

Equivalent Static Wind Loads for structures with non-proportional damping

N. Blaise, T. Canor & V. Denoël

University of Liège (Belgium)

University of Cape Town, South Africa
2 September 2013

Introduction

Illustrative example

Equivalent static wind loads

Conclusion

Analysis of structures under random excitations

Structures

are subjected to wind excitations

Wembley Square, Cape town (2009)

Vista High school, Cape town (2009)

Dynamic analysis of large structures

■ Modal basis

$$\Phi^T \mathbf{M} \Phi = \mathbf{I} \quad \Phi^T \mathbf{C} \Phi = \mathbf{D} \quad \Phi^T \mathbf{K} \Phi = \boldsymbol{\Omega}$$

Normal modes of vibration
Modal damping matrix
Modal stiffness matrix (diagonal)

□ Rayleigh Damping

$$\mathbf{C} = \alpha \mathbf{K} + \beta \mathbf{M} \rightarrow \mathbf{D} = \mathbf{D}_d \text{ (diagonal)}$$

Dynamic analysis of large structures

■ Modal basis

$$\Phi^T \mathbf{M} \Phi = \mathbf{I} \quad \Phi^T \mathbf{C} \Phi = \mathbf{D} \quad \Phi^T \mathbf{K} \Phi = \mathbf{\Omega}$$

Normal modes of vibration
Modal damping matrix
Modal stiffness matrix (diagonal)

□ Rayleigh Damping

$$\mathbf{C} = \alpha \mathbf{K} + \beta \mathbf{M} \rightarrow \mathbf{D} = \mathbf{D}_d \text{ (diagonal)}$$

■ Sources of non-proportionality

□ damping devices (TMD, TLCD), aerodynamic damping and...

D is **not** diagonal

Dynamic analysis of large structures

■ Modal basis

$$\Phi^T \mathbf{M} \Phi = \mathbf{I} \quad \Phi^T \mathbf{C} \Phi = \mathbf{D} \quad \Phi^T \mathbf{K} \Phi = \mathbf{\Omega}$$

Normal modes of vibration
Modal damping matrix
Modal stiffness matrix (diagonal)

□ Rayleigh Damping

$$\mathbf{C} = \alpha \mathbf{K} + \beta \mathbf{M} \rightarrow \mathbf{D} = \mathbf{D}_d \text{ (diagonal)}$$

■ Sources of non-proportionality

□ damping devices (TMD, TLCD), aerodynamic damping and...

D is **not** diagonal

■ Coupled system of equation of motion

$$\ddot{\mathbf{q}} + \mathbf{D}\dot{\mathbf{q}} + \mathbf{\Omega}\mathbf{q} = \mathbf{g}$$

Modal amplitudes
Generalized forces

Dynamic analysis of large structures

■ Split damping matrix

$$\mathbf{D} = \mathbf{D}_d + \mathbf{D}_o$$
$$\begin{pmatrix} \square & \square & \square \\ \square & \square & \square \\ \square & \square & \square \end{pmatrix} = \begin{pmatrix} \square & & \\ & \square & \\ & & \square \end{pmatrix} + \begin{pmatrix} \square & \square & \square \\ \square & \square & \square \\ \square & \square & \square \end{pmatrix}$$

Diagonal elements Off-diagonal elements

¹ Rayleigh. (1877). The Theory of Sound. Vol. 1. New-York : Dover Publication

Dynamic analysis of large structures

■ Split damping matrix

$$\mathbf{D} = \mathbf{D}_d + \mathbf{D}_o$$
$$\begin{pmatrix} \square & \square & \square \\ \square & \square & \square \\ \square & \square & \square \end{pmatrix} = \begin{pmatrix} \square & & \\ & \square & \\ & & \square \end{pmatrix} + \begin{pmatrix} \square & \square & \square \\ \square & \square & \square \\ \square & \square & \square \end{pmatrix}$$

Diagonal elements Off-diagonal elements

■ Decoupling approximation¹

$$\mathbf{H}_d = (-\mathbf{I}\omega^2 + j\omega\mathbf{D}_d + \mathbf{\Omega})^{-1} \rightarrow \begin{array}{l} \text{Inversion of a diagonal matrix only} \\ \text{Decoupled system} \end{array}$$

¹ Rayleigh. (1877). The Theory of Sound. Vol. 1. New-York : Dover Publication

Dynamic analysis of large structures

■ Split damping matrix

$$\mathbf{D} = \mathbf{D}_d + \mathbf{D}_o$$

Diagonal elements Off-diagonal elements

■ Decoupling approximation¹

$$\mathbf{H}_d = (-\mathbf{I}\omega^2 + j\omega\mathbf{D}_d + \mathbf{\Omega})^{-1} \rightarrow \begin{array}{l} \text{Inversion of a diagonal matrix only} \\ \text{Decoupled system} \end{array}$$

■ Full matrix inversion

$$\mathbf{H} = (-\mathbf{I}\omega^2 + j\omega\mathbf{D} + \mathbf{\Omega})^{-1} \rightarrow \begin{array}{l} \text{Full matrix inversion} \\ \text{Coupled system} \end{array}$$

$$\mathbf{H} = (\mathbf{I} + j\omega\mathbf{H}_d\mathbf{D}_o)^{-1} \mathbf{H}_d$$

¹ Rayleigh. (1877). The Theory of Sound. Vol. 1. New-York : Dover Publication

Asymptotic expansion method

■ Key-idea¹

$$\mathbf{H} = (\mathbf{I} + j\omega \mathbf{H}_d \mathbf{D}_o)^{-1} \mathbf{H}_d$$

$$(\mathbf{I} + \mathbf{X})^{-1} \simeq \mathbf{I} - \mathbf{X} + \mathbf{X}^2 - \dots = \mathbf{I} + \sum_{i=1}^k (-\mathbf{X})^i$$

Condition: $r(\mathbf{X}) = \|\boldsymbol{\lambda}\|_\infty < 1$

↑
Eigenvalues of \mathbf{X}

Asymptotic expansion method

■ Key-idea¹

$$\mathbf{H} = (\mathbf{I} + j\omega \mathbf{H}_d \mathbf{D}_o)^{-1} \mathbf{H}_d$$

$$(\mathbf{I} + \mathbf{X})^{-1} \simeq \mathbf{I} - \mathbf{X} + \mathbf{X}^2 - \dots = \mathbf{I} + \sum_{i=1}^k (-\mathbf{X})^i$$

Condition: $r(\mathbf{X}) = \|\boldsymbol{\lambda}\|_\infty < 1$

↑
Eigenvalues of \mathbf{X}

■ Approximation of \mathbf{H}

$$\mathbf{H}_k = \mathbf{H}_d + \underbrace{\sum_{i=1}^k (-j\omega)^i (\mathbf{H}_d \mathbf{D}_o)^i \mathbf{H}_d}_{\text{Corrections terms (non-diagonal)}}$$

No full matrix inversion
Inversion of a diagonal matrix only

Approximate the coupled system

¹ Denoël and Degée. (2009). Asymptotic expansion of slightly coupled modal dynamic transfer functions non-proportional damping. *Journal of Sound and Vibration* 328, 1-2, 1-8

Stochastic modal analysis

■ Exact solution

$$\mathbf{S}^{(q)} = \mathbf{H} \mathbf{S}^{(g)} \mathbf{H}^*$$

↗ PSD matrix of generalized forces
↘ PSD matrix of modal displacements

¹ Canor, Blaise and Denoël. (2012). Efficient uncoupled stochastic analysis with non-proportional damping. *Journal of Sound and Vibration* 331, 24, 5283-5291

Stochastic modal analysis

■ Exact solution

$$\mathbf{S}^{(q)} = \mathbf{H} \mathbf{S}^{(g)} \mathbf{H}^*$$

↗ PSD matrix of generalized forces
↘ PSD matrix of modal displacements

■ Decoupling approximation

$$\mathbf{S}^{(q_d)} = \mathbf{H}_d \mathbf{S}^{(g)} \mathbf{H}_d^*$$

¹ Canor, Blaise and Denoël. (2012). Efficient uncoupled stochastic analysis with non-proportional damping. *Journal of Sound and Vibration* 331, 24, 5283-5291

Stochastic modal analysis

■ Exact solution

$$\mathbf{S}^{(q)} = \mathbf{H} \mathbf{S}^{(g)} \mathbf{H}^*$$

↗ PSD matrix of generalized forces
 ↘ PSD matrix of modal displacements

■ Decoupling approximation

$$\mathbf{S}^{(q_d)} = \mathbf{H}_d \mathbf{S}^{(g)} \mathbf{H}_d^*$$

■ Stochastic modal analysis¹

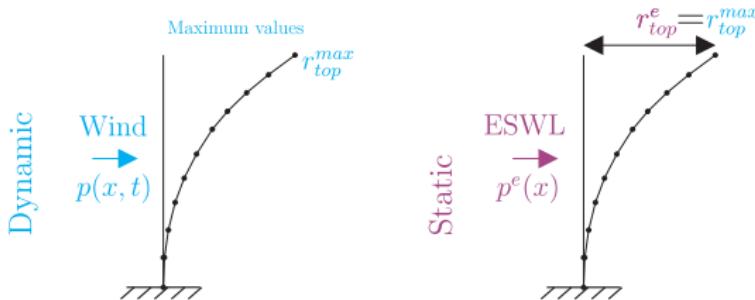
$$\mathbf{S}^{(q_k)} = \mathbf{H}_k \mathbf{S}^{(g)} \mathbf{H}_k^*$$

↙

$$\mathbf{S}^{(q_k)} = \mathbf{S}^{(q_d)} + \underbrace{\sum_{i=1}^k \Delta \mathbf{S}^{(q_i)}}_{\text{ Corrections terms due to non-proportionality damping}}$$

↗ Solution in the uncoupled system

Equivalent static wind loads



■ Chen & Kareem formulation¹

$$\mathbf{p}_j^e = g_j \sum_{m=1}^M W_{jm} \boldsymbol{\psi}_m$$

■ Objective :

Approximate formulation $\mathbf{p}_j^{e,k}$ in case of non-proportional damping

¹ Chen, and Kareem. (2009). Equivalent static wind loads for buffeting response of bridges by mass and liquid dampers. *Journal of Structural Engineering-Asce* 127, 12, 1467-1475

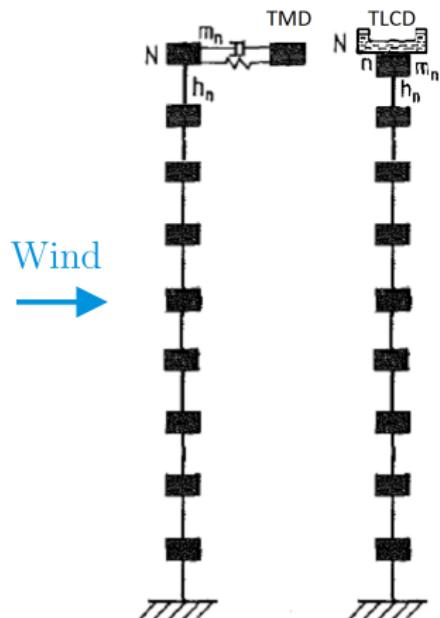
Introduction

Illustrative example

Equivalent static wind loads

Conclusion

306 m Tall building



- 10-lumped-mass cantilever beam model
- Random excitation : **wind**
 - 1-D Gaussian velocity field
- Structural and aerodynamic data from¹
- Two studied cases :
 - Tuned Mass Damper
 - Tuned Liquid Column Damper

¹ Xu, Samali, and Kwok. (2009). Control of along-wind response of structures by mass and liquid dampers. *Journal of Engineering Mechanics* 118, 1, 20-39

Modal properties

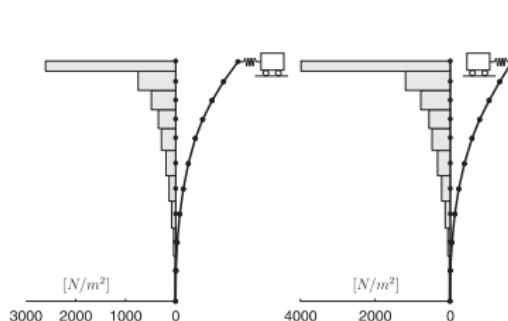
■ Inertial forces per unit surface

$$\Psi_m = \mathbf{K} \Phi_m$$

\curvearrowleft m^{th} inertial force
 \curvearrowright m^{th} modal shape

■ First two modes (five modes considered for the analysis)

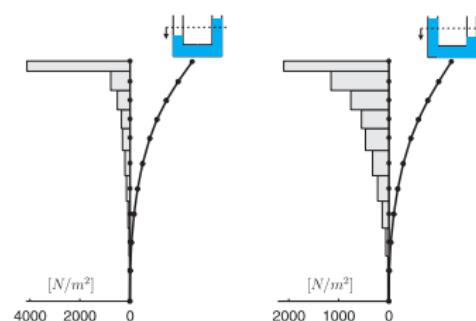
With TMD



$$f_1 = 0.16 \text{Hz}$$
$$\xi_1 = 6.5\%$$

$$f_2 = 0.19 \text{Hz}$$
$$\xi_2 = 9.7\%$$

With TLCD



$$f_1 = 0.16 \text{Hz}$$
$$\xi_1 = 2.5\%$$

$$f_2 = 0.19 \text{Hz}$$
$$\xi_2 = 3.5\%$$

Structural analysis

■ Covariance matrix of modal displacements

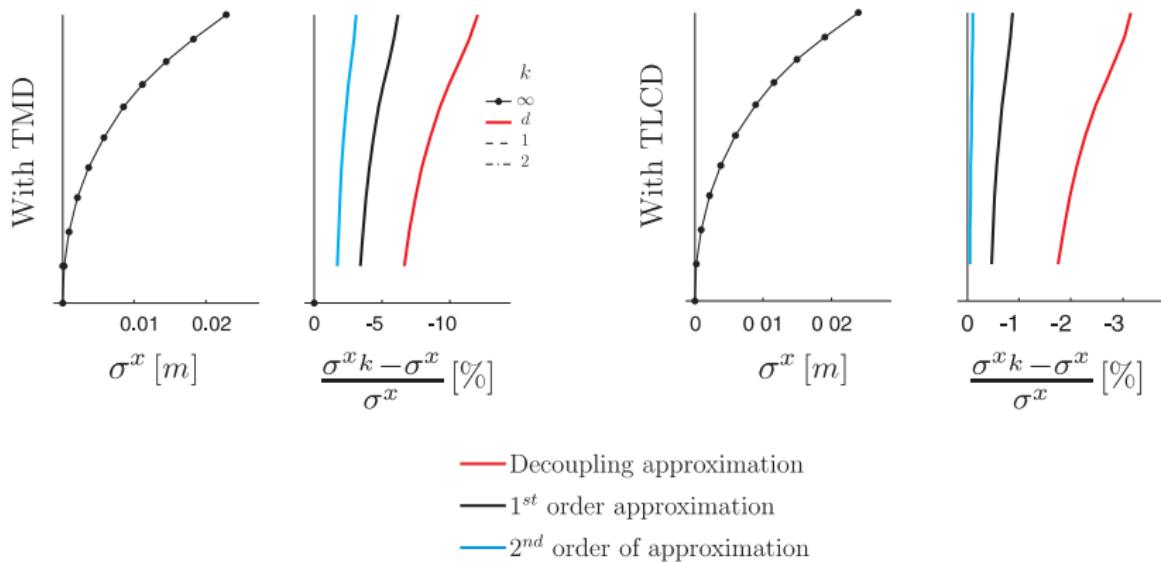
$$\int_{-\infty}^{+\infty} \mathbf{S}^{(q_k)} d\omega = \mathbf{C}^{(q_d)} + \sum_{i=1}^k \Delta \mathbf{C}^{(q_i)}$$

	Exact solution (k=∞)	Max. relative errors		
		Decoupled (k=0)	k th approximation of H (k=1)	(k=2)
With TMD	$C^{(q)}$ 	0.02 0.01 [m ²] 0	23%	14% 6%

	Exact solution (k=∞)	Max. relative errors		
		Decoupled (k=0)	k th approximation of H (k=1)	(k=2)
With TLCD	$C^{(q)}$ 	0.02 0.01 [m ²] 0	7%	2% ≈0%

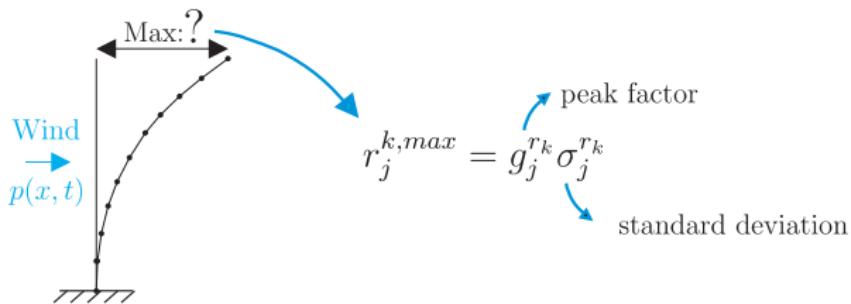
Structural analysis

■ Standard deviations of nodal displacements



Structural design

- Envelope values (min and max) of the structural responses
 - Extreme value theory



Introduction

Illustrative example

Equivalent static wind loads

Conclusion

Asymptotic expansion method

■ Weighted combinations of the inertial forces

$$\mathbf{p}_j^{e,k} = g_j^k \sum_m^M W_{jm}^k \psi_m$$

→ k^{th} approximation of the weighting coefficients

$$W_{jm}^k = \alpha_j^k W_{jm}^d + \sum_{i=1}^k \Delta W_{jm}^i$$

Asymptotic expansion method

■ Weighted combinations of the inertial forces

$$\mathbf{p}_j^{e,k} = g_j^k \sum_m^M W_{jm}^k \psi_m$$

→ k^{th} approximation of the weighting coefficients

$$W_{jm}^k = \alpha_j^k W_{jm}^d + \sum_{i=1}^k \Delta W_{jm}^i$$

■ Definition of the ESWL

→ k^{th} approximation of the ESWL

$$\mathbf{p}_j^{e,k} = \alpha_j^k \mathbf{p}_j^{e,d} + \Delta \mathbf{p}_j^{e,k}$$

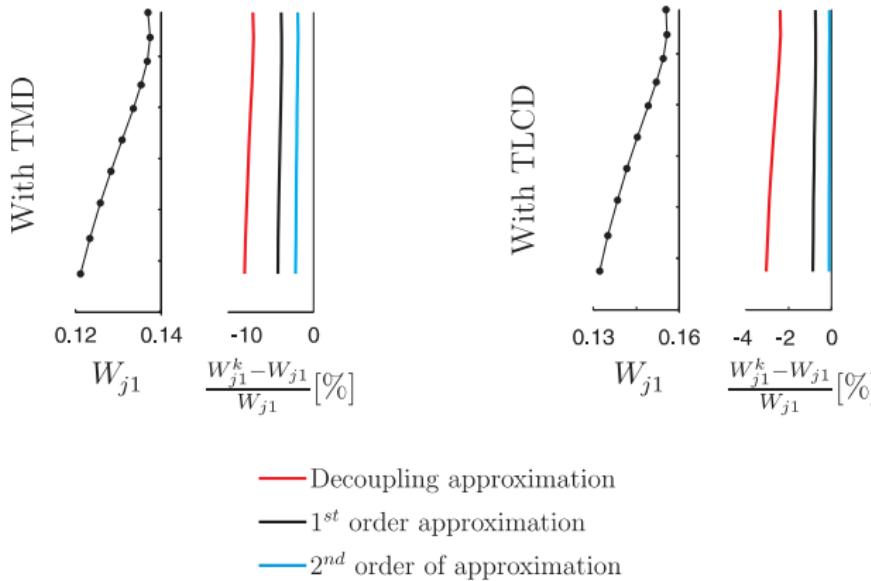
→ correction resulting from the
non-proportionality of damping

→ ESWL for the uncoupled system

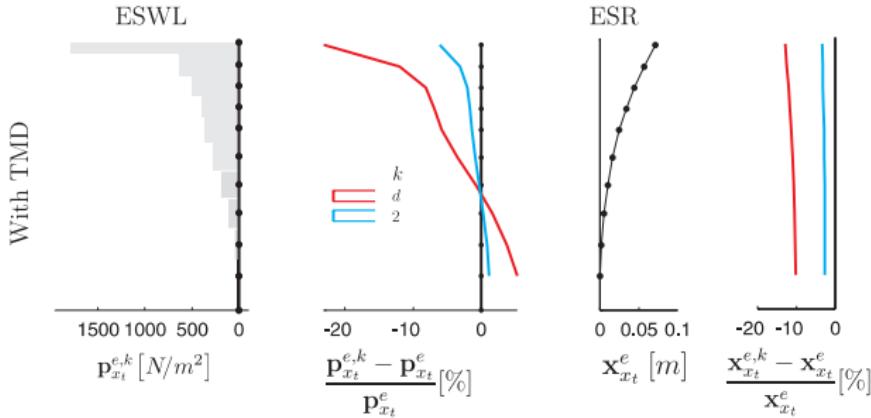
→ scaled coefficients

Weighting coefficients

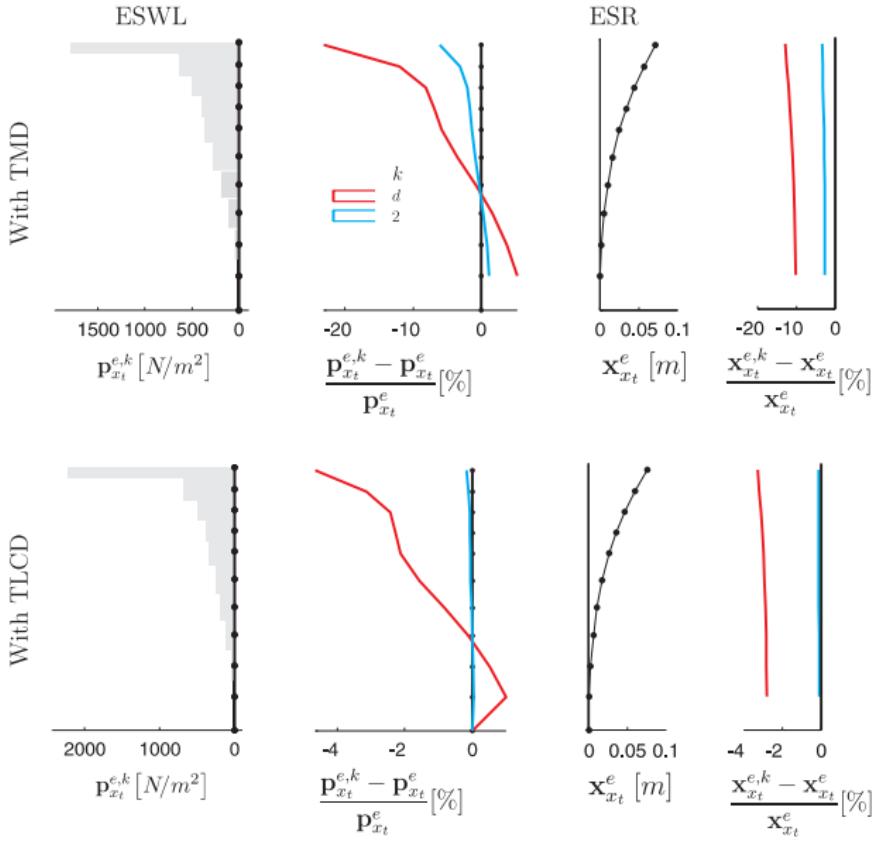
■ First inertial force



ESWL-Horizontal displacement at the top



ESWL-Horizontal displacement at the top



Introduction
oooooo

Illustrative example
ooooo

Equivalent static wind loads
ooo

Conclusion

Introduction

Illustrative example

Equivalent static wind loads

Conclusion

- Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion

- Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion
- New method for the establishment of ESWL for structures with non-proportional damping analysed in the modal basis

- Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion
- New method for the establishment of ESWL for structures with non-proportional damping analysed in the modal basis
- Studied case : 306 m Tall building
 - Second order approximation of \mathbf{H} is sufficient
 - ESWL obtained with the new method correctly fit the real ones

- Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion
- New method for the establishment of ESWL for structures with non-proportional damping analysed in the modal basis
- Studied case : 306 m Tall building
 - Second order approximation of \mathbf{H} is sufficient
 - ESWL obtained with the new method correctly fit the real ones
- Applications
 - Equivalent static design
 - Structural optimization using ESWL

- Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion
- New method for the establishment of ESWL for structures with non-proportional damping analysed in the modal basis
- Studied case : 306 m Tall building
 - Second order approximation of \mathbf{H} is sufficient
 - ESWL obtained with the new method correctly fit the real ones
- Applications
 - Equivalent static design
 - Structural optimization using ESWL
- Perspective
 - Dynamic system with non-linear terms

The team...

Thomas Canor

Vincent Denoël

...thanks you for your kind attention

Read out more about us on : www.orbi.ulg.ac.be

Contact me at : N.Blaise@ulg.ac.be

Questions ?

