decision structure, as the
encodings are expressed inside this canonical complementary vector space.
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Figure 5.10: IRVA representing the abc pyramid.





Chapter 6

Canonical IRVA

6.1 Motivation
One of the biggest advantages of the IRVA data structure is that it admits a
canonical form. For particular applications, such a property can be essential :

First, a canonical structure ensures that its size does not depend on the
history of its creation. Keeping the size of the data structure under control
is critical in many fields. For example, in symbolic state-space exploration,
building a polyhedron that is a representation of the reachable state-space of
a program is done incrementally by analyzing its model. Data structures such
as B-REP or CSG can be problematic in this regard [Sha97].

Second, having a canonical representation of sets leads to an efficient test
for equality, which reduces to a simple syntactic equivalence check.

6.2 Canonical IRVA Representation
We will now show that any pyramidal partition of Rn (with ~0 as apex), can
be represented by an IRVA, and this IRVA can be defined canonically up to
isomorphism of transition relation and equality of vector spaces.

Let Π ⊆ Rn be a pyramidal partition of Rn with apex ~0. To construct a
canonical IRVA (n, SI , SE, s0, δ,VS, col) representing Π, a first step consists in
defining SI as a canonical set of implicit states. For each polyhedral component
Ci of Π, we define an implicit state si, such that VS(si) = aff(Ci) and col(si)
as the unique color associated to the points of Ci by Π.

Since Π is pyramidal, we know by Theorem 3.23 that there exists a unique
minimum component with respect to the incidence relation among all the com-
ponents of Π. The implicit state that corresponds to this component is denoted
by s0 and forms the initial state of the canonical IRVA.

It remains to define the transition function δ and the set SE of explicit
states. The construction proceeds as follows. The successors of each state are
developed recursively. For an implicit state s, if VS(s) is the universal vector
space, then s does not have outgoing transitions. Otherwise, its successors are

69
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developed one by one among Σ(s). Each explicit state has always two outgoing
transitions, one labeled by 0 and the other by 1.

So, for an implicit state s whose successors have to be explored, the labels
in ±N{0, 1}∗ are considered in increasing order of length. Each path labeled by
a word w defines a path region RVS(s),w. If this path region identifies a unique
minimum component of Π, then the destination of this path is an implicit state
representing this component. If no such minimum component is defined, then
the path leads to an explicit state, and will be developed further until reaching
an implicit state.

If the paths are kept as short as possible, i.e. if no shorter prefix defines
a path region that identifies a minimum component, then we have the guar-
antee that the decision structure leaving s is as small as possible. Since this
construction is deterministic and does only depend on the associated vector
space of each implicit state, it is bound to produce a canonical IRVA.

6.2.1 Minimality
The fact that the set of implicit states of the canonical IRVA A represent-
ing a pyramidal partition Π contains one implicit state for representing each
component of Π prevents this set to be any smaller.

If, as described in the introduction of this section, the decision structure of
A is as small as possible, it is not possible to define an IRVA B representing
Π that contain less states than A. The IRVA A is therefore minimal.

6.2.2 Sources of Non Minimality
There are two main reasons why two different IRVA can represent the same
polyhedral partition :

The first one comes from the presence of useless implicit states in the
structure. An implicit state is useless when it does not represent the affine
closure of any polyhedral component.

For example, such a useless state can correspond to a line included in a
plane of the same polarity (color). We immediately understand that an IRVA
representing this set does not need to have an implicit state to represent this
line.

The second reason is related to the decision structures linking implicit
states. With the exception of those associated to Rn, every implicit state is
followed by a decision structure in which symbols are read until eventually
reaching another implicit state. In the point decision procedure, reaching an
implicit state s means that the point belongs to a certain path region small
enough to identify the next current state from which to continue the procedure.
This intuitively means that the point belongs to a polyhedral component that
is adjacent or equal to the one associated with s.

Remember that, the point decision procedure, leaves implicit states by
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following a path labeled by an encoding of the point of interest. For each
symbol that is read, the corresponding path region is refined. When an implicit
state is reached, we know that we are in a situation where the procedure can
be continued from this implicit state. Nothing prevents a decision structure to
be needlessly complex, for instance by forcing the point decision procedure to
follow additional transitions even though they can only lead to a single implicit
state.

Imagine the simple case of a line included in a 3-space of a different polarity
(or color). The corresponding IRVA has an implicit state s representing the
line and its outgoing decision structure has to assign any outgoing direction to
an implicit state s′ representing the 3-space. It is of course possible to define
the decision structure such that it requires to follow many symbols, although
only one would suffice to identify the state s′ as destination.

Implicit States and Frontiers

Some implicit states have an associated vector space that does not correspond
to the affine closure of a component of the represented pyramidal partition. In
other words, such implicit states do not represent a component of the pyramidal
partition, as presented in section 6.2.2.

Let A be an IRVA representing the pyramidal partition Π. Let s and s′

be implicit states of A such that s′ is the minimum element of the set δI(s)
of reachable implicit states from s. The implicit state s does not represent a
polyhedral component of A iff it has the same color as s′ and does not represent
a frontier of the polyhedral component represented by s′.

Definition 6.1 A polyhedral component C1 is a frontier of another compo-
nent C2 when C1 ∈ aff(C2) and when any neighborhood of any point of C1
contains at least two points p, q ∈ (aff(C2) \ C1) such that p ∈ C2 and q /∈ C2.

�

This definition implies that aff(C1) is a vector space of aff(C2) such that
dim(aff(C1)) = dim(aff(C2))− 1.

Intuitively, we can understand that any vector space of lesser dimension
than dim(aff(C2)) − 1 does not cut aff(C2) in two parts, and therefore it can
not be a frontier of it.

Example 6.2 Figure 6.1(a) shows an example of a 3-dimensional polyhedral
partition that contains three components : an plane S ′ delimiting the two half-
spaces S1 and S2. The corresponding IRVA, shown on Figure 6.1(b), has four
implicit states. The state s′ represents the component S ′ and is such that
dim(VS(s′)) = 2. The states s1 and s2 represents respectively S1 and S2 and
are such that dim(VS(s1)) = dim(VS(s2)) = 3. Finally the state s represents
a line S and is such that dim(VS(s)) = 1. S is not a frontier of S ′, since the
colors of s and s′ are identical, and it is impossible to find any neighborhood
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Figure 6.1: Illustration to the notion of useless implicit state. (a) A 3-
dimensional polyhedral partition. S ′ is a half plane that cuts a 3-space into
S1 and S2. S is a ray inside S ′ and has the same color. (b) The corresponding
IRVA.

of S that contains a point that belongs to aff(C2)\C1 and such that it does not
belong to C2. Intuitively, the line S is completely included inside the plane S ′.

�

S1
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S′

+1

+1

s

s′

s1

+2
+1
−1

−1

(a) (b)

Figure 6.2: Illustration of the notion of frontier. (a) Example of 3-dimensional
pyramidal partition. S ′ is a half plane inside a 3-space S1. S is the frontier of
the component S ′ and has the same color. (b) The corresponding IRVA.

Example 6.3 Figure 6.2(a) shows a 3-dimensional polyhedral partition com-
posed of three polyhedral components. A half-plane S ′ is bounded by a line
S and the 3-space S1 surrounds them. Figure 6.2(b) shows the corresponding
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IRVA. The main difference with Example 6.2, except that as S ′ is only a half
plane, is that any neighborhood of any point of the line S contains at least two
points p, q ∈ (aff(S ′) \ S) such that p ∈ S ′ and q /∈ S ′. Intuitively, we see that
the line S does partition the plane S ′. �

Detecting Useless Implicit States

Operationally, an implicit state s is a useless state of an IRVA A = (n, SI , SE,
s0, δ,VS, col) iff all the following conditions are satisfied :

• (∃s′ ∈ SI)(s′ = minelset(δI(s))),

• col(s) = col(s′),

• (dim(VS(s)) = dim(VS(s′))− 1)⇒
(∃w1, w2 ∈ {0, 1}∗)(δ∗(s,+iw1) = s′ ∧ δ∗(s,−iw2) = s′)

with i ∈ {1, . . . , n− dim(VS(s))}.
The last condition is aimed at detecting whether or not s is a frontier of

s′. To understand it, we will use a few examples. Consider a situation that
satisfies the first two conditions : s and s′ are two implicit states having the
same color and such that s′ is the minimum element of δI(s). If dim(VS(s)) <
dim(VS(s′))− 1 then s is not a frontier of s′, hence s is detected useless.

Now let dim(VS(s)) = dim(VS(s′)) − 1 and w be a path linking s to s′.
w begins with the face selection symbol +i (or −i), with i ∈ {1, . . . , n −
dim(VS(s))}. If there do not exist a path w′ linking s to s′ beginning with
the face selection symbol −i (or +i), s is a frontier of s′. Indeed, the presence
of the path labeled by w leading to s′ ensures that there exists at least one
point p that belongs to RVS(s),w that also belongs to the polyhedral component
represented by s′. We know that one encoding of p begins with +i (or −i). If
s was not a frontier of s′, there would exist at least one point q in the opposite
direction of p, with respect to VS(s), such that an encoding of q belongs to
the component represented by s′. This is not the case, as there is no path
beginning with −i (or +i) in the outgoing decision structure of s. Therefore,
s is a frontier of s′.

Detecting Useless Explicit States

We have explained that some paths of the decision structure can be overly
complex. If each path leading to an explicit state s defines a path region in
which a minimum covered element is defined, s is useless.

Operationally, an explicit state s is useless when the set δI(s) of implicit
states reachable from s, contains a minimum element.



74 Chapter 6. Canonical IRVA

δI(s)/{s′}

0
1

s

s′

Figure 6.3: Illustration of a useless explicit state, s′ is the minimum element
of the set δI(s).

6.3 Minimization Algorithm
We address the question of computing, for a given IRVA, a canonical IRVA
that represents the same set. Since it turns out that this canonical form has
also the smallest possible number of states as discussed in Section 6.2.1, we
call this operation minimization.

Let A = (n, SI , SE, s0, δ,VS, col) be an IRVA. The computation of the
canonical form of A representing the same polyhedral partition can be per-
formed as follows.

Each step of the algorithm consists in processing one state of the automa-
ton, considered in an a bottom-up order. Recall that the transition function
of IRVA is acyclic. This means that the first states to be processed are the
implicit states with an associated vector space of dimension n, since they cor-
respond to the terminal states of the IRVA. Then, every state whose direct
successors by δ have been already considered is processed. The algorithm ends
when every state of the automaton has been visited.

Processing a state s ∈ SI ∪ SE consists in identifying states s′ that have
already been processed, such that s can be merged with s′. If no such state
is found then s is left unchanged. When a state s′ is found and merged with
s, all transitions leading to s have to be redirected to s′ and all transitions
outgoing from s are removed from δ. Some states could become unreachable
by this operation and have to be removed.

6.3.1 Merging Rules
It remains to determine under which conditions two states are considered iden-
tical and have to be merged. Let s be the state that is currently processed,
and let s′ be a state already processed in a previous step. There are two rules
for the case where s is explicit and two rules for the case where s is implicit.

Rules for explicit states

1. A first rule checks whether s′ has the same successors as s. This rule
makes sure that the decision structure itself is minimized. It is similar
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s s′

0 1

1

0

Figure 6.4: First rule for explicit states, s and s′ share the same successors.

to the minimization algorithms for Binary Decision Diagrams [Ake78,
Bry92].
More precisely, s and s′ have to be merged iff :

δ(s, 0) = δ(s′, 0) ∧ δ(s, 1) = δ(s′, 1)

Figure 6.4 shows such a situation.

2. A second rule for explicit state s is aimed at reducing the size of a possibly
overly complex decision structure, as mentioned in Section 6.2.2. The
rule consists in checking if s′ is the minimum element of the set δI(s)
of reachable implicit states from s. Remember that for s′ to be the
minimum element of a set S of implicit states, one only has to check
whether each state in S belongs to δ∗(s′), i.e. that this state is reachable
from s′. We obtain the following condition :

(∀s′′ ∈ δ∗(s) \ {s})(s′′ ∈ δ∗(s′))

If this condition holds, then the destination of any transition that leads
to s can safely be redirected to s′, since paths leading to s have s′ as
minimum covered element defined.
Figure 6.3 shows such a situation.

Rules for implicit states

1. The first rule for implicit states is similar to the first rule for explicit
states. It is used to find potential duplicates among represented pyramids
inside the IRVA. The only difference lies in the fact that when another
implicit state s′ has been identified as sharing the same successors as
s, one still has to check whether they share the same color and the
same vector space. Otherwise, the two states can not be considered
equal because they do not represent the same local pyramid of Π. More
formally, we have :

(∀σ ∈ Σ(s))(δ(s, σ) = δ(s′, σ) ∧ col(s) = col(s′) ∧ VS(s) = VS(s′))
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s s′

+1 −1

−1
+1

Figure 6.5: First rule for implicit states, s and s′ shares the same successors
and have identical associated colors and vector spaces (not represented here).

If this condition is satisfied, then s is merged with s′. Figure 6.5 shows
such a situation.

2. The second and last rule for implicit states is aimed at finding useless
implicit states (whose associated vector spaces do not correspond to the
affine closure of a component of Π), as previously explained.
We obtain that s is is merged with another implicit state s′, when

• (∃s′ ∈ SI)(s′ = minelset(δI(s))),
• col(s) = col(s′),
• (dim(VS(s)) = dim(VS(s′))− 1)⇒

(∃w1, w2 ∈ {0, 1}∗)(δ∗(s,+iw1) = s′ ∧ δ∗(s,−iw2) = s′)

with i ∈ {1, . . . , n− dim(VS(s))}.
Figure 6.1 shows such a situation.

We can be convinced that this algorithm is correct by two observations.
First, we have identified all situations in which an IRVA is not canonical.

We have seen that some explicit states can be identical with respect to their
successors by the transition relation. There is no reason to keep more than
one of them.

We have also seen a similar case for implicit states having the same outgoing
transitions leading to the same states, the same vector space and the same
color.

We have characterized a criterion that permits to identify useless explicit
states. Such a situation arises when a decision path is unnecessarily long.

Finally, we have seen another criterion that identifies useless implicit states
with respect to the represented pyramidal partition of the IRVA. They corre-
spond to implicit states that do not represent any polyhedral components.

Second, the algorithm has a rule to detect occurrences of each of these four
situations. It deals with those by merging duplicated states, or by redirecting
transitions leading to useless states to the states that are the cause of their
uselessness.
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6.4 Example of Minimization
To illustrate further the mechanics, we will now see a complete example of
the minimization of an 2-dimensional IRVA (n, SI , SE, s0, δ,VS, col), defined
as follows :

• n = 2
• SI = {s0, s1, s2, s3, s4, s5, s6}
• SE = {s7, s8}
• s0 is the initial state
• δ is given by :

δ s0 s1 s2 s3 s4 s5 s6 s7 s8
+1 s7 s5 s6 s6
−1 s4 s4 s5 s4
+2 s1
−2 s4
0 s8 s2
1 s3 s3

• VS is given by :
VS(s0) ∅
VS(s1) {(0, 1)}
VS(s2) {(1, 3/4)}
VS(s3) {(1, 0)}
VS(s4) {(1, 0), (0, 1)}
VS(s5) {(1, 0), (0, 1)}
VS(s6) {(1, 0), (0, 1)}

• col is given by :
col(s0) col(s1) col(s2) col(s3) col(s4) col(s5) col(s6)
gray gray gray gray white gray gray

Figure 6.6(a) shows a graph representation of this IRVA. The represented
pyramidal partition is given in figure 6.6(b). It consists in three half-lines s1,
s2 and s3 incident to the origin s0. They partition the space into s4, s5 and
s6. Notice that the polyhedral partition represented by this IRVA is simpler,
because some implicit states are useless.

The first phase of the algorithm consists in attributing an order to the set
of states, to determine the state that is going to be processed at each step. As
there are nine states, the algorithm will execute nine steps. The steps will be
numbered from 1 to 9.
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Figure 6.6: (a) Graph representation of an IRVA to be minimized (b) A geo-
metrical illustration of it.

The first batch of states to be be processed are the terminal states s4, s5
and s6 of the automaton. Then, the states s1,s2,s3 are processed, since they
have outgoing transitions leading only to those terminal states. The next state
that can be processed is s8, followed by s7. Finally, the last step will process
the initial state s0.

In summary, a possible ordering of the states for the steps of the algorithm
is the following :

step 1 2 3 4 5 6 7 8 9
state s4 s5 s6 s1 s2 s3 s8 s7 s0
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Now let us analyze each step of the minimization algorithm.

Step 1 : s4 is unchanged.
Step 2 : s5 is unchanged since col(s5) 6= col(s4).
Step 3 : s6 is merged with s5, by the first rule of implicit states. Indeed, they

have the same successors (none), the same associated vector space and
the same color (gray).

Step 4 : s1 is unchanged.
Step 5 : s2 is merged with s5, by the second rule for implicit states. The set

of implicit states reachable from s2 is {s5}. Therefore, s5 is the minimum
element of this set. s2 and s5 have the same color (gray) and s2 is not a
frontier of s5.

Step 6 : s3 is unchanged.
Step 7 : s8 is merged with s3 by the second rule for explicit states. At that

point, the set of implicit states reachable from s8 is {s3, s5}, from which
s3 is the minimum element.

Step 8 : s7 is merged with s3 by the second rule for explicit states. The set
of reachable implicit states from s8 is {s3}, s3 is the minimum element.

Step 9 : s0 is unchanged.

The minimized form of the automaton is thus :

• n = 2
• SI = {s0, s1, s3, s4, s5}
• SE = ∅
• s0 is the initial state
• δ is given by :

δ s0 s1 s3 s4 s5
+1 s3 s5 s5
−1 s4 s4 s4
+2 s1
−2 s4

• VS and col are unchanged.

Figure 6.7 shows a graph representation of the minimized IRVA.
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Figure 6.7: Resulting minimized IRVA.
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Boolean Combinations of IRVA

7.1 Motivation

In this chapter, we address the problem of computing an IRVA representing
a Boolean combination of sets represented by IRVA. The motivation behind
this operation is to be able to construct complex polyhedra as the result of
combining simple ones. We start by showing how to construct IRVA corre-
sponding to elementary sets, and then develop an algorithm for performing
various Boolean combinations of IRVA representing arbitrary polyhedra or
polyhedral partitions.

7.2 Primitive Elements

7.2.1 Half-Spaces

Every polyhedron, hence every pyramid, can be expressed as a finite disjunc-
tion of finite conjunctions of linear inequalities (see Definition 3.1).

Except for the particular case of ~0 · ~x < λ, with λ ∈ R, the set of solutions
of every linear inequality is a set of points bounded by a hyperplane. In the
general context of pyramidal partitions, we can see a linear inequality as a
coloring function. Indeed, it is possible to associate a color to all points that
satisfy the inequation, another one to points that do not, and the last one to
points that belong to the hyperplane.

Given the inequation ~a · ~x#0, with ~a 6= ~0 and # ∈ {≤,<, >, ≥} and three
colors c1, c2 and c3, let us see how to build an IRVA representing the set of
solutions of this inequation.

The represented pyramidal partition is composed of three components : the
delimiting hyperplane H, and two n−spaces P and M , each corresponding to

81
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one side of the hyperplane. Formally :

H : ~a · ~x = 0
P : ~a · ~x > 0
M : ~a · ~x < 0

Note that H is a vector space.
The IRVA representing this set is thus composed of three implicit states

sh, sp and sm, with sh being the initial state.
The vector spaces associated to those states are respectively H, Rn and

Rn.
The transition function is very simple to define, since the exit space from

sh has dimension 1. From sh, a single symbol +1 or −1 suffices to classify any
direction. The destination by +1 from sh is sp and the one by −1 is sm. The
three implicit states are then colored as needed.

Example 7.1 We show the construction of an IRVA based on the following
linear inequallity on R3 :

−x1

2 + x3 ≥ 0

and three colors, gray for points satisfying the inequation, gray for points
inside the bounding hyperplane and white for points that do not satisfy the
inequation. Figure 7.1 shows the corresponding IRVA. �

+1 −1

sm( 1 0 0
0 1 0
0 0 1

) sp( 1 0 0
0 1 0
0 0 1

)

sh( 1 0 1
0 1 0

1/2 0 0

)

Figure 7.1: IRVA corresponding to −
x1

2 + x3 ≥ 0.
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7.2.2 Vector Spaces
Here, we show how to build an IRVA representing a pyramidal partition that
corresponds to a given vector space V of color c1. Its exterior points having
the color c2.

If V = Rn, then the IRVA is composed of a single implicit state s with
VS(s) = Rn that has the color c1.

Otherwise, the IRVA has two implicit states : s1 such that VS(s1) = V and
s2 such that VS(s2) = Rn. The colors of s1 and s2 are respectively c1 and c2.
The implicit state s1 is the initial state of the IRVA.

The transition relation is very simple, since all outgoing paths from s1,
each labeled by a symbol in Σ(s1), lead to s2.

Example 7.2 Figure 7.2 shows the IRVA constructed from the vector space

{1, 1/2, 1/2}

and two colors gray for points inside the vector space and white for points
outside of it. �

s1( 1 1 0
1/2 0 1
1/2 0 0

)

+1
+2
−1
−2

s2( 1 0 0
0 1 0
0 0 1

)

Figure 7.2: IRVA corresponding to the vector space {1, 1/2, 1/2}.

7.3 Coloring Boolean Combinations
We have observed in Section 3.2 that a polyhedral partition Π can be seen
as a function of the form Rn → {1, 2, . . . ,m} that associates to each point of
Rn a color out of m possible choices. We have also seen in Section 5.3.4 that,
unsurprisingly, an IRVA representing a pyramidal partition can also be seen
as such a coloring function.
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As a consequence, in order to define a Boolean combination of two pyra-
midal partitions Π1 and Π2, we need a coloring function of the form

{1, 2, . . . ,m1} × {1, 2, . . . ,m2} → {1, 2, . . . ,m}

where m1 and m2 are the number of colors of, respectively, Π1 and Π2 and m
is the number of colors of the result. We obtain the following definition.

Definition 7.3 Over Rn, the combination of two pyramidal partitions Π1 and
Π2 induced by the coloring function c is the pyramidal partition Π = Π1 nc Π2
such that, for every ~x ∈ Rn, Π(~x) = c(Π1(~x),Π2(~x)). �

Remark that in the particular case where only two colors are used, classical
Boolean operations on polyhedra such as union, intersection or difference can
be defined by an appropriate choice of coloring function.

~0 ~0

(a) (b)

Figure 7.3: The operands of Example 7.4 : (a) The pyramid Π1 ⊂ R2, and (b)
Π2 ⊂ R2 .

Example 7.4 We illustrate two combinations, of pyramidal partitions Π1 and
Π2, in Figures 7.3(a) and (b). In those two pyramidal partitions, only two
colors are used : white and gray.

We consider two coloring functions c∪ and c∩ of the form

{white, gray} × {white, gray} → {white, gray}

such that

c∪(c1, c2) =
{

gray if (c1 = gray) ∨ (c2 = gray)
white otherwise

c∩(c1, c2) =
{

gray if (c1 = gray) ∧ (c2 = gray)
white otherwise

The combinations Π1 nc∪ Π2 and Π1 nc∩ Π2 are in Figure 7.4. �
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~0 ~0

(a) (b)

Figure 7.4: Result of the combinations (a) Π1 nc∪ Π2 (b) Π1 nc∩ Π2.

7.4 Boolean Combination Algorithm
In this section, we present how to compute Boolean combinations of IRVA.

In order to keep the algorithm as general as possible, we will compute the
product of two IRVA without making any hypothesis on the final colors, and
then apply the coloring function to decide the color that has to be associated
to each implicit state of the product IRVA.

This product operation over IRVA shares some similarities with the product
of finite-state automata, in the sense that the product of two IRVA is an IRVA
that simulates the concurrent behavior of the operands.

The product becomes a combination operation when the coloring function
is used in order to assign a color to the implicit states of the output.

But first, we recall the notion of minimum covered component.

7.4.1 Minimum Covered Component
A key operation in the product algorithm developed in Section 7.4.2 is the
search for a minimum covered element in an IRVA A, from an implicit state s
by a region R. This operation is noted :

minel(A, R, s)

See Sections 3.3 for the presentation of the problem applied to polyhedra
and pyramidal partitions pyramidal partitions and Section 5.4.1 for a descrip-
tion of an algorithm that solves the problem applied to the represented pyramid
of a given IRVA.
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7.4.2 Product Algorithm
We will now develop an algorithm that calculates the IRVA P representing
Π = Π1 nc Π2, given two IRVA A1 and A2 representing respectively Π1 and
Π2. Each IRVA is defined as :

• P = (n, SI , SE, (s01, s02), δ, VS, col )
• A1 = (n, SI1, SE1, s01, δ1,VS1, col1)
• A2 = (n, SI2, SE2, s02, δ2,VS2, col2)

Let us first make some observations. Any point ~x ∈ Rn belongs to one
component of Π1 and one component of Π2, which we name respectively C1
and C2. Two points associated to the same pair of components will belong to
the same polyhedral component C of Π, since their situations are identical.
Furthermore, the component is such that C = C1 ∪ C2. In other words, the
product associates a pair of components to each point of space. The color of
the components of Π are obtained by applying the coloring function c to the
corresponding pair of components.

Having that in mind, each implicit state of P corresponds to a composite
state (s1, s2) of implicit states with s1 ∈ SI1 and s2 ∈ SI2. If C1 and C2
are respectively the polyhedral components associated to s1 and s2, then the
polyhedral component represented by (s1, s2) is composed of the points ~x ∈ Rn

such that ~x ∈ C1∩C2. From that, we obtain VS((s1, s2)) = VS1(s1)∩VS2(s2).
The IRVA P can be constructed incrementally. Each major step of the

algorithm consists in taking a composite implicit state (s1, s2) out of a list L,
building its outgoing decision structure and creating new implicit states when
needed. The list L is maintained during the execution of the algorithm in order
to identify the states for which the outgoing decision structure still needs to
be built.

The algorithm begins with the creation of the initial state (s01, s02) with

VS((s01, s02)) := VS1(s01) ∩ VS2(s02)
col((s01, s02)) := c(col(s01), col(s02))

If dim(VS((s01, s02))) = n, then the algorithm terminates. Otherwise, (s01, s02)
is added to the list of states that need to be processed.

Let us now study in detail how the decision structures are built and how
implicit states are created during the product computation.

Let (s1, s2) be an implicit state for which the outgoing decision structure
needs to be developed and ρ1, ρ2 be the pyramidal partitions represented re-
spectively from s1 and s2. One enumerates all the possible prefixes of words
w ∈ ±N{0, 1}∗ labeling paths from (s1, s2) in breadth-first order. This enu-
meration begins with paths of length one, then two, and so on. For every such
prefix w, one checks whether it leads to an implicit state of P .
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This test is carried out by first computing the path region RVS((s1,s2)),w.
Then one searches for the minimum covered components C1

′ of ρ1 and C2
′

of ρ2 by RVS((s1,s2)),w. If one of the components is (or both are) undefined,
it means that the prefix w is too short to make a decision in both operands
and must be expanded further. Otherwise, m1 and m2 be the implicit states
associated respectively to C1

′ and C2
′. A potential implicit state associated to

C1∩C2 can be the destination of the prefix w, provided that two conditions are
satisfied. First the dimension of the affine closure of C1 ∩ C2 must be greater
than the dimension of the component of Π associated to (s1, s2). This can be
checked by testing the constraint

dim(VS((s1, s2))) < dim(VS1(m1) ∩ VS2(m2)).

Additionally, the polyhedral component C1
′ ∩ C2

′ must have a non empty
intersection with RVS((s1,s2)),w. If any of those two conditions is not met, then
the prefix w must be expanded further. To clarify, those conditions represent
the fact that, in order to be a valid destination from (s1, s2) by a prefix w in
P , an implicit state (m1,m2) must represent the minimum covered component
of Π by RVS((s1,s2)),w. If both conditions are satisfied and if the implicit state
(m1,m2) exists in P , then the destination of w becomes (m1,m2). If such a
state does not yet exist, a new implicit state (m1,m2) is created and added
to SI . The associated vector space of (m1,m2) is VS1(m1) ∩ VS2(m2) and its
color is c(col1(m1), col2(m2). In both cases, all the necessary explicit states
needed to reach (m1,m2) from (s1, s2) by w are created. See Algorithm 2 for
a formal definition. Note that P is generally not minimal.

7.4.3 Complexity
Analyzing completely the theoretical worst case complexity of the product
algorithm makes little sense for two reasons :

• The algorithm relies on heavy use of path regions and algebraic manip-
ulations. The complexity of the manipulation operators influences the
effective complexity of the product algorithm itself. This complexity can
vary greatly with design choices, such as whether or not exact arithmetic
is used.

• We expect this worse-case complexity to be avoidable in most practical
situations, as in the case of RVA [WB00].

The product operation is the incremental construction of P , the product
IRVA of two operands A1 and A2, from its origin. Obviously, enumerating all
the states of P , A1 and A2 is not avoidable.

More precisely, the product algorithm builds implicit states and develops
their outgoing decision structures. Paths inside this structure are as short as
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input : Two IRVA A1 = (n, SI1, SE1, s01, δ1,VS1, col1) and
A2 = (n, SI2, SE2, s02, δ2,VS2, col2), a combination function c

output: An IRVA P = (n, SI , SE, s0, δ,VS, col)
s0 := (s01, s02);
SI := {s0};
SE := ∅;
VS(s0) := VS1(s01) ∩ VS2(s02);
col(s0) := c(col1(s01), col2(s02));
stack := ∅;
push (stack, (s01, s02, s0, s0, ε));
while not(empty?(stack)) do

(s1, s2, s, sI , w) := pop(stack);
foreach a ∈ succ(s) do

m1 := minel(A1, RVS(sI),wa, s1);
m2 := minel(A2, RVS(sI),wa, s2);
if m1 6= ⊥ and m2 6= ⊥ then

R := VS1(m1) ∩ VS2(m2);
if R ∩RVS(sI),wa = ∅ or dim(VS(sI)) ≥ dim(R) then

sN := new();
SE := SE ∪ {sN};
δ(s, a) := sN ;
push(stack, (m1,m2, sN , sI , wa));

else
if (m1,m2) /∈ SI then

SI := SI ∪ {(m1,m2)};
VS((m1,m2)) := R;
col((m1,m2)) := c(col1(m1), col2(m2));
push(stack, (m1,m2, (m1,m2), (m1,m2), ε));

end
δ(s, a) := (m1,m2);

end
else

if m1 = ⊥ then m1 := s1;
if m2 = ⊥ then m2 := s2;
sN := new();
SE := SE ∪ {sN};
δ(s, a) := sN ;
push(stack, (m1,m2, sN , sI , wa));

end
end

end
Algorithm 2: Computation of A1 nc A2
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possible. This means that as soon as a path can identify an implicit state as
destination, it leads to this implicit state.

Each implicit state (s1, s2) of the product IRVA is constructed by combining
the implicit state s1 from operand A1 and s2 from operand A2. When trying to
figure out the destination of a path w from (s1, s2) in the product automaton,
the path region R = RV S((s1,s2),w is used to find the minimum covered element,
if it is defined, from s1 in A1 and from s2 in A2.

We see that the cost of the product algorithm depends greatly on the search
for the minimum covered element.

When minel(A1, R, s1) =⊥, the destination of the path w from s is an
explicit state in the product automaton. Moreover, when a minimal element is
not defined, it is due to the fact that the set of minimal states {m1, . . . ,mk},
computed by the procedure minimals(A1, s1, R), contains more than one el-
ement.

A future step of the product algorithm will eventually develop this ex-
plicit state by exploring its successors. For each successor, this results in
adding a symbol σ to the path w outgoing from (s1, s2) and the path region
R′ = RVS((s1,s2)),wσ will be computed. Note that, by definition, R′ ⊂ R. The
procedure minel(A1, R

′, s1) will be executed.
This new call to minel will call minimals(A1, s1, R

′) and does not exploit
the fact the result of minimals(A1, s1, R) is already known. Indeed, since we
know that

minimals(A1, s1, R) = {m1, . . . ,mk}
we also know that

minimals(A1, s1, R
′) ⊆ {m1, . . . ,mk}.

An incremental version of the minimals procedure that restarts with pre-
vious results in the kind of scenario we have explained could avoid unnecessary
calculations.

Technically, the situation is a little more complex. It is tempting to call
minimals(A1,mi, R

′) for each mi ∈ {m1, . . . ,mk} and merge the results into
a set that keeps only minimal states. This is unfortunately incorrect due to the
fact that in the minimals algorithm, each implicit state mi of {m1, . . . ,mk}
that has been selected was considered by considering its vector space through
a combined path region (see Definition 5.15) determined by the path linking s1
to mi.

The fact that we need this combined path region to avoid wrong results can
be understood because of the fact that the vector spaces associated to implicit
states of an IRVA are no representations of polyhedral components, but the
affine closure of polyhedral components.

In order to define an incremental version of the minimals algorithm, we
need to keep the previous results in the form of a set of minimal implicit
states, each one associated to a set of combined path region in which it can
be considered. From there, it is possible to call minimals for each combined
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path region Rij of each implicit state si of a previous result, by calls of the
form minimals(A1,mi, R

′ ∩Rij) and merging of all the results into a set that
keeps only minimal states.

Such tricky techniques are out of the scope of this work, but should never-
theless be investigated should the data structure be used in a practical envi-
ronment relying on an efficient product computation algorithm.

7.4.4 Example of Product Computation
In this section, we illustrate in detail the computation of the Boolean combi-
nation of two IRVA.

We want to compute the intersection of two half-spaces π1 and π2 in R2.
They are defined by those inequations :

Π1 : x1 ≤ 2
Π2 : x2 ≤ 1

The polyhedron Π1 defines three components : the boundary a of the half-
space, and the 2-spaces in and out, containing respectively the points that
belong and do not belong to Π1. The components a and in are gray and out
is white.

The polyhedron Π2 also defines three polyhedral components : the bound-
ary b of the half-space, and again the 2-spaces in and out, containing respec-
tively the points that belong and do not belong to Π2. The components b and
in are gray and out is white.

Figure 7.5 shows a geometrical view of Π1 and Π2.
To compute the intersection of Π1 and Π2, we will use the following coloring

function :

c∩(c1, c2) =
{

gray if (c1 = gray) ∧ (c2 = gray)
white otherwisee

Since they are not pyramidal with respect to ~0, we compute their repre-
senting pyramids in R3. We obtain :

Π1 : −x1

2 + x3 ≥ 0

Π2 : −x2 + x3 ≥ 0

Let A1 and A2 represent respectively Π1 and Π2. They are defined by the
following tuples :

A1 = (3, {sa, sin, sout}, ∅, sa, δ1,VS1, col1)
A2 = (3, {sb, sin, sout}, ∅, sb, δ2,VS2, col2)
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x1

x2
in out

a

x1

x2

in

out

b

(a) (b)

Figure 7.5: Geometrical view of (a) π1 and (b) π2.

Their complete definition is straightforward and are summarized by two
graphs in Figures 7.6 and 7.7. The states sin and sout represents the polyhe-
dral components in and out. The states sa and sb represent respectively the
components a and b.

The IRVA P = (3, SI , SE, (sa, sb), δ,VS, col) represents the result of Π1 nci

Π2 and is built by the combination algorithm as follows.

sa( 1 0 1
0 1 0

1/2 0 0

)

+1 −1

sout( 1 0 0
0 1 0
0 0 1

) sin( 1 0 0
0 1 0
0 0 1

)

Figure 7.6: Graph representation of A1.

First, the initial state of P , (sa, sb) is created and is added to SI and to L.
Its associated vector space and color are :

VS(sc) := VS1(sa) ∩ VS2(sb) = {(1, 1/2, 1/2)}
col(sc) := ci(col1(sa), col2(sb)) = gray
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+1 −1

sout( 1 0 0
0 1 0
0 0 1

) sin( 1 0 0
0 1 0
0 0 1

)

sb( 1 0 0
0 1 1
0 1 0

)

Figure 7.7: Graph representation of A2.

The algorithm proceeds as follows :

Step 1 : State (sa, sb) is removed from L and is developed.

Step 1.1 :
state word path region min in A1 min in A2

(sa, sb) +1 RVS((sa,sb)),+1 sout sb

New implicit state : (sout, sb)
VS : {(1, 0, 0), (0, 1, 1)}
col : white
δ : δ∗((sa, sb),+1) := (sout, sb)

(sout, sb) is added to L.

Step 1.2 :
state word path region min in A1 min in A2

(sa, sb) +2 RVS((sa,sb)),+2 sa sout

New implicit state : (sa, sout)
VS : {(1, 0, 1/2), (0, 1, 0)}
col : white
δ : δ∗((sa, sb),+2) := (sa, sout)

(sa, sout) is added to L.

Step 1.3 :
state word path region min in A1 min in A2

(sa, sb) −1 RVS((sa,sb)),−1 sin sb
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New implicit state : (sin, sb)
VS : {(1, 0, 0), (0, 1, 1)}
col : gray
δ : δ∗((sa, sb),−1) := (sin, sb)

(sin, sb) is added to L.

Step 1.4 :
state word path region min in A1 min in A2

(sa, sb) −2 RVS((sa,sb)),−2 sa sin

New implicit state : (sa, sin)
VS : {(1, 0, 1/2), (0, 1, 0)}
col : gray
δ : δ∗((sa, sb),−2) := (sa, sin)

(sa, sin) is added to L.

Step 2 : State (sout, sb) is removed from L and is developed.

Step 2.1 :
state word path region min in A1 min in A2

(sout, sb) +1 RVS((sout,sb)),+1 sout sout

New implicit state : (sout, sout)
VS : {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
col : white
δ : δ∗((sout, sb),+1) := (sout, sout)

Step 2.2 :
state word path region min in A1 min in A2

(sout, sb) −1 RVS((sout,sb)),−1 sout sin

New implicit state : (sout, sin)
VS : {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
col : white
δ : δ∗((sout, sb),−1) := (sout, sin)

Step 3 : State (sa, sout) is removed from L and is developed.

Step 3.1 :
state word path region min in A1 min in A2

(sa, sout) +1 RVS((sa,sout)),+1 sout sout

The implicit state (sout, sout) already exists.
δ : δ∗((sa, sout),+1) := (sout, sout).
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Step 3.2 :
state word path region min in A1 min in A2

(sa, sout) −1 RVS((sa,sout)),−1 sin sout

New implicit state : (sin, sout)
VS : {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
col : white
δ : δ∗((sa, sout),−1) := (sin, sout)

Step 4 : State (sin, sb) is removed from L and is developed.

Step 4.1 :
state word path region min in A1 min in A2

(sin, sb) +1 RVS((sin,sb)),+1 sin sout

The implicit state (sin, sout) already exists.
δ : δ∗((sin, sb),+1) := (sin, sout).

Step 4.2 :
state word path region min in A1 min in A2

(sin, sb) −1 RVS((sin,sb)),−1 sin sin

New implicit state : (sin, sin)
VS : {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
col : gray
δ : δ∗((sin, sb),−1) := (sin, sin)

Step 5 : State (sa, sin) is removed from L and is developed.

Step 5.1 :
state word path region min in A1 min in A2

(sa, sin) +1 RVS((sa,sin)),+1 sout sin

The implicit state (sout, sin) already exists.
δ : δ∗((sa, sin),+1) := (sout, sin).

Step 5.2 :
state word path region min in A1 min in A2

(sa, sin) −1 RVS((sa,sin)),−1 sin sin

The implicit state (sin, sin) already exists.
δ : δ∗((sa, sin),+1) := (sin, sin).
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The resulting IRVA P is illustrated Figure 7.8. The subsequent minimized
version of P is presented in Figure 7.9. Finally Figure 7.10 shows geometrically
the result of the combination of π1 and π2 and the minimized version of P
represents the associated pyramid of π1 nci π2. In other words, we can see
Figure 7.10 as a section of Π1 nci Π2 with the plane Z = 1.

−1

+1 +2 −2 −1

(sa, sb)( 1 1 0
1/2 0 1
1/2 0 0

)

(sout, sb)( 1 0 0
0 1 1
0 1 0

) (sa, sout)( 1 0 1
0 1 0

1/2 0 0

) (sin, sb)( 1 0 0
0 1 1
0 1 0

)(sa, sin)( 1 0 1
0 1 0

1/2 0 0

)

(sin, sin)( 1 0 0
0 1 0
0 0 1

)(sin, sout)( 1 0 0
0 1 0
0 0 1

)(sout, sin)( 1 0 0
0 1 0
0 0 1

)(sout, sout)( 1 0 0
0 1 0
0 0 1

)
+1 +1 +1

−1−1−1

+1

Figure 7.8: Product IRVA P .



sb( 1 0 0
0 1 1
0 1 0

)sa( 1 0 1
0 1 0

1/2 0 0

)

sin( 1 0 0
0 1 0
0 0 1

)sout( 1 0 0
0 1 0
0 0 1

)

−2 −1

+1

−1−1

+1

+2
+1

sc( 1 1 0
1/2 0 1
1/2 0 0

)

Figure 7.9: Minimized product IRVA P .

x1

x2

a

in

out

cb

Figure 7.10: The intersection of π1 and π2.
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Projection

In this chapter, we develop an algorithm for computing projections of a set
represented by an IRVA. Projection is defined as a linear transformation ρ that
maps points ~x ∈ Rn onto an affine space that is smaller than Rn, and such that
ρ(ρ(~x)) = ρ(~x). We first address in Section 8.1 a particular case of projection
that simply consists in getting rid of some component in the coordinates of
points, and then move to the general case in Section 8.2.

8.1 Aligned Projection
In the following definitions, we use

B = {~e1, ~e2, . . . , ~en}

as the unit vectors of the Cartesian coordinate system of Rn, with ~e1 =
(1, 0, . . . , 0), ~e2 = (0, 1, . . . , 0), . . ., ~en = (0, . . . , 0, 1).

Recall the definition of the aligned projection of a vector :

Definition 8.1 Let ~p = (p1, p2, . . . , pn) be a point of Rn. The aligned pro-
jection of ~p onto the coordinate component different from i, or, in short, w.r.t.
i, noted ~p|6=i is the point

~p|6=i = (p1, . . . , pi−1, pi+1, . . . , pn)

�

Definition 8.2 Let π ⊆ Rn be a polyhedron. The aligned projection of π w.r.t.
i ∈ {1, . . ., n}, noted π|6=i, is the polyhedron π|6=i ⊆ Rn−1 defined as

π|6=i = {~u | (∃~x ∈ π)(~u = ~x|6=i)}

�

97
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Definition 8.3 Let ~v|6=i be a projection w.r.t. i of a point ~v. The kernel of
the projection is the set of points that are projected onto ~0, i.e. the set

{~x ∈ Rn | ~x|6=i = ~0}.

This corresponds to the vector space generated by ~ei. The range of the pro-
jection is the smallest vector space that contains the image of Rn, i.e. the
set

{~x ∈ Rn | (∃~y ∈ Rn)(~y|6=i = ~x)}.
�

x1x3

range

π|6=2

π

x2

kernel

Figure 8.1: Example of a projection of a polyhedron π w.r.t. i.

Example 8.4 Figure 8.1 shows a polyhedron π and its projection w.r.t. i as
well as the range and kernel of that projection. �

8.1.1 Coloring Function
Consider a polyhedron π ⊆ Rn and its projected image π|6=i w.r.t. i.

Let ~x be a point belonging to a component C of π|6=i. The point ~x is the
projection of an infinite number of points of Rn, i.e. the set

X = {~v ∈ Rn | (∃λ ∈ R)(~v = ~x+ λ~xi)}.

Without loss of generality, let S be the set of components of Π that contain
at least a point of X. We deduce that C is a combination of the elements of
S. Hence, the polarity of C is a function of the polarities of the elements of S.

So, in order to assign colors to the components of a projected pyramidal
partition, one uses a coloring function that maps a set of colors to a single one.
The choice of coloring function depends on the intended application.
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8.1.2 Projecting a Vector Space
Let V ⊆ Rn be a vector space generated by the basis {~v1,~v2,. . .,~vm}. The
projection of V w.r.t. i, noted V|6=i is the vector space generated by : {~v1|6=i,
~v2|6=i, . . ., ~vm|6=i}. Remark that this set generally contains linearly dependent
vectors.

Lemma 8.5 Let V ⊆ Rn be a vector space such that dim(V ) = m. The vector
space V|6=i ⊆ Rn−1 is such that :

dim(V|6=i) =
{
m− 1 if ~ei ∈ V
m otherwise.

8.1.3 Inverse Projection
An operation needed for developing an algorithm for projecting IRVA is the
reverse operator of projection, defined as follows.

Definition 8.6 For a set S ⊆ Rn−1 and i ∈ {1, . . ., n}, the inverse projec-
tion of S w.r.t. i, noted S↑i, is the set

{~x ∈ Rn | ~x|6=i ∈ S}.

�

In the next section, we present a projection algorithm that computes the
projection of a pyramidal partition Π ⊆ Rn, represented by an IRVA A, into
a pyramidal partition Π|6=i ⊆ Rn−1.

The range of the projection is the hyperplane pi having for equation xi = 0.
In this algorithm we apply the inverse projection operation to a path region

RV,w ⊂ Rn−1, defined by a vector space V of Rn−1 and a word w ∈ ±N{0, 1}∗
that encodes a prefix of a direction in the vicinity of V .

Since this region is in Rn−1, we adapt it in order for it to be included inside
pi. It is adapted as follows :

R = {~p ∈ Rn | (∃~u ∈ RV,w)(~p = (u1, u2, . . . , ui−1, 0, ui, . . . , um))}.

Since the set R↑i is equivalent to RV ↑i,w, we use RV ↑i,w immediately.

8.1.4 Projection Algorithm
Let A = (n, SI , SE, s0, δ,VS, col) be an IRVA representing a pyramidal parti-
tion Π ⊆ Rn and i ∈ {1 . . ., n} be a vector component index. In this section
we will develop a projection algorithm that computes an IRVA A|6=i = (n− 1,
SI
′, SE ′, s0

′, δ′, VS′, col′) that represents Π|6=i.
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We have seen in Section 8.1.1 that a polyhedral component of Π|6=i corre-
sponds to a set of components of Π. As a consequence, each implicit state of
A|6=i will be a composite set of implicit states of A.

The vector space associated to an implicit state corresponds to the affine
closure of the polyhedral component that correspond to this state. The projec-
tion algorithm is based on the principle that the projection of the affine closure
of a polyhedral component corresponds to the affine closure of the projection
of this component. Hence, every vector space associated to an implicit state
is projected. Some of these projected vector spaces can overlap, as explained
in Section 8.1.1. Hence, each polyhedral component of A|6=i corresponds to a
set of polyhedral component of A.

Projection can be carried out somehow similarly to the computation of
the product of two IRVA. The projected IRVA is built incrementally from its
origin.

The first phase of the algorithm consists in creating the initial state of A|6=i.
We know that, among the vector spaces associated to the implicit states of

A, VS(s0) is the smallest. By Lemma 8.5, we know that the dimension of the
projection V|6=i w.r.t. i of a vector space V is either dim(V ) or dim(V )− 1. It
follows that dim(VS(s0)|6=i) is the smallest dimension among all the projections
of the vector spaces associated to the implicit states of A and that the initial
implicit state of A|6=i has VS(s0)|6=i as associated vector space.

So, in order to build the initial state of A|6=i, we must identify the implicit
states with a vector space whose projections share the same dimension as
VS(s0)|6=i. Those states can only belong to the implicit states that are reachable
directly from s0, i.e. that belong to δI(s0). Indeed, since every implicit state
reachable from another one has an associated vector space of greater dimension,
when an implicit state s′ is reachable from another implicit state s, which is
itself reachable from s0, we have dim(VS(s0)) < dim(VS(s)) < dim(VS(s′)).
This set of implicit states is the initial state of A|6=i.

The vector space of this initial state is VS(s0)|6=i.
During the second phase of the algorithm, a stack is used to keep track of

the states of A|6=i whose successors need to be explored. Every time a state
is created, either explicit or implicit, it is pushed on the stack, along with
additional information needed to perform the computation further.

The second phase consists in developing the successors of all states that
are present in the stack. Once the stack is empty, the algorithm terminates.
The second phase begins after the initial state is created, and pushed on the
stack.

When developing a state s, we develop all of its successors in its outgoing
decision structure. In order to do that, we must know the last initial state
leading to the current state and the labels of the corresponding path. If current
state is implicit, then the last implicit state is the current state itself and the
path is empty.

For each symbol, we identify the path region R that corresponds to reading
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the labels of the path from the last implicit state. Recall that to each implicit
state of the projected IRVA corresponds the set I of implicit states of A. We
then compute the set of minimal covered elements of A from si by the path
region R for every si in I. The sets that are obtained are then combined into
a single one containing only states that are not reachable from one another. If
the intersection of the vector spaces of those implicit states has a non empty
intersection with R, then the destination of the symbol is an implicit state. If
this implicit state does not exist, then it is created with an associated vector
space equal to this intersection. If the intersection is empty, then the destina-
tion is an explicit state that has to be created. Every time a state is created,
it is placed on the stack in order to expand its successors further.

The color of each implicit state {s1, . . ., sk} of A|6=i is the color mapped to
the following set

{col(s1), . . . , col(sk)}

by a given coloring function.
A formal version is given in Algorithm 3.

8.1.5 Example of Projection
In this section, we illustrate a complete run of the IRVA projection algorithm.

The goal is to compute the projection w.r.t. 2 of a polyhedron π ⊂ R3,
defined as the following intersection of constraints :

π :
(
x1 + x2 − 3x3 ≤ 0

)
∧
(
− 3x1 + x2 + x3 ≤ 0

)
∧
(
x1 − 3x2 + x3 ≤ 0

)
The polyhedron π defines nine polyhedral components : the origin ~0 of R3;

the three half-lines A, B and C forming the intersections of the three half-
spaces; the three faces AB, BC and AC of π and the 3-spaces in and out,
each containing respectively the points that belong and do not belong to π.
The components ~0, A,B,C,AB,BC,AC and in are colored gray and out is
colored white.

The polyhedron is depicted in Figure 8.2.
To compute the projection of π, we will use the following coloring function :

f({s1, . . . , sk}) =
{

gray if (∃si ∈ {s1, . . . , sk})(col(si) = gray)
white otherwise

The IRVA A representing π it is defined by the following tuple :

A = (3, SI , SE, s0, δ,VS, col)

Its complete definition is straightforward and is given in Figure 8.3. The states
sin and sout represent respectively the polyhedral components in and out. The
states s0, sa, sb, sc, sab, sbc and sac represent respectively the components ~0,
A, B, C, AB, BC and AC.
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input : An IRVA A = (n, SI , SE, s0, δ,VS, col), an axis of projection ~xi
and a coloring function f .

output: An IRVA A|6=i = (n− 1, SI ′, SE ′, s0
′, δ′,VS′, col′).

foreach q ∈ SI do
PVS(q) := VS(q)|6=i

end
s0
′ := {s0} ∪ {q ∈ δI(s0) | dim(PVS(q)) = dim(PVS(s0))};

SI
′ := {s0

′};
VS′(s0

′) := PVS(s0);
col′(s0

′) := f(s0
′);

stack := ∅;
push (stack, (s′0, s′0, ε));
while not(empty?(stack)) do

(S, s, w) := pop(stack);
foreach σ ∈ succ(s) do

w′ := wσ;
R := RVS′(S)↑i,w′ ;
F := ∅;
foreach si ∈ S do

F := merge(F,minimals(A, si, R));
end
I :=

⋂
si∈F

PVS(si);

if I ∩RVS′(S),w′ = ∅ then
sN := new();
SE
′ := SE

′ ∪ {sN};
δ′(s, σ) := sN ;
push (stack, (S, sN , w′)) ;

else
if F /∈ SI ′ then

SI
′ := SI

′ ∪ {F};
VS′(F ) = I;
col′(F ) := f(F );
push (stack, (F, F, ε));

end
δ′(s, σ) := F ;

end
end

end
Algorithm 3: Computation of A|6=i
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Figure 8.2: (a) Example polyhedron π, (b) intersection of π with normalization
cube.

The IRVA A|6=2 = (2, SI ′, SE ′, {s0}, δ′,VS′, col′) is built by the projection
algorithm as follows.

First, the associated vector space of each implicit state is projected w.r.t.
2 and stored in an associative table PVS.

PVS(s0) ∅
PVS(sa) {(1, 1/2)}
PVS(sb) {(1, 1)}
PVS(sc) {(1, 2)}
PVS(sab) {(1, 0), (0, 1)}
PVS(sbc) {(1, 0), (0, 1)}
PVS(sac) {(1, 0), (0, 1)}
PVS(sin) {(1, 0), (0, 1)}
PVS(sout) {(1, 0), (0, 1)}

Second, the initial state ofA|6=2 is created. It corresponds to the set {s0}, as
no other implicit state has an empty associated vector space after projection.
Its color is gray.

In order to keep this presentation concise, we call the function minimals
(see Algorithm 1 for a definition) with a set of implicit states for second argu-
ment in the following steps, instead of a single implicit state. The expression

minimals(A, {s1, s2, s3}, R)

is the merged result of function minimals for each implicit state of the set
given as argument :

merge(merge(minimals(A, s1, R),minimals(A, s2, R)),minimals(A, s3, R))
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Figure 8.3: Graph representation of A.

Step 1 : Pop ({s0}, {s0}, ε) from the stack.

Step 1.1 :
state symbol path region R minimals(A, {s0}, R)
{s0} +1 RVS′({s0})↑2,+1 {sa, sb}

There is no intersection with RVS′({s0}),+1
The explicit state s1 is created, δ′({s0},+1) = s1.
The tuple ({s0}, s1,+1) is pushed on stack.
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Step 1.2 :
state symbol path region R minimals(A, {s0}, R)
{s0} +2 RVS′({s0})↑2,+2 {sb, sc}

There is no intersection with RVS′({s0}),+2
The explicit state s2 is created, δ′({s0},+2) = s2.
The tuple ({s0}, s2,+2) is pushed on stack.

Step 1.3 :
state symbol path region R minimals(A, {s0}, R)
{s0} −1 RVS′({s0})↑2,−1 {sout}

There is an intersection with RVS′({s0}),−1
The implicit state {sout} is created, δ′({s0},−1) = {sout}.
VS′({sout}) = {(1, 0), (0, 1)}.
col′({sout}) = white.
The tuple ({sout}, {sout}, ε) is pushed on stack.

Step 1.4 :
state symbol path region R minimals(A, {s0}, R)
{s0} −2 RVS′({s0})↑2,−2 {sout}

There is an intersection with RVS′({s0}),−2
The implicit state {sout} exists, δ′({s0},−2) = {sout}.

Step 2 : Pop ({s0}, s1, +1) from the stack.

Step 2.1 :
state symbol path region R minimals(A, {s0}, R)
s1 0 RVS′({s0})↑2,+1 0 {sout}

There is an intersection with RVS′({s0}),+1 0
The implicit state {sout} exists, δ′(s1, 0) = {sout}.

Step 2.2 :
state symbol path region R minimals(A, {s0}, R)
s1 1 RVS′({s0})↑2,+1 1 {sa, sb}

There is no intersection with RVS′({s0}),+1 1
The explicit state s3 is created, δ′(s1, 1) = s3.
The tuple ({s0}, s3,+1 1) is pushed on stack.

Step 3 : Pop ({s0}, s2, +2) from the stack.

Step 3.1 :
state symbol path region R minimals(A, {s0}, R)
s2 0 RVS′({s0})↑2,+2 0 {sout}
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There is an intersection with RVS′({s0}),+2 0
The implicit state {sout} exists, δ′(s2, 0) = {sout}.

Step 3.2 :
state symbol path region R minimals(A, {s0}, R)
s2 1 RVS′({s0})↑2,+2 1 {sb, sc}

There is no intersection with RVS′({s0}),+2 1
The explicit state s4 is created, δ′(s2, 1) = s4.
The tuple ({s0}, s4,+2 1) is pushed on stack.

Step 4 : Pop ({s0}, s3, +1 1) from the stack.

Step 4.1 :
state symbol path region R minimals(A, {s0}, R)
s3 0 RVS′({s0})↑2,+1 10 {sa}

There is an intersection with RVS′({s0}),+1 10
The implicit state {sa} is created, δ′(s3, 0) = {sa}.
VS′({sa}) = {(1, 1/2)}.
col′({sa}) = gray.
The tuple ({sa}, {sa}, ε) is pushed on stack.

Step 4.2 :
state symbol path region R minimals(A, {s0}, R)
s3 1 RVS′({s0})↑2,+1 11 {sa, sb}

There is no intersection with RVS′({s0}),+1 11
The explicit state s5 is created, δ′(s3, 1) = s5.
The tuple ({s0}, s5,+1 11) is pushed on stack.

Step 5 : Pop ({s0}, s4, +2 1) from the stack.

Step 5.1 :
state symbol path region R minimals(A, {s0}, R)
s4 0 RVS′({s0})↑2,+2 10 {sc}

There is an intersection with RVS′({s0}),+2 10
The implicit state {sc} is created, δ′(s4, 0) = {sc}.
VS′({sc}) = {(1, 2)}.
col′({sc}) = gray.
The tuple ({sc}, {sc}, ε) is pushed on stack.

Step 5.2 :
state symbol path region R minimals(A, {s0}, R)
s4 1 RVS′({s0})↑2,+2 11 {sb, sc}
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There is no intersection with RVS′({s0}),+2 11
The explicit state s6 is created, δ′(s4, 1) = s6.
The tuple ({s0}, s6,+2 11) is pushed on stack.

Step 6 : Pop ({sa}, {sa}, ε) from the stack.

Step 6.1 :
state symbol path region R minimals(A, {sa}, R)
{sa} +1 RVS′({sa})↑2,+1 {sout}

There is an intersection with RVS′({sa}),+1
The implicit state {sout} exists, δ′({sa},+1) = {sout}.

Step 6.2 :
state symbol path region R minimals(A, {sa}, R)
{sa} −1 RVS′({sa})↑2,−1 {sab, sac}

There is an intersection with RVS′({sa}),−1
The implicit state {sab, sac} is created, δ′({sa},−1) = {sab, sac}.
VS′({sab, sac}) = {(1, 0), (0, 1)}.
col′({sab, sac}) = gray.
The tuple ({sab, sac}, {sab, sac}, ε) is pushed on stack.

Step 7 : Pop ({s0}, s5, +1 11) from the stack.

Step 7.1 :
state symbol path region R minimals(A, {s0}, R)
s5 0 RVS′({s0})↑2,+1 110 {sa}

There is an intersection with RVS′({s0}),+1 110
The implicit state {sa} exists, δ′(s5, 0) = {sa}.

Step 7.2 :
state symbol path region R minimals(A, {s0}, R)
s5 1 RVS′({s0})↑2,+1 111 {sb, sac}

There is an intersection with RVS′({s0}),+1 111
The implicit state {sb, sac} is created, δ′(s5, 1) = {sb, sac}.
VS′({sb, sac}) = {(1, 1)}.
col′({sb, sac}) = gray.
The tuple ({sb, sac}, {sb, sac}, ε) is pushed on stack.
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Step 8 : Pop ({sc}, {sc}, ε) from the stack.

Step 8.1 :
state symbol path region R minimals(A, {sc}, R)
{sc} +1 RVS′({sc})↑2,+1 {sbc, sac}

There is an intersection with RVS′({sc}),+1
The implicit state {sbc, sac} is created, δ′({sc},+1) = {sbc, sac}.
VS′({sbc, sac}) = {(1, 0), (0, 1)}.
col′({sbc, sac}) = gray.
The tuple ({sbc, sac}, {sbc, sac}, ε) is pushed on stack.

Step 8.2 :
state symbol path region R minimals(A, {sc}, R)
{sc} −1 RVS′({sc})↑2,−1 {sout}

There is an intersection with RVS′({sc}),−1
The implicit state {sout} exists, δ′({sc},−1) = {sout}.

Step 9 : Pop ({s0}, s6, +2 11) from the stack.

Step 9.1 :
state symbol path region R minimals(A, {s0}, R)
s6 0 RVS′({s0})↑2,+2 110 {sc}

There is an intersection with RVS′({s0}),+2 110
The implicit state {sc} exists, δ′(s6, 0) = {sc}.

Step 9.2 :
state symbol path region R minimals(A, {s0}, R)
s6 1 RVS′({s0})↑2,+2 111 {sb, sac}

There is an intersection with RVS′({s0}),+2 111
The implicit state {sb, sac} exists, δ′(s6, 1) = {sb, sac}.

Step 10 : Pop ({sb, sac}, {sb, sac}, ε) from the stack.

Step 10.1 :
state symbol path region R minimals(A, {sb, sac}, R)
{sb, sac} +1 RVS′({sb, sac})↑2,+1 {sab, sac}

There is an intersection with RVS′({sb, sac}),+1
The implicit state {sab, sac} exists, δ′({sb, sac},+1) = {sab, sac}.

Step 10.2 :
state symbol path region R minimals(A, {sb, sac}, R)
{sb, sac} −1 RVS′({sb, sac})↑2,−1 {sbc, sac}
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There is an intersection with RVS′({sb, sac}),−1
The implicit state {sbc, sac} exists, δ′({sb, sac},−1) = {sbc, sac}.

The computed IRVA A|6=2 is given in Figure 8.4. The minimized IRVA is
depicted in Figure 8.5. The states have been relabeled to match the original
names of A in order to emphasize the fact that this minimized IRVA represents
the polyhedron π|6=2.
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Figure 8.4: The computed IRVA A|6=2.

8.2 Generalized Projection
In Section 8.1, we developed an algorithm for computing aligned projections
of IRVA. We now show that this operation can be extended to a more general
notion of projection.

This generalized projection consists in using arbitrary vector spaces as ker-
nel and range, with the restriction that the vector basis {~k1, . . . , ~kp} generating
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Figure 8.5: Minimized version of A|6=2.

the kernel and the vector basis {~r1, . . . , ~rn−p} generating the range are mutu-
ally independent. In other words, the vectors in {~k1, . . . , ~kp, ~r1, . . . , ~rn−p} are
linearly independent and form a vector basis generating Rn.

Definition 8.7 Let S ⊆ Rn be a set, K ⊆ Rn be a vector space of basis {~k1,
. . ., ~kp} and R ⊆ Rn a vector space of basis {~r1, . . ., ~rn−p} such that {~k1, . . .,
~kp, ~r1, . . ., ~rn−p} are linearly independent and form a vector basis generating
Rn. The generalized projection of S w.r.t. K and R, noted S↓K,R, is the
set :

(S +K) ∩R.
�

Notice that this set is by construction included in R and could be expressed
in the coordinate system {~r1, . . ., ~rn−p}, should one need the projection of S
expressed in Rn−p.

Definition 8.8 Let S ⊆ Rn be a set and K ⊆ Rn be a vector space. The
generalized inverse projection of S w.r.t. K, noted S↑K, is the set :

S +K.

�

With minor adjustments, Algorithm 3 can be adapted in order to com-
pute generalized projection of IRVA. We now study in detail the necessary
modifications.
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Let n be a dimension, K be a vector space used as kernel generated by
{~k1, . . . ~kp} andR be a vector space used as range generated by = {~r1, . . . , ~rn−p}.
The projection of a set S w.r.t. K into R maps points in Rn to points in Rn−p.

The first adaptation concerns the projection of vector spaces, done when
computing the projection of the vector spaces associated to implicit states. In
the case of aligned projection, this operation simply amounts to removing a row
of the vector basis generating the vector space to project. This row corresponds
to the coordinate component that is projected away. A precaution is to verify
that the result is composed of linearly independent vectors.

In the general case, in order to project a vector space V generated by {~v1,
. . ., ~vm} into R w.r.t. K, one has to express those m vectors into the coordinate
system

{~k1, . . . , ~kp, ~r1, . . . , ~rn−p}

and remove the m first vector components.
The second adaptation concerns the inverse projection operation of a path

region R presented in Section 8.1.3. In the case of aligned projection, we have
assumed that the operation consists on the inverse projection of the points of
R w.r.t. to axis i, in order to characterize the set of points that have an image
by projection inside this path region. In the general case, as the projection
have a larger kernel, the inverse operation is applied w.r.t. each vector of K.
So, instead of having

R = RVS′(S)↑i,w′

we have
R = RVS′(S)↑K ,w′

with K being the vector basis of the kernel.
The other parts of the algorithm are unchanged.

8.2.1 Generalized Coloring Functions
An interesting possibility offered by our approach is to define coloring functions
that implement features such as, for instance, simulating transparency when
several projected elements are stacked together. Furthermore, one can replace
coloring functions by a more general mechanism for assigning colors, taking
into account additional information such as the distance between stacked com-
ponents, or the order of this stacking. For example, opacity could be simulated
by defining the color of a stacking as being equal to that of its uppermost ele-
ment. This generalized notion of coloring function paves the way to a visualiza-
tion method for IRVA, by first projecting the structure onto the visualization
window using a color assignment scheme that enhances the perception of the
geometry, and then solving the point classification problem for each displayed
pixel, which can be done efficiently as discussed in Section 5.1.4.





Chapter 9

Implementation and
Experimental Results

An implementation has been developed in the C language in order to be able
to evaluate the data structure and the algorithms presented in this work. The
main purpose of this implementation is to test the presented concepts and
algorithms with larger data structures than human-sized examples. Indeed,
although the properties of the algorithms have been studied with the help
of some handmade case studies, being able to explore larger problems offers
valuable insight on the behaviors of IRVA.

We consider this implementation as a first step toward a usable IRVA pack-
age. As a consequence, it has been developed as a proof of concept in which
correctness and readability take priority over performance. This implementa-
tion made it possible to evaluate IRVA on several case studies, and to identify
mechanisms that could benefit further optimization.

In this chapter, we will first present the scope of our implementation. We
then discuss design choices, explain in detail the implementation issues behind
the essential mechanisms. Then we introduce several case studies and discuss
the experimental results, that have been obtained.

9.1 Features
We now describe the features that have been implemented in our IRVA pack-
age.

Creation of primitive elements is, of course, a first mandatory step for the
incremental construction of any set. Here, we list the different elementary
IRVA that can directly be built.

Vector spaces : it is possible to build an IRVA representing a given vector
space, specified by a vector basis provided in matrix notation along with
its color, as well as a color for its surrounding space.

113
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Linear constraints : Representing linear constraints plays a crucial role when
building volumes. Ideally, one should provide just ~a, such that the rep-
resented set is ~a · ~x#0, with # ∈ {≤,<, >, ≥} along with three colors,
one for the points satisfying ~a · ~x = 0, one for the points inside ~a · ~x < 0
and the last one for the points not satisfying ~a · ~x ≤ 0.

Manual definition : This operation consists in building an IRVA from a de-
scription of its states and transitions. In order to reduce the pain of
creating manually an IRVA, a completion function permits not to spec-
ify elements of one particular color and let it fill the spatial gaps for the
represented pyramidal partition to be complete. For example, when us-
ing only two colors in and out and representing a triangle, only implicit
states defining the triangle can be specified along with the decisions
between them. The completion function can create the out universal
implicit state and more importantly all transitions leading to it.

In addition, we have also implemented operations for manipulating repre-
sented IRVA. Those are the following :

Boolean combination : Given two IRVA A and B and a coloring function
c, this operation computes the IRVA representing Anc B.

Minimization : This operation computes the canonical form of a given IRVA.

Projection : we have only implemented aligned projections of IRVA, as de-
fined in Section 8.1. Given an IRVA A and i ∈ {1, 2, . . ., n}, this
operation computes A|6=i.

Finally a script system has been added to facilitate the definition of test
scenarios. Such scenarios are precious to create complex IRVA incrementally,
or store or load them from a files. Also, an export module makes it possible
to create a graph representation of an IRVA in dot format [GN00]. Finally a
simple visualization tool is proposed, which is a very useful tool for debugging.

9.2 Data Structure Representation
In this section we detail the choices made for the operational representation of
the IRVA data structure.

We followed the principles of [Hof89], by isolating the program from a
library responsible of all calculations on real numbers. This clean separa-
tion make it possible to implement algorithms without having to worry about
the fact that floating-point arithmetic is approximate and can induce errors
[HHK89, McC98]. Our implementation relies on a symbolic representation of
rational numbers with numerator and denominator of arbitrary sizes. Hence,
all calculations are done in exact arithmetic, in line with our choice of privi-
leging correctness over performance.
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Using exact arithmetic introduces a non negligible overhead in computing
power but leads to nice properties. First, it enables the program not to care
about approximations and errors. This is a clear design advantage over the
traditional approach of using floating-point arithmetic with a lot of effort to
be invested in carefully detecting, trying to avoid and more improbably trying
to correct errors induced by inaccuracies.

We represent vector spaces in matrix notation. More precisely, a vector
space V generated by the basis {~v1, . . ., ~vm} of Rn is represented by a matrix
of n rows and m columns. The ith column corresponds to the vector ~vi of
the basis. Such matrices can be represented in a canonical way by carrying
out Gauss-Jordan elimination to produce a reduced row-echelon form [Mey00].
In the case of vector spaces associated to implicit states, it is useful to also
precompute and to store another matrix, corresponding to the inverse of the
canonical basis of the complementary vector space of V . This additional matrix
is useful for speeding up the computation of encodings.

Colors associated to vectors spaces are represented as 32-bit integer num-
bers. Two basic colors are already defined, they correspond to inside and
outside. They make it possible to represent pyramidal polyhedra out of the
box. Representing more colors is however not a problem, since the implemen-
tation delegates the management of colors to the user via externally definable
coloring functions that take integers as parameters. For the computation of
Boolean combinations and projections, some classical color functions are al-
ready available by default.

The transition relation of IRVA is represented by a vector of records. One
record consists of a type that differentiates implicit from explicit states, and
the definition of the outgoing transitions.

In order for the transition relation to be binary, face decision symbols are
encoded in base 2 and new explicit states are added, along with new transitions
that recognize those encodings. Notice that path regions are defined as soon
as the encoding of the face symbol is entirely read, and not sooner.

9.3 Key Mechanisms

We begin the description of the implementation of operations by defining a
set of key mechanisms on which the algorithms rely on. For each of those
mechanisms, we discuss the design choices that have been made.

9.3.1 Arbitrary Precision Arithmetic

We chose to use the GNU Multiple Precision Arithmetic Library (gmp) [Gra12]
to manipulate integers of arbitrary precision, from which we obtain procedures
for manipulating rational numbers, vectors and matrices.
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9.3.2 Manipulating Path Regions
In most algorithms, we use path regions to represent sets of points character-
ized by the same prefix from an implicit state. Those path regions are, by
design, non empty, convex and can have open boundaries. We also manipulate
vector spaces, which are also convex sets. A tool for manipulating efficiently
convex polyhedra with those properties is then of major importance. The two
main operations applied to convex polyhedra are to test whether two regions
are disjoint, and computing intersections. The former operation is employed
when a vector space has an intersection with some path region, and the latter
is used when identifying the vector space that has to be associated to a new
implicit state. We use the The Parma Polyhedra Library (PPL) [BHZ08] for
performing these operations.

9.3.3 Adjacency Information
In order to be able to quickly determine whether two implicit states repre-
sent incident polyhedral components, one has to check whether one state is
reachable or not from the other inside the IRVA. This operation is very often
required by different parts of algorithms. A data structure based on an adja-
cency matrix has been developed in order to speed up this search. Since we are
only interested by reachability between implicit states, a square table of size
|SI |2 is built. Each implicit state is characterized with an integer in interval [1,
|SI |]. A cell with coordinates (i, j) in the table has a Boolean value that is true
iff the state associated to number j is reachable from the one associated to i.
This adjacency matrix has two modes : an offline one that is precomputed for
a static IRVA, typically an IRVA used as a source for a manipulation, without
being altered; and a dynamic mode in which it is possible to add states as well
as incidence information to an already existing adjacency matrix. This option
is needed when reachability information is needed for an IRVA that is being
constructed, for example during minimization.

9.3.4 Minimal Covered Elements
The implementation of the minimals function, that computes the set of mini-
mal covered elements by a non empty convex region R, and from an implicit
state s (c.f. Section 5.4.1) is based on a breadth-first search. This search is
implemented by using a stack in which states that need to be explored are
pushed, along with the last implicit state encountered, and the word leading
from this last implicit state to the current state.

In Algorithm 1, for each state visited, one tests whether the cover region
corresponding to each outgoing transition is disjoint from the given region
(the region for which we search the set of minimal elements). This test aims
to prune the search tree as early as possible. Those tests are done by first
computing the pyramidal polyhedron corresponding to the path region RV S(s),w
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and calculating exactly its intersection with R. The resulting polyhedron is
then tested for emptiness.

The Algorithm presented in Section 5.4.1 creates the set of minimal states in
two main phases. Each call to search minimals returns a set of minimal states
corresponding to a particular subset of R, and different results are merged into
new a set of minimal states (by the use of the merge function).

In the implementation, we simplified this procedure by defining a data
structure representing a minimal set, that filters incrementally the states dur-
ing their insertion. The data structure uses such a mechanism in order to be
as efficient as possible :

• It is not possible to have multiple occurrences of the same state in the
set.

• States are stored in an ordered manner to speed up set comparisons.

• When inserting a state s in a set, an adjacency matrix of the implicit
states of A is used. If the set contains a state s′ such that s is reachable
from s′, the set is left unchanged. Otherwise, the states of the set that
are reachable from s in A are removed from the set, and s is finally
added.

In practice, an instance of this data structure is shared between successive
calls to the search minimals function inside the computation of the set of
minimal states covered by a region. This avoids the need to merge results.

9.4 Path Regions
In the definition of path regions in Section 5.3.1, we did not address the problem
of representing and computing them. There are several ways of tackling the
problem, with different levels of performance.

For the sake of generality, and because the exact nature of the required
manipulations were not fully known by the time the development of this im-
plementation started, we used the most general and flexible data structure
possible which is based on manipulation of general convex polyhedra.

Indeed : one can create a polyhedron from an intersection of closed and
opened linear constraints, the problem of determining whether two path re-
gions have points in common can be reduced to testing emptiness of their
intersection, etc.

We now explain more precisely how regions are constructed in our applica-
tion.

We study the creation of a path region R ⊂ Rn based on a m-dimensional
vector space represented by a basis V = {~v1, ~v2, . . ., ~vm} and a word w ∈
±N{0, 1}∗.
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Let Z = {~z1, ~z2, . . ., ~zn−m} be the canonical basis of the complementary
vector space of V . By definition, we know that Z is a selection elements of
E = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1)}.

As explained in Sections 5.2.2 and 5.2.3, the encoding of a direction is
dependent to Z, since the word w is a prefix of encodings of directions in the
outgoing space spanned by Z. It is then mandatory to know the vector basis
Z in order to interpret the symbols of w and this interpretation is independent
to the orientation of V .

First, we construct the region inside the space spanned by Z. The word
w is composed of a face selection symbol followed by symbols of {0, 1} that
subdivide this face. The face itself is a (n −m − 1)-dimensional component.
We decompose w in three parts #iw′ where # ∈ {+,−} is the sign of the
face, i ∈ {1, . . . , n −m} is a face number and w′ ∈ {0, 1}∗ is a suffix. Let ~zi
be the vector in Z that is orthogonal to the face. The word w′ is a serialized
encoding of words of the form ({0, 1}∗)n−m−1. For each word wj in the serialized
encoding, wj delimits an interval [tj, rj] inside the space spanned by a vector
~zj ∈ Z.

The region corresponding to the set of points of the space spanned by Z
that have an encoding prefixed by w is the smallest cone that has ~0 as apex,
and that contains the interval [tj, rj] for all j ∈ {0, . . ., n−m− 1}.

This cone C is generated by (n−m− 1) pairs of linear constraints, one for
each element of Z not orthogonal to the face. If the face is identified by +i,
we have :

C =
(p1, . . . , pn−m) ∈ Rn−m |

n−m∧
j=0,j 6=i

(
tjpi −

1
2pj ≥ 0 ∧ rjpi −

1
2pj ≤ 0

)
Otherwise, if the face is identified by −i, we have :

C =
(p1, . . . , pn−m) ∈ Rn−m |

n−m∧
j=0,j 6=i

(
tjpi −

1
2pj ≤ 0 ∧ rjpi −

1
2pj ≥ 0

)
To create the path region RV,w from the conical set C, one has to express

this conjunction of linear constraints into the Cartesian coordinate system
generating Rn.

First, we remark that the inequation

api + bpj ≥ 0

is equivalent to

0p1 + . . .+ api + . . .+ bpj + . . .+ 0pn−m ≥ 0

and that its orientation is characterized by the vector

(0, . . . , a, . . . , b, . . . , 0) ∈ Z
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The same vector expressed in V + Z = {~v1, ~v2, . . ., ~vm, ~z1, ~z2, . . ., ~zn−m}
becomes a similar vector augmented with m zeros for the first m variables.
We obtain :

~d = (0, . . . , 0︸ ︷︷ ︸
m

, 0, . . . , a, . . . , b, . . . , 0)

This also characterizes the orientation of a linear constraint, but in order to
express it in E = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1)}, we have to
rotate the vector in order to align it with the m vectors of E that not belong
to Z. The following matrix defines a coordinate change from E to V + Z :

M =


~v1[1] ~v2[1] . . . ~vm[1] ~z1[1] ~z2[1] . . . ~zn−m[1]
~v1[2] ~v2[2] . . . ~vm[2] ~z1[2] ~z2[2] . . . ~zn−m[2]

... ... ... ... ... ... . . . ...
~v1[n] ~v2[n] . . . ~vm[n] ~z1[n] ~z2[n] . . . ~zn−m[n]


Since this is the inverse of the needed operation, the linear constraint we

are searching is characterized by the vector M−1~d. Note that the matrix is
not singular, as its columns are linearly independent vectors, by construction.

9.5 Operations

9.5.1 Minimization
The module responsible for the minimization of IRVA uses similar mechanisms
as the Algorithm depicted in Section 6.3, with the exception of the fact that
the IRVA undergoing the minimization operation is not modified. Instead, a
new IRVA is constructed, corresponding to the canonical form of the input
IRVA.

Let A = (n, SI , SE, s0, δ,VS, col) be the input IRVA, andM = (n, SI ′, SE ′,
s0
′, δ′, VS′, col′) be the result of the minimization.

The procedure uses some additional data structures in order to simplify or
speed up some computations.

In order to process the states in a correct order, a table associates a depth
to each state of A determined by the computation of a topological ordering of
the states of A.

An adjacency matrix of implicit states of A is created. This matrix makes
it possible to know, for a pair of states, if the second is reachable from the
first.

During minimization, each processed state s is either kept or merged with
an existing one. Keeping s means that a new state will have to be inserted
inside M. Merging s with an existing one means that nothing will be added
to M. In both cases, when another state of A that has s as a destination of
one of its transitions is later examined, its destinations should be redirected
to point either the new state ofM if s has been kept, or to the corresponding
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state of M in the case of a merge. An associative table T : SI ∪SE → SI
′∪SE ′

is used in order to keep track of the correspondence between states of M and
A.

The first minimization rule for explicit and implicit states (c.f. Section
6.3) locates already processed states in order to detect redundancies. For both
explicit and implicit states, the procedure searches whether a state of the same
type with the same successors is present or not inM. Since the rule is applied
to a state of A, the successors of which are also states of A, the table T is used
in order to know the already processed states of M to which the destinations
of this state correspond.

The implementation of the second minimization rule for implicit states
requires two data structures. To know if an implicit state s will be added
to M, one has to search among its direct implicit successors (the set δI(s)).
In order to avoid to perform a depth-first search to construct δI(s), a list of
implicit state is associated to each explicit state. This list is built incrementally
in the following manner : at each step of the minimization procedure, when
processing a state s having the destinations, s1 and s2, if s is implicit, then
its associated list is {s}. If s is explicit, then its associated list is the union of
the associated lists of s1 and s2. We use a data structure based on linked lists
in order to merge lists in one simple operation. Lists can share elements and
are just a pair of head and tail pointers into a pool of linked elements. Once
the set δI(s) has been built, the procedure checks whether a minimal element
exists or not by using an adjacency matrix of implicit states ofM. This matrix
is maintained dynamically and is updated when new implicit states are added
to M.

The second minimization rule for explicit states requires a slightly different
approach. The idea of the rule is to detect, for an explicit state s, if it is
redundant and can be removed. It is the case when there exists a minimal
element in the set of reachable implicit states from s. In the algorithm depicted
in Section 6.3, we use this rule literally for the sake of simplicity. However, for
the implementation, we are able to restrict the search thanks to the following
property. If S is the set of reachable implicit states of s, since all successors of
s have already been processed in a previous step, we know that the minimum
element, if it is defined, will be a successor of s. This is due to the fact that if
all explicit states created inM are not useless, hence a new explicit state that
has two explicit states as destinations is bound to be useful, too. Moreover, if
the processed explicit states are useful, then it means that for each of them,
no minimum element is defined among their reachable set of implicit states.
Merging two sets of implicit states that both have no minimum element defined,
cannot produce a set with a minimum element. On the other hand, when an
implicit state is a successor of the currently processed explicit state, adding
this state to the set of reachable implicit states can change the situation, and
a minimum element may be defined. This minimum element is bound to be
the newly considered implicit state.
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As a consequence, we conclude that the second minimization rule for ex-
plicit states only applies when one of the successors is implicit, and that it
suffices to test whether all implicit states reachable from the other successor of
s are also reachable from s′. If it is the case, then s′ is the minimum element,
and s can be considered useless. Again, the test of reachability is performed
by using the already constructed adjacency matrix of implicit states of A.

When an implicit state is considered to be useless by the first minimization
rule for implicit states, it is possible that some already created explicit state
of M becomes unreachable. Such states can be eliminated by a simple post
processing that only keeps reachable states, for instance by using a depth-first
search from the initial state.

9.5.2 Boolean Combination

The product is defined upon the principle that a state in the product of two
IRVA is a pair of states, one for each operand. This is impractical, since it
would require to store additional information inside the product IRVA. In the
implementation, we avoided the modification of the data structure by keeping
the pair inside the stack. Indeed, when a state of the product automaton is
pushed on the stack in order to develop it in a future step of the algorithm,
the pair of states used for its creation is pushed with it.

Later in the procedure, before creating an implicit state, we have to search
the product IRVA in order to know whether the state already exists. We use
a simple hash map with the pair of state as key and a state of the product as
value in order to quickly determine its existence in the product.

9.5.3 Projection

Our implementation is only able to perform aligned projections (however, it
could easily be generalized to unrestricted projections by adapting the proce-
dure for projecting vector spaces, as explained in Section 8.2.

Let A be the input IRVA undergoing projection and A|6=i be the projected
IRVA w.r.t. i.

The projection of the vector spaces associated to the implicit states of A is
done by deleting the row corresponding to the coordinate component that is
projected away and then by minimizing the set of column vectors in order to
define a vector basis of a new vector space. First, all zero vectors are removed.
Then, Gauss-Jordan elimination is used in order to keep only a matrix formed
of linearly independent columns vectors.

Recall that an implicit state of A|6=i is a composite state formed of implicit
states of A. Similarly to the product, in order to avoid defining a new type of
composite states, a set of states is associated to each implicit state of A|6=i by
using an associative table.
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When looking if an implicit state of A|6=i already exists, a hash map is used
with the set as key and the corresponding state of A|6=i as value.

Inside the projection procedure, the set of implicit states we use as com-
posites are always sets of minimal states as explained in Section 8.1.4. Those
sets of minimals result in a union of several sets calculated by successive calls
to the minimals algorithm.

In order to create and maintain this set of minimal states, we use the data
structure presented in Section 9.3 for the calculation of sets of minimal states.

9.6 Results
In this section we show different case studies in order to observe the behavior
of our prototype implementation.

The first two case studies are designed to emphasize a particular property
of the data structure. With the first one, we see how the size of an IRVA can
vary with rotations of the represented polyhedron, in order to verify that IRVA
represent an improvement over RVA in that aspect.

With the second case study, we observe how the representation is affected
when creating hypercubes with increasing number of dimensions.

The purpose of the other case studies are to test the behavior of the data
structure in typical applications. In order to make observations as independent
as possible from particular values of inputs, we repeat similar sequences of
operations several times with a variation of those values.

For example, the third case study checks how the creation and projection
of a pyramid in R3, with a triangular section, can vary with a variation of the
orientations of its faces. Note that this is not similar to the first case study
where the size of the pyramid is invariant and the change of orientation is only
performed by rotation around a unique axis.

Giving the complete characterization of the polyhedra used in each case
study would require an impractical amount of space in this manuscript. We
will only describe the rules behind their construction. The complete data is
available at http://www.montefiore.ulg.ac.be/˜degbomont/phdthesis.

9.6.1 Methodology
In each of the following tests, we use a notion of steps to quantify the amount of
work required to execute an operation. Those steps can be understood as the
number of times a state of an IRVA – explicit or implicit – is considered, even if
no action is performed. The number of steps of an execution is affected by the
number of states considered in algorithms, in path region constructions, during
the search for minimum covered element or construction of sets of minimal
states.

Each of the following sections describe a particular case study. In each
section, a table provides experimental results for each test.
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The different case studies have been executed on a Pentium Dual-Core
E5400 running at 2.70GHz with 4GB of RAM. We use the GNU Compiler
Collection 4.4.3 (GCC) on Linux. We linked with the the Parma Polyhedra
Library (PPL) in its version 0.10.2 and the GNU Multi-Precision (GMP) 3.5.2.

9.6.2 Rotation of a Pyramid in R3 with Square Section
In this case study, we emphasize the stability of the size of the data structure
with respect to rotations. Indeed, IRVA have been developed in order to tackle
the problem of the blowup in number of states of the RVA data structure with
respect to large coefficients of linear constraints.

We stimulate the growing of coefficients of linear constraints defining an
IRVA by constructing the representing pyramid in R3 of a square of size 4,
centered on (−5, 12), rotated by a varying angle.

The following table summaries the execution of the creation of the pyra-
mid. Each row of the table contains information about the creation of the
IRVA representing the pyramid. This IRVA is created by intersecting four
IRVA representing half-spaces. Those half-spaces correspond to the rotated
sides of the pyramid. The intersection is performed incrementally and each
intermediate result is minimized.

In this table, the column Angle gives the angle used for the rotation ;
Steps gives the number of steps taken to execute the operation, t(s) is the
time, expressed in seconds, taken to perform the operation ; SI and SE give
respectively the number of implicit states and explicit states of the resulting
IRVA ; SImax and SEmax show the maximum number of, respectively, implicit
and explicit states of intermediate IRVA. Finally the column vmem corresponds
to the maximum amount of virtual memory allocated by the process running
the creation. It is expressed in kilobytes.

Angle Steps t(s) SI SE SImax SEmax vmem (kB)
0 5830 0.859 11 40 19 341 152
1 5842 0.873 11 36 19 343 152
7 4116 0.596 11 40 19 229 152
11 4872 0.660 11 31 19 282 152
13 4817 0.613 11 28 19 279 152
19 3052 0.409 11 24 19 160 152
21 2985 0.411 11 29 19 155 152
22 3354 0.482 11 46 19 180 152
72 4974 0.778 11 30 19 285 152
324 3120 0.479 11 37 19 163 152
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We can see that the angle has an impact on the results, but this impact
is minor, as expected. The observed variations are a consequence of the fact
that decision structures are adapted to match the different orientations.

9.6.3 Pyramids of Increasing Dimensions
In this section, we show the impact of the dimensionality on the size of an
IRVA corresponding to the representing pyramid of a unit hypercube centered
on ~0.

In the following table, we show the summary of the creation of each rep-
resenting pyramid in R2, R3, R4, R5, R6 and R7. The column Dim. gives the
dimensionality.

Dim. Steps t(s) SI SE SImax SEmax vmem (kB)
2 93 0.006 5 1 9 2 152
3 658 0.151 11 3 17 4 536
4 3563 1.573 29 7 41 10 2504
5 22134 19.010 83 15 113 22 9732
6 207888 289.585 245 31 329 46 36608
7 3259705 5518.931 731 63 977 94 43556

Unsurprisingly, the number of implicit states grows exponentially1 with
the dimensionality. Notice that, since we represent pyramids, the number of
implicit states for a pyramid of Rn corresponds to the number of polyhedral
component of the (n− 1)-dimensional hypercube.

The other measures, such as steps, time and memory follow similar pro-
gression. This emphasize a drawback of using IRVA for representing high
dimensional polyhedra.

Some ideas to tackle this particular problem will be discussed later in Sec-
tion 10.2.

9.6.4 Incremental Building of a Pyramid in R4

From now on, each case study is a repetition of similar operations with ran-
domized input values. A global analysis is given in the Section 9.6.10.

In this case study, we investigate the behavior of the minimization operation
when performed on IRVA of various sizes. In order to obtain such a varied,
but realistic, set of executions, we analyze the creation of a 4−dimensional
pyramid with a cuboid section that corresponds to the representing pyramid
of :

[6, 12]× [−7,−1]×
[
−15

2 ,−
1
2

]
1A hypercube of Rn already has 2n vertexes.
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The pyramid is constructed incrementally as the intersection of six half-
spaces H1, H2, H3, H4, H5 and H6, one for each face of the cuboid. This
intersection is computed incrementally, each intermediate result being mini-
mized before proceeding further.

The following table summaries the execution of the creation of the pyramid.
The column Op. specifies the nature of the operation,

The operation P := A∩B denotes the creation of an IRVA P as the result
of the intersection of two IRVA A and B. The operation mini(P ) denotes the
operation of minimizing the intermediate IRVA P .

Op. Steps t(s) SI SE
P1 := H1 ∩H2 60 0.01 9 0
mini(P1) 36 0.01 5 0
P2 := P1 ∩H3 182 0.04 15 0
mini(P2) 116 0.01 9 0
P3 := P2 ∩H4 272531 97.86 27 25351
mini(P3) 129968 0.04 17 136
P4 := P3 ∩H5 245822 243.55 31 2838
mini(P4) 16967 0.03 21 186
P5 := P4 ∩H6 185491 191.46 41 1628
mini(P5) 9507 0.05 29 198

In these results, we can remark that the intersection of H4 with P2 takes
significantly more steps and time than the intersection of H1, H2 and H3. This
is due to the fact that P3 has significantly more states than P2 and H4.

We see that the subsequent minimization mini(P4) does, however, reduce
drastically the size of P3, since it removes 25215 explicit states and 10 implicit
states.

This shows that performing Boolean combinations as a product and a col-
oring function to be, in some situations, needlessly complex.

9.6.5 Union of Pyramids in R2

Here, we create ten IRVA U1, U2, . . ., U10. To create each IRVA, we first build
twenty IRVA representing random 2−dimensional pyramids, and then compute
the incremental union of those twenty pyramids, minimizing each intermediate
result.

Each random pyramid is created as follows. Two random half-spaces are
created. The first one is chosen randomly but the second one is chosen in a
way such that the two boundaries of the half-spaces form an angle varying
between five and twenty degrees. Those two half-spaces are intersected and
the result is minimized.
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The following table summarizes the execution of the constructions.
Twenty operations are showed in the rows of this table. Each row identi-

fied by Pyramids i corresponds to the summary of the creation of the twenty
random pyramids that are used to create Ui, with i ∈ {1, . . ., 10}. The row
identified by Create Ui is the summary of the incremental union of the twenty
pyramids used to create the IRVA Ui, with i ∈ {1, . . ., 10}.

Note that, since the operation Pyramids i builds twenty different IRVA, we
do not specify values for columns SI and SE.

Op. Steps t(s) SI SE SImax SEmax vmem (kB)
Pyramids 1 3273 0.206 – – 9 8 544
Create U1 14667 2.023 25 23 26 24 1448
Pyramids 2 3545 0.212 – – 9 10 544
Create U2 15357 2.298 23 30 29 34 1320
Pyramids 3 2980 0.159 – – 9 8 544
Create U3 12314 1.605 21 18 25 23 1324
Pyramids 4 3279 0.166 – – 9 8 544
Create U4 12352 1.681 23 24 25 27 1328
Pyramids 5 3142 0.175 – – 9 10 544
Create U5 11124 1.452 21 16 23 22 1320
Pyramids 6 2979 0.153 – – 9 10 544
Create U6 10524 1.456 18 19 21 23 1184
Pyramids 7 2979 0.167 – – 9 8 544
Create U7 11085 1.479 17 13 23 23 1188
Pyramids 8 3060 0.165 – – 9 8 544
Create U8 14327 1.919 25 25 29 30 1460
Pyramids 9 3264 0.184 – – 9 10 544
Create U9 12106 1.609 21 17 25 22 1324
Pyramids 10 2874 0.176 – – 9 6 536
Create U10 9427 1.194 19 17 21 17 1184

9.6.6 Pyramids in R3 with Triangular Section
In this case study, we create ten IRVA A1, A2, . . ., A10. Each of these ten IRVA
is created by the incremental intersection of three randomized half-spaces in
R3 such that their intersection corresponds to a pyramid with a triangular
section.

The operation noted Create Ai, with i ∈ {1, 2, . . ., 10} is the incremental
construction of the pyramid Ai with each intermediate result minimized.

The second operation, noted Ai|6=2 is the projection of Pi w.r.t. 2, followed
by a minimization.



9.6. Results 127

Op. Steps t(s) SI SE SImax SEmax vmem (kB)
Create A1 1549 0.216 9 9 15 61 148
A1|6=2 140 0.061 5 0 7 3 148
Create A2 2170 0.264 9 10 15 106 148
A2|6=2 279 0.132 5 2 7 5 148
Create A3 3355 0.616 9 41 15 148 148
A3|6=2 612 0.342 5 0 7 4 272
Create A4 761 0.087 9 2 15 18 148
A4|6=2 107 0.047 5 0 7 3 148
Create A5 4770 0.395 9 61 15 288 148
A5|6=2 653 0.374 5 3 5 3 272
Create A6 2860 0.394 9 20 15 134 148
A6|6=2 209 0.102 5 2 5 2 148
Create A7 546 0.054 9 2 15 10 148
A7|6=2 119 0.047 5 0 7 3 148
Create A8 4063 0.500 9 46 15 212 148
A8|6=2 339 0.179 5 0 7 4 148
Create A9 49109 9.732 9 65 15 2485 408
A9|6=2 510 0.312 5 2 7 3 412
Create A10 501 0.064 9 1 15 20 148
A10|6=2 43 0.022 5 0 5 0 148

9.6.7 Union of Half-Lines in R3

We create ten IRVA. Each of them is constructed as the union of a random
number of half-lines in R3. Each ray leaves ~0 with a random direction charac-
terized by a point chosen inside [−100, 100]3.

The operation noted R(x) in the following table is the construction of an
IRVA corresponding to the incremental union of x half-lines, with intermediate
results minimized.

Op. Steps t(s) SI SE SImax SEmax vmem (kB)
R(86) 808102 373.845 88 242 88 242 15660
R(59) 364632 167.114 61 178 61 178 7900
R(16) 16729 6.290 18 34 18 34 920
R(58) 362715 164.477 60 182 60 182 7568
R(17) 24414 9.786 19 52 19 52 972
R(32) 86377 36.204 34 90 34 90 2652
R(15) 19794 7.982 17 46 17 46 752
R(21) 35004 14.232 23 66 23 66 1364
R(60) 399816 183.980 62 184 62 184 8048
R(6) 2335 0.745 8 12 8 12 148
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9.6.8 Pyramids in R4 with Cuboid Section
Here is a summary of the results of the creation of ten IRVA representing each
a pyramid R4 with a cuboid section.

Each pyramid is constructed in a similar way than the creation of the
pyramid described in Section 9.6.4, with intervals each chosen randomly inside
[−20, 20].

In the following table, the operation Create Ci, with i ∈ {1, 2, . . ., 10},
corresponds to the incremental construction of the representing pyramid of
an axis-aligned cuboid centered on a point randomly chosen inside [−20, 20]3
having sides of size randomly chosen inside [1, 10]. Again, each intermediate
IRVA is minimized.

Op. Steps t(s) SI SE SImax SEmax vmem (kB)
Create C1 681532 341.955 29 408 41 15001 2288
Create C2 542246 404.304 29 283 41 7005 1188
Create C3 860680 552.672 29 198 41 25351 3424
Create C4 207204 88.851 29 114 41 5747 948
Create C5 1221103 784.026 29 410 41 23193 3284
Create C6 2983598 1809.077 29 426 41 92941 11704
Create C7 3116966 2248.521 29 293 41 35835 4676
Create C8 330090 145.487 29 101 41 6766 1224
Create C9 147345 60.589 29 168 41 5570 1176
Create C10 88314 12.867 29 251 41 3571 864

We can observe a large variation in the cost of each creation of pyramids,
since the creation of C7 is a little more than 174 times slower than the creation
of C10.

9.6.9 Projection of Pyramids in R4

We now analyze the behavior of the projection procedure with 4-dimensional
inputs : we project w.r.t. 1 the pyramids created in Section 9.6.8 and minimize
the results.

In the following table, columns input SI and input SE give the number of,
respectively, implicit and explicit states of the input IRVA of each operation.
The row identified by Ci|6=1 of the following table corresponds to the projection
w.r.t. 1 of the pyramid Ci. The row identified by mini(Ci|6=1) corresponds to
the minimization of the projected IRVA Ci|6=1.
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Op. Steps t(s) input SI input SE SI SE vmem (kB)
C1|6=1 50050 53.9 29 408 11 88 –
mini(C1|6=1) 546 0.01 11 88 11 58 740
C2|6=1 35125 38.211 29 283 11 60 –
mini(C2|6=1) 407 0.01 11 60 11 42 704
C3|6=1 6989 8.635 29 198 11 11 –
mini(C3|6=1) 175 0.01 11 11 11 11 584
C4|6=1 1439 1.692 29 114 11 1 –
mini(C4|6=1) 116 0.01 11 1 11 1 484
C5|6=1 61064 63.91 29 410 11 54 –
mini(C5|6=1) 395 0.01 11 54 11 40 704
C6|6=1 54763 66.871 29 426 11 34 –
mini(C6|6=1) 282 0.01 11 34 11 30 760
C7|6=1 46026 54.363 29 293 11 47 –
mini(C7|6=1) 321 0.01 11 47 11 31 668
C8|6=1 7027 8.191 29 101 11 37 –
mini(C8|6=1) 290 0.01 11 37 11 27 700
C9|6=1 21264 22.31 29 168 11 43 –
mini(C9|6=1) 315 0.01 11 43 11 32 696
C10|6=1 38091 41.26 29 251 11 35 –
mini(C10|6=1) 284 0.01 11 35 11 30 660

This case study also shows a variation in the cost of each projection, since
the computation of C6|6=1 is a little more than 39 times slower than the com-
putation of C4|6=1.

While the number of states of the output seems to play an important role
in these results, (C4|6=1 contains one explicit state and C6|6=1 has twenty-four),
it does not totally depend on it, since the computation of C9|6=1 is faster than
the one of C10|6=1 and they produce, respectively, IRVA of 43 and 35 explicit
states.

9.6.10 Analysis
As pointed out in case studies of Sections 9.6.4, 9.6.8 and 9.6.9 we have ob-
served, in those case studies, an important variations – in terms of number of
steps, and time taken – between the executions of two similar operations with
a slight perturbation of the input values.

A possible explanation for this variation lies in the fact that when linear
constraints are close, deciding between the two on one face of the hypercube
of normalization can require long encodings. This does not, however, totally
explain the variations on the observations, since in most cases, the number of
states of the corresponding minimized IRVA does not grow in proportion.
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It remains an open problem that should be addressed in future work.
Nevertheless, from the observation made in Section 7.4.3 about the heavy

use of the minimals function by the product and projection algorithms, we
can propose the following ideas to reduce the cost of this function.

An implementation of an incremental version of the minimals algorithm,
as discussed in Section 7.4.3, would certainly decrease the overall cost of the
computations of product and projection operations, since they mainly rely on
this function.

Furthermore, trying to reduce the cost of the operations carried out by
the minimals function would certainly be beneficial, too. In particular, in
the minimals procedure, one often needs to test whether two path regions
– or a path region and a vector space – have a non empty intersection. As
mentioned, this is done by the manipulation of convex polyhedra, via the Non
Necessarily Closed Polyhedron [BRZH02] data structure available in the PPL
library [BHZ08].

These manipulations, in the current implementation, consist in the con-
struction of the convex polygon corresponding to the intersection of the two
convex polyhedra followed by a test for emptiness.

Since path regions and vector spaces are easily generated by conjunctions
of linear constraints, simplex-based approach and satisfiability test [DM06]
can probably accelerate the procedure substantially. Indeed, in the minimals
algorithm, in order to cut the search tree as soon as possible, a test for empty
intersection is performed between the input region R (in the calling contexts,
this region is always created as a path region) and a cover region corresponding
to the current path. In the same procedure, when an implicit state is reached,
a similar test is carried out between its vector space and the intersection of
the input region and the path region defined by the path that led to this
implicit state. The intersection of two path regions is still representable by a
conjunction of linear constraints.
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Conclusions

The symbolic representation of polyhedra is essential to many applications
such as computer-aided verification, computer-aided design, calculation of tra-
jectories or physical simulations. Depending on the context, some features of
polyhedra can be more critical than others. For example, for verification of
systems, represented polyhedra can have an arbitrary number of dimensions.

The class of Nef Polyhedra [Nef78, BN88] corresponds to the polyhedra
considered in this work. This class contains convex and non-convex polyhedra,
including features such as open and closed boundaries, unconnected parts and
non-manifold components.

We have introduced an original data structure, the Implicit Real Vector
Automaton (IRVA), that is expressive enough for representing symbolically
polyhedra. IRVA are not limited to regularized polyhedra [Req80, Män88,
Hof89, Bru90] and are closed under Boolean operators and projection.

IRVA imitate the principles of Real Vector Automata (RVA) [BBR97], an-
other automata-based data structure suited for polyhedra, but their advantage
is to be considerably more concise.

An important characteristic of IRVA is that they admit an easily com-
putable canonical form that turns out to also correspond to their minimal
form. Thanks to the existence of such a canonical form, testing equality be-
tween two polyhedra represented by IRVA reduces to a simple and efficient
syntactic test. Moreover, having a minimal form enables to keep the size of in-
termediate results under control when performing large series of manipulations
on the data structure.

A very efficient algorithm make it possible to test whether or not a given
point belongs to a polyhedron represented by an IRVA . A similar algorithm
can also be used to detect to which polyhedral component this point belongs.
This particular property makes the IRVA data structure a good data structure
for performing collision detection or operations such as ray tracing.

Representing elementary IRVA corresponding to linear constraints or vector
spaces is straightforward. An algorithm has been developed to compute the
product of two IRVA. When a coloring function is applied to the product, it
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can represent the result of arbitrary Boolean combinations.
Furthermore, we have also developed an algorithm for computing the pro-

jection of a represented polyhedron. In its actual form, it can compute projec-
tions that correspond to the removal of variables, but the algorithm is straight-
forwardly generalizable in order to perform arbitrary projections. Such opera-
tions are useful in the context of symbolic state space exploration techniques,
in particular for Hybrid Systems [ACH+95].

An implementation of the algorithms presented in this work has been devel-
oped in order to experiment further with IRVA. This implementation, although
mainly intended to provide a proof of concept, already make it possible to carry
out operations that were impossible to perform with RVA.

10.1 Relation with Other Work

We have mentioned that IRVA are not limited to regularized polyhedra and
are closed under Boolean operators. This is a clear advantage when compared
with data structures such as Boundary Representations (B-REP). Indeed, B-
REP representation fail at representing polyhedra that do not correspond to
physical entities (with a non empty volume and in three dimensions). On
the other hand, unlike the B-REP approach, IRVA are not suited for direct
characterization of polyhedral components, nor for displaying polyhedra using
a drawing method such as rasterisation [Pav79].

IRVA share some similarities with Selective Nef Complexes [GHH+03],
which also decompose polyhedra into pyramids, and represent the incidence
relation between them. IRVA have two original features : first, the general
and deterministic decision structures that link implicit states. Second, IRVA
do not rely on ad hoc mechanisms that depend on dimensionality to represent
and link components. This provides the ability to represent any n-dimensional
polyhedra, instead of being limited to two or three dimensions and provides a
deterministic and efficient procedure for solving the point decision problem.

IRVA inherit from RVA the efficient algorithms for solving deterministically
the point decision and classification problems. Their conciseness, compared to
RVA, is due to the introduction of implicit states that replace some internal
structures of RVA with algebraic information representing them. IRVA are, on
the other hand less expressive than RVA whose expressiveness correspond to
the additive theory of mixed integer and real variables.

Finally IRVA admit an easily computable canonical form. Data structures
like Cell Decomposition or Binary Space Partition also admit a canonical form,
but its definition requires the ability to canonize a set of cutting planes and
the application of a lexical ordering of generators, which is a difficult problem
[Tam07].
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10.2 Perspectives
We now discuss some questions that could be addressed in future work.

The Curse of Dimensionality

The size of the structure grows exponentially with the dimensionality of the
represented set. Although not limited in dimension by definition, IRVA are, in
practice, often not suited to represent sets with a large number of dimensions,
depending on the application. For example, a n-dimensional hypercube has 2n
vertexes, which translates to at least 2n implicit states inside an IRVA.

In order to tackle this problem, a promising direction could be to adapt
to IRVA the reduction techniques proposed in [BD97]. Since the transition
relation of IRVA is acyclic, this reduction is presumably feasible. With such a
reduction technique, the data structure should become more concise for poly-
hedra with large number of dimensions.

However, this reduction relies on detecting independences among sets of
variables. This is incompatible with the fact that the current definition of
IRVA is limited to representing only pyramids. Indeed, with the exception
of some trivial sets, pyramids do not show such independences among their
variables.

While this problem certainly requires a deeper investigation, we can already
give a pointer to two options in order to address it :

A first idea is to develop a new version of IRVA able to represent polyhedra
– and polyhedral partitions – and not just pyramids. This seems achievable,
although a lot of practical problem quickly arise, in particular in the context
of the product operation.

A second solution is to adapt the notion of independences of variables to
account for pyramidal structures.

Import and Export Operation

Another future work could also address the problem of conversions to and from
other representations. Currently, IRVA have to be defined either directly, or
by performing a succession of Boolean combinations and projections. Having
ways to straightly interact with other representations is probably mandatory
in order to be able to use IRVA in frameworks like computer-aided design.

Other Operations

We have seen in Chapter 8 that the generalized projection associated with
advanced coloring functions pave the way for a visualization tool for IRVA.
Further more, ray tracing techniques could be adapted to IRVA, thanks to the
deterministic decision structures of IRVA. Once again, being able to dynami-
cally visualize IRVA would certainly make them more appealing for computer-
aided design tools.
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Algorithm Improvements

The product and projection algorithms rely heavily on a sub routine that
computes the minimum covered element of an IRVA by a region of space. The
actual algorithm already have mechanisms for avoiding some useless compu-
tations, but could probably be operationally improved.

In general, a more optimized software package than the prototype imple-
mentation mentioned in this work would certainly be useful.

Tools for Verification

In computer-aided verification of Hybrid Systems [ACH+95], linear hybrid sys-
tems have a transition relation that can be described by combination of linear
constraints, called Linear Hybrid Relations (LHR).

In this context, an essential problem consists in computing the acceleration
of a LHR, in other words its transitive closure.

Since polyhedra can be used to represent symbolically a LHR, and since
IRVA provide a simple mechanism for classifying of topological elements (such
as vertexes, edges, faces, . . . ), an open problem is to exploit this classification
by IRVA in order to compute those accelerations.

Planning of Trajectories

In the field of robotics, when a robot has to move inside an environment with-
out following precomputed trajectories, one has to prevent collisions between
the robot and obstacles.

A solution consists in building a first polyhedron to represent the environ-
ment and a second one to represent the possible configurations of the robot,
and then to check whether those polyhedra have a non empty intersection or
not.

Since IRVA can represent exactly arbitrary polyhedra and can be inter-
sected efficiently, they could be used in this context.

Sets of Mixed Integer and Real Variables

The expressiveness of RVA corresponds to the additive theory of mixed integer
and real variables. This theory includes polyhedra, but also makes it possible
to define sets including discrete features such as periodicities.

A challenging problem is to generalize IRVA in order to make them as
expressive as RVA.

Combination of Polynomial Constraints

Another interesting question is to see if the principles of IRVA can be adapted
in order to represent sets corresponding to Boolean combinations of polynomial
constraints, by for instance, the technique introduced in [MOS04].
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Of course, such a generalization is not straightforward and requires the
encoding scheme used in the data structure to be completely redefined.
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