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 1. Formulation abstraite du problème de détermination des 
défauts de forme 
 
 1.1 – Fonction d’encadrement 
 
 Dans un souci de synthèse et de généralité, nous croyons utile de donner une forme 
abstraite au problème de détermination des défauts de forme.  
 
 Les mesures tridimensionnelles fournissent un ensemble compact K, fini, de points de 
mesure. Les tolérances de forme s’expriment toujours par un encadrement : deux droites 
extrêmes dans le cas de la rectitude, deux plans extrêmes en planéité, deux cercles 
concentriques extrêmes en circularité et deux cylindres de même axe en cylindricité. 
Mathématiquement, on peut parler d’une fonction d’encadrement (continue) f(x ;λ) dépendant 
des coordonnées x et d’un jeu de paramètres  . La valeur de cette fonction en un point xi 
donné, ),()(  ii ff x , sera appelée dans ce qui suit hauteur du point xi (pour la valeur λ du 

jeu de paramètres). 
 
 a) En rectitude, nous écrirons 
 

 sincos);,( yxyxf   
 

Le paramètre φ donne la direction de la normale n à la droite,  
 

  sin,cosn  
 

 
 b) En planéité, nous supposerons le plan approximativement horizontal. On penserait 
a priori à définir la direction de la normale au plan à l’aide des coordonnées sphériques 
classiques, à savoir, 
 

)cos,sinsin,cos(sin n  
 

mais ce choix est malheureux, car la direction idéale de la normale, c’est-à-dire la verticale, 
correspond précisément au pôle, où la longitude θ est indéterminée. Il est préférable de placer 
le pôle sur l’axe des x, par exemple, ce qui donne 
 

)sinsin,cossin,(cos n  
 

La verticale est alors sur l’équateur de la sphère, en 
2

,
2

  . Dans le voisinage de ce 

point, les coordonnées sphériques sont quasiment cartésiennes,  puisque 
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La fonction d’encadrement sera alors 
 

 sinsincossincos),;,,( zyxzyxf   
 
 

 c) En circularité, soient a et b les coordonnées d’un centre. La fonction d’encadrement 
d’un point (x,y) est tout simplement le rayon de ce point par rapport au centre, soit 
 

   22),;,( byaxbayxf   

 
 d) Pour la cylindricité, on commencera par définir un axe de la forme 
 

  sinsin,cossin,cosn  
 

comme ci-dessus. Nous admettrons en effet que l’axe du cylindre est à peu de chose près l’axe 
des z. On projettera alors le point (x,y,z) sur les deux axes perpendiculaires 
 

)cos,sin,0(
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ce qui donne  
 





cossin

sincoscoscossin

zyy

zyxx

p

p




 

 
Alors, si (a,b) est la position d’un centre dans le plan perpendiculaire à l’axe, on a 
 

   22),,,;,,( byaxbazyxf pp   

 
 

 1.2 – Valeur d’encadrement du compact K ; défaut du compact K 
  
 Nous appellerons valeur d’encadrement du compact K, pour une valeur des 
paramètres λ, le nombre  
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),(min),(max),(  xx
xx

ffKenc
KK 

                                       (1)  

 
Cela étant, le défaut du compact K est donné par 
 

),(min)( 


KencKdef                                                   (2) 

 
L’existence de ce minimum est évidente dans le cas où les paramètres varient sur un ensemble 
compact (rectitude, planéité). Dans les cas de la circularité et de la cylindricité, a et b peuvent 
varier de -∞ à +∞, si bien qu’a priori, on peut seulement parler de la meilleure borne 

).,(inf 


Kenc  Le fait que cette borne est atteinte demande alors une démonstration spéciale, 

dont le principe général consiste à montrer que la borne inférieure hors d’une boule donnée 
est supérieure à la borne cherchée, ce qui limite la recherche à un compact et, ipso facto, 
garantit l’existence d’un minimum.  
 
 1.3 – Unicité 
 
 L’unicité du minimum n’est malheureusement pas toujours garantie. Ainsi, en 
rectitude et planéité, il est assez aisé de trouver des cas où le même minimum est atteint pour 
deux valeurs différentes du jeu de paramètres. Cependant, il s’agit toujours de cas très 
particuliers, impliquant certaines symétries que l’on ne rencontre guère en pratique. 
 
 
 1.4 – Formulation en termes d’écarts 
 
 Le problème de la détermination des défauts admet une seconde formulation 
équivalente. Introduisons une variable supplémentaire et définissons l’écart par 
 

  ),(),;( xx fe                                                    (3) 
 

et appelons écart maximum sur K la grandeur 
 

  ,;max),;( x
x

eKe
K

M


                                              (4) 

 
Montrons que 
 

),;(min2);( 


KeKenc M                                           (5) 

 
En effet, ),;( KeM  est le maximum de la valeur absolue de l’écart sur K. C’est donc soit le 
maximum de l’écart, soit son minimum changé de signe : 
 





 


),;(min),,;(maxmax),;(  xx

xx
eeKe

KK
M  

 
Tenant compte de la formule évidente 
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on a encore 
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Le deuxième terme de cette expression est le seul à encore contenir ρ. Il est visiblement 
toujours non négatif, et atteint son minimum, zéro en l’occurrence, pour 
 





 


);(min);(max

2

1  xx
xx

ff
KK

                                         (6) 

 
La valeur minimale de l’écart est donc 
 

);(
2

1
);(min);(max

2

1
),;(min 


KencffKe

KK
M 



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
xx

xx
 

 
comme annoncé. 
 
 Cette propriété permet de donner une nouvelle définition du défaut : 
 

),;(min2)(
,




KeKdef M                                                (7) 

 
Sous cette forme, la détermination du défaut apparaît comme la recherche de la surface 
d’équation 
 

 );(xf  
 

dont l’écart maximum à un point de K est minimum. C’est un problème de meilleure 
approximation uniforme, très voisin de l’approximation des fonctions au sens de Tchébycheff 
[1, 2].  
 
 

 2. – Calcul approché des défauts à partir des moindres carrés 
 
 L’approximation uniforme étant difficile à traiter, de nombreux praticiens se 
contentent de l’approche grossière consistant à minimiser  
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),;(où            

2/1
2

2 ii
i

i eee xe 









                                    (8) 

 
ce qui permet de déterminer une valeur ),( 22  des paramètres, à partir de laquelle on peut 
obtenir une idée du défaut, à savoir, 
 

),,(max2)( 22 i
i

eKdef x                                                  (9) 

 
Cette valeur est évidemment en excès, puisque l’on n’a pas cherché le minimum défini en (7). 
L’expérience montre que, dans certains cas, cet excès peut être important et surtout, que les 
paramètres λ peuvent être grandement en erreur. 
 
 

 3. Méthodes géométriques de calcul des défauts 
 
 La théorie des défauts de rectitude, planéité et circularité nous a permis, dans les 
chapitres précédents, de définir des méthodes directes de calcul du défaut. Par méthode 
directe, on entend une méthode donnant le résultat en un nombre fini d’opérations. Cela ne 
signifie cependant pas que ces méthodes sont les meilleures, car fini n’est pas synonyme de 
petit. En particulier, la méthode des quatre points en circularité a une complexité O(n4) où n 
est le nombre de points de mesure, ce qui en fait une méthode fort lente en pratique.  
 
 En réalité, nous avons effectivement développé ces méthodes directes, mais elles ont 
seulement servi de référence sur des problèmes servant de tests pour d’autres méthodes. 
 
 

 4. Calcul des défauts par la méthode du simplexe de Nelder 
et Mead 
 
 Il semble plus élémentaire et plus général de chercher à minimiser directement l’écart 
maximal par une procédure numérique. Malheureusement, le minimum de cette fonction est 
en forme de cône, c’est-à-dire que si ),( 00  est le point minimal, on a une relation de la 

forme 
 

  0,),(),(
2/1

22
0000 





   MM ee  

 
Du reste, la fonction eM est continue, mais pas continûment dérivable, ni, a fortiori, de classe 
C2. Des représentations graphiques mettent bien en évidence l’existence de thalwegs (fonds de 
vallées). Dans ces conditions, les méthodes classiques de minimisation, gradient, gradient 
conjugué ou Newton-Raphson ne s’appliquent pas. 
 
 Pauly [4] a suggéré d’utiliser la méthode du simplexe de Nelder et Mead [3] qui a 
l’avantage de n’utiliser que les valeurs de la fonction elle-même. Cette méthode est de mise 
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en oeuvre aisée dans la mesure où l’on peut facilement se procurer les routines 
correspondantes. Malheureusement, l’expérience a montré que le choix du simplexe de départ 
est d’une importance cruciale,  ce qui rend la méthode délicate et, finalement, peu sûre. 
 
 

 5. La méthode des normes d’ordre p 
 
 5.1 – Principe 
 
 La recherche du défaut consiste à minimiser l’écart maximal, mais cette fonction est 
malheureusement peu régulière. On peut songer à la remplacer par une fonction voisine, mais 
plus régulière. Dans cet ordre d’idées, la méthode des moindres carrés consiste à remplacer 
l’écart maximal par la norme d’ordre 2 
 

2/1
2

2 




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



 

i
iee  

 
On atteint ainsi l’objectif de régularité mais, malheureusement, cette norme est trop peu 
voisine de l’écart maximal. Mais on peut aussi imaginer de minimiser une norme d’ordre p, à 
savoir 
 

p

i

p
ip e

/1











 e                                                    (10) 

 
car on sait (voir chapitre consacré à ces normes) qu’elles convergent pour p tendant vers 
l’infini vers l’écart maximal. Cette convergence se fait en décroissant. Du reste, les moyennes 
d’ordre p, définies par 
 

p

i

p
ip e

n

/1
1






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



 e  

 
convergent également vers l’écart maximal, mais en croissant, ce qui permet, pour tout p, 
d’obtenir un encadrement : 
 

pMp e ee   

 
Telle est l’idée de base de la méthode des normes d’ordre p : on remplace eM par la norme 
d’ordre p, avec p suffisamment grand. qui est une fonction régulière à laquelle on peut 
appliquer la procédure de Newton-Raphson. 
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 5.2 – Convergence du minimum de la norme d’ordre p vers le défaut 
 
 Cependant, ce n’est pas parce qu’une suite de fonctions tend vers une fonction limite 
que la suite des minima converge. Ce point demande à être démontré. Appelons μ l’ensemble 
des paramètres (λ, ρ). Quel que soit μ, on a pour tout p 
 

pMedef )()(
2

1  e  

 
Ceci étant vrai pour tout μ, on a encore 
 

p
def )(inf

2

1 


e  

 
Par ailleurs, quel que soit μ, on a aussi la relation générale 
 

p
Mp

ne /1).()(  e  

 
ce qui entraîne évidemment 
 

p
Mp ne /1).()(inf 


e  

 
et ceci étant vrai pour tout μ, on a encore 
 

pp
Mp ndefne /1/1 .

2

1
).(inf)(inf  


e  

 
Finalement, on a donc  
 

p
p ndefdef /1.

2

1
)(inf

2

1
 


e                                            (11) 

 
ce qui montre que la valeur du minimum de la norme d’ordre p converge, pour p croissant, 
vers la moitié du défaut. 
 
 
 5.3 – Convergence du point extrémal 
 
 Soit μ0p le point où la norme d’ordre p atteint son minimum, et soit μ0 le point minimal 
de eM . Peut-on dire que 00  p  lorsque p croît ? La réponse est affirmative sous certaines 

conditions. Supposons donc que 
 
 ● eM(μ) admet un minimum en μ0 ; 
 
 ● Dans une boule fermée  de rayon R de l’espace des paramètres, centrée en μ0, la 
condition de minimum peut être précisée comme suit : 
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r
MM ee 00 )()(                                                 (12) 

 
avec α > 0 et r > 0. 
 
 Dans ces conditions, en μ0 , on a 
 

pp
Mp ndefne /1/1

00 .
2

1
).()(  e  

 
A une distance R de ce point, on a par (12) 
 

r
Mp Rdefe  

2

1
)()(e  

 
Dès lors, dès que 
 

def

R
nRdefndef

r
prp

2

1
1         d-à-c        

2

1
.

2

1 /1/1    

 
la norme d’ordre p prend en μ0 une valeur inférieure à ses valeurs sur la frontière de la boule, 
ce qui implique qu’elle admet un minimum dans cette boule. Soit μ0p le point minimal 
correspondant. On a 
 

  defdefe
pppM

r
p 2

1
)(

2

1
0000   e  

 

Mais 
pp )( 0e  est le minimum de la norme d’ordre p des écarts qui, par (11) vérifie 

 
p

p ndef /1.
2

1
)(inf 


e  

 
Donc on a  
 

  defn pr
p 2

1
.1/1

00    

 
ce qui implique que 00  p . 

 
 En pratique, l’exposant r est égal à l’unité, si bien que le point minimal converge 
comme (n1/p

 – 1), de même que le défaut approché.  
 
 On constate du reste qu’il faut en pratique choisir p très grand. Nous travaillons 
quotidiennement avec p = 106, ce qui donne une erreur relative inférieure à 10-5 tant que 

.  22025n
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 5.4 – Méthode de Newton – Raphson pour minimiser la norme 
d’ordre p.  
 
 Soit à minimiser la norme d’ordre p ou, ce qui revient au même, la fonction 
 


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p
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Minimiser F, c’est annuler son gradient dont les composantes sont 
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A partir d’un point μ donné, on écrit que 
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ce qui permet de calculer l’incrément de μ par le système linéaire 
 

gK   
 

où K est la matrice dont les composantes sont données par 
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Pour p très grand, le second terme est négligeable face au premier et peut être omis. Dans bien 
des cas, d’ailleurs, on peut l’omettre même pour des valeurs petites de p, ce qui donne une 
méthode de Newton-Raphson modifiée. Mais il existe des problèmes (rectitude dans l’espace 
et plus petit cercle contenant les points de mesure, notamment), où il est nécessaire de 
conserver le second terme pour les petites valeurs de p sous peine de divergence. 
 
 
 5.5 – Problèmes liés à la représentation des nombres sur ordinateur 
 
 Pour éviter tout problème de dépassement de capacité des exposants (over- ou 
underflow), il convient d’écrire à chaque itération 
 


*

)(
p

M

i
M e

e
eF   
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le signe * indiquant que l’on supprime tous les termes tels que 
 

p

M

i

e

e /10010  

 
par exemple.  
 
 
 5.6 – Stratégie de calcul 
 
 Le calcul direct avec la norme d’ordre p, p élevé, est impraticable car la fonction à 
minimiser est d’autant plus tourmentée que p est plus grand, ce qui rend la convergence de la 
méthode de Newton-Raphson problématique si le point de départ n’est pas bien choisi. Au 
lieu de cela, on peut imaginer le processus suivant. Soit q > 1.  On commence par chercher le 
minimum pour p = 2, puis on prend le résultat comme point de départ avec p = 2q. La 
solution obtenue sert de point de départ avec p = 2q2 et ainsi de suite.  
 
 L’expérience montre que dans la plupart des cas, on peut, au lieu de travailler avec un 
exposant donné jusqu’à convergence, on peut se limiter à une seule itération pour chaque p et 

qu’une bonne valeur de la raison de progression de p est 2q . Ainsi conçu, et avec une 
valeur finale p = 106, l’algorithme converge en une quarantaine d’itérations. On notera que le 
nombre de calculs à chaque itération est strictement proportionnel au nombre de points n. 
Nous sommes donc en présence d’un algorithme de complexité O(n), ce qui est remarquable. 
 
 Cependant, il peut arriver, bien que ce soit rare, que le processus diverge à un certain 
moment. Il est donc nécessaire d’assortir notre stratégie d’un contrôle de divergence. 
 
 
 5.7 – Contrôle de divergence 
 
 Le principe de notre contrôle de divergence est fondé sur l’inégalité de Jensen, qui 
revient à dire que pour un même jeu d’écarts e, si p > q, on a qp ee  . Cela étant, si le 

processus itératif améliore la solution, les normes successives ne peuvent que décroître. On 
calcule donc à chaque itération la norme d’ordre p de l’écart, et on la compare à la plus petite 
des normes obtenues jusque là. Si la nouvelle norme d’ordre p lui est supérieure, on en déduit 
qu’une divergence s’amorce. On peut alors stopper la progression de p jusqu’à être 
redescendu en dessous de la plus petite valeur obtenue et alors, reprendre la croissance de p. 
Dans les quelques cas difficiles où les choses ne s’arrangent pas après un nombre donné 
d’itérations, on peut recommencer le processus avec une raison q plus faible, ce qui donnera 
un peu plus d’itérations. 
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 6. Influence des erreurs de mesure sur le calcul des défauts 
de forme 
 
 6.1 – Introduction 
 
 Au-delà du calcul des défauts de forme, il est nécessaire de s’enquérir de leur 
sensibilité aux erreurs de mesure. Partant toujours de l’idée de mesures tridimensionnelles, 
nous admettrons que les valeurs xi, yi, zi mesurées ou calculées en chaque point sont entachées 
d’imprécisions . La question qui se pose est de déterminer une borne supérieure, 

aussi réaliste que possible, de l’influence de ces imprécisions sur la mesure de l’erreur de 
forme.  

iii zyx  ,,

 
  
 6.2 – Formulation du problème 
 
 Pour aborder ce problème, le plus simple est de partir des hauteurs fi(λ) des points 
mesurés. Il est clair que la valeur d’encadrement de l’ensemble K des points de mesure s’écrit 
alors 
 

)(inf)(sup);(  i
i

i
i

ffKenc   

 
Rappelons que le défaut n’est autre que la valeur minimale de cette fonction d’encadrement 
lorsque l’on fait varier les paramètres : 
 

);(inf)( 


KencKdef   

 
Une perturbation des coordonnées conduit aux nouvelles hauteurs 
 

);,,()(  iiiiiii zzyyxxff   

 
et nous admettrons, comme hypothèse de base, que la différence 
 

  )()(  iii fff    

 
vérifie une inégalité du type 
 

  )(if  

 
uniformément par rapport à λ . Dans la pratique, il restera évidemment à examiner quand cette 
inégalité a lieu pour les défauts de forme courants, ce que nous ferons § 6.6.  
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 6.3 – Majoration de l’imprécision des enveloppes supérieures et 
inférieures 
 
 Supposons un instant qu’il n’y ait que deux points. Dans ce cas, 
 

    ),sup(),sup(,sup),sup( 2121221121 ffffffffff  
 

En permutant les rôles des fi et des fi*, on trouve de même 
 

  ),sup(),sup( *
2121 ffff  

 
si bien que  
 

 ),sup(),sup( 2121 ffff  

 
Un raisonnement analogue montre que  
 

 ),inf( 21 ff  

 
Dans le cas où il y a n points, ces  résultats subsistent par récurrence, puisque 
 

  nnn fffff ,...,,supsup)....,,sup( 111   

 
et de même pour les bornes inférieures. On a donc 
 






















i
i

i
i

i
i

i
i

ff

ff

infinf

supsup
 

 
 

 6.4 – Majoration de l’imprécision de la valeur d’encadrement 
 
 La valeur d’encadrement perturbée étant donnée par 
 

)(inf)(sup);(*    i
i

i
i

ffKenc  

 
on a visiblement 
 

 12

73







2infinfsupsup

infsupinfsup);();(*


























i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

ffff

ffffKencKenc

 

 
 

 6.5 – Majoration de l’imprécision du défaut 
 
 Le défaut est, comme on sait, le minimum de la valeur d’encadrement quand on fait 
varier les paramètres, 
 

);(inf)( 


KencKdef   

 
Sa valeur perturbée est 
 

);(*inf)(* 


KencKdef   

 
Or, nous savons que pour tout λ, on a  
 




2)(2);(inf2);();(*  KdefKencKencKenc  

 
Le dernier membre étant indépendant de λ, on a donc 
 




2)();(*inf)(*  KdefKencKdef  

 
A l’inverse, on a pour tout λ 
 




2)(*2);(*inf2);(*);(  KdefKencKencKenc  

 
ce qui permet, par le même raisonnement, de montrer que 
 

2)(*)(  KdefKdef  
 

Finalement, on peut donc affirmer que 
 

2)()(*  KdefKdef  

 
C’est le résultat fondamental : la perturbation du défaut de forme n’excède pas le double de la 
perturbation des hauteurs. 
 
  
  
 

 13

74 CHAPITRE 4. DÉTERMINATION D'UN DÉFAUT DE FORME



 6.6 – Application aux défauts de forme les plus courants 
 
 Voyons à présent ce que signifie ce résultat dans les cas de rectitude, planéité, 
circularité et cylindricité. Nous supposerons dans chaque cas que les coordonnées subissent 
une perturbation telle qu’en chaque point, 
 

     22
ii yx  

 
pour les problèmes plans ou 
 

       222
iii zyx  

 
pour les problèmes spatiaux. 
 
 
 6.6.1 – Rectitude 
 
 En rectitude, les hauteurs s’écrivent 
 

 sincos)( iii yxf   

 
et leur perturbation, 
 

 sincos)( iii yxf   

 
Il résulte directement de l’inégalité du produit scalaire que 
 

        22
iii yxf  

 
ce qui revient à dire ε = η. 
 
 
 6.6.2- Planéité 
 
 Dans ce cas, 
 

 sinsincossincos),( iiii zyxf   

 
ce qui donne 
 

 sinsincossincos),( iiii zyxf   

 
Ici encore, l’inégalité du produit scalaire conduit à 
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          )sin(cossincos, 2222222
iiii zyxf  

soit encore ε = η . 
 
 
 6.6.3 – Circularité 
 
 Les hauteurs sont ici les rayons, 
 

   22),( byaxbaf iii   

 
Il ne s’agit pas, ici, d’une expression linéaire en termes des coordonnées. La partie principale 
de la variation des hauteurs est donnée par  
 

i
i

i
i

i

i
i y

baf

by
x

baf

ax
baf 







),(),(
),(  

 
et l’inégalité du produit scalaire permet encore une fois d’écrire 
 

 ),( bafi  

 
ce qui revient à dire   . 
 
 
 6.6.4 - Cylindricité 
  
 Nous avons vu qu’en cylindricité, on commence par projeter les coordonnées suivant 
la loi 
 

 
  



cossin

sincoscoscossin,

iipi

iiipi

zyy

zyxx




 

 
La hauteur du point i est alors donnée par  
 

   22 )(),(),,,( byaxbaf pipii    

 
Ici encore, il s’agit d’une expression non linéaire en termes des coordonnées et il nous faudra 
nous contenter de la partie principale de la perturbation de hauteur, qui vaut 
 

       
),,,(

)(,),(
),,,(





baf

ybyxax
baf

i

pipipipi
i


  

 
avec 
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



cossin)(

sincoscoscossin),(

iipi

iiipi

zyy

zyxx




 

 
Par l’inégalité du produit scalaire, on a 
 

   22 )(),(),,,(  pipii yxbaf   

 
Or, 
 

   





cossin)(

sincos),( 22

iipi

iiipi

zyy

zyxx




 

 
ce qui entraîne 
 

              

2

222222222

)cossinsin(cos2

sincossincos)(,













ii

iiipipi

zy

zyxyx

 

 
 
Ainsi, au premier ordre,   . 
 
  
 6.6.5 – Conclusions 
 
 Dans les quatre cas considérés, l’incertitude sur le défaut n’excède pas le double de 
l’incertitude sur les mesures, exprimé par la norme du vecteur erreur. Cette conclusion est 
stricte en rectitude et en planéité. Elle ne vaut qu’au premier ordre dans les deux autres cas. 
 
 
 6.7 – Incertitude sur la valeur des paramètres λ 
 
 Pour répondre à cette question, il est nécessaire de supposer, comme dans le § 5.3, que 
la valeur d’encadrement admet un minimum bien prononcé, c’est-à-dire que si enc(K ;λ) est 
minimale en λ0, on a, dans une boule fermée de rayon R de l’espace des paramètres, centrée 
sur le minimum, 
 

0,0  avec    );();( 00  rKencKenc r   

 
Dans ces conditions, on a d’une part 
 

 2);();(* 00  KencKenc  

 
et d’autre part, en tout point λ situé à une distance R de λ0,  
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 2);(2);();(* 0  rRKencKencKenc  

 

ce qui implique que pour 
4

rR  , c’est-à-dire si la perturbation des coordonnées est 

suffisamment petite, toutes les valeurs de enc* à la frontière de la boule sont supérieures à 
);(* 0Kenc . La valeur d’encadrement perturbée );(* Kenc  admet alors un minimum dans 

cette boule, en un certain point .  
0

 
 Ceci posé, on peut écrire 
 

);();(*);(*);();();( 00000000  KencKencKencKencKencKenc
r

 

 
 

Or, nous savons que (§6.4)  
 

 2);(*);( 00   KencKenc  

 
et que (§6.5) 
 




2)()(*);(inf);(inf);();(* 00  KdefKdefKencKencKencKenc  

 
 
Il en découle 
 

r/1

0
*
0

4








  

 
 En pratique, les fonctions d’encadrement on un minimum en forme de cône, c’est-à-
dire que r = 1. On peut du reste évaluer sommairement α par  
 





 






);();(
inflim 00

0

KencKenc
 

 
c’est-à-dire la plus petite valeur du gradient de l’encadrement en λ0. 
 
 
  
 
 
 
 
 
 

 17

78 CHAPITRE 4. DÉTERMINATION D'UN DÉFAUT DE FORME



 18

7. Bibliographie 
 
1. G. Hacques – Algorithmique numérique 
 Colin, Paris, 1971 
 
2. I.S. Berezin, N.P. Zhidov – Computing methods  
 Vol. 1,  Pergamon Press, Oxford, 1965 
 
3. J.A. Nelder, R. Mead – A simplex method for function minimization 
 Computer Journal, vol. 7, pp. 308-313, 1965 
 
4. P. Pauly – Établissement d’algorithmes de calcul des erreurs de forme et de position  
 Mémoire de fin d’études, Université de Liège, 1996 
 
5. A. Ballu, P. Bourdet, L. Mathieu – The processing of measured points in coordinate 
 metrology in agreement with the definition of standardized specifications 
 CIRP Annals, vol. 40/1, pp. 491-494, 1991 
 
6. G. Goch – Efficient multipurpose algorithm for approximation and alignment problems in 
 coordinate measurement techniques 
 CIRP Annals, vol. 39/1, pp. 553-556, 1990 
 
7. L.P. Lebedev, I.I. Vorovich, G.M.L. Galdwell – Functional analysis 
 Kluwer Academic Publishers, Dordrecht, Boston London, 1996 
 ISBN 0-7923-3849-9 
 
8. J.D. Meadows – Geometric dimensioning and tolerancing 
 Marcel Dekker inc., New York, Basel, Hong Kong, 1995 
 ISBN 0-8247-9309-9 
 
9. J.F. Debongnie, L. Masset – Sur l’évaluation des défauts de forme à partir de mesures 
 tridimensionnelles 
 European Journal of Mechanical and Environmental Engineering, vol. 43 n°1,  
 pp. 13-21, 1998 
  
 
 
 
 

 
 
 

 
  
 

79


