Illustrative example 00000

Equivalent static wind loads 000

Conclusion

Equivalent Static Wind Loads for structures with non-proportional damping

N. Blaise, T. Canor & V. Denoël

University of Liège (Belgium)

University of Cape Town, South Africa 2 September 2013

Illustrative example

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Introduction

Illustrative example

Equivalent static wind loads

Introduction Illustrative example Equivalent static wind loads •00000 Analysis of structures under random excitations

Structures

View from the sky, Cape town

are subjected to wind excitations

Wembley Square, Cape town (2009)

Vista High school, Cape town (2009)

□ Rayleigh Damping

 $\mathbf{C} = \alpha \mathbf{K} + \beta \mathbf{M} \longrightarrow \mathbf{D} = \mathbf{D}_d$ (diagonal)

□ Rayleigh Damping

$$\mathbf{C} = \alpha \mathbf{K} + \beta \mathbf{M} \implies \mathbf{D} = \mathbf{D}_d \quad \text{(diagonal)}$$

Sources of non-proportionality damping devices (TMD, TLCD), aerodynamic damping and...

D is not diagonal

□ Rayleigh Damping

$$\mathbf{C} = \alpha \mathbf{K} + \beta \mathbf{M} \longrightarrow \mathbf{D} = \mathbf{D}_d$$
 (diagonal)

Sources of non-proportionality damping devices (TMD, TLCD), aerodynamic damping and...

D is not diagonal

Coupled system of equation of motion

 $\overset{Modal \ \mathrm{amplitudes}}{\ddot{q} + D\dot{q} + \Omega q} = \underbrace{\mathbf{g}}_{\text{Generalized forces}}$

Equivalent static wind loads 000

Conclusion

Split damping matrix

¹Rayleigh. (1877). The Theory of Sound.Vol. 1. New-York : Dover Publication

Equivalent static wind loads 000

Conclusion

Split damping matrix

Decoupling approximation¹

$\mathbf{H}_{d} = (-\mathbf{I}\omega^{2} + j\omega\mathbf{D}_{d} + \mathbf{\Omega})^{-1} \qquad \text{Inversion of a diagonal matrix only} \\ \text{Decoupled system}$

¹Rayleigh. (1877). The Theory of Sound.Vol. 1. New-York : Dover Publication

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Split damping matrix

Decoupling approximation¹

$$\mathbf{H}_{d} = (-\mathbf{I}\omega^{2} + j\omega\mathbf{D}_{d} + \mathbf{\Omega})^{-1} \qquad \text{Inversion of a diagonal matrix only} \\ \text{Decoupled system}$$

Full matrix inversion

$$\mathbf{H} = (-\mathbf{I}\omega^2 + j\omega\mathbf{D} + \mathbf{\Omega})^{-1} \longrightarrow$$
Full matrix inversion
Coupled system
$$\mathbf{H} = (\mathbf{I} + j\omega\mathbf{H}_d\mathbf{D}_o)^{-1}\mathbf{H}_d$$

¹Rayleigh. (1877). The Theory of Sound.Vol. 1. New-York : Dover Publication

Equivalent static wind loads $_{\rm OOO}$

Conclusion

$$\begin{aligned} & \blacksquare \mathsf{Key-idea}^{1} \\ & \mathbf{H} = (\mathbf{I} + j\omega \mathbf{H}_{d} \mathbf{D}_{o})^{-1} \mathbf{H}_{d} \\ & \checkmark \\ & (\mathbf{I} + \mathbf{X})^{-1} \simeq \mathbf{I} - \mathbf{X} + \mathbf{X}^{2} - \dots = \mathbf{I} + \sum_{i=1}^{k} (-\mathbf{X})^{i} \\ & \underbrace{\mathrm{Condition:}}_{\text{Eigenvalues of } \mathbf{X}} r(\mathbf{X}) = ||\mathbf{\lambda}||_{\infty} < 1 \\ & \searrow_{\text{Eigenvalues of } \mathbf{X}} \end{aligned}$$

¹Denoël and Degée. (2009). Asymptotic expansion of slightly coupled modal dynamic transfer functions non-proportional damping. *Journal of Sound and Vibration* 328, 1-2, 1-8

1

_1/ 1/

Equivalent static wind loads $_{\rm OOO}$

Conclusion

$$\mathbf{H} = (\mathbf{I} + j\omega\mathbf{H}_{d}\mathbf{D}_{o})^{-1}\mathbf{H}_{d}$$

$$\mathbf{I} = (\mathbf{I} + j\omega\mathbf{H}_{d}\mathbf{D}_{o})^{-1}\mathbf{H}_{d}$$

$$\mathbf{I} = (\mathbf{I} + j\omega\mathbf{H}_{d}\mathbf{D}_{o})^{-1}\mathbf{H}_{d}$$

$$\mathbf{I} = (\mathbf{I} + \mathbf{X})^{-1} \simeq \mathbf{I} - \mathbf{X} + \mathbf{X}^{2} - \dots = \mathbf{I} + \sum_{i=1}^{k} (-\mathbf{X})^{i}$$

$$\underline{\mathbf{Condition:}} r(\mathbf{X}) = ||\mathbf{\lambda}||_{\infty} < 1$$

$$\underline{\mathbf{Condition:}} r(\mathbf{X}) = ||\mathbf{X}||_{\infty} < 1$$

$$\underline{\mathbf{Condit$$

¹Denoël and Degée. (2009). Asymptotic expansion of slightly coupled modal dynamic transfer functions non-proportional damping. *Journal of Sound and Vibration* 328, 1-2, 1-8

Equivalent static wind loads 000

Conclusion

Exact solution

 $\mathbf{S}^{(q)} = \mathbf{HS}^{(g)} \mathbf{H}^{*}$ PSD matrix of modal displacements

¹Canor, Blaise and Denoël. (2012). Efficient uncoupled stochastic analysis with non-proportional damping. *Journal of Sound and Vibration* 331, 24, 5283-5291

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Exact solution

 $\begin{array}{c} & \text{PSD matrix of generalized forces} \\ \mathbf{S}^{(q)} = \mathbf{HS}^{(g)}\mathbf{H}^{*} \\ & \quad \text{PSD matrix of modal displacements} \end{array}$

Decoupling approximation

 $\mathbf{S}^{(q_d)} = \mathbf{H}_d \mathbf{S}^{(g)} \mathbf{H}_d^*$

¹Canor, Blaise and Denoël. (2012). Efficient uncoupled stochastic analysis with non-proportional damping. *Journal of Sound and Vibration* 331, 24, 5283-5291

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Exact solution

 $\mathbf{S}^{(q)} = \mathbf{HS}^{(g)}\mathbf{H}^{*}$ PSD matrix of modal displacements

Decoupling approximation

$$\mathbf{S}^{(q_d)} = \mathbf{H}_d \mathbf{S}^{(g)} \mathbf{H}_d^*$$

Stochastic modal analysis¹

$$\mathbf{S}^{(q_k)} = \mathbf{H}_k \mathbf{S}^{(g)} \mathbf{H}_k^*$$

$$\mathbf{S}^{(q_k)} = \mathbf{S}^{(q_d)} + \underbrace{\sum_{i=1}^k \Delta \mathbf{S}^{(q_i)}}_{\text{Corrections terms due to non-proportionality}}$$

¹Canor, Blaise and Denoël. (2012). Efficient uncoupled stochastic analysis with non-proportional damping. *Journal of Sound and Vibration* 331, 24, 5283-5291

damping

Equivalent static wind loads

Chen & Kareem formulation¹

$$\mathbf{p}_j^e = g_j \sum_{m=1}^M W_{jm} \boldsymbol{\psi}_m$$

Objective :

Approximate formulation $\mathbf{p}_{i}^{e,k}$ in case of non-proportional damping

¹Chen, and Kareem. (2009). Equivalent static wind loads for buffeting response of bridges by mass and liquid dampers. *Journal of Structural Engineering-Asce* 127, 12, 1467-1475

Illustrative example

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Introduction

Illustrative example

Equivalent static wind loads

Introduction 000000 306 m Tall building

Illustrative example

Equivalent static wind loads $_{\rm OOO}$

Conclusion

- ■10-lumped-mass cantiliver beam model
- Random excitation : wind
 1-D Gaussian velocity field
- Structural and aerodynamic data from¹
- Two studied cases :
 Tuned Mass Damper
 Tuned Liquid Column Damper

¹Xu, Samali, and Kwok. (2009). Control of along-wind response of structures by mass and liquid dampers. *Journal of Engineering Mechanics* 118, 1, 20-39

Introduction 000000 Modal properties Illustrative example

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Inertial forces per unit surface

$$\Psi_m = \mathbf{K} \Phi_m$$

$$\Psi_m = \mathbf{K} \Phi_m$$

$$\mathbf{M}^{th} \text{ modal shape}$$

First two modes (five modes considered for the analysis)

Introduction 000000 Structural analysis Illustrative example

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Covariance matrix of modal displacements

$$\int_{-\infty}^{+\infty} \mathbf{S}^{(q_k)} \, d\omega = \mathbf{C}^{(q_d)} + \sum_{i=1}^k \Delta \mathbf{C}^{(q_i)}$$

Introduction 000000 Structural analysis Illustrative example

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Standard deviations of nodal displacements

Illustrative example ○○○○● Equivalent static wind loads $_{\rm OOO}$

Conclusion

Envelope values (min and max) of the structural responses
Extreme value theory

Illustrative example

Equivalent static wind loads $_{\odot\odot\odot}$

Conclusion

Introduction

Illustrative example

Equivalent static wind loads

Introduction OCOCO Asymptotic expansion method Equivalent static wind loads $_{\odot \odot}$

Conclusion

Weighted combinations of the inertial forces

 $\mathbf{p}_{j}^{e,k} = g_{j}^{k} \sum_{m}^{M} \underbrace{W_{jm}^{k}}_{km} \boldsymbol{\psi}_{m}$ $\mathbf{k}^{th} \text{ approximation of the weighting coefficients}$ $W_{jm}^{k} = \alpha_{j}^{k} W_{jm}^{d} + \sum_{i=1}^{k} \Delta W_{jm}^{i}$

Introduction 00000 Illustrative example 00000 Asymptotic expansion method Equivalent static wind loads $_{\odot \odot}$

Conclusion

Weighted combinations of the inertial forces

$$\begin{split} \mathbf{p}_{j}^{e,k} &= g_{j}^{k} \sum_{m}^{M} \overbrace{\psi_{jm}}^{W_{jm}} \psi_{m} \\ & \mathbf{k}^{th} \text{ approximation of the weighting coefficients} \\ & W_{jm}^{k} = \alpha_{j}^{k} W_{jm}^{d} + \sum_{i=1}^{k} \Delta W_{jm}^{i} \end{split}$$

Definition of the ESWL

 $\mathbf{p}_{j}^{e,k} = \alpha_{j}^{k} \underbrace{\mathbf{p}_{j}^{e,d}}_{\text{SWL}} + \underbrace{\Delta \mathbf{p}_{j}^{e,k}}_{\text{scaled coefficients}}^{\text{correction resulting from the}}_{\text{scaled coefficients}}$

Untroduction Ullus

Illustrative example

Equivalent static wind loads $\odot \bullet \odot$

Conclusion

■First inertial force

Illustrative example 00000

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Introduction

Illustrative example

Equivalent static wind loads

Illustrative example 00000

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion

Illustrative example

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion

■New method for the establishment of ESWL for structures with non-proportional damping analysed in the modal basis

Illustrative example 00000

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion

New method for the establishment of ESWL for structures with non-proportional damping analysed in the modal basis

Studied case : 306 m Tall building
 Second order approximation of H is sufficient
 ESWL obtained with the new method correctly fit the real ones

Illustrative example 00000

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion

New method for the establishment of ESWL for structures with non-proportional damping analysed in the modal basis

Studied case : 306 m Tall building
 Second order approximation of H is sufficient
 ESWL obtained with the new method correctly fit the real ones

Applications
Equivalent static design

□ Structural optimization using ESWL

Illustrative example 00000

Equivalent static wind loads $_{\rm OOO}$

Conclusion

Asymptotic expansion of the modal transfer matrix enables to avoid full transfer matrix inversion

New method for the establishment of ESWL for structures with non-proportional damping analysed in the modal basis

Studied case : 306 m Tall building
 Second order approximation of H is sufficient
 ESWL obtained with the new method correctly fit the real ones

Applications
 Equivalent static design
 Structural optimization using ESWL

Perspective
Dynamic system with non-linear terms

Illustrative example 00000

Equivalent static wind loads $_{\rm OOO}$

Conclusion

The team...

... thanks you for your kind attention

Read out more about us on : www.orbi.ulg.ac.be

Contact me at : N.Blaise@ulg.ac.be

Illustrative example 00000

Equivalent static wind loads $_{\rm OOO}$

Conclusion

${\sf Questions}\,?$

