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What is back analysis?
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• Main performances of numerical modelling depend on:

• Choice of constitutive models

• Identification of parameters 

• Tests are often expensive and can be difficult to interpret:

complex laws, heterogeneity and/or noise in measurements … 

� manual calibration is often difficult

� Back analysis as a tool to help identification

Automatic strategy to fit material parameters 

until numerical results ≈ experimental results

option included in LAGAMINE FE code
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What is back analysis?
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In LAGAMINE:

• Two optimization approaches are available:

• Levenberg-Marquardt method through Optim

• Genetic algorithm method through AI_Lagamine

Advantages and drawbacks for both approaches

• Applicable on all parameters of all constitutive laws 

• Efficiency depends on 

• well-adapted model

• accuracy of experimental results that have to be fited by the model

• application that should be simulated with limited CPU time
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Optim – Levenberg-Marquardt optimization

• Iterative method

• Levenberg-Marquardt algorithm (multivariate optimization)

• Minimization of the difference between the experimental and 

numerical results (for each test)
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Optim – Levenberg-Marquardt optimization

For each set of data and for each test:

Several simulations are performed in parallel:

• 1 with the initial parameters:  p1 , …, pj , … pk

• and for each parameter to fit pi, 2 simulations:

p1 , …, pi + dpi , … pk

p1 , …, pi – dpi , … pk

The perturbation dpi is small

dpi = δ * pi with perturbation factor δ = 0.001 (for example)

→ convergence quickly obtained
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Optim – Sensitivity analysis 

Sensitivity S( p i)

� computed for each test and each parameter pi to fit 

� at each Lagamine step
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Optim – Error function (to minimize)
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Optim – Example
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Characterization (Aluminium AlMgSc)

Elastic part: Hooke's law (E, ν)

Plastic part: Hill's law (Hill48):

Isotropic hardening: Voce's formulation:

Back-stress (kinematic hardening):  Ziegler's equation:
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F, G & H defined by tensile tests in 3 directions (RD, TD, 45°)
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Characterization (Aluminium AlMgSc)

Elastic part: Hooke's law (E, ν)

Plastic part: Hill's law (Hill48):

Isotropic hardening: Voce's formulation:

Back-stress (kinematic hardening):  Ziegler's equation:

Young modulus: E and Poisson ratio: ν defined by tensile tests

F, G & H defined by tensile tests in 3 directions (RD, TD, 45°)

N, σ0, K, n, CA, GA defined by Optim



Example of tests chosen for the characterization (A luminium AlMgSc): 

• Tensile test, large tensile test

• Monotonic simple shear test, Bauschinger simple shear tests (2 levels)

• Orthogonal tests (2 levels)

• Indent test

Optim – Example
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Optim – Example

Comparison: experiments and numerical results
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Optim – Comments  

• The method is efficient for complex laws

• Possibility of fitting several data simultaneously

• The tests chosen must be sensitive to the parameters to fit

• The range of each parameter must be defined

• Several initial sets of data are to be tested to avoid local minimum 

• The efficiency of the method is linked to the initial set of data

• Advantage: possibility of choosing complex tests inducing 
heterogeneous stress and strain fields close to the ones reached during 
the real process (but CPU !!!)
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• What is back analysis?

• Deterministic approach with Optim

• Stochastic approach with AI_Lagamine
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AI_Lagamine – Genetic algorithm optimization

• Numerical assumptions of complex problems

• Uncertainties on experimental measurements

• Spatial variability of parameters 

� Uniqueness of the parameter set is not always guara ntee, 
Parameters can be interdependent (mainly in geomaterials)

� GENETIC ALGORITHM approach to quickly converge to several 
approximated parameter sets

S. Levasseur. 2007. Analyse inverse en géotechnique : 
Développement d’une méthode à base d’algorithmes généti ques.

PhD thesis, Université Joseph Fourier, Grenoble.

G. Sanna. 2011. Geoenvironmental study on Boom Clay 
by inverse analysis. Master thesis, Université Joseph Fourier, Grenoble.
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AI_Lagamine – Genetic algorithm optimization

• Inspired by Dawin theroy of evolution
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AI_Lagamine – Genetic algorithm optimization
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AI_Lagamine – Genetic algorithm optimization
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AI_Lagamine – Genetic algorithm optimization
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AI_Lagamine – Genetic algorithm optimization
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AI_Lagamine – Genetic algorithm optimization
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AI_Lagamine – Example – Boom Clay triaxial test

• Calibration of triaxial test performed by Coll (2005) – p’0 = 2.3MPa

Elastoplastic model with Drucker-Prager criterion and friction angle hardening

Calibration of cohesion c and final friction angle ϕfinal
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E = 100MPa; ν = 0.2; 
ϕinitial = 11°; ψ = 10°; Bp = 0.002 GA run 3 times on (ϕfinal, c) research space



AI_Lagamine – Example – Boom Clay triaxial test
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AI_Lagamine – Example – Boom Clay triaxial test
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Good fit with

16 < ϕfinal <16.5 

100kPa <   c   < 120kPa



AI_Lagamine – Comments
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• The range of variation for each parameter must be defined, however:

• The method is efficient even for disperse measurements

• Same solutions are identified whatever are the initial sets of parameters 
randomly chosen (no local minimum)

• Quick convergence when tests are sensitive to the parameters, 
otherwise identification of relations between these parameters

• Possibility of 

• identifying a large number of parameters simultaneously

• fitting several data simultaneously

� Estimation of averaged parameter sets satisfying all data  

• choosing complex tests inducing heterogeneous stress and strain 
fields close to the ones reached during the real process (but CPU !!!)



Optim
Levenberg-Marquardt optimization 

• The tests chosen must be 
sensitive to the parameters 

• The efficiency of the method is 
linked to the initial set of data, so 
several initial sets of data are to 
be tested to avoid local minima

• More efficient for homogeneous 
materials  and well-posed 
problems

AI_Lagamine
Genetic algorithm optimization

• If tests are not enough sensitive to 
the parameters then identification of 
relations between these parameters

• Same solutions are identified 
whatever are the initial sets of 
parameters randomly chosen (no 
local minimum)

• More efficient for heterogeneous 
materials and ill-posed problems 
(with lot of uncertainties)
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Back Analysis and optimization methods with LAGAMINE

Automatic strategy to estimate material parameters
(automatic pre- and post-analysis)

Applicable on all parameters of all constitutive laws

Possibility of fitting several types of data simultaneously
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Back Analysis and optimization methods with LAGAMINE

Automatic strategy to estimate material parameters
(automatic pre- and post-analysis)

Applicable on all parameters of all constitutive laws

Possibility of fitting several types of data simultaneously
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Back Analysis and optimization methods with LAGAMINE

But be careful, these tools can not replace 

any physical interpretation! 
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Some references on optimization methods

Geotechnics (laboratory or in situ measurements):

• Levasseur S., Malécot Y., Boulon M., Flavigny E. (2008) Soil parameter 
identification using a genetic algorithm. Int. J. Numer. Anal. Meth. Geomech., 
vol. 32(2): 189-213.

• Levasseur S., Malécot Y., Boulon M., Flavigny E. (2009) Statistical inverse 
analysis based on genetic algorithm and principal component analysis: 
Method and developments using synthetic data. Int. J. Numer. Anal. Meth. 
Geomech., vol. 33(12): 1485-1511.

• Levasseur S., Malécot Y., Boulon M., Flavigny E. (2010) Statistical inverse 
analysis based on genetic algorithm and principal component analysis: 
Applications to excavation problems and pressuremeter tests. Int. J. Numer. 
Anal. Meth. Geomech., vol. 34(5): 471-491.

Mechanic of materials:

• Bouffioux, C, Lequesne, C, Vanhove, H, Duflou, J. R, Pouteau, P, Duchene, L, 
& Habraken, A.M. (2011). Experimental and numerical study of an AlMgSc
sheet formed by an incremental process. Journal of Materials Processing 
Technology.

• Flores, P, Duchene, L, Bouffioux, C, Lelotte, T, Henrard, C, Pernin, N, Van 
Bael, A, He, S, Duflou, J, & Habraken, A.M. (2007). Model Identification and 
FE Simulations Effect of Different Yield Loci and Hardening Laws in Sheet 
Forming. International Journal of Plasticity, 23(3), 420-449.


