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6 CHAPITRE 1. DEFAUTS D’USINAGE EN CHARIOTAGE

1. INTROUCTION

“

Le présent rapport présente une approche analytique permettant
de prévoir le défaut de cylindricité dt aux efforts d’ usinage
apparaissant lors du chariotage d’un barreau, pour les trois
montages classiques, & savoir, le montage en 1l’air, le montage
entre pointes et le montage mixte.

Le principe de la méthode consiste 4 déterminer le déplacement
radial de la piéce au droit de 1’outil en cours d’usinage. Ce
déplacement se retrouvera, changé de signe, comme défaut
d’usinage.

Pour obtenir une solution analytique, il a fallu idéaliser
quelque peu le probléme. Nos hypothéses sont:

a) Le barreau est assimilé & une poutre et les déformations
dues a 1’effort tranchant sont négligées.

b) Tout effet de trilobe dii au mandrin éventuel est négligé.

c) Est également négligé, tbut moment de flexion parasite 1lié
3 1’entrainement par toc dans le cas du montage entre pointes.

Contrairement a la tradition [1], nous envisageons non
seulement 1’effet de la force passive, mais également celui de la
force d’avance, qui crée un moment proportionnel au diamétre de la
piece.

Les calculs font librement appel aux résultats classiques de
la résistance des matériaux, pour lesquels nous nous permettons de
renvoyer le lecteur a la littérature [21.

Les résultats sont systématisés par une mise hors dimensions
et 1’adoption d’une force équivalente. Enfin, 1’effet de
1’ approximation dite usinage léger, consistant a négliger Ile
supplément de souplesse lié au fait que de la matiere a éteé
enlevée, est discuté & la fin du rapport.

2. MONTAGE EN L’AIR

2.1 - Dans le cas d’un montage en 1’air, et pour un usinage se
faisant dans le sens normal, c’est a dire en partant de
1’extrémité du barreau, la partie usinée ne joue aucun réle sur
la fléche (fig. 1). En d’autres termes, si le diamétre initial est

d1 et le diamétre final, dz, le rapport

B = d,/d,

est sans effet sur le défaut.

Lorsque 1’outil se trouve & une distance X du mandrin, la



force passive Fp induit une fléche

F x3

. &
wp = =T (1)

.

ot I est 1’inertie calculée & partir du diamétre dl'

La force d’avance Ff induit, quant & elle, un moment

4
Me = Fe 3 (2)

ot d est le diamétre d’application de cette force (généralement,

d2 <d< d1 ). A ce moment correspond une fléche

w. =F % —e (3)

N
=

_ ¢ 3 3 d .2
W= Fpr LFp & ~gFrz & ] | (4)
Introduisons le rapport
aod gl )
T4 F_2
P

exprimant la direction de la charge. Il vient

F_ 2

_p 3 _ 2
W, = 5T €3 A£&7) (6)

Le défaut de cylindricité de mesure par

Défaut = max wt(E) - min wt(i) (7)
£ e [0,1] £ € [0,1]

Tout revient donc a étudier la variation de la fonction

5(x) = £ - A £ (8)
Observons d’abord que cette fonction admet un minimum pour
= =2
€=8&yn=34

pour autant que le dernier membre soit inférieur a 1l’unité, ce qui
a lieu pour A < 3/2. Dans ces conditions,

Par ailleurs, la valeur de & a 1l’extrémité de la barre est

2




8 CHAPITRE 1. DEFAUTS D’USINAGE EN CHARIOTAGE

8(1) =1 - A

Trois cas peuvent se présenter:

a) 8(1) > 0, ce qui a lieu pour A < 1.

Alors,
amax =8(1) =1~ A
__4 3
6min 27 A
et
3
F £
: =P - 4 3
Défaut 36T (1 A+ 57 A7)
b) 8(1) < O mais & ., <1, soit 1< A< 1,5
min
Dans ce cas,
amax =8(0) =0
__ 4 3
Syin = T 27 A
et
3
F £
P _ P gﬂ 3
Défaut = 3T 27 A
c) gmin > 1, soit A> 1,5
Alors,
amax = 8(0) =0
8. =8(1)=1-A
min
et
F o3
Défaut = —bo (A - 1)

3EI

2.2 - Notion de charge équivalente

Nous appellerons charge équivalente Féq

fictive qui donne le méme défaut que

la charge

(9)

(10)

(11)

la charge radiale

réellement



appliquée. 11 est facile de vérifier qu’une charge radiale Fé

W

conduit au défaut
Feq 23
Defaut = —é—E-i-“

I1 en résulte que

F, =3EL  paraut (12)
éq 23

En remplagant dans cette relation la valeur du défaut calculée par
(9), (10) ou (11), on obtient les expressions suivantes de la
charge équivalente:

_ _ 4 .3
) A< 1 i Feq = FpUl A+ 5= A7) (13)
_ 4 3
) 1 A= 1,5 .uivuinannnnnn. Faq = Fpr 27 A (14)
C) A > 1,5 it F, =F_(A-1) (15)
é¢qg P

On trouvera en figure 2 un diagramme de Féq/Fp en fonction du

paramétre de direction de la charge A.

3. MONTAGE ENTRE POINTES

3.1 - Etude approchée dans le cas ou d2 2 d1

Nous présenterons d’abord une étude approchée par une méthode
de Rayleigh-Ritz, dans le cas idéal ou le coefficient d’ enlévement
de matiére

B = dz/d1 | (16)

est égal a 1’unité. L’intérét de cette étude préliminaire, au
demeurant trés simple, est de donner une indication sur la notion
de charge équivalente.

L’approximation considérée se fonde sur 1’hypothése que la
déformée peut toujours étre convenablement approchée par une
sinusoide:

X

w(x) = A sin T (17)

A étant un paramétre d’amplitude & déterminer. L’énergie de

déformation vaut alors

12 4

U = % J EI w"2 dx = -
0 L 2L

A (18)

N =

i
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Lorsque 1’outil se trouve & 1’abscisse Xg il impose & la barre

une force passive Fp dont 1'énergie potentielle est

X

_ . ™o
Pp = - Fp w(xO) = Fp A sin 7

et une force d’avance Ff dont 1’énergie potentielle vaut

X
_ d , _ dn 0
Pf = Ff z w (XO) = Ff z I A cos —E~

Au total, 1’énergie potentielle des charges vaut donc

nXD T d ™
P = Pp + Pf = - A (Fp sin 4 - 5 Ff 7 °os —z—) (19)

On détermine la valeur de A en minimisant 1’énerfie potentielle
totale: :

d -
aA (U+P)=20

ce qui méne au résultat suivant:

3 X X
A= gzg— (F sin ~79 - % cos —@9) (20)
n EI p

Au droit de 1’outil, la fléche vaut donc

ffg = %ﬁf_ (F Sinz ffg - E F é sin ffg c fig)
Z z T "z g7 ST 08

w(x.) = A sin
0 el P

En faisant usage des formules trigonométriques

(1 - cos 2A)

N =

sin2 A=

gin A cos A = % sin 2A

on peut transformer le résultat précédent en

3 2nx 21X
£ 0 14 d 0
wix.) = (F_ - F_cos - 5 F. 5 sin —— )
0 n4EI P p I 2 £ ]
3 2nx
_ 2 _ J 2 T d,2 . 0 _
= ;EE; [Fp Fp + (z Ff z) sin ( ) y) 1] (21)

ol Y est une phase qui ne nous intéresse pas directement. Il est
clair que le défaut est donné par
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203 J 2 n
Défaut = max w(x.) - min x(x.) = =—— AF_ + (5 F_. 7)7 (22)
0 0 4 p 2 £
X9 Xq n EI

Dans le cas ou Ff = 0, on obtient

oF 88 F 8
P P

H4EI 43,7E1

Défaut =

ce qui constitue une bonne approximation (48,7 au lieu de 48 au
dénominateur). Dans le cas général, on se raméne a

Feq 3
Défaut = m (23)
en posant
_ 2 T d,2 172
Féq = [ Fp + (z Ff 'z) 1 (24)

On constate donc 1’existence d’une charge équivalente approchée
trés simple. Ce résultat nous servira de guide dans 1’ étude exacte
qui suit. ‘

3.2 - Effet de la force passive

Revenant au probléme exact, avec B # 1, la situation est
schématisée en figure 3. Si £ est la longueur entre pointes, les
réactions valent

R, =F

1 p , R, =F

4
L 2 P

2
z

La manieére la plus simple de résoudre le probléme consiste a
calculer d’abord les déplacements en A et B sous 1l'effet des
réactions, en supposant provisoirement la piece encastrée au droit
de 1’outil; puis & soustraire le déplacement rigide qui interpole
ces déplacements. On a

R, £ R, £
a) Encastré en C : w¥ = Lt w¥ = 2 2
1 3EI 2 3EI
1 2
b) Déplacement rigide : w** = w? (1 - % + w¥ %
c) Déplacement résultant: w = w* + w*¥*
L L
2 1
= ¥ o pkE = gk S
o= ¥c T Yc 17 Y21

car w¥ = 0 . On a donc
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3,2 3,2
o = R13182 Rzgzel R N N AL S
cTTELT TELE T ey 2

Nous poserons, pour nous ramener aux parametres fondamentaux,

= ) = gt -
11 =1 ; I2 =RBI (B dz/dl) (25)
21 =& L ; 82 =(1-¢§)¢ (z6)
Dés lors, en notant Wp le déplacement sous 1’outil di a la force
passive, on obtient
F 2 1-¢ :
Wp (§) = 3EI E (1~€) (g + —*Z] (27)

B

On vérifie aisément que pour B = 1, ce déplacement a un maximum en
£ = 1/2 ; la valeur de ce maximum est

Fo3
p

Ypnax|g=1 = Z8ET (28)

3.3 ~ Effet de la force d’avance

La force d’avance Ff induit (fig. 4) un moment concentré

Mf = Ff d/2 (29)

ou d représente le diamétre auquel s’applique ladite force. Les
réactions correspondantes sont

= Mf/z ; R, = Mf/ﬂ

Ry 2

Par la méme méthode que pour la force passive, on obtient

3
. Rlelﬂz _ Rzﬂzﬂl ) M 2 E ) Mfﬂlﬂz
C 3EIIE 3EI E 3E11£ 3E1222

En tenant compte des définitions (10) et (11),

Mfﬂ (1—5)2]
4

Vo = 3T £(1- €)[E (30)

Pour B = 0, ce déplacement a un minimum et un maximum situés aux
points
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+

IS

E:

N =

La valeur absolue commune de ces extrema est

2
. . _ Ffdﬂ
fmax fmin 62,35
ce qui signifie que pour B = 0 et une force passive nulle, le
défaut est donné par
3 3
_ d ¢ _ d ¢
Yemax ~ Yfmin ~ 'f € 31,18ET 1,539 F¢ 7 -28ET (31)

3.4 - Charge équivalente

Nous définirons une charge de référence Féq de la forme

_ ) d.2
Faq = J(AFP) + (BFy)

choisie de telle sorte que dans le cas 8 = 1, on ait, aussi bien
pour Fp= 0 que pour Ff =0,

F, I
Défaut d

wmax - wmin = 48EI'

En vertu des résultats précédents, cette double condition implique
A=1 ; B = 1,539

Notre charge équivalente sera donc

d.2

_ 2
F. = JFP + (1,539 F, 9) (32)

eq
On constate qu’elle différe peu de 1’expression (24), puisque

n/2 = 1,571...
Dans le cas général, le défaut est donné par

) ) (33)

Défaut = (w_ + w - (w_+w.) .
o) f 'max P f'min

Nous le rapporterons a la grandeur de référence

F, 03
s
48ET

ce qui conduit & la notion de défaut normalisé
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_ 48EI.Défaut |

A . (34)
F, 03
éq

Cette grandeur peut dépendre du coefficient d’enlévement de
matiére B et du coefficient de direction de la charge
d

1,5396 Ff 7

y = - (35)
éq

Pratiquement, on calcule le défaut en écrivant

A=max 8§ - min & (36)
avec

S = 6p + 6f (37)
et
5 =16 41 - o2 £2(1-6)2%1¢ + 15 (38)
P 34
5, = S __ g(1-£)[&° - a-e?, (39)
f  1,5396 34

Ces calculs ont été effectués numériquement pour y variant de 0 a
1 et pour quelques valeurs de B. Les résultats obtenus sont
consignés dans le tableau 1 et représentés en figure 5. On
constate que pour 8 = 1, le défaut ne dépend pratiquement pas de
y, a charge équivalente donnée. Cette propriété se détériore
lorsque B diminue. Néanmoins, on a toujours

AB, ¥) = A(B, 0) (40)
et on peut écrire sans grande erreur (2% pour B = 0,8)

1 1
AB, 0) = 5 (1 + ;Z) (41)

formule que 1’on obtient aisément en supposant que la forme du
déplacement ne varie pas. Une approximation un peu meilleure,
toujours pour le méme intervalle, est
A(B, 0) = 0,4704 + o,siss (41 bis)
B

On peut donc, pour se faire une premiere idée, utiliser la
formule-enveloppe

3
0,5258, ©éq ¢

4 48E1
B

A = (0,4704 +

(42)
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qui dispense de tout calcul supplémentaire si le second membre est
inférieur au défaut admissible. »

4. MONTAGE MIXTE

Le montage mixte, hyperstatique, est un peu plus lourd a
traiter que les précédents. Le choix le plus simple de 1’ inconnue
hyperstatique semble étre celui de la réaction & la contre-pointe.
La structure isostatique de référence est donc une poutre console.

4.1 - Effet de la force passive

Dans la structure isostatique de référence, on peut faire le
bilan suivant, en appelant w le déplacement sous la charge, ¢ la

rotation au méme point, et u le déplacement a 1’extrémité (voir
figure 6):

Fpﬂ?
Effet de Fp ...... wp = §§TI
A
o = p1
P ZEI1
Fp E? 8?22
et TE (T T

Nous adopterons immédiatement les notations définies en (25) et
(26), ce qui donne

3
F 2

D D

Wp = 3pT &
3

4 =B 2
P = 3EI
3
)

u, & 18 + 5 (1-6)]

3EI

Effet de la réaction d’extrémité R
Le trongon non encore usiné est soumis a 1’effort tranchant R
et un moment de flexion REZ (voir figure 7). On a donc

3
RE RE 3 3 2
y 2 _RL % L £ (;—g) ]

o P ——
R 3EI1 2EI1 3EI

3
1

10
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2

Re RL. L 2 2
= 1 2°1 _RL £ _
¢R - 2EI1 * EIl =B [ 3+ £(1-8) 1
Rﬂg
Up = Wg * Pgly * 3ET,
3 3 2 2 3
_RL” g L gu-g)  £(1-§) 2. (1-8)
= [+ S e S0t 4 £(10) o ]
RZB 3 2 2 3 3 1
= -jE—I- [E + 3€ (1’&) + 3&(1—5) + (1__5) - (1__€) (1- _E)]
B
3
- R¢ TP PO |
= g7 [1 - (1-8)7(1- =]

B

Condition de nullité du déplacement d’exirémité

F 23

3
L - _ P 2 < RE _ 3 _ 1
0=u-= up . Rl £7[g + 2(1 €)1 + 3ET {1 (1-&) (1 ;Z)]
ce qui donne
£21€ + S(1-8)]
R=-F 3 1 : (43)
Pri-a-e7a-=p
B
Valeur du déplacement au droit de 1’outil
3
F_2 3 3 2.
_ _ P 3  R{ £ £7(1-€)
WS Wp fWp = ompr £ gpp [ =5
3
F £ 3
2
soit, en tenant compte de la valeur (43) de la réaction,
sz3 i g'1e + J01-6)1°
W= e 1€ -
3EI 1 - a-9°0 - 3
B
Fpe3 5 £LE + 2(1-6)1°

3 1
1-0-8701 - =)
34

Dans le cas particulier ou B = 1, on peut écrire

11
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3EIw _ .3;, 3 1.2, _ 3 9 .4 3.5 1.6
P

La dérivée de cette expression est donnée par

Dérivée = 3&2— 9§3+ 15 g4- 3 gs = 52(3 - 98 + 15 gz_ 3 53)
2 2 2 2
Elle s’annule en £ = 0 ainsi qu’au seul zéro de la parentheése

contenu entre 0 et 1, que 1’on peut obtenir numériquement. On
trouve

EO = 0,5857864

En ce point, on obtient

3ETW(E,)
S = 0,0943725
F 2
p
soit
Fp£3
w(&y) = 151 9116ET (45)

4.2 - Effet de la force d’avance

%

Nous suivrons une démarche identique. La figure 8 montre la
mise en charge, avec M = F_d/2.

f
2
ML 2
-- L M2
Effet de M..... WM- éﬁ‘;— ZEIE
¢=—-ﬁ=—¥£€
M EI1 El
2 2
ML 2 ML
w =t dy b = - e (€7 ¢ £1-6)] = - B €01 - )
Effet de R : comme ci-dessus,
W, = Eﬁi [§E + 52(1—5)] = RE® (§E - E? = R gz(l - §)
R EI '3 2 ETI 2 6 2EI 3
3
w o= 2 - a-ea - I
B
Condition de nullité du déplacement d’extrémité
2 3
o _ M _ £ Re a3, 1

12
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ce qui donne

y Q-5
1"(1“‘&) (1"““4‘)
B
Valeur du déplacement au droit de 1’outil
2 3
_ _ M 2  RE L2 _&
W=y tup = - opr & topr £ (10 3)
&y - &
_ MZZ > 3£(1 E)(l §)
= BT -1 + 3 1 1 47)
1 - (1-§) (1-———5)
B
En explicitant la valeur de M, on obtient
Foal 3E(1 - %)(1 - %)
w=l*gf—'€ [-1 + 1 (48)

3 1
1-0-8)7"01 - =)
34

Dans le cas particulier ou B = 1, on peut vérifier sans peine
que ce déplacement a une variation

d 23
Wiax ~ Ymin = 2076 Fe 7 - To1,9116E1 (49)

4.3 - Force équivalente

Nous définirons la force équivalente de la méme fagon que dans
le cas du montage entre pointes, ce qui conduit a 1’expression

|2 d.2
Faq = ] Fg + (1,676 Fy ) (50)

Le paramétre de direction de la charge sera icl

[o}

L
vE (51)

éq

~ 1,676 Ff -

Ces définitions impliquent, par (45) et (49) que pour B = 1, la
variation du déplacement vaut

F, 23
W -w = d

max ~ Ymin = TOT.O11gEI PoWwr 7 =0et ¥ =1,

Dans le cas général, nous définirons le déplacement normalisé

13
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101,9116E1
=i

3 =8 + 8 . (52)
F, 23 pf
éq
avec
— £lE + gu—g)]z
s = 33,97 11 -7 & {1 - 3 — } (53)
p 1 - (1-6)711 - =)
B
, ka -Ha-H
8 =7 g76 . 25,48 €% {-1 + = — ! (54)
’ 1 - (1-€)(1 - —Z)
B
Le défaut normalisé, défini par
A=s -s5 . =10L,9IEEL " perout (55)
max min 3
F, £
éq

a été calculé numériquement pour un certain nombre de valeurd de ¥
et B. Les résultats sont consignés dans le tableau 2 et
représentés en figure 9.

On constate que pour B = 1, la charge équivalente représente
assez bien le défaut, avec un léger excés. Pour de plus petites
valeurs de B, le défaut normalisé est toujours minimal pour ¥y =
0,8. C’est d’ailleurs pour cette valeur que l’influence de B est

la plus faible. Pour B = 0,8, A est maximum lorsque ¥y = 0. Les
valeurs correspondantes répondent assez bien & 1’expression
A|_ = 0,6301 + 23702 (56)
¥=0 34

A nouveau, on peut se faire une premiére idée du défaut a 1’aide
de la formule enveloppe

3
0,3764, Feql

A = (0,6301 + 34 101, 9116ET (57)

5. USINAGE LOURD ET USINAGE LEGER

Dans les applications pratiques de calcul d’un défaut
d’usinage, on peut se demander s’il est nécessaire de tenir compte
de 1l’enlévement de matiére 1lors du calcul des raideurs.
Pour le cas qui nous concerne, 1l s’agit de savoir dans quelle
mesure on peut se contenter de 1’approximation B = 1. 51 la
réponse a cette question est affirmative, nous parlerons d’'usinage
léger; Dans le cas contraire, nous dirons qu’il est lourd.

Tout dépend évidemment de la précision que 1’on exige du

calcul du défaut. Partant de 1’idée qu’en métrologie courante, on
exige des calibres divers qu’ils aient une précision dix fois

14
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Y

meilleure que le défaut a mesurer, il nous semble légitime de
poser que 1’usinage sera réputé léger chaque fois que le défaut
calculé pour B = 1 différera du défaut effectif de moins de 10% .

a) Rappelons d’abord que dans le cas du tournage en 1’air,
1’ enlévement de matiére ne joue aucun réle.

b) Pour les deux autres montages, un examen rapide des figures
5 et 9 montre que la condition la plus sévere sera obtenue pour ¥
= 0. Dans ce cas, pour B = 1, le défaut normalisé vaut 1’unité;
pour les valeurs plus faibles de B, il est correctement représenté
par les formules-enveloppes

A = 0,4704 + 0,5258/34 ................ entre pointes
A =0,6301 + 0,3764/B%. . . i, montage mixte
En faisant le calcul avec le diamétre initial (B = 1), on a

exactement A = 1. La valeur effective excéde la précédente de 104
lorsque A = 1,1, soit pour

B 0,9560. ... .0ttt entre pointes

]

B 0,9460. ... it i e e montage mixte

On peut donc affirmer que 1’usinage sera certainement léger si B
excéde 0,95 environ, ce qui revient a dire que 1’engagement a
(profondeur de passe) vérifie

49 =d 1 -0,95

a = > = 5 d1 = 0,025 d1 (58)

Une autre maniére de faire consiste a faire le calcul comme si
la piéce avait uniformément le diamétre d2' Dans ce cas, pour y =

0, on obtient A = 1/64, valeur toujours approchée par exces. Elle
excéde la valeur effective de 10% lorsque

i
(=]
O
19)]
(=]
facy

B 1 3 entre pointes

B

i
o
O
9]
0
0

montage mixte,

soit & nouveau pour un engagement de 1’ordre de 2,5% du diametre.

15




21

BIBLIOGRAPHIE

[1] A. CAMPA, J. ROLLET -~ Technologie professionnellé pour les
mécaniciens — Tome I1I, Foucher, Paris, 1971

[2] Ch. MASSONNET, S. CESCOTTO - Mécanique des matériaux
Sciences et Lettres, Liege, 1980

16
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Défaut de cylindricité - montage entre pointes

Force équivalente: Fég = SQRT [Fp**2 + (1,5396*Ff*d/1)**2]

Paramétre de direction des forces: GAMMA = (1,5396*Ff*d/l)/Féqg

Paramétre d'enlévement de matiére: BETA = d(nouveau)/d(ancien)

VALEURS DE DELTA = 48*E*I*(wmax — wmin)/Fég/1**3

BETA

8.000E-01 8.500E-01 9.000E-01 9.500E-01 1.000E+00

GAMMA = e e e e e e e e e e e e e e S
0.000E+00 1.757E+00 1.475E+00 1.269E+00 1.115E+00 1.000E+00
1.000E-01 1.692E+00 1.435E+00 1.246E+00 1.106E+00 1.001E+00
2.000E-01 1.635E+00 1.399E+00 1.226E+00 1.099E+00 1.004E+00
3.000E-01 1.583E+00 1.367E+00 1.210E+00 1.093E+00 1.006E+00
4.000E-01 1.5378+00 - 1.339E+00 1.195E+00 1.089E+00 1.009E+00
5.000E-01 1.497E+00 1.315E+00 1.183E+00 1.084E+00 1.011E+00
6.000E-01 1.465E+00 1.296E+00 1.173E+00 1.081E+00 1.011E+00
7.000E-01 1.445E+00 1.285E+00 1.167E+00 1.078E+00 1.011E+00
8.000E-01 1.448E+00 1.287E+00 1.168E+00 1.077E+00 1.009E+00
9.000E-01 1.495E+00 1.315E+00 1.182E+00 1.082E+00 1.005E+00
1.000E+00 1.738E+00 1.466E+00 1.265E+00 1.115E+00 1.000E+00

TABLEAU 1
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Défaut de cylindricité - montage mixte

Force équivalente: Fég

SORT [Fp**2 + (1,676%Ff*d/1)**2]

Paramétre de direction de la force: GRMMA = (1,676*Ff*d/l)/Féq

Paramétre d'enlévement de matiére:

VALEURS DE DELTA = 101,9116*E*I*(wmax - wmin)/Fég/l**3

GAMMA
0.000E+00
1.000E-01
2.000E-01
3.000E-01
4.000E-01
5.000E-01
6.000E-01

7.000E-01

8.000E-01
9.000E-01
1.000E+00

BETA = d(nouveau)/d(ancien)

BETA
8.000E-01 8.500E-01 9.000E-01 9.500E-01 1.000E+00
1.543E+00 1.357E+00 1.210E+00 1.093E+00 1.000E+00
1.486E+00 1.318E+00 1.185E+00 1.081E+00 9.977E-01
1.421E+00 1.273E+00 1.156E+00 1.064E+00 9.921E-01
1.352E+00 1.224E+00 1.124E+00 1.046E+00 9.848E-01
1.280E+00 1.174E+00 1.091E+00 1.027E+00 9.766E-01
1.210E+00 1.126E+00 1.061E+00 1.009E+00 9.686E-01
1.147E+00 1.084E+00 1.034E+00 9.939E-01 9.616E-01
1.101E+00 1.054E+00 1.015E+00 9.834E-01 9.567E-01
1.085E+00 1.045E+00 1.011E+00 9.812E-01 9.557E-01
1.126E+00 1.075E+00 1.032E+00 9.941E-01 9.619E-01
1.396E+00 1.266E+00 1.160E+00 1.072E+00 1.000E+00

TABLEAU 2
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MONTAGE MIXTE
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INTRODUCTION

Ce rapport est né d’une volonté de comprendre des résultats
de mesures de cylindricité aprés tournage d’une piéce cylindrique
en montage mixte. En effet, ces résultats, montrant une forme ou
le rayon passait par un maximum et un minimum, a d’ abord provoqué
un certain scepticisme de notre part. Nous avons donc étudié le
probléme par voie analytique et, a notre grande surprise, Ile
modéle confirme exactement ce genre de comportement.

1. HYPOTHESES GENERALES

La présente étude est fondée sur les hypothéses suivantes:

H1 - Le mandrin ou la pointe fixe est parfaitement rigide et
réalise, selon le cas, un encastrement ou un appui simple parfait.

H2 - La contrepointe est assimilable & un ressort linéaire de
raideur k.

H3 - Le défaut résulte essentiellement de la force passive, qui
garde une valeur constante F. (En d’autres termes, l’effet de la
force d’avance est négligé.)

H4 - La variation temporelle de raideur due a 1’’nlévement de
matiére est négligée.

H5 - Le barreau tourné est assimilable & une poutre de Navier
(effet de 1’effort tranchant négligé).

2. CAS DU TOURNAGE ENTRE POINTES

Le probléme consiste,comme on le sait, a déterminer la fleche
en un point courant A lorsque la force est appliquée en ce point?
car c’est cette fléche que 1’on retrouve, changée de signe, comme
défaut. L’effet de la contre-pointe est d’apporter a 1’extrémité B
une réaction R = k Up-

Appelons £ la longueur de la barre, et notons &£ la distance
de la pointe fixe au point d’application de la force F. I1 est
évident que la réaction en B est

R=¢&F
Le déplacement en ce point est donc

R F
o T S

Le déplacement au point d’application de la charge F est alors de
la forme




33

ou Uy n’est autre que le déplacement élastique de la .méme barre

sur deux appuis idéaux, soit

, _Fe3

2 2
UA = —éﬁ‘ E (1“‘&)

Au total, on a donc

3
re3 2, .2 2F
u, =37 & (18 + & ¢
Fe 2

_ B 2
= 3BT €7 [(1-€)" + Bl

La figure 1 donne les courbes de la variable sans dimension

3EIu

3 pour différentes valeurs du parametre . On constate
Fe

effectivement 1’ apparition de maxima et minima paradoxaux.

3. MONTAGE MIXTE

On peut traiter le cas du montage mixte en superposant 1’effet
de la force F sur la piéce montée en 1’air & celui d’une réaction
provisoirement inconnue R et en exprimant qu’a 1’extrémité B, up =

R/k.

a) Effet de la force F seule

3 3
, _F L&
YA T TT3EL
, _F*¢
A= TIET
3 3
. . ., _F L 3. .2 o _FL 2.
u B = u + ¢ A(l £) L = ET [267+ 3€7(1-€)] = ZET £7(3~£)

b) Effet de la réaction R seule

M" =R £ (1-§)

2 2
. L
o =T € - 5
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3 3 3
. _RZ 2 &€, _RL 2.
wysgr & g ) mmEr £ 8- 8)
o BRE
B~ 3EI
c) Calcul de la réaction
3 3
w2 R _R
up = Wp - W =gey £8 -8 - =g
I1 en découle
3 3
1 ¢ _F L 2.
RIg+rar! =g ¢ G- 8
soit
R=ng2(3-g)
avec
3 1
B = 3EI
1+ =3
ké

Le coefficient B est la fraction de la charge qui passe dans la
contre-pointe, lorsque 1’on charge sur celle-ci (£ = 1). Pour k
—> o , B —> 1; pour k —> 0, B —> 0.

d) Déplacement sous la charge
3 3
. . _FU 2 _FL 4. .2
Uy =W, -u'y =g & - B ppp £ - 8)
Fe? .3 B 2
=§§f€ [1—25(3"&.)]
11 est équivalent d’écrire
3EIu
2o2u-Les- 0’ =@
Fi

A. POINTS STATIONNAIRES DU DEFAUT DANS LE CAS DU MONTAGE MIXTE

On a

3 3

£esp) = € - B gho - ee v %) = &% - Brog® - 6e” 2®)

Dérivons par rapport a &:

af _ .2

_B 3 _ 4 S
56 = 36" - 73687 - 308" + 68 )
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2
=382 n-Be-s5e+en -
Les points stationnaires sont donc:

- & =0 (deux fois)

- d’autres racines EO = 0 .

En un 50 donné, on a la relation

B = 2
EO(gO—z)(go—a)

ce qui revient a dire

k> 1 1
WL ST, By (g2 (B, D) ’
B 5 -1

ce qui permet en principe d’induire la raideur de la contre-pointe
de la forme du défaut de cylindricité. Cependant, cette relation
ne fournit k > 0O que pour EO > 0,5858. On retrouve alors la méme

valeur de k£3/(3EI) pour deux valeurs différentes de EO’

correspondant & un maximum du défaut pour la plus petite, & un
minimum pour la plus grande. La plus petite valeur possible de k
donnant lieu & des points stationnaires non nuls correspond a

d 3

-5 gg +6€) =3 gg ~10 g, + 6,

ce qui donne

g, = 5—1-1%511§- = 0,7847

A cette valeur correspond

3
ke”
~3E-f = 17,76 .

Pour les raideurs k plus faibles, il n’existe pas d’extremun.

La figure 2 donne les courbes du défaut pour différentes
valeurs de k supérieures a 17,76 EI. Elles 1illustrent bien
1’oscillation paradoxale du défaut prés de la contre-pointe.
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sig.. - Entre pointes
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f£ig. 2 - MONTAGE MIXTR
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40CHAPITRE 3. PREVISION DES DEFAUTS DE FORME PAR ELEMENTS FINIS

S

E -

Face milling and turning simulation
with the finite element method

Luc Masset, Jean-Frangois Debongnie - Manufacturing laboratory

Pierre Beckers - Aerospace Department (LTAS)
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Introduction

Simulation tool developed for Renault

Computation of the form error resulting from the workpiece
flexibility
Application to face milling and turning processes

Workpiece deformations computed with the FEM

Forces applied by the tool and the fixing devices
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Limitations

Only static workpiece deformations (linear elastic)
Small thermal deformation and dynamic response
Tool and machine-tool perfectly rigid

Mill inserts identical and equally spaced

-
§
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How the form error appears

The defect of a surface point depends on its displacemem when
the tool cuts it

cutting plane

negative 1 displacement

positive defect
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Method description [3] [4]

Compute the error of each of the » nodes of a FE mesh surface

(MZ algorithm)

&
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Forces computation

Kienzle f g L= PRE
ienzle force mode i=c,f,
ki - kz’l.l W™ { f p}
k; ; ; and m, come from experimental data [6] A feed direction

= mill insert

o jo pdeq

rotation
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Applying cutting forces on the mesh

Load case corresponding to defect of node m

mill center
mesh
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FE Analysis - Direct method

FE code: Samcef V8.1 Pentium IIT 770 / 512Mb

Two severe drawbacks:
e significant amount of stored data (» load cases)

» high computation cost

DOF 11295
CPU (s) 51196
Disk (Mb) 3428

" P

G N
o7 :
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FE Analysis - Superelement method

np retained DOF g, Ker Ko |l 9z Zr
n. condensed DOF ¢, K. Kqll9c - g
[KRR —Kpe Kélc KCR]QR =8r < KZR dr = &R

Step 1 : SE creation  Step 2 : K, inversion

CPU Disk
ratio [direct method / SE method] 30t0o50 3to5

G fa
it "
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Method description (SE)

J

I
-

1 RR

! computation (SEM)
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Camshaft Cover

DOF 36639

retained DOF 2436 _
CPU Step 1 (s) -
CPU Step 2 (s)




s N—m
75 w u u .
25 (a)

e A A A

-226 (b)

Figure 3 : Flatness errors obtained with trajectories (a) and (b)
are equal to 27.4 um and 45.2 pum respectively

o1
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Suspension support

plane A plane B

DOF 121749 121749
retained DOF 990 1023
CPU Step 1 (s) 68 67

11

CPU Step 2 (s)

mmp fixing device

—> tool trajectory




®)

Figure 5 :Flatness errors for plane A with 100-mm mill (a) and
140-mm mill (b) are equal to 27.9 um and 18 pum respectively

93
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Exhaust manifold

mmmp> fixing device
—> fixing device removed
in design (b)

% .
184944
retained DOF 3087
CPU Step 1 (s) 147
CPU Step 2 (s) 250




-

trajectoire
Sy
G

Figure 204 : défaut obtenu pour une trajectoire décalée a gauche

Figure 205 : défaut obtenu pour une trajectoire décalée a droite

95
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DOF 112365

retained DOF 5328

CPU Step 1 (s) 211
Gear box cover CPUSwop2(9) | 1806




wp fixing device

Figure 8 : Gear box cover model and flatness error obtained

57
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dof : 329187
retained : 6240

o

RS

A

AL
25

b
A

v

Kk
14X

s,

o
Pk
¥

=
J

Figure 9: 4-cylinder block (D4 model)
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Conclusions

» Very flexible and cost effective tool for industrial applications

» Easy way to improve a process set-up without making actual tests
o Introduction of other effects (tool deformation)

o Applicatidn to other cutting processes (broaching)

» Optimization methods



Chapitre 4

Détermination d’un défaut de
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62 CHAPITRE 4. DETERMINATION D’UN DEFAUT DE FORME

1. Formulation abstraite du probleme de détermination des
défauts de forme

1.1 — Fonction d’encadrement

Dans un souci de synthése et de généralité, nous croyons utile de donner une forme
abstraite au probléme de détermination des défauts de forme.

Les mesures tridimensionnelles fournissent un ensemble compact K, fini, de points de
mesure. Les tolérances de forme s’expriment toujours par un encadrement : deux droites
extrémes dans le cas de la rectitude, deux plans extrémes en planéité, deux cercles
concentriques extrémes en circularit¢ et deux cylindres de méme axe en cylindricité.
Mathématiquement, on peut parler d’une fonction d’encadrement (continue) f(x ;4) dépendant
des coordonnées X et d’un jeu de paramétres 4. La valeur de cette fonction en un point X;
donné, f; (1) = f(X;,A), sera appelée dans ce qui suit hauteur du point X; (pour la valeur 4 du

jeu de parametres).
a) En rectitude, nous écrirons
f(x,y;p)=xcos@p+ ysing
Le parametre ¢ donne la direction de la normale n a la droite,

n = (cosg,sing)

b) En planéité, nous supposerons le plan approximativement horizontal. On penserait
a priori a définir la direction de la normale au plan a 1’aide des coordonnées sphériques
classiques, a savoir,

N = (sin#cos @,sin #sin @,cos )
mais ce choix est malheureux, car la direction idéale de la normale, c’est-a-dire la verticale,
correspond précisément au pole, ou la longitude € est indéterminée. Il est préférable de placer

le pole sur I’axe des x, par exemple, ce qui donne

N = (cosd,sin @ cos @,sin Gsin @)

La verticale est alors sur 1’équateur de la sphére, en 6 = 2 Q= 7 Dans le voisinage de ce

point, les coordonnées sphériques sont quasiment cartésiennes, puisque
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x =cosf = sin[z—ej ~ _(g_fj
2 2

=sin@cos@ = sin@sin z_ ~sin£sin Z _olado-Z
y ® > ) ) > ) Q >

La fonction d’encadrement sera alors
f(x,v,2;0,p) = xcos@ + ysin@cosp + zsindsin @

¢) En circularite, soient a et b les coordonnées d’un centre. La fonction d’encadrement
d’un point (x,y) est tout simplement le rayon de ce point par rapport au centre, soit

2 2

fsa.b) = (x-a)? +(v-0)

d) Pour la cylindricité, on commencera par définir un axe de la forme
n = (cos @,sin O cos p,sin Psin @)

comme ci-dessus. Nous admettrons en effet que I’axe du cylindre est a peu de chose pres I’axe
des z. On projettera alors le point (x,y,z) sur les deux axes perpendiculaires

e = —g—g = (sin #,— cos @ cos ¢,—cos @sin @)

on
€y =— op = (0,sin @,—cos @)
on

op

ce qui donne

X, =xsinf— ycosfcosp—zcosfsing

Yp =ysing—zcosp

Alors, si (a,b) est la position d’un centre dans le plan perpendiculaire a 1’axe, on a

fyz0.p.ab)=lx, —af +(y, -bP

1.2 — Valeur d’encadrement du compact K ; défaut du compact K

Nous appellerons valeur d’encadrement du compact K, pour une valeur des
parametres 4, le nombre
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enc(K,A)=max f(X,A)—min f(X,1) (1)
xekK xekK

Cela étant, le défaut du compact K est donné par

def(K) = mjn enc(K,A) (2)

L’existence de ce minimum est évidente dans le cas ou les parameétres varient sur un ensemble
compact (rectitude, planéité). Dans les cas de la circularité et de la cylindricité, a et b peuvent
varier de -0 a +oo, si bien qu’a priori, on peut seulement parler de la meilleure borne
ir/llf enc(K,1). Le fait que cette borne est atteinte demande alors une démonstration spéciale,

dont le principe général consiste a montrer que la borne inférieure hors d’une boule donnée
est supérieure a la borne cherchée, ce qui limite la recherche a un compact et, ipso facto,
garantit I’existence d’un minimum.

1.3 — Unicité
L’unicit¢ du minimum n’est malheureusement pas toujours garantie. Ainsi, en
rectitude et planéité, il est assez aisé de trouver des cas ou le méme minimum est atteint pour

deux valeurs différentes du jeu de parametres. Cependant, il s’agit toujours de cas trés
particuliers, impliquant certaines symétries que 1’on ne rencontre guére en pratique.

1.4 — Formulation en termes d’écarts

Le probléeme de la détermination des défauts admet une seconde formulation
équivalente. Introduisons une variable supplémentaire et définissons 1’écart par

e(X;4,p) = f(X,A)=p 3)

et appelons écart maximum sur K la grandeur

ey (K; 2, p) = maxle(x; 2, p) )
xXeK
Montrons que
enc(K;A)=2miney, (K; 4, p) (5)
el

En effet, e, (K; A, p) est le maximum de la valeur absolue de 1’écart sur K. C’est donc soit le
maximum de I’écart, soit son minimum changg¢ de signe :

ey (K34, p)= max{max e(X; A, p),—mine(X; 4, p)}
XxeK xekK

Tenant compte de la formule évidente
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1 1
max(4, B) = E(A +B) +5|A ~ B
on a encore
ey (K54, p) = leax S (X 4) —pj —(min Sx;4) —pﬂ
2|\ xeK xeK

+_

! (max f(x;A)— p) + (min f(x;A)— p)‘
2|\ xeK xeK

= l{max S (X;A)—min f(X; /1)}
2 xek xeK

+l maxf(x;ﬂ,)+minf(x;/1)—2p‘
2|xeK xeK

Le deuxieme terme de cette expression est le seul a encore contenir p. Il est visiblement
toujours non négatif, et atteint son minimum, zéro en 1’occurrence, pour

p= l{max f(X;A)+min f(X; ﬁ,)} (6)
2| xeK xeK
La valeur minimale de 1’écart est donc

miney, (K;A4,p) = l[max f(X;A)—min f(X; ﬁ,)} = lenc(K; A)
Yol 2| xeK xeK 2

comme annonce.
Cette propriété permet de donner une nouvelle définition du défaut :

def (K)=2miney; (K; A4, p) (7)
A,p

Sous cette forme, la détermination du défaut apparait comme la recherche de la surface
d’équation

fxA)=p

dont I’écart maximum a un point de K est minimum. C’est un probléme de meilleure
approximation uniforme, trés voisin de I’approximation des fonctions au sens de Tchébycheff
[L,2].

2. — Calcul approcheé des défauts a partir des moindres carrés

L’approximation uniforme étant difficile a traiter, de nombreux praticiens se
contentent de I’approche grossiére consistant a minimiser
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1/2
lel, =| Xe’ ol € =e(X;3 4 p) ()
i

ce qui permet de déterminer une valeur (4,, p,)des parametres, a partir de laquelle on peut
obtenir une idée du défaut, a savoir,

def (K) ~ 2max|e(Xi,/12,p2)| )

Cette valeur est évidemment en exces, puisque 1’on n’a pas cherché le minimum défini en (7).
L’expérience montre que, dans certains cas, cet exces peut étre important et surtout, que les
parametres 4 peuvent étre grandement en erreur.

3. Méthodes géomeétriques de calcul des défauts

La théorie des défauts de rectitude, planéité et circularit¢ nous a permis, dans les
chapitres précédents, de définir des méthodes directes de calcul du défaut. Par méthode
directe, on entend une méthode donnant le résultat en un nombre fini d’opérations. Cela ne
signifie cependant pas que ces méthodes sont les meilleures, car fini n’est pas synonyme de
petit. En particulier, la méthode des quatre points en circularité a une complexité O(n*) ou n
est le nombre de points de mesure, ce qui en fait une méthode fort lente en pratique.

En réalité, nous avons effectivement développé ces méthodes directes, mais elles ont
seulement servi de référence sur des problémes servant de tests pour d’autres méthodes.

4. Calcul des défauts par la méthode du simplexe de Nelder
et Mead

Il semble plus élémentaire et plus général de chercher @ minimiser directement 1’écart
maximal par une procédure numérique. Malheureusement, le minimum de cette fonction est
en forme de cone, c’est-a-dire que si (Ay, pp) est le point minimal, on a une relation de la

forme
) NI
ers (Ao + A4, po +Ap) —eys (Ag, po) 2 a(IIMII +(ap) j ,a>0

Du reste, la fonction ey, est continue, mais pas continiment dérivable, ni, a fortiori, de classe
C?. Des représentations graphiques mettent bien en évidence I’existence de thalwegs (fonds de
vallées). Dans ces conditions, les méthodes classiques de minimisation, gradient, gradient
conjugué¢ ou Newton-Raphson ne s’appliquent pas.

Pauly [4] a suggéré d’utiliser la méthode du simplexe de Nelder et Mead [3] qui a
I’avantage de n’utiliser que les valeurs de la fonction elle-méme. Cette méthode est de mise
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en oeuvre aisée dans la mesure ou I'on peut facilement se procurer les routines
correspondantes. Malheureusement, 1’expérience a montré que le choix du simplexe de départ
est d’une importance cruciale, ce qui rend la méthode délicate et, finalement, peu sire.

5. La méthode des normes d’ordre p
5.1 — Principe

La recherche du défaut consiste a minimiser 1’écart maximal, mais cette fonction est
malheureusement peu réguliére. On peut songer a la remplacer par une fonction voisine, mais
plus réguliére. Dans cet ordre d’idées, la méthode des moindres carrés consiste a remplacer
I’écart maximal par la norme d’ordre 2

1/2

2
lel, =| 2_lei]

1

On atteint ainsi I’objectif de régularité mais, malheureusement, cette norme est trop peu
voisine de I’écart maximal. Mais on peut aussi imaginer de minimiser une norme d’ordre p, a
savoir

1/p

lel, =| 2leil” (10)

car on sait (voir chapitre consacré a ces normes) qu’elles convergent pour p tendant vers
I’infini vers I’écart maximal. Cette convergence se fait en décroissant. Du reste, les moyennes
d’ordre p, définies par

/p

1
1
€)= L Sap
1

convergent également vers 1’écart maximal, mais en croissant, ce qui permet, pour tout p,
d’obtenir un encadrement :

(&), sem <lel,

Telle est I’idée de base de la méthode des normes d’ordre p : on remplace ey par la norme
d’ordre p, avec p suffisamment grand. qui est une fonction réguliére a laquelle on peut
appliquer la procédure de Newton-Raphson.
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5.2 — Convergence du minimum de la norme d’ordre p vers le défaut

Cependant, ce n’est pas parce qu’une suite de fonctions tend vers une fonction limite
que la suite des minima converge. Ce point demande a étre démontré. Appelons u I’ensemble

des parametres (4, p). Quel que soit , on a pour tout p
1
Sdef <ey (<[],
Ceci étant vrai pour tout x, on a encore
L der <intle(u)|
2 u p
Par ailleurs, quel que soit i, on a aussi la relation générale
< 1/p
leCeo], < eas (u)m
ce qui entraine évidemment
in ||e(v)||p <ey (u)n
14
et ceci étant vrai pour tout 4, on a encore

inf”e(v)” <infey, (,u).nl/p :ldef.nl/p
v L 2

Finalement, on a donc

1 . 1
Edef < 11}lf||e( ﬂ)||p < 5 def.n'' P

(11)

ce qui montre que la valeur du minimum de la norme d’ordre p converge, pour p croissant,

vers la moitié du défaut.

5.3 — Convergence du point extrémal

Soit 1, le point ou la norme d’ordre p atteint son minimum, et soit 4, le point minimal
de ey . Peut-on dire que p — Mo lorsque p croit ? La réponse est affirmative sous certaines

conditions. Supposons donc que

® ¢\(u) admet un minimum en u ;

® Dans une boule fermée de rayon R de [’espace des paramétres, centrée en Ly, la

condition de minimum peut étre précisée comme suit :
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err (1) = eg () = eflue = o (12)
aveca > Qetr> 0.

Dans ces conditions, en yy, on a

1
leuoll, < enr (o) '’ P = def n''

A une distance R de ce point, on a par (12)

1
||e(,u)||p > ey (1) > Earef +aR”
Dés lors, dés que

aR”

1
L
4

%def.nl/pﬁédeeraRr c-a-d 2P 14

la norme d’ordre p prend en yy une valeur inférieure a ses valeurs sur la frontiére de la boule,
ce qui implique qu’elle admet un minimum dans cette boule. Soit xg, le point minimal
correspondant. On a

r

a”;qu —Ho| <ey (ﬂOp)_%def < He(ﬂop)up —%def

Mais He( Ho p )Hp est le minimum de la norme d’ordre p des écarts qui, par (11) vérifie

) 1
“Lf”e(ﬂ)” » S Edef P
Donc on a
1
T A L

ce qui implique que £y, —> K-

En pratique, ’exposant 7 est égal a ’unité, si bien que le point minimal converge
comme (n'”— 1), de méme que le défaut approché.

On constate du reste qu’il faut en pratique choisir p trés grand. Nous travaillons
quotidiennement avec p = 10°, ce qui donne une erreur relative inférieure a 10~ tant que
n <22025.
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5.4 — Méthode de Newton — Raphson pour minimiser la norme
d’ordre p.

Soit a minimiser la norme d’ordre p ou, ce qui revient au méme, la fonction
p
F(u) = lei (1)
i

Minimiser F, c’est annuler son gradient dont les composantes sont

_ O N e P sign(e;)
8k =g p;lell sign(e; ) o

A partir d’un point # donné, on écrit que
gilu+du)~ g (u)+ D ———Auy =

ce qui permet de calculer I’incrément de u par le systéme linéaire
KAp=-g
ou K est la matrice dont les composantes sont données par

2

0°F 2 Oe; Oe;
K =———=pp-DD |e] " =
Oty Opy Z,] ]

Optie Oty
2
p—l . 8 el-
+p) le sign(e;) ———
Z,:| d " ouom

Pour p trés grand, le second terme est négligeable face au premier et peut étre omis. Dans bien
des cas, d’ailleurs, on peut I’omettre méme pour des valeurs petites de p, ce qui donne une
méthode de Newton-Raphson modifiée. Mais il existe des problémes (rectitude dans 1’espace
et plus petit cercle contenant les points de mesure, notamment), ou il est nécessaire de
conserver le second terme pour les petites valeurs de p sous peine de divergence.

5.5 — Problemes liés a la representation des nombres sur ordinateur

Pour éviter tout probléme de dépassement de capacité des exposants (over- ou
underflow), il convient d’écrire a chaque itération

€l'p

eym

F(u)=ep Y,
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le signe * indiquant que 1’on supprime tous les termes tels que

i

ey

par exemple.

5.6 — Stratégie de calcul

Le calcul direct avec la norme d’ordre p, p ¢élevé, est impraticable car la fonction a
minimiser est d’autant plus tourmentée que p est plus grand, ce qui rend la convergence de la
méthode de Newton-Raphson problématique si le point de départ n’est pas bien choisi. Au
lieu de cela, on peut imaginer le processus suivant. Soit ¢ > 1. On commence par chercher le
minimum pour p = 2, puis on prend le résultat comme point de départ avec p = 2¢. La
solution obtenue sert de point de départ avec p = 24 et ainsi de suite.

L’expérience montre que dans la plupart des cas, on peut, au lieu de travailler avec un
exposant donné jusqu’a convergence, on peut se limiter a une seule itération pour chaque p et

qu’'une bonne valeur de la raison de progression de p est g = V2 . Ainsi congu, et avec une
valeur finale p = 10°, I’algorithme converge en une quarantaine d’itérations. On notera que le

nombre de calculs a chaque itération est strictement proportionnel au nombre de points 7.
Nous sommes donc en présence d’un algorithme de complexité O(n), ce qui est remarquable.

Cependant, il peut arriver, bien que ce soit rare, que le processus diverge a un certain
moment. Il est donc nécessaire d’assortir notre stratégie d’un contréle de divergence.

5.7 — Controéle de divergence

Le principe de notre contrdle de divergence est fondé sur I’inégalité de Jensen, qui
revient a dire que pour un méme jeu d’écarts €, si p > ¢, on a ||e||p < ||e||q. Cela étant, si le

processus itératif améliore la solution, les normes successives ne peuvent que décroitre. On
calcule donc a chaque itération la norme d’ordre p de I’écart, et on la compare a la plus petite
des normes obtenues jusque la. Si la nouvelle norme d’ordre p lui est supérieure, on en déduit
qu’une divergence s’amorce. On peut alors stopper la progression de p jusqu’a étre
redescendu en dessous de la plus petite valeur obtenue et alors, reprendre la croissance de p.
Dans les quelques cas difficiles ou les choses ne s’arrangent pas aprés un nombre donné
d’itérations, on peut recommencer le processus avec une raison ¢ plus faible, ce qui donnera
un peu plus d’itérations.
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6. Influence des erreurs de mesure sur le calcul des défauts
de forme

6.1 — Introduction

Au-dela du calcul des défauts de forme, il est nécessaire de s’enquérir de leur
sensibilité¢ aux erreurs de mesure. Partant toujours de 1’idée de mesures tridimensionnelles,
nous admettrons que les valeurs x;, y; zi mesurées ou calculées en chaque point sont entachées
d’imprécisions Ax;, Ay;,Az;. La question qui se pose est de déterminer une borne supérieure,

aussi réaliste que possible, de 'influence de ces imprécisions sur la mesure de 1’erreur de
forme.

6.2 — Formulation du probleme

Pour aborder ce probléme, le plus simple est de partir des hauteurs fi(4) des points

mesurés. Il est clair que la valeur d’encadrement de I’ensemble K des points de mesure s’écrit
alors

enc(K;A) =sup f; (1) —inf f;(4)

1

Rappelons que le défaut n’est autre que la valeur minimale de cette fonction d’encadrement
lorsque I’on fait varier les parameétres :

def(K) = iljlf enc(K;A)
Une perturbation des coordonnées conduit aux nouvelles hauteurs
fi )= f(x; + Ax;, p; + Ay, z; + Azjs )
et nous admettrons, comme hypothése de base, que la différence
i(A)= 1 (D= fi (D)
vérifie une inégalité du type
Af;(A)| < e

uniformément par rapport a A . Dans la pratique, il restera évidemment a examiner quand cette
inégalité a lieu pour les défauts de forme courants, ce que nous ferons § 6.6.
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6.3 — Majoration de I’imprécision des enveloppes supérieures et
inférieures

Supposons un instant qu’il n’y ait que deux points. Dans ce cas,

sup(fi", /2 ) =sup(f] + M, f2 + A2 )<Ssup(f + &, f2 + &) =sup(fi, fo) + &

En permutant les rdles des f; et des f;*, on trouve de méme
sup(fi. f2) S sup(fi's f3) + &
si bien que
sup(fi, f3) =sup(i. f)| € &
Un raisonnement analogue montre que
inf(fy", £ < &
Dans le cas ou il y a n points, ces résultats subsistent par récurrence, puisque

Sup(fl’ A fn) = Sup(sup(fl’ e fn—l )’fn)

et de méme pour les bornes inférieures. On a donc

supfl-* —sup fi|< ¢

1 l

inf f;" —inf f,
i i

<¢

6.4 — Majoration de I’imprécision de la valeur d’encadrement

La valeur d’encadrement perturbée étant donnée par

enc*(K;A) =sup f; (1) —inf £ ()

l

on a visiblement
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|enc *(K;A)—enc(K; /1)| =

(supfl-* —inffi*J—(supfi —infﬁ]

1

< + <2¢

sup fi* —sup f;
] i

1

inf f;" —inf f;
1 1

6.5 — Majoration de I’imprécision du defaut

Le défaut est, comme on sait, le minimum de la valeur d’encadrement quand on fait
varier les parametres,

def (K) = ir/llf enc(K; 1)

Sa valeur perturbée est

def *(K) = inf enc * (K; A)
A

Or, nous savons que pour tout 4, on a

enc*(K;A) 2 enc(K;A)—2¢ > 1inf enc(K; p) —2¢ = def (K) — 2¢
)7,

Le dernier membre étant indépendant de A, on a donc

def *(K) =ir/11fenc*(K;/1) >def(K)-2¢

A D’inverse, on a pour tout A

enc(K;A)>enc*(K;A)—2¢>1inf enc*(K; i) —2¢& =def *(K)—2¢
U

ce qui permet, par le méme raisonnement, de montrer que
def (K)>def *(K)—2¢
Finalement, on peut donc affirmer que

|def *(K) —def (K)| < 2¢

C’est le résultat fondamental : la perturbation du défaut de forme n’excede pas le double de la
perturbation des hauteurs.
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6.6 — Application aux défauts de forme les plus courants
Voyons a présent ce que signifie ce résultat dans les cas de rectitude, planéité,

circularité et cylindricité. Nous supposerons dans chaque cas que les coordonnées subissent
une perturbation telle qu’en chaque point,

Ja, P+ (A, ) <7

pour les problémes plans ou

Y 2 +(av )P + (82,7 <

pour les problémes spatiaux.

6.6.1 — Rectitude

En rectitude, les hauteurs s’écrivent
fi(@)=x;cosp+y;sing
et leur perturbation,
Af; (@) = Ax; cos @ + Ay; sin g

I1 résulte directement de I’inégalité du produit scalaire que

073 () < (Ax; )2 + (A 2 <

ce qui revient a dire & = 7.

6.6.2- Planéité
Dans ce cas,
fLO,p)=x;cos0+ y;sinfcos@+z; sinfsin @
ce qui donne
Af;(0,¢) = Ax; cos@ + Ay, sin@cos ¢ + Az; sin @sin ¢

Ici encore, 1’inégalité du produit scalaire conduit a
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|Af,- (49,(01 < \/(Axl )2 + (Ayi )2 + (AZi )2 \/cos2 0 + sin’ 6?(cos2 @+ sin’ p)<n

soit encore &€ =77 .

6.6.3 — Circularité

Les hauteurs sont ici les rayons,

fiaby=(x; —a)? +(y; —b)?

I1 ne s’agit pas, ici, d’une expression linéaire en termes des coordonnées. La partie principale
de la variation des hauteurs est donnée par

X;—a yi—b

T = ™ @)

Ay;

et I’inégalité du produit scalaire permet encore une fois d’écrire
|;(a,b)| <7

ce quirevient a dire e = 77 .

6.6.4 - Cylindricité

Nous avons vu qu’en cylindricité, on commence par projeter les coordonnées suivant
la loi

xpl-(é’,(p)= x;sin@—y; cos@cos @ —z; cos@sin @

Ypi(p)=yisinp—z; cosp

La hauteur du point i est alors donnée par

Jita,b,0,¢)= \/[xpi(9’¢)_a]2 t [ypi(§0)_b]2

Ici encore, il s’agit d’une expression non linéaire en termes des coordonnées et il nous faudra
nous contenter de la partie principale de la perturbation de hauteur, qui vaut

% i (0.0) - alAx i (0,0)+ |y i (@)~ b Ay i (0)
fi(a,0,0,9)

Fi(a,b,0,9)=

avee
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Ax ;i (0, 9) = Ax; sin @ — Ay; cos @ cos p — Az; cos Osin @
Ay pi(@) = Ay; sinp —Az; cos @

Par I’inégalité du produit scalaire, on a

5(a.0.0.0)| <[5 (.00 +[av,i (o) P

Or,

‘Axpi (@, @)‘ < \/(Ax, P +(Ay; cos g+ Az; sin )?

‘Aypi ((0)‘ =|Ay; sin g — Az; cos ¢
ce qui entraine

[Axpi (9, ¢)]2 + [Ayp,- (gp)]2 < (Axl» )2 + (Ay,« )2 (cos2 o+ sin? gp)+ (Azi )2 (cos2 o+ sin? go)
+2Ay;Az;(cos @ sin ¢ —sin ¢ cos @)
< 772

Ainsi, au premier ordre, £ <1.

6.6.5 — Conclusions
Dans les quatre cas considérés, I’incertitude sur le défaut n’excede pas le double de

I’incertitude sur les mesures, exprimé par la norme du vecteur erreur. Cette conclusion est
stricte en rectitude et en planéité. Elle ne vaut qu’au premier ordre dans les deux autres cas.

6.7 — Incertitude sur la valeur des parametres 4

Pour répondre a cette question, il est nécessaire de supposer, comme dans le § 5.3, que
la valeur d’encadrement admet un minimum bien prononc¢, c’est-a-dire que si enc(K ;4) est
minimale en Ao, on a, dans une boule fermée de rayon R de I’espace des paramétres, centrée
sur le minimum,

enc(K;/i)—enc(K;ﬂO)2a||/1—/10||r avec >0, r>0

Dans ces conditions, on a d’une part
enc*(K;Ay) < enc(K;Ay)+2¢

et d’autre part, en tout point 4 situé a une distance R de Ay,
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enc*(K; 1) > enc(K;A)—2¢ > enc(K; Ag) +aR” —2¢

r

ce qui implique que pour ¢ < , c’est-a-dire si la perturbation des coordonnées est

suffisamment petite, toutes les valeurs de enc* a la frontiére de la boule sont supérieures a
enc*(K;Ay). La valeur d’encadrement perturbée enc*(K;A) admet alors un minimum dans

cette boule, en un certain point Aj.

Ceci posé, on peut écrire

(24

-
/13 —/"LOH < ‘enc(K;ﬂB)—enc(K;/to)‘ < ‘enc(K;/fé)—enc*(K;iB)‘+‘enc*(K;/13)—enc(K;ﬂo)

Or, nous savons que (§6.4)
‘enc(K;/fB) —enc*(K; /18 )‘ <2¢
et que (§6.5)

enc*(K;/IS)—enc(K;/lo)‘ =

inf enc(K; A) —inf enc(K; /1)‘ = |def * (K) - def (K)| < 2¢
A A

Il en découle

1/r
/1’5—/10“s(4—1
(24

En pratique, les fonctions d’encadrement on un minimum en forme de cone, c’est-a-
dire que » = 1. On peut du reste évaluer sommairement o par

o ~ lim inf enc(K; Ay + A1) —enc(K; Ay)
Jaz]0 4]

c’est-a-dire la plus petite valeur du gradient de I’encadrement en Ay.



79

7. Bibliographie

SN

. G. Hacques — Algorithmique numérique

Colin, Paris, 1971

. L.S. Berezin, N.P. Zhidov — Computing methods

CJA.

Vol. 1, Pergamon Press, Oxford, 1965

Nelder, R. Mead — A simplex method for function minimization
Computer Journal, vol. 7, pp. 308-313, 1965

. P. Pauly — Etablissement d’algorithmes de calcul des erreurs de forme et de position

Mémoire de fin d’études, Université de Liege, 1996

. A. Ballu, P. Bourdet, L. Mathieu — The processing of measured points in coordinate

metrology in agreement with the definition of standardized specifications
CIRP Annals, vol. 40/1, pp. 491-494, 1991

. G. Goch - Efficient multipurpose algorithm for approximation and alignment problems in

. L.P.

.J.D.

J.F.

coordinate measurement techniques
CIRP Annals, vol. 39/1, pp. 553-556, 1990

Lebedev, I.1. Vorovich, G.M.L. Galdwell — Functional analysis
Kluwer Academic Publishers, Dordrecht, Boston London, 1996
ISBN 0-7923-3849-9

Meadows — Geometric dimensioning and tolerancing
Marcel Dekker inc., New York, Basel, Hong Kong, 1995
ISBN 0-8247-9309-9

Debongnie, L. Masset — Sur 1’évaluation des défauts de forme a partir de mesures
tridimensionnelles

European Journal of Mechanical and Environmental Engineering, vol. 43 n°1,
pp. 13-21, 1998



