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ABSTRACT: Usually, wind structural design is often carried out by a recourse to the concept of equivalent
static wind loads. The main advantage of such loadings is to reproduce, with static analyses, the same extreme
structural responses as those resulting from a formal buffeting analysis. This paper proposes an asymptotic
method for the computation of equivalent static wind loads for structures with non-proportional damping in
a modal framework. This method is based on recent results obtained with asymptotic expansion of the modal
transfer matrix of such structures. The method is illustrated on a wind-sensitive high building mitigated with a
tuned mass damper (TMD) or a tuned liquid column damper (TLCD). Each damping device produces a different
level of coupling allowing to study the convergence of the proposed method. For a similar level of mitigation,
the TMD introduces more coupling than the TLCD does. Relative errors on structural responses (displacements,
internal forces) are critically analysed.

1 INTRODUCTION

Over the last years, methods have been derived to
compute equivalent static wind loads for structures
with quasi-static (Davenport 1967, Holmes 1988,
Kasperski 1992) or resonant behaviour (Holmes
1996, Zhou, Gu, & Xiang 1999, Chen & Kareem
2001, Blaise & Denoël 2013), analysed in nodal or
modal basis. Equivalent static wind loads are derived
to produce, with static analyses, the same extreme
structural responses as those obtained with formal dy-
namic analyses. In the modal basis, such static load-
ings are defined as weighted combinations of inertial
loads. An inertial load statically applied to the struc-
ture produces a deflection affine to the correspond-
ing mode shape. The control of dynamic response
of wind-sensitive structure such as wide-span roofs
or bridges and high-rise buildings may be achieved
using damping devices, e.g. tuned mass damper as
well as tuned liquid dampers. These damping devices
are source of non-proportional damping and conse-
quently, the modal damping matrix and the modal
transfer matrix are no longer diagonal. In this case,
the dynamic analysis in the modal basis enables to re-
duce the size of the system, M -modes ≪ N -degrees
of freedom, but not to decoupled the modal equations.
Rayleigh (1945) has proposed a decoupling approx-

imation that neglects these off-diagonal elements of
the modal damping matrix due to their relative small-
ness compared with the diagonal ones. Recently, an
asymptotic expansion of the modal transfer matrix has
been proposed by Denoël & Degée (2009) in a deter-
ministic framework and then extend to a stochastic
context (Canor, Blaise, & Denoël 2012), that enables
to avoid full transfer matrix inversions for all frequen-
cies.

For structures with non-proportional damping, this
paper further extends the formulation of the asymp-
totic expansion to the weighting coefficients neces-
sary to derive equivalent static wind loads with the in-
ertial loads. The proposed method is formulated with
the by-products resulting from the application of the
asymptotic expansion of the modal transfer matrix.

The method is illustrated with a realistic example
and a detailed analysis of the asymptotic convergence
of both modal amplitudes and weighting coefficients
of the inertial loads is performed.

2 BUFFETING WIND ANALYSIS

We consider a stationary Gaussian random loading
ptot(t), representing wind actions, although the con-
cepts could be generalized to other loadings. For con-



venience the loading is split into a mean part µp and
a fluctuating part p(t)

ptot = µp + p. (1)

The dynamic motion x(t) of a linear structure loaded
by this random excitation, in the nodal basis, is ob-
tained by solving the equation of motion

Mẍ + Cẋ + Kx = p (2)

where M, C and K are N × N mass, damping and
stiffness matrices, respectively. Contributions to the
damping matrix are the structural Cs, concentrated Cc

(due to damping devices) and aerodynamic damping
Ca matrices. The structural responses r(t) (nodal dis-
placements, internal forces or reactions) are consid-
ered here to be expressed as linear combinations of
the nodal displacements

r = Ox (3)

where O is a matrix of influence coefficients, typically
known from the FE model. The structural response of
a given linear dynamic system can be computed us-
ing a small number M of normal modes of vibrations
(M≪N ) characterized by mode shapes Φ (Clough &
Penzien 1993). These modes are normalized to have
unit generalized masses. Using the modal superposi-
tion principle, the equation of motion (2) is written
as

q̈ + Dq̇ +Ωq = g (4)

where q(t) (x= Φq) is the vector of modal coor-
dinates, g(t) = ΦTp(t) is the vector of generalized
forces, Ω is a diagonal matrix containing generalized
stiffnesses (equal, in this case, to the squared circu-
lar frequencies) and D = ΦTCΦ is the modal damp-
ing matrix. The frequency domain formulation of the
equation of motion in the modal basis is obtained by
a side-by-side Fourier Transform of (4)

Q = H G (5)

where Q(ω) and G(ω) are respectively the Fourier
transforms of q and g. The modal transfer matrix
H(ω) is defined by

H = (Ω− ω2I + iω (Dd + Do))
−1

= (I + HdJo)
−1Hd (6)

where Dd and Do are built as Dd,ij =Dijδij (diagonal
elements) and Do,ij = Dij(1− δij) (off-diagonal el-
ements) where δij denotes the Kronecker-delta func-
tion and Hd(ω) = (Ω− ω2I + iωDd)

−1, Jo(ω)=iωDo.
The asymptotic expansion of the modal transfer ma-
trix (6) for small off diagonal elements (Denoël &
Degée 2009) gives

Hk = Hd +
k∑

i=1

(−1)i (HdJo)
i Hd (7)

where k is the approximation order of the transfer
function. The psd matrix of the modal coordinates
S(q)(ω), is obtained by

S(q)=HS(g)H∗ (8)

where the superscript ∗ denotes the conjugate trans-
pose operator and where S(g)(ω) is the psd matrix of
the generalized Gaussian forces. The kth approxima-
tion of the psd matrix of the modal displacements (8)
is obtained by

S(qk) = S(qd) +
k∑

i=1

∆S(qi); S(qd)= HdS(g)H∗
d (9)

where S(qd) (k = 0) is the psd matrix in the uncoupled
system and the successive correction terms ∆S(qi) are
expressed in a general recurrence relation

∆S(qi) i=1
= −

(
HdJoS(qd) + S(qd)J∗

oH
∗
d

)
i>1
= −

(
HdJo∆S(qi−1) +∆S(qi−1)J∗

oH
∗
d

)
−HdJo∆S(qi−2)J∗

oH
∗
d (10)

with ∆S(q0) = S(qd). In the following, the covariance
matrix C(qk) of the modal coordinates, is calculated
by integration (along the circular frequencies) of the
corresponding psd matrix

C(qk) =

∫ +∞

−∞
S(qk) dω = C(qd) +

k∑
i=1

∆C(qi) (11)

where k denotes one of the aforementioned methods,
namely (i) the exact approach (q∞ ≡ q), (ii) the de-
coupling approximation (q0 ≡ qd), (iii) the proposed
approximation with k correction terms.

The structural design needs envelope values (min-
imum and maximum) of the structural responses
which are computed here as expected values of ex-
trema on 10-minute observation windows. The enve-
lope (rmin, rmax) is defined as

rk,min = −gk ◦σrk ; rk,max = gk ◦σrk (12)

where σrk is the standard deviation of the structural
response, gk is the peak factor derived from Rice’s
formula (Rice 1945) and ◦ denotes the Hadamard
product operator. The kth approximation of standard
deviations of the structural responses are derived from
the corresponding covariance matrix of the modal dis-
placements using

σrk =
√

diag
(
ΥC(qk)ΥT) (13)

where Υ = OΦ is the matrix of modal structural re-
sponses with υim the value of the ith structural re-
sponse in the mth mode and diag is a matrix opera-
tor that keeps only the diagonal of the matrix. For the



Figure 1: First two modal horizontal components (normalized to have a top displacement equal to 10 cm) and inertial horizontal forces
per wind area. Each circle represents the nodes of the FE model. For each figure, the left and the right illustrate results for the structure
with TMD and with TLCD, respectively.

structural design, the maximum value of the jth struc-
tural response is given by the following formula with
a CQC approach:

rk,max
j = gkj

(
M∑

m=1

M∑
n=1

υjmυjnσ
qk
mn

)1/2

= gkj

∑M
m=1

∑M
n=1 υjmυjnσ

qk
mn

σrk
j

(14)

where σqk
mn = σqd

mn+
∑k

i=1∆σqi
mn is the covariance be-

tween the mth and nth modes, formally obtained with
(11), or more efficiently with an approximate relation
(Denoël 2009).

3 EQUIVALENT STATIC WIND LOAD

The static analysis under an equivalent static wind
load (ESWL) pe,k

j associated with the jth response re-
produces the maximum dynamic response rk,max

j ob-
tained with a classical buffeting analysis:

re,kj = Ape,k
j with re,kjj = rk,max

j (15)

where re,kj is a vector of structural responses under
the jth ESWL and A = OK−1 is a matrix of influence
coefficients.

Inertial forces are defined as inertial load excitation
that produce the dynamic displacement from (2) un-
der a static analysis, i.e.

x = Φq; Kx =Ψq (16)

where Ψ = KΦ is the matrix of inertial forces with
ψm the inertial force associated with the mth modal
shape. Chen & Kareem (2001) have proposed to de-
rive ESWL from combinations of these inertial forces
using adequate weighting coefficients.

What is discussed next is the formulation of these
weighting coefficients with corrections terms if the
system is coupled. The matrix of modal structural re-
sponses may be also computed with the inertial forces
as

Υ = AΨ; υjm = ajψm, (17)

and the introduction of (17) into (14) gives

rk,max
j = ajg

k
j

M∑
m=1

(∑M
n=1 υjnσ

qk
mn

σrk
j

)
ψm

= ajg
k
j

M∑
m=1

[
σrd
j

σrk
j

W d
jmψm +

k∑
i=1

∆W i
jmψm

]
where the weighting factors W d

jm and ∆W i
jm are ex-

pressed by

W d
jm =

∑M
n=1 υjnσ

qd
mn

σrd
j

; ∆W i
jm =

∑M
n=1 υjn∆σqi

mn

σrk
j

.

The kth approximation of the static loading, pe,k, is
described as a summation of two contributions: (a) a
scaling of the equivalent loading that would be ob-
tained if the system was uncoupled, pe,d and (b) a
corrective equivalent loading, ∆pk

j , resulting from the
non-proportionality of damping:

pe,k
j =

[
αk
j pe,d

j +∆pe,k
j

]
= gkj

M∑
m=1

W k
jmψm (18)

pe,d
j = gdj

M∑
m=1

W d
jmψm (19)

∆pe,k
j = gkj

M∑
m=1

k∑
i=1

∆W i
jmψm (20)

where αk
j =

(
gkj σ

rd
j

)
/
(
gdjσ

rk
j

)
is a scaling coefficient

and the kth approximation of the weighting coeffi-
cients W k

jm is derived from

W k
jm = αk

jW
d
jm +

k∑
i=1

∆W i
jm (21)

which well extends the formulation W k
jm =W d

jm cor-
responding to the case where modal coupling is ne-
glected. Notice also that αj degenerates in αj = 1 for
k = 0.



Figure 2: (a) Exact covariance matrix of the modal coordinates C(q) (b) and relative error for different approximations C(qd), (c) C(q1)

and (d) C(q2). Relative errors are expressed with respect to C(q). For each square, the upper left corner correspond to positive value
and the lower right corner to negative value.

4 ILLUSTRATION

A 76-story, 306 m tall building is analysed under wind
actions. This structure is a numerical example used in
(Xu, Samali, & Kwok 1992) to study the mitigation of
the along-wind response of structures using a tuned
liquid column damper (TLCD) instead of a tuned
mass damper (TMD). The structural model is a 10
lumped-mass cantilever model with 11 nodes and the
finite element (FE) model is an assembly of classical
2-D beam elements with two DOFs per node (rotation
and horizontal displacement). The proposed method
is illustrated on this structure, with each damping de-
vice, keeping the first four modes for the modal anal-
ysis. The TMD or the TLCD are connected to the top
floor of the building and are tuned to match the fun-
damental frequency of the structure. Both structures
(with TMD or TLCD) have similar natural frequen-
cies equal to 0.16, 0.19, 0.57 and 1.33 Hz. Figure
1 depicts the horizontal components of the first two
modes and the corresponding inertial forces. A one-
dimensional Gaussian velocity turbulence field is con-
sidered. The longitudinal turbulent component v of
the velocity field is modeled by the spectrum of lon-
gitudinal turbulence proposed by Davenport (1961).
The spanwise coherence function of v between two
points of the tower separated by a height l is mod-
elled by a decreasing exponential. Structural, TMD,
TLCD and wind load spectrum data are not reported
here for sake of conciseness but may be found in
(Xu, Samali, & Kwok 1992). In a unidimensional tur-
bulence model, a linearized expression of the zero-
mean fluctuating applied force at the ith level pi(t) is
adopted as

pi = Ca,ivi (22)

in which Ca,i reads

Ca,i =
W 10

V 10

√
6K0CdAi

(
Hi

10

)α

(23)

where W 10, V 10 K0, Cd, Ai, Hi and α are the mean
wind pressure at 10 meters, the mean wind velocity
at 10 meters, the surface drag coefficient, the drag
coefficient, the surface exposed to wind, the height
of the ith level and the exponent coefficient, respec-
tively. The aerodynamic damping is taken into ac-
count and therefore a diagonal aerodynamic damping
matrix Ca is added to the structural Cs and concen-
trated damping Cc to constitute the total damping ma-
trix C = Cs +Cc +Ca. The index of diagonality (see
Horn & Johnson 1945) defined as ρ(D) = σ

[
D−1

d Do

]
where σ [·] is the spectral radius is an indicator of the
diagonal dominance of D. A low value indicates that
the off-diagonal terms are small compared to the diag-
onal ones. The structure without damping device but
considering the non proportional aerodynamic damp-
ing has an index equal to 0.02 and the classical de-
coupling approximation may be applied. Because of
the TMD (resp. TLCD) the index of diagonality in-
creases to 1.72 (resp. 1.03) and the classical decou-
pling approximation can not be formulated anymore.
A larger diagonal index for the structure with TMD
rather than with the TLCD, indicates that the solution
with the decoupling approximation has a larger dis-
crepancy with the reference solution (k = ∞). The
reference covariance matrix (k = ∞) of modal co-
ordinates and the relative error for the different ap-
proximations are represented in Figure 2. Concerning
modes 1 and 2 the proximity of their natural frequen-
cies and the similarities of mode shapes induce dy-
namic coupling (Denoël 2009) and high modal corre-
lation coefficients equal to 0.78 and 0.5, respectively
with TMD or TLCD. Figure 2-(b) on the left indi-
cates that neglecting off-diagonal terms of the damp-
ing matrices, induces a maximum error of -23% on
the variance of mode 2. The proposed method with
first and second order correction terms offers a re-
duction of this error down to -14% and -6%, respec-
tively. Figure 2-(b) on the right indicates that the de-



Figure 3: Results for the structural displacements. The upper axis, corresponding to reference values (k =∞), is associated with lines
with circles. The lower axis, corresponding to relative errors, is associated with solid (k = d), dashed (k = 1) and dashed-dot (k = 2)
lines. (a) On the left, the peak factors and on the right standard deviations. (b) Weighting coefficients of the first and (c) the second
inertial force for each structural displacement.

coupling approximation, induces a maximum error of
-7.3% on the covariance between mode 1 and 2. Ad-
dition of the first and second correction terms reduces
this error down to -1.9% and -0.25%, respectively. For
the three approximations, the errors are the most sig-
nificant for the group of correlated modes (1 and 2).
Comparison of these relative errors on the covariance
matrix for two levels of non proportionality (quanti-
fied by ρ(D)) shows that the proposed method with
second order (or more) correction terms have to be
considered for the structure with TMD while only the
first correction term may be sufficient for the structure
with TLCD. Figure 3-(a) depicts the peak factors and
standard deviations of nodal horizontal displacements
obtained with the reference approach. On the right is
also represented the relative errors for each displace-
ment, for the first three approximations. The decou-
pling approximation leads to underestimations of the
displacements up to -12% (resp. -3%) for the struc-
ture with TMD and TLCD. With only the first cor-
rection term of the proposed method, these extreme
underestimations are divided by two (resp. by three).
The second order approximation provides underesti-
mations less than -3 % (resp. ≃ 0%) and therefore
this order of approximation is used for the computa-
tion of equivalent static wind loads. In both cases, for
the decoupling approximation, relative errors on the
peak factors are less than 2% and therefore are not
represented. For each structural displacement, Fig-
ure 3-(b) and -(c) illustrate the weighting coefficients
for the first and second inertial force, respectively.
As expected, the relative errors and the convergence
are similar to those associated with the evaluation
of the standard deviations of the structural displace-
ments. The structural displacement at the top is cho-
sen for the illustration of the proposed method. Fig-
ure 4-(a) depicts the reference equivalent static wind
loads (k = ∞) and those obtained with the decou-
pling approximation (k = 0) and with second order
correction terms (k = 2). Underestimations of the ref-
erence loadings occur with the decoupling approxi-

mation and a second order approximation is neces-
sary to correctly fit the reference static loadings. The
largest underestimations of the loadings are located
at the top of the structure. Figure 4-(b) illustrates the
static displacement under the reference ESWL. For
the structure with the TMD, the decoupling approxi-
mation produces underestimations up to -12% while
with the first two correction terms, relative errors are
reduced down to -3%. Figure 4-(c) shows the static
bending moments under the reference ESWL. The
decoupling approximation produces underestimations
up to -21% which are reduced to −1.5% with the first
two corrections terms. For the TLCD, as expected,
relative errors are smaller than those obtained for the
structure with TMD. Levels of errors for the static dis-
placements and static bending moments are similar to
those reported for the weighting coefficients, see Fig-
ure 3.

5 CONCLUSIONS

High-rise buildings may be excited by the wind load-
ing resulting in unacceptable level of displacements,
internal forces or stresses. For such cases, among
other solutions, damping devices are usually used to
mitigate the wind response of such structures. These
damping devices may be tuned mass or liquid column
dampers and introduce non-proportional damping. A
new method consisting in the asymptotic expansion of
the modal transfer matrix enables to avoid full trans-
fer matrix inversion. This work developed further the
method for the establishment of equivalent static wind
loads. The new method is illustrated with a 306 m
tall building tower with (a) a tuned mass damper and
(b) a tuned liquid column damper. Introduction of the
TMD produces a larger index of diagonality, ρ=1.72,
in comparison with ρ =1.03 for the structure with the
TLCD. Major results are listed below:

1. the asymptotic method with two corrections
terms offers an accurate estimation of the re-
sponse, while the reference solutions are ob-



Figure 4: Equivalent static analysis associated with maximisation of the top displacement xt.(a) Reference equivalent static wind
load (grey patch) and those obtained with the decoupling approximation (lighter patch) and the proposed method with second order
correction (line). (b) Reference equivalent static displacement and (c) reference equivalent static bending moments. Same conventions
of Figure 3 applied for the lower and upper axis.

tained with full inversion of the transfer matrix;
2. expressions of the asymptotic expansion of the

weighting coefficients of inertial forces have
been derived in order to compute equivalent
static wind load;

3. the decoupling approximation can not be stated
for the structure with TMD. Indeed, too large
underestimations occur for the structural dis-
placements −12% and for the evaluation of the
equivalent static wind load. Static analysis pro-
duces large underestimations of the static dis-
placements and static bending moments;

4. for the structure with the TLCD, the decoupling
approximation may be stated if relative errors
smaller than −5% are acceptable. Otherwise, the
proposed method with two correction terms pro-
duces solutions that are nearly identical to the
reference ones;

5. for this structure, peak factors dot not vary sig-
nificantly between the coupled and uncoupled
system;

6. if ESWLs are used for the envelope reconstruc-
tion problem (Blaise & Denoël 2013), the de-
coupling approximation produces large errors on
the bending moments under the ESWL that max-
imizes the top displacement. This justifies the
use of the proposed method to ensure reliabil-
ity when using equivalent static wind loads in a
structural design.
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