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What is back analysis?

® Main performances of numerical modelling depend on:
® Choice of constitutive models
® Identification of parameters

® Tests are often expensive and can be difficult to interpret:

complex laws, heterogeneity and/or noise in measurements ...

- manual calibration is often difficult
= Back analysis as a tool to help identification
Automatic strategy to fit material parameters

until numerical results = experimental results

option included in LAGAMINE FE code



What is back analysis?
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What is back analysis?

In LAGAMINE:

® Two optimization approaches are available:
® Levenberg-Marquardt method through Optim

® Genetic algorithm method through Al _Lagamine

Advantages and drawbacks for both approaches

® Applicable on all parameters of all constitutive laws
® Efficiency depends on
® well-adapted model
® accuracy of experimental results that have to be fited by the model

® application that should be simulated with limited CPU time
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Optim — Levenberg-Marquardt optimization

® [terative method
® Levenberg-Marquardt algorithm  (multivariate optimization)

® Minimization of the difference between the experimental and

numerical results (for each test)



Optim — Levenberg-Marquardt optimization

For each set of data and for each test:

Several simulations are performed in parallel:
® 1 with the initial parameters: p;, ..., p;, ... Py

® and for each parameter to fit p;, 2 simulations:

The perturbation dp; is small

dp; = & * p, with perturbation factor 6 = 0.001 (for example)

— convergence quickly obtained



Optim — Sensitivity analysis

Sensitivity S(_p;)

— computed for each test and each parameter p; to fit

— at each Lagamine step

Yp’ dp. Yp.\dp.
2*dp

S(p) =
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Optim — Error function (to minimize)

Numerical

Experiment

< YER — division of [X, i, Xy INtO
regular sub-intervals
Xmin Xi Xi+1 Xi+2 Xi+3 Xmax.

n
1
Error = EZ(Y{.V""‘ — fop)z
i—1
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Optim — Example

Characterization (Aluminium AIMqgSc)

Elastic part. Hooke's law (E, v)

Plastic part: _Hill's law (Hill48):

1
Fun(o) = > |H(0wx — 04y )? + G(04x — 0,,)* + F(0yy — 0,,)* +2N(02, + 0% +0%)| —0f =0

Isotropic hardening: Voce's formulation:
or = 0y + K(1 — exp(—n.eP!))

Back-stress (kinematic hardening): Ziegler's equation:

. 1
X=Ca(@ =208 = Gp.X. 8
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Optim — Example

Characterization (Aluminium AIMqgSc)

Elastic part: Hooke's Ia@)

Plastic part: _Hill's law (Hill48):

FHILL (E) = @xx — yy)z@xx - O-zz)z@yy - Gzz)z + ZN(O-ny + O-xzz + O-}%Z ] _ 0-14Z =0

op = 0p + K(1 — exp(—n.&P))

. 1
X=C—(c—X).Pl —G,.X. &P
X o L X

Young modulus: E and Poisson ratio: v defined by tensile tests

F, G & H defined by tensile tests in 3 directions (RD, TD, 45°)
13



Optim — Example

Characterization (Aluminium AIMqgSc)

Plastic part: _Hill's law (Hill48):

1
FHILL (E) = E [H(Uxx - ny)z + G(O-xx - O-zz)z + F(O-yy — Uzz)z @O_xzy + O-xzz + 0-3%2 ] - O-Pg =0

o'c hardenin@g.. Voce's formulation:
D OETDE

Back-stress (kinematic hardening): Ziegler's equation:

: 1
X (o0 — X). &P X. gpt
or _ —
E
FG&H

N, 0, K, n, C,, G, defined by Optim 14



Optim — Example

Example of tests chosen for the characterization (A luminium AIMgSc):

® Tensile test, large tensile test
o

Monotonic simple shear test, Bauschinger simple shear tests (2 levels)
® Orthogonal tests (2 levels)

® |ndent test

Tensiletestl Large tensile test. Shear test (F Bauschingersheartes!
d
<+“—> <+“—>
S5 _FEART

— S S /
. 2 levels of pre-strain:
Orthogonal test . Indent test . gamma= d/b=10 & 30%
) =) J
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Optim — Example

Comparison: experiments and numerical results

Simple tensile test

Large tensile test

Orthogonal tests
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Optim — Comments

® The method is efficient for complex laws

® Possibility of fitting several data simultaneously

® The tests chosen must be sensitive to the parameters to fit

® The range of each parameter must be defined

® Several initial sets of data are to be tested to avoid local minimum
® The efficiency of the method is linked to the initial set of data

® Advantage: possibility of choosing complex tests inducing
heterogeneous stress and strain fields close to the ones reached during
the real process (but CPU !!!)

17
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Al _Lagamine — Genetic algorithm optimization

®* Numerical assumptions of complex problems
®* Uncertainties on experimental measurements
® Spatial variability of parameters

= Unigueness of the parameter set is not always guara  ntee,
Parameters can be interdependent (mainly in geomaterials)

= GENETIC ALGORITHM approach to quickly converge to several
approximated parameter sets

S. Levasseur. 2007. Analyse inverse en géotechnique :

Développement d’'une méthode a base d’algorithmes généti ques.

PhD thesis, Université Joseph Fourier, Grenoble.

G. Sanna. 2011. Geoenvironmental study on Boom Clay
by inverse analysis. Master thesis, Université Joseph Fourier, Grenoble.
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Al _Lagamine — Genetic algorithm optimization

®* Inspired by Dawin theroy of evolution

Example of two parameters
identification

Individual (Np)

A ~
Gene 1 Gene 2

10010011 I 11101011

Parameter 1 Parameter 2

Research space
2 Nbit

Population
N

individuals

Individual
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Al _Lagamine — Genetic algorithm optimization
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Al _Lagamine — Genetic algorithm optimization

Initial population
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Al _Lagamine — Genetic algorithm optimization

Initial population
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Al _Lagamine — Genetic algorithm optimization

Initial population
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Al _Lagamine — Genetic algorithm optimization

Initial population
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Al _Lagamine — Example — Boom Clay triaxial test

® Calibration of triaxial test performed by Coll (2005) — p’y = 2.3MPa
Elastoplastic model with Drucker-Prager criterion and friction angle hardening

Calibration of cohesion c¢ and final friction angle ¢,

q [MPa] BC20 - Medium confinement triaxial tests
2.5

Cohesion (kPa)

0 0.02 0.04 0.06 0.08

E =100MPa; v =0.2; .
Pinitiar = 11°; @ = 10%; B, = 0.002 GA run 3 times on (¢y,,,, C) research space
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Al _Lagamine — Example — Boom Clay triaxial test
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Al _Lagamine — Example — Boom Clay triaxial test

First iteration
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Al _Lagamine — Comments

® The range of variation for each parameter must be defined, however:
® The method is efficient even for disperse measurements

® Same solutions are identified whatever are the initial sets of parameters
randomly chosen (no local minimum)

® Quick convergence when tests are sensitive to the parameters,
otherwise identification of relations between these parameters

® Possibility of

® identifying a large number of parameters simultaneously
® fitting several data simultaneously

= Estimation of averaged parameter sets satisfying all data

® choosing complex tests inducing heterogeneous stress and strain
fields close to the ones reached during the real process (but CPU !II)
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Back Analysis and optimization methods with LAGAMINE

Optim
Levenberg-Marquardt optimization

Al _Lagamine
Genetic algorithm optimization

Automatic strategy to estimate material parameters
(automatic pre- and post-analysis)

Applicable on all parameters of all constitutive laws

Possibility of fitting several types of data simultaneously

® The tests chosen must be
sensitive to the parameters

® The efficiency of the method is
linked to the initial set of data, so
several initial sets of data are to
be tested to avoid local minima

®* More efficient for homogeneous
materials and well-posed
problems

* |[f tests are not enough sensitive to
the parameters then identification of
relations between these parameters

® Same solutions are identified
whatever are the initial sets of
parameters randomly chosen (no
local minimum)

®* More efficient for heterogeneous
materials and ill-posed problems

(with lot of uncertainties)
30



Back Analysis and optimization methods with LAGAMINE

Optim
Levenberg-Marquardt optimization

Al _Lagamine
Genetic algorithm optimization

Automatic strategy to estimate material parameters
(automatic pre- and post-analysis)

Applicable on all parameters of all constitutive laws

Possibility of fitting several types of data simultaneously

® The tests chosen must be
sensitive to the parameters

® The efficiency of the method is
linked to the initial set of data, so
several initial sets of data are to
be tested to avoid local minima

* |[f tests are not enough sensitive to
the parameters then identification of
relations between these parameters

® Same solutions are identified
whatever are the initial sets of
parameters randomly chosen (no
local minimum)

®* More efficient for homogeneous
materials and well-posed
problems

®* More efficient for heterogeneous
materials and ill-posed problems
(with lot of uncertainties)
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Back Analysis and optimization methods with LAGAMINE

But be careful, these tools can not replace

any physical interpretation!
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Some references on optimization methods

Geotechnics (laboratory or in situ measurements):

Levasseur S., Malécot Y., Boulon M., Flavigny E. (2008) Soil parameter
identification using a genetic algorithm. Int. J. Numer. Anal. Meth. Geomech.,
vol. 32(2): 189-213.

Levasseur S., Malécot Y., Boulon M., Flavigny E. (2009) Statistical inverse
analysis based on genetic algorithm and principal component analysis:
Method and developments using synthetic data. Int. J. Numer. Anal. Meth.
Geomech., vol. 33(12): 1485-1511.

Levasseur S., Malécot Y., Boulon M., Flavigny E. (2010) Statistical inverse
analysis based on genetic algorithm and principal component analysis:
Applications to excavation problems and pressuremeter tests. Int. J. Numer.
Anal. Meth. Geomech., vol. 34(5): 471-491.

Mechanic of materials:

Bouffioux, C, Lequesne, C, Vanhove, H, Duflou, J. R, Pouteau, P, Duchene, L,
& Habraken, A.M. (2011). Experimental and numerical study of an AIMgSc
sheet formed by an incremental process. Journal of Materials Processing
Technology.

Flores, P, Duchene, L, Bouffioux, C, Lelotte, T, Henrard, C, Pernin, N, Van
Bael, A, He, S, Duflou, J, & Habraken, A.M. (2007). Model Identification and
FE Simulations Effect of Different Yield Loci and Hardening Laws in Sheet

Forming. International Journal of Plasticity, 23(3), 420-449. 33



