
Development of a didactic SPH
model

Développement d’un modèle didactique basé sur la mé-
thode numérique de « Smooth particle hydrodynamics »

Travail de fin d’études réalisé en vue de l’obtention du
grade de Master Ingénieur Civil des Constructions par
Louis Goffin

Jury:
Dr P. Archambeau (supervisor)
Prof. M. Pirotton (2nd supervisor)
Prof. B. Dewals
Prof. L. Duchêne
Dr T. Mouzelard

Année académique 2012-2013

Université de Liège – Faculté des Sciences Appliquées

Abstract

Title (en) Development of a didactic SPH model
Author Louis Goffin, Master Ingénieur Civil des Constructions
Academic year 2012-2013

The SPH method (smoothed particle hydrodynamics) is a numerical meshless, particle
and Lagrangian method. It is used in a lot of fields of engineering, such as solids mechanics,
hydraulics and astrophysics. The medium is represented thanks to a set of particles that
have an influence on each other.

First of all, the positioning of the method is discussed. The SPH method is compared
to some existing numerical methods. Its advantages and drawbacks are introduced. Its
particle, meshless and Lagrangian characteristics are compared to other existing methods.

The basics of the method are explained through the integral representation of a function
and the particle approximation. Moreover, some smoothing functions are analysed.

The SPH method being Lagrangian, the Navier-Stokes equations must be written in
the Lagrangian formalism. After this, the SPH method can be applied to the equations
of continuity and of conservation of momentum. Some practical issues linked to the SPH
method such as the neighbours search, the equations of state or the boundary conditions
are discussed.

Then, the practical implementation of the method and of the chosen options is explained
in details. An object-oriented programming was chosen for its advantages in comparison
to a classical sequential implementation.

Finally, the implemented program is tested and commented. Its advantages are high-
lighted and its drawbacks are discussed and explained. There are a lot of test cases presen-
ted. They include some validation tests (dam breaks, particles fall, etc.), some test cases
used to compare the options of the program and other tests present the possibilities of the
code.

ii

Résumé

Titre (fr) Développement d’un modèle didactique basé sur la méthode
numérique de « Smooth particle hydrodynamics »

Auteur Louis Goffin, Master Ingénieur Civil des Constructions
Année académique 2012-2013

La méthode SPH (smoothed particle hydrodynamics) est une méthode numérique me-
shless, particulaire et Lagrangienne. Elle est utilisée dans de nombreux domaines de l’in-
génierie, notamment la mécanique du solide, l’hydraulique et l’astrophysique. Le milieu est
représenté par un ensemble de particules interagissant les unes avec les autres.

Le positionnement de la méthode est d’abord traité. La méthode SPH est comparée
aux méthodes numériques existantes. Ses avantages et inconvénients sont introduits. Ses
caractéristiques Lagrangienne, meshless et particulaire sont mises en perspective par rapport
aux méthodes plus classiques.

Les fondements de la méthode sont expliqués en passant par les bases mathématiques
de la représentation intégrale d’une fonction et l’approximation de particule. De plus, une
analyse de plusieurs fonctions de lissage est menée.

La méthode étant Lagrangienne, les équations de Navier-Stokes doivent être établies
en Lagrangien. Ensuite, le formalisme SPH est appliqué aux équations de continuité et de
conservation de la quantité de mouvement. Des problèmes pratiques liés spécifiquement à
la méthode SPH sont également traités. Il s’agit de la recherche des voisins, des équations
d’état, des conditions frontières, etc.

Vient alors l’implémentation pratique de la méthode SPH et des options choisies. Tout
cela est expliqué en détail. Une programmation orientée-object a été choisie pour les avan-
tages qu’elle présente.

Finalement, le programme implémenté est testé et commenté. Ses avantages sont mis
en avant et ses faiblesses discutées et expliquées. Les cas tests présentés sont nombreux.
Ils regroupent des cas de validation (rupture de barrage, chute de particules, etc.), des cas
destinés à la comparaison de différentes options et des cas tests présentant les possibilités
du code.

iii

Acknowledgement

This master thesis was a work of more than four months. I could only achieve it thanks to
the help and advices of several people.

First of all, I would like to thank all the people that supervised me these last months. I
think especially to Mr P. Archambeau for its availability, the technical means that I could use
as well as his advices. I would like also to thank Professor M. Pirotton for the rigour and the
helpful questions he brought. I thank also the other members of the jury for their attention.

I thank Quentin Duspeaux and Gianni Costantini for having read this work despite their
busy schedule.

My close relatives were also very helpful for their support during all my studies as well
as this master thesis. I thank especially Elsia, my parents and my brother Maxim for having
supported my not always good mood during this last months.

Finally, I would like to mention the very good atmosphere in the class. It contributed
to a very good working atmosphere as well as to good relaxing times. The advices from
everyone were very helpful.

iv

Remerciements

La réalisation de ce travail de fin d’études a pu être accomplie grâce au concours de plu-
sieurs personnes.

J’aimerais adresser mes premiers remerciements à tous ceux m’ayant encadré ces der-
niers mois. Mes mots vont tout particulièrement à Monsieur P. Archambeau pour sa dis-
ponibilité, les moyens techniques mis à disposition ainsi que ses conseils de guidance ; mais
aussi à Monsieur le Professeur M. Pirotton pour la rigueur insufflée et le questionnement
suscité tout au long de ce travail. Je remercie également les autres membres du jury pour
le suivi et l’attention portée à ce mémoire.

Je remercie Quentin Duspeaux et Gianni Costantini pour la relecture de ce travail, mal-
gré leur emploi du temps chargé.

Mes proches ont également été d’une grande aide de par leur soutien tout au long
de mes études mais aussi de ce travail. Je tiens à remercier tout particulièrement Elsia,
mes parents et mon frère Maxim qui ont dû supporter mon humeur parfois difficile de ces
derniers mois.

Je ne peux conclure ces remerciements sans mentionner l’excellente ambiance présente
au sein de la classe. Cette ambiance a contribué à la fois à une atmosphère de travail saine
mais aussi à de bons moments de détente. Les conseils et points de vue de chacun m’ont
été d’une grande aide à de nombreuses reprises.

v

Contents

Objectives i

Abstract ii

Acknowledgement iv

List of Figures ix

List of Tables xii

1 Introduction 1
1.1 Numerical methods in hydraulics . 1
1.2 Grid-based and meshfree methods . 2

1.2.1 Grid-based methods . 2
1.2.2 Meshfree methods . 4

1.3 Positioning the smoothed particle hydrodynamics (SPH) method 6
1.3.1 Type of method . 6
1.3.2 History of the method . 7
1.3.3 Advantages of the method . 8

1.4 Goals of this master thesis . 9

2 Basics of the SPH method 10
2.1 Integral representation of a function and its first derivative 10
2.2 Particle approximation . 13
2.3 Support and influence domain . 15
2.4 Smoothing function . 16

2.4.1 Properties of a smoothing function 16
2.4.2 Some smoothing functions . 17

3 The SPH method applied to hydraulics 25
3.1 Navier-Stokes equations . 25

3.1.1 Analytical development in the Lagrangian formalism 26
3.1.2 Application to the SPH method 28

vi

CONTENTS vii

3.2 Numerical and implementation aspects . 31
3.2.1 Equation of state . 31
3.2.2 Artificial viscosity . 36
3.2.3 Smoothing length . 37
3.2.4 Nearest neighbours search . 38
3.2.5 Numerical precision . 39
3.2.6 Unity of the smoothing function 40
3.2.7 Boundary conditions . 43
3.2.8 Initialisation of the particles . 45
3.2.9 Time integration . 46

4 Implementation of the method 49
4.1 General scheme of the program . 49
4.2 Practical implementation of the SPH method 53

4.2.1 First choices . 53
4.2.2 The implemented program . 56
4.2.3 An alternative program . 63

4.3 How to run the program . 66
4.3.1 The input files . 66
4.3.2 The output files . 67
4.3.3 Compilation . 67

5 Testing the program 68
5.1 Test cases to validate the program . 68

5.1.1 Particles fall . 68
5.1.2 Water in a still tank . 73
5.1.3 Dam break on a dry bed . 74
5.1.4 Dam break on a wet bed . 77
5.1.5 Spinning tank . 80
5.1.6 Conclusions . 83

5.2 Comparison of some implemented options 83
5.2.1 Comparison between the different smoothing functions 83
5.2.2 Comparison between 3 integration schemes 86
5.2.3 Using a symmetry condition in order to implement a boundary . . . 89
5.2.4 Influence of the kernel gradient correction 90

5.3 Test cases to expose the possibilities . 94
5.3.1 Dam break followed by a jump . 94
5.3.2 Dam break through a grid . 97
5.3.3 3-D dam break . 98
5.3.4 Structure impact . 100
5.3.5 Conclusions . 101

CONTENTS viii

6 Conclusion 102
6.1 Summary of this master thesis . 102

6.1.1 Objectives fulfilment . 102
6.1.2 Difficulties and solutions . 103

6.2 Future . 104
6.2.1 Further work . 104
6.2.2 Potential applications . 105

A Mathematical developments 107
A.1 B in the equation of state . 107
A.2 Integration of the modified Tait equation 107
A.3 Setting of an initial pressure . 108
A.4 Coefficients used to increase the maximum smoothing length 109
A.5 Initial equilibrium of a water column . 110

A.5.1 First approach . 110
A.5.2 Second approach . 112
A.5.3 Conclusion . 113

A.6 Free-surface of a fluid in a spinning tank 113

B Additional contents 116
B.1 Still tank . 116
B.2 Spinning tank . 119
B.3 Animations . 120
B.4 Source code . 122

B.4.1 Main file . 122
B.4.2 Module file . 122

Bibliography 156

List of Figures

1.1 Eulerian grid . 3
1.2 Lagrangian grid . 4
1.3 Influence of an obstacle on an irrotational flow. (a) free channel, (b)

channel with an obstacle. 7

2.1 Graphical representation of equation (2.1) 11
2.2 Graphical representation of equation (2.4) 11
2.3 Support domain of the smoothing function contained (a) or not (b) in the

problem domain . 13
2.4 Particle approximation in 2D . 14
2.5 Support domains of particles having the same (a) or different (b) κh . . . 15
2.6 Gaussian smoothing function . 18
2.7 Bell-shaped smoothing function . 19
2.8 Cubic spline smoothing function . 19
2.9 Quadratic smoothing function . 20
2.10 Quintic smoothing function . 21
2.11 Quintic spline smoothing function . 22
2.12 Comparison of six smoothing functions 23
2.13 Comparison of six smoothing functions’ first derivatives 24

3.1 Control volume in the Lagrangian formalism 26
3.2 2-D control volume and the forces acting in the x direction 28
3.3 Very simple situation to understand the conservation of momentum 31
3.4 Comparison between the two equations of state 34
3.5 Evolution of density in respect to pressure for a quasi-incompressible fluid

(c0 = 1480 m/s) . 35
3.6 Evolution of density in respect to pressure for a quasi-incompressible fluid

(c0 = 100 m/s) . 36
3.7 Influence of the smoothing length on the number of neighbours in 1D . . . 37
3.8 Linked-list algorithm in 2D . 39
3.9 Examples of truncated smoothing functions 41
3.10 Interior, boundary and ghost particles [Randles and Libersky, 1996] 44
3.11 Two layers of boundary particles . 45

ix

LIST OF FIGURES x

3.12 Integration schemes: (a) Euler, (b) RK22 – θ = 0.5 and (c) RK22 – θ = 1 47

4.1 General scheme of an SPH program . 50
4.2 Diagram of the program . 57
4.3 Lists of sorted particles . 58
4.4 UML diagram of a dynamic list . 61
4.5 UML diagram of a linked-list . 63
4.6 UML diagram of a linked-list element . 63

5.1 Initial geometry of the test case particles fall 69
5.2 z position of a particle that falls: (a) ideal gas, (b) quasi-incompressible fluid 70
5.3 Comparison of the positions at different times 71
5.4 Comparison of the pressures and densities for a given particle 71
5.5 Symmetry axis at the end of the simulation 72
5.6 Initial geometry of the test case water in a still tank 73
5.7 (a) Pressure distribution ate the center of the tank after 5 s and (b) evol-

ution of a central particle . 74
5.8 Snapshots ate different times of the establishment of the hydrostatic pres-

sure . 75
5.9 Initial geometry of the test case dam break on a dry bed 75
5.10 Position of the front for the dam break on a dry bed 76
5.11 Snapshots of a dam break on a dry bed 77
5.12 Snapshot of a dam break on a dry bed taken from [Koshizuka and Oka,

1996] . 78
5.13 Initial geometry of the test case dam break on a dry bed 78
5.14 Snapshots of a dam break on a wet bed 79
5.15 Initial geometry of the test case spinning tank 80
5.16 Profile of the free surface for two c0 . 81
5.17 Snapshots at different times of the spinning tank 82
5.18 Calculation times for different smoothing functions 84
5.19 Comparison of the position of the wave front for three smoothing functions 85
5.20 Comparison of a slice of fluid for three smoothing functions 85
5.21 Comparison of the position of the wave front for three integration schemes 88
5.22 Comparison of a slice of fluid for three integration schemes 88
5.23 Initial geometry of test case that uses the symmetry 89
5.24 Comparison of the position of the wave front when using or not a symmetry

condition . 90
5.25 Comparison of a slice of fluid when using or not a symmetry condition . . 91
5.26 Comparison of the position of the wave front when using or not a kernel

gradient correction . 92
5.27 Comparison of a slice of fluid and a plan view when using or not a kernel

gradient correction . 93
5.28 Initial geometry of the test case dam break followed by a jump 94

LIST OF FIGURES xi

5.29 Snapshots at different times of the dam break with a jump 96
5.30 Impacting jets from the Hoover dam (source: United States Bureau of

Reclamation) . 96
5.31 Initial geometry of the test case dam break through a grid 97
5.32 Snapshots at different times of the dam break through a grid 98
5.33 Initial geometry of the test case 3-D dam break 98
5.34 Snapshots at different times of the 3-D dam break 99
5.35 Initial geometry of the test case structure impact 100
5.36 Snapshot of the a structure impact by a dam break 101

6.1 Waves impacting an oil platform . 106

A.1 Initialisation of densities . 109
A.2 Easy system to analyse the initial equilibrium 110
A.3 Distribution of the masses (a) and equivalent volumes (b) in order to have

an initial equilibrium . 113
A.4 Diagram of a rotating cylindrical tank . 114

B.1 Distribution of the pressure without the kernel gradient correction (a) and
with it (b) . 117

B.2 Evolution of the pressure without the kernel gradient correction (a) and
with it (b) . 117

B.3 Snapshots without kernel gradient correction 118
B.4 Evolution of the pressure for a column of water (a) and for two given

particles (b) . 118
B.5 Snapshots with two layers of boundary particles 119
B.6 Evolution of some parameters in test case that concerns the spinning tank 120
B.7 Tangential velocity of a particle near the boundary 121

List of Tables

1.1 Some meshfree methods . 5

2.1 Normalisation coefficients (αd) and scaling factors (κ) for some smoothing
functions . 23

3.1 Representation of a real number in the IEEE 754 standard 40
3.2 Densities of two particles when the hydrostatic pressure applies 40

4.1 Coefficients used to increase the maximum smoothing length 58
4.2 Description of the options of the parameter file 66
4.3 Saving of the mobile particles state . 67

5.1 Particles fall characteristics . 69
5.2 Characteristics of the test water in a still tank 73
5.3 Characteristics of the test dam break on a dry bed 76
5.4 Characteristics of the test dam break on a wet bed 79
5.5 Characteristics of the test spinning tank 81
5.6 Characteristics of the tests used to compare the smoothing functions . . . 84
5.7 Characteristics of the comparison between the integration schemes 86
5.8 Execution times for the comparison between the integration schemes . . . 87
5.9 Characteristics of the tests used to compare the influence of the boundary

consditions . 89
5.10 Characteristics of the tests used to compare the influence of a kernel gradi-

ent correction . 91
5.11 Characteristics of the test dam break followed by a jump 95
5.12 Characteristics of the test dam break through a grid 97
5.13 3-D dam break characteristics . 99
5.14 Characteristics of the test structure impact 100

B.1 Characteristics of additional tests for water in a still tank 116

xii

Chapter 1

Introduction

For ages, man has tried to understand and master the elements on earth. In the Antiquity,
the Greeks and Romans built aqueducts to carry water from a river or a lake into a city.
The water was used for various purposes: public baths, fountains, sanitary use, etc. These
constructions required the knowledge of a few principles.

The Romans were also among the firsts to harness the power of water with the wa-
termills. They were used for example to grind flour or to saw wood. The principle of a
watermill is still used today (but improved of course) for the production of hydroelectricity.

Archimedes stated his principle in the third century BC. He also invented the Archimedes
screw which is still used today to raise water.

Another element that man always wanted to master is the air. Leonardo da Vinci was
part of the firsts to imagine flying machines. Even if his inventions did not work, he tried
to understand the principles linked to flying. It’s only in the twentieth century (1905) that
the Wright brothers achieved the first controlled and motorised airplane flight. Nowadays,
planes are able to carry over 800 passengers.

Even if loads of principles have been discovered in the past centuries in the field of
fluid mechanics, man still wants to understand more deeply the phenomena linked to air or
water for example. Researches are actually led in various fields of fluid dynamics. To help
these researches, numerical methods are essential.

1.1 Numerical methods in hydraulics

In hydraulics, a few numerical methods can be used. The finite element method is probably
the best known method in the field of engineering. This numerical method can also be
applied to fluid dynamics as illustrated in [Chung, 1978]. The finite element method was
first invented in the 1950s to analyse the structural elements of an aircraft. The goal of this
approximate method is to solve differential equations by dividing a continuous media into
finite elements. Each element has a certain number of nodes which are used to interpolate
the variable of the differential equation.

Another numerical method available to solve differential equations is the finite volume

1

CHAPTER 1. INTRODUCTION 2

method. This method divides the computational domain into volumes and then calculates
the flows through the surfaces separating neighbouring volumes. The finite volume method
is used in the WOLF code [Archambeau et al., 2002]. This code has been developed by
the applied hydrodynamics service (HECE) at the University of Liège. This tool is used to
model free surface flows. The fields of application are wide:

• Dams breaking (e.g. gradual dam failures [Archambeau et al., 2002])

• Simulations of flood (passive flood plains, hydraulic impact of a measure, etc.)

• Wave propagation

• Erosion process

• Sedimentation problems

• etc.

I can also cite two traditional methods: finite differences and weighted residuals.
Additionnaly, methods of another kind are becoming more and more popular among sci-

entists. These methods are called meshfree methods. Unlike the previously cited methods,
the meshfree methods do not require a grid to solve a differential equation. The smoothed
particle hydrodynamics (SPH) method is part of the meshfree methods.

1.2 Grid-based and meshfree methods

The problem domains of traditional methods are divided into cells. These cells are used to
evaluate the derivatives of the differential equations. The grid that is created may lead to
a certain number of problems such as geometric problems when the domain is not regular.

Such grids are not required when using meshless methods1. This is very useful for
problems that introduce geometric difficulties (e.g. complex boundary pattern) or discon-
tinuities in the fluid (e.g. the whole domain is meshed but the fluid occupies only a small
volume). Meshless methods are freed from problems induced by a grid.

1.2.1 Grid-based methods

A grid-based method is a method that requires a mesh to run. Methods like the finite ele-
ment method (FEM) or the finite volume method are grid-based methods. The differences
are well explained in [Liu and Liu, 2003].

We will distinguish two kinds of grids: Eulerian grids and Lagrangian grids.
1Meshfree methods are also known as meshless methods.

CHAPTER 1. INTRODUCTION 3

Eulerian grid

An Eulerian grid is a grid that is fixed in the space. The grid remains at the same position
during all the simulation (if no remeshing) independently from the the material position.
When the simulated object moves, it moves through the mesh. This leads to a flow of
material through every cell’s surfaces. The method is represented graphically in the figure
1.1.

t = t0 t > t0

Figure 1.1: Eulerian grid

The Eulerian grid is used in the finite volume method for example. The main advantage
of this method is that the grid is not disturbed by the mouvement and the deformation
of the object. This is very useful in fluid dynamics. In fact, the fluid can experience large
deformations (e.g. recirculation in a turbulent flow, vortex, etc.) without having a grid
deformation.

To summarise, what matters in an Eulerian grid is the flow of material between cells.
What happens in particular for each particle of fluid is ignored (unless a particle track-
ing method is implemented). The Eulerian grid only focusses on the general behaviour
of the whole object. This is particularly well-suited for most applications in hydraulics:
steady/unsteady flows in a river, characterisation of flood plains, wave propagation, etc.

Lagrangian grid

A Lagrangian grid is a grid fixed on the material. This means that when the object studied
is deformed, the grid also deforms itself. This is represented in figure 1.2. This technique
is mainly used in the finite element method.

When the material is highly deformed, the mesh is also highly distorted. When the
cells are highly distorted, the accuracy is lessened. A solution is to remesh when the grid
becomes too distorted. This leads to a longer calculation time.

CHAPTER 1. INTRODUCTION 4

t = t0 t > t0

Figure 1.2: Lagrangian grid

1.2.2 Meshfree methods

The traditional methods such as the finite element method (FEM) and the finite difference
method (FDM) use grids, volumes or cells according to the method used. More generally,
these grids, volumes or cells can be named meshes. The meshes are necessary for FEM
and FDM to solve the differential equations that rule the physical problem. However, the
use of meshes leads to some issues such as:

• The creation of a mesh before the resolution of the problem takes a lot of time for the
engineer/analyst. The CPU time is not a restriction anymore. Thus the manpower
time is becoming a concern.

• The elements’ distortion can lead to decreased accuracy.

• Remeshing is possible in 2-D but not workable in 3-D.

• Discontinuities are not well depicted in FEM.

• As written in [Liu, 2003], FDM works very well for a large number of problems,
especially for fluid dynamics. However, FDM relies on regularly distributed nodes.

In order to avoid the limitations due to meshes, scientists and engineers developed what
is called meshfree (or meshless) methods. Ideally, these methods do not use any mesh.
The nodes are scattered over the domain in order to represent the material or the fluid.
The boundaries are also represented by a set of nodes.

[Liu, 2003] gives the minimum requirement for a meshfree method:

"A predefined mesh is not necessary, at least in field variable interpolation."

and the ideal requirement for a meshfree method:

"No mesh is necessary at all throughout the process of solving the problem
of given arbitrary geometry governed by partial differential system equations
subject to all kinds of boundary conditions."

The methods developed so far are not ideal.

CHAPTER 1. INTRODUCTION 5

A number of meshfree methods are given in the table 1.1. This list has been established
by [Liu, 2003]. It is possible that today new methods have been developed. It is interesting
to notice that the majority of these methods have been developed in the 1990s. They are
quite young compared to the finite element method which was first developed in the 1950s.
Many improvements still have to be done for these new methods.

Method Year of 1st publication
Element free Galerkin method 1994
Meshless local Petrov-Galerkin method 1998
Point interpolation method 1999
Point assembly method 1999
Finite point method 1996
Smooth particle hydrodynamics 1977
Diffuse element method 1992

Table 1.1: Some meshfree methods

Meshfree particle methods

A meshfree particle method (MPM) is a meshfree method that uses particles in order to
carry some field variables. For example, a particle can carry information such as:

• the speed,

• the density,

• the pressure,

• the stresses,

• etc.

Thus, a system is made of a discrete number of particles used to record the state of this
system. The particles can either be a discrete physical object or part of a continuum.

The MPMs can be classified into three categories according to the size of the particles
[Liu and Liu, 2003]:

1. Atomistic MPMs such as:

• the molecular dynamics method

2. Mesoscopic MPMs such as:

• dissipative particle dynamics

• lattice gas cellular automata

3. Macroscopic MPMs such as:

CHAPTER 1. INTRODUCTION 6

• Smoothed particle hydrodynamics (SPH)

• Particle-in-cell

• Fluid-in-cell

• Moving particle semi-implicit

Even if the methods cited above were developed for a given purpose, some are used today in
different fields of study. For example, the SPH method was first developed for astrophysical
problems (macroscopic scale) by [Lucy, 1977; Gingold and Monaghan, 1977]. Nowadays,
it is used in hydraulics, solid mechanics but also for atomistic scale simulations.

A MPM is more likely to be a Lagrangian method. In fact, the particles carry some
information and we follow those particles at every time step. Thus, we are interested in
the value of a variable for a given particle (whatever position the particle occupies) and not
the value of a variable at a fixed position in space. However, a few examples show that the
particles can be fixed in an Eulerian frame. But this is quite uncommon.

1.3 Positioning the smoothed particle hydrodynamics (SPH)
method

So far, we have seen a general background of the existing methods. I will now focus on
the SPH method and define its type, its history but also its advantages.

1.3.1 Type of method

The SPH method is said to be a meshfree, Lagrangian, particle method. In fact, the state
of a system is represented by a set of particles. Each particle carries some information
related to the problem that has to be solved. For example, in hydraulics, we have mainly
the position, the speed and the density as information. In solid mechanics, the stresses and
strains will also be recorder for every particle.

The method is

• meshfree because no mesh is required for field variable interpolation (minimal require-
ment). However, the SPH method is not an ideal meshfree method. Indeed, a mesh
may be required twice: at the initialisation in order to arrange the particles and when
searching for neighbours.

• Lagrangian because we are interested in the value of some variables for a given
particle. The particles move in the domain. Thus, we follow the evolution of the
variables along the path of a particle and not at a fixed position in space.

• particle because the matter/fluid is represented by a set of particles.

It is interesting to understand the meaning of smoothed particle hydrodynamics. It is
composed of three words that I will define:

CHAPTER 1. INTRODUCTION 7

• a particle is the main entity of the system. The system is based on a set of particles
which interact with each other according to the distance between them.

• smoothed refers to the weighting function2 used to take into account the influence
of the neighbouring particles on a given one.

• hydrodynamics is most probably the best domain in which the SPH method can be
applied.

In other words, the SPH method uses a set of particles which interact which each other
with a different intensity according to the distance between them. This can be easily
visualised in an hydrodynamic problem: the movement of a particle of fluid will be more
easily influenced by a near particle than by a far one. For example, let us imagine a laminar
steady flow in channel. In that situation, all the fluid particles move in the same direction.
Now, imagine that an obstacle appears in the channel. The particles directly in contact
with this obstacle will change their direction. The particles in the neighbourhood of those
ones will also change their direction and so on. But the farer particles will not be influenced
as much as the closer ones to the obstacle. This is shown in the figure 1.3.

(a) (b)

Figure 1.3: Influence of an obstacle on an irrotational flow. (a) free channel, (b) channel
with an obstacle.

1.3.2 History of the method

The SPH method was first invented by [Lucy, 1977; Gingold and Monaghan, 1977] to
solve astrophysical problems in a 3-D open space. Since the movement of the particles
in astrophysics is quite close to the one of a gas or a fluid, the classical equations of
Newtonian hydrodynamics were used. In [Gingold and Monaghan, 1977], the number of
particles used was of approximately 80 particles. Nowadays, the number of particles used
is of approximately 100000 (see for examples [Gomez-Gesteira et al., 2012a]).

2I will later use different terms to refer to the weighting function: smoothing function and kernel are
two examples.

CHAPTER 1. INTRODUCTION 8

Today, the SPH method is still used for astrophysical problems. But it has also exten-
ded to other domains such as fluid dynamics [Dalrymple and Knio, 2001; Gomez-Gesteira
et al., 2012a,b; Monaghan, 1994; Monaghan and Kos, 1999; Vacondio et al., 2012], solid
mechanics (fractures, impacts, . . . [Johnson et al., 1996; Randles and Libersky, 1996]) or
heat conduction [Chen et al., 1999].

Generally speaking, the SPH method can be used to solve differential equations. [Canor
and Denoël, 2013] used the SPH formalism to solve the transient Fokker-Planck-Kolmogorov
equation (random excitation of mechanical systems). The SPH method is very adaptive
and can be used in many study areas.

During the last decades, some drawbacks inherent to the SPH method have been iden-
tified and some improvements were proposed. Those improvements concern the boundary
conditions, the unity of the kernel (see chapter 3), etc.

Nowadays, the SPH method is still under development. For example, the boundary
conditions are improved in order to allow an inflow or outflow [Vacondio et al., 2012].

1.3.3 Advantages of the method

I will now summarise the advantages of the SPH method over traditional methods like
FDM.

• The SPH method is a meshfree method. This means that no mesh is necessary for
the computation. Actually, a mesh may be necessary for the particles initialisation
and for the searching of neighbours. However, those meshes don’t deform with
time. The distortion of the mesh is a big issue for grid-based methods such as FEM.
Indeed, when a mesh is too distorted, the results are less accurate and a remeshing is
necessary. This operation can take a lot of CPU time and may not be well executed.
For FDM, the cells must be regular in order to evaluate correctly the the spatial
derivative. If we have a complex geometry, then it is not easy (or even possible) to
have a regular mesh. A meshless method does not have the problems associated with
the use of a permanent mesh.

• The SPH method is a Lagrangian particle method. The fluid is represented by a set
of particles. Those particles carry a number of information relative to their state.
Each particle influence each other according to the distance between them. The
advantage of a particle method over a traditional method is that a particle can easily
detach from the fluid. It is impossible to represent this behaviour with a grid-based
method. Generally speaking, the discontinuities are better represented with a MPM.

• The Lagrangian feature of the SPH method also allows to follow the path of the
particles. This may be interesting for problems which involve the mixing of different
fluids.

It is important to note that the traditional methods are still of great quality for many
problems. However, in some specific cases, these methods have some limits and the SPH
method can go beyond those limitations.

CHAPTER 1. INTRODUCTION 9

1.4 Goals of this master thesis

For this master thesis, I will implement the SPH method applied to hydrodynamics. The
code that will be delivered will have a didactic purpose. In order to achieve this, the
computation code will be implemented in Fortran for its high performance. Moreover, the
system of input and output files will be thought in order to allow an easy and flexible use
of the program for the didactic purpose.

The master thesis will be organised this way:

1. I will begin with the fundamentals of the SPH method in chapter 2. I will explain the
mathematical basis as well as some general concepts like the smoothing function or
the support and influence domain.

2. Then, I will go into further details in chapter 3. In this chapter, I will apply to
hydraulics what was seen in chapter 2. I will also introduce some problems (and
solutions) linked to the SPH method.

3. In chapter 4, I will explain how the method has been implemented.

4. Finally, in chapter 5, the code will be tested an validated thanks to some benchmark
cases.

Chapter 2

Basics of the SPH method

In this chapter, I will focus on the fundamentals of the smoothed particle hydrodynamics
method. The basic idea is to represent the matter (fluid or solid) with a set of particles.
The particles are positioned in space without the help of any mesh. Only the coordinates
x = (x, y , z) describe their position.

Each particle interacts with each other. The properties of a neighbouring particle
will influence the properties of a given one. Of course, only close particles will influence
themselves.

2.1 Integral representation of a function and its first derivative

First of all, I will begin with the elementary integral representation of a function. As
explained in [Liu and Liu, 2003], a function f can be written as:

f (x) =

∫
Ω

f (x′)δ(x− x′) dx′ (2.1)

with Ω a domain that contains x and δ(x − x′) a Dirac function that can be defined
mathematically [Kreyszig, 2006] by

δ(x− x′) =

{
∞ if x = x′

0 if x 6= x′ (2.2)

and ∫ ∞
0

δ(x− x′) dx′ = 1 (2.3)

In one dimension, the equation (2.1) can be represented as in figure 2.1. As stated in [Liu
and Liu, 2003], if f (x) is defined and continuous in Ω and given that the Dirac function is
used, the integral representation (2.1) is exact.

The next step is to replace the Dirac function by the smoothing function W (x− x′, h).
The equation (2.1) becomes

〈f (x)〉 =

∫
Ω

f (x′)W (x− x′, h) dx′ (2.4)

10

CHAPTER 2. BASICS OF THE SPH METHOD 11

x

f (x)

δ(x − x ′)

x ′

f (x ′)

Figure 2.1: Graphical representation of equation (2.1)

This equation is not exact anymore since the Dirac function has been replaced. This is the
reason why f (x) is placed between 〈〉.

A graphical representation of equation (2.4) is given in figure 2.2. More details about
the smoothing function will be given later.

x

f (x)

W (x − x ′, h)

2κh

x ′

f (x ′)

Figure 2.2: Graphical representation of equation (2.4)

In equation (2.4), h is called the smoothing length. It is used to determine the spread of
the smoothing function over the domain. The initial smoothing length h0 can be determined
thanks to the initial spacing between particles (s0). h0 can range from 1 to 2 times s0

depending on the author and the problem. κh determines the support domain of the
smoothing function. It is represented in figure 2.2.

The first derivative of a function will appear in the particle approximation. [Liu and Liu,
2003] describes the mathematical development to obtain the first derivative of a function.

CHAPTER 2. BASICS OF THE SPH METHOD 12

The first derivative1 may be written as below thanks to equation (2.4).

〈∇ · f (x)〉 =

∫
Ω

∇ ·
[
f (x′)

]
W (x− x′, h) dx′ (2.5)

In this equation, the part in the integral can be written

∇ ·
[
f (x′)

]
W (x− x′, h) = ∇ ·

[
f (x′)W (x− x′, h)

]
− f (x′) · ∇W (x− x′, h) (2.6)

Combining (2.5) and (2.6), the following expression is obtained:

〈∇ · f (x)〉 =

∫
Ω

∇ ·
[
f (x′)W (x− x′, h)

]
dx′ −

∫
Ω

f (x′) · ∇W (x− x′, h) dx′ (2.7)

The divergence theorem (Gauss’s theorem) states that (in [Kreyszig, 2006]):∫
Ω

∇ · f (x) dx =

∫
S

f (x) · n dS (2.8)

with

• Ω a closed region in space,

• f (x) a vector function that is continuous, has continuous first derivative and is defined
in a domain containing Ω,

• S the surface that defines the boundary of Ω and,

• n the unit vector normal to S.

Using (2.8), equation (2.7) can be rewritten:

〈∇ · f (x)〉 =

∫
S

[
f (x′)W (x− x′, h)

]
· n dS −

∫
Ω

f (x′) · ∇W (x− x′, h) dx′ (2.9)

Two situations have now to be discussed.

1. The support domain 2κh is contained in the problem domain. This situation is
represented in figure 2.3 (a). In this case, the first term of the right-hand side (RHS)
of equation (2.9) is equal to 0. This is due to the fact that, on the problem’s domain
boundary S, f (x′)W (x − x′, h) = 0 since the smoothing function is supposed to be
defined on a compact.

2. The support domain 2κh overlaps the problem domain boundary. This is represented
in figure 2.3 (b). This leads to a non-zero smoothing function on the problem
boundary S. The first term of the RHS of equation (2.9) is not zero anymore.

CHAPTER 2. BASICS OF THE SPH METHOD 13

W

2κh

problem domain

W

2κh

problem domain

(a) (b)

Figure 2.3: Support domain of the smoothing function contained (a) or not (b) in the
problem domain

In order to simplify the problem, only the first situation will be considered for the
next developments. Nevertheless, it is important to keep in mind that, when near to
the boundary, errors will occur. It will be discussed later how to deal with a truncated
smoothing function. When considering the first situation (figure 2.3 (a)), equation (2.9)
can be simplified into

〈∇ · f (x)〉 = −
∫

Ω

f (x′) · ∇W (x− x′, h) dx′ (2.10)

Equation (2.10) shows that the approximation of the first derivative of a function is ex-
pressed with the derivative of the smoothing function instead of the first derivative of the
function itself. This avoids the use of spatial finite differences.

2.2 Particle approximation

Until now, only continuous functions were used. The SPH method uses a set of discrete
particles distributed in space. It is called the particle approximation. The development of
the particle approximation is explained in [Liu and Liu, 2003]. Each particle carries its mass
and a certain number of properties. The particle approximation is represented in figure
2.4 in 2-D. Each particle has a given mass which stays constant. It also occupies a given
volume and has a given density which both can vary in time. This can be expressed as:

mb = ρb∆Vb (2.11)

In the following developments, I will use the subscripts a and b to refer respectively to a
particle and its neighbours.

1Actually, it is the divergence that will be used. The divergence is noted divf = ∇ · f . The divergence
is operated with respect to the first derivative. This is a more general way to write a derivative. In fact,
functions like the velocity are vector functions but functions like the density are scalar functions.

CHAPTER 2. BASICS OF THE SPH METHOD 14

a

b
rab

S
Ω

κh

Figure 2.4: Particle approximation in 2D

The continuous integral (2.4) has to be transformed into a discrete sum in order to
take account for the particle approximation. Equation (2.4) can be rewritten thanks to
equation (2.11).

〈f (x)〉 =

∫
Ω

f (x′)W (x− x′, h) dx′

≈
N∑
b=1

f (xb)W (x− xb, h)∆Vb

=

N∑
b=1

mb
ρb
f (xb)W (x− xb, h) (2.12)

For a given particle a, equation (2.12) can be particularised:

〈f (xa)〉 =

N∑
b=1

mb
ρb
f (xb)W (xa − xb, h)

=

N∑
b=1

mb
ρb
f (xb)Wab (2.13)

with the shorten notation Wab = W (xa − xb, h). In the next pages, I will also use rab =

|xa − xb|.
Equation (2.13) shows that the value of a function at the position of a particle (a)

is given by a weighted sum over the values of the same function at the position of the
neighbouring particles (b). The sum is weighted by the smoothing function W (xa− xb, h).
The mass and the density of each neighbouring particle also intervene in equation (2.13).

The same reasoning can be followed for the first derivative of a function. Using equation
(2.11), equation (2.10) can be approximated as

〈∇ · f (xa)〉 = −
N∑
b=1

mb
ρb
f (xb) ∇Wab (2.14)

CHAPTER 2. BASICS OF THE SPH METHOD 15

If the gradient of the smoothing function is taken with respect to the particle a, the negative
sign in equation (2.14) can be removed as the kernel first derivative is an odd function:

〈∇ · f (xa)〉 =

N∑
b=1

mb
ρb
f (xb) ∇aWab (2.15)

where

∇aWab =
xa − xb
rab

dW

dr

∣∣∣∣
r=rab

(2.16)

To summarise, the particle approximation is found by approximating the continuous
integral representation of a function by a sum. The sum is weighted by a smoothing
function. The weighting is a function of the distance between particles rab. The closer the
neighbour particle, the more weight it has.

2.3 Support and influence domain

Until now, I only mentioned the term support domain. At this point of the dissertation, it
is important to give a definition of it. In the general context of meshfree methods, [Liu,
2003] gives the following definition for the support domain:

"By definition, the support domain for a field point at x = (x, y , z) is the
domain where the information for all the points inside this domain is used to
determine the information at the point at x."

The influence domain can be understood as the opposite of the support domain. In
fact, the influence domain can be defined as the domain where a particle influences others.

When the smoothing length κh is equal for every particle, the action that a particle i
exerts on a particle j is equal to the action that the particle j exerts on the particle i . This
agrees with Newton’s third law. This situation is depicted in figure 2.5 (a). It can be seen
in figure 2.5 (a) that the influence domain of the particle a is only over b.

a b

c

d

a b

c

d

(a) (b)

Figure 2.5: Support domains of particles having the same (a) or different (b) κh

CHAPTER 2. BASICS OF THE SPH METHOD 16

Another situation is when the smoothing length differs between the particles. This kind
of situation can occur when the smoothing length is updated differently between particles.
In that case, a particle i can have an influence on a particle j while the particle j has no
influence on the particle i . This violates Newton’s third law which is not acceptable. The
situation explained is depicted in figure 2.5 (b). Now, the influence domain of the particle
a is over b and d . Inversely, the influence domains of b and d are not over a.

In order to keep a physical consistency, the problem of variable smoothing length
between particles have to be studied carefully. However, this master thesis will deal only
with constant smoothing length between the different particles.

2.4 Smoothing function

As explained earlier, for a given particle, only the nearest particles will influence its proper-
ties. In order to satisfy this, the SPH method needs what is called a smoothing function.
Other denominations can be found in the literature. Here are a few ones found in [Liu and
Liu, 2003]: smoothing kernel function, smoothing kernel or simply kernel.

The smoothing function will give a weight to each neighbouring particle.

2.4.1 Properties of a smoothing function

A number of conditions must be fulfilled by the smoothing function. [Liu and Liu, 2003]
states the main properties of a smoothing function:

1. The kernel must be be normalised :∫
Ω

W (x− x′, h) dx′ = 1 (2.17)

This property is due to the Dirac function definition (2.3).

2. The smoothing function has to be defined on a compact domain. Nevertheless, this
condition is not mandatory. In fact, [Gingold and Monaghan, 1977] used a Gaussian
that was not compactly supported. This kernel will be discussed later.

The property of compact support can be mathematically expressed as

W (x− x′, h) = 0 if
∣∣x− x′∣∣ > κh (2.18)

In this expression, κ represents a scaling factor which determines the spread of the
support domain. This will be discussed more deeply later.

This condition is very useful for the implementation of the program as it limits the
area where particles have to searched.

3. The smoothing function must be positive on the support domain:

W (x− x′, h) ≥ 0 for
∣∣x− x′∣∣ ≤ κh (2.19)

CHAPTER 2. BASICS OF THE SPH METHOD 17

This property is a physical requirement rather than a mathematical one. If the
smoothing function becomes negative at some points of the support domain, then it
can lead to unphysical phenomena, especially in hydrodynamic problems.

4. The value of the smoothing function should be monotonically decreasing with the
distance |x− x′|. This ensures that the nearest particles have a greater influence
than the farthest ones.

5. The kernel must get close to the Dirac function when h decreases:

lim
h→0

W (x− x′, h) = δ(x− x′) (2.20)

This condition ensures that mathematical convergence occurs when h approaches 0.

6. The smoothing function should be symmetrical. This leads to the fact that particles
at the same distance from a point have the same influence.

7. The kernel should be sufficiently smooth. This helps to obtain better results when
the particles are disordered.

2.4.2 Some smoothing functions

Many smoothing functions have been developed by a certain number of authors. I will here
give the main ones.

Gaussian kernel

[Gingold and Monaghan, 1977] proposed a smoothing function based on an exponential
function. It can be written as

W (r, h) = αde
−(r/h)2

(2.21)

In this equation, r = |x− x′| is the distance between two particles. The coefficient αd
is used to normalise the smoothing function as discussed in the previous section. It has
different values in 1, 2 or 3 dimensions. Those values are given in the table 2.1.

The main advantage of this kernel is its smoothness. It is known as very stable even for
disordered particles. Its drawback is its theoretically infinite smoothing length. This leads
to more computations as the support domain is very large. However, the kernel quickly
approaches 0 which allows to consider it with a compact support.

In the equations that will be used later, the first derivative of the smoothing function
intervenes. I will give here the expressions of the first derivatives of the kernels in order to
be as comprehensive as possible:

dW

dr
=
αd
h

(
−2

r

h
e−(r/h)2

)
(2.22)

The gaussian smoothing function and its first derivative are represented in one dimension
in figure 2.6.

CHAPTER 2. BASICS OF THE SPH METHOD 18

0 0.5 1 1.5 2 2.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r/h

W(r,h) / α
d

dW(r,h)/dr / (α
d
/h)

Figure 2.6: Gaussian smoothing function

Bell-shaped kernel

In 1977, the other article introducing SPH was [Lucy, 1977]. It also proposed a smoothing
function. It is known as the bell-shaped kernel. Its expression is as follows:

W (r, h) = αd


(

1 + 3
r

h

)(
1−

r

h

)3 r

h
≤ 1

0
r

h
> 1

(2.23)

Its derivative can be written as:

dW

dr
=
αd
h


3

[(
1−

r

h

)3
−
(

1 + 3
r

h

)(
1−

r

h

)2
]

r

h
≤ 1

0
r

h
> 1

(2.24)

The values of αd are given in table 2.1. A graphical representation of equations (2.23)
and (2.24) is given in figure 2.7.

This function is supported on a compact and it extends on a radius of 1h. This small
compact support reduces the calculations that have to be done.

Cubic spline kernel

[Monaghan and Lattanzio, 1985] defined a new kernel known as cubic spline:

W (r, h) = αd



3

2
−
(r
h

)2
+

1

2

(r
h

)3
0 ≤

r

h
< 1

1

6

(
1−

r

h

)3
1 ≤

r

h
< 2

0
r

h
≥ 2

(2.25)

CHAPTER 2. BASICS OF THE SPH METHOD 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

r/h

W(r,h) / α
d

dW(r,h)/dr / (α
d
/h)

Figure 2.7: Bell-shaped smoothing function

Its first derivative is

dW

dr
=
αd
h



3

2

(r
h

)2
− 2

r

h
0 ≤

r

h
< 1

−1

2

(
2−

r

h

)2
1 ≤

r

h
< 2

0
r

h
≥ 2

(2.26)

The values of αd are given in table 2.1. The support domain extends over a radius of 2h.
A graphical representation of equations (2.25) and (2.26) is given in figure 2.8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

r/h

W(r,h) / α
d

dW(r,h)/dr / (α
d
/h)

Figure 2.8: Cubic spline smoothing function

CHAPTER 2. BASICS OF THE SPH METHOD 20

The cubic spline has been very widely used for the hydraulic problems. It has the
advantage of being supported on a compact. However, it is not as smooth as other
functions2 which can lead to some instabilities according to [Liu and Liu, 2003].

Quadratic kernel

[Johnson et al., 1996] introduced a new kind of smoothing function. It is quadratic and
consequently has a linear first derivative. The expression of the kernel is:

W (r, h) = αd


(

3

16

(r
h

)2
−

3

4

r

h
+

3

4

)
0 ≤

r

h
≤ 2

0
r

h
> 2

(2.27)

and the expression of its first derivative is

dW

dr
=
αd
h


(

3

8

r

h
−

3

4

)
0 ≤

r

h
≤ 2

0
r

h
> 2

(2.28)

A graphical representation of equations (2.27) and (2.28) is given in figure 2.9.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

r/h

W(r,h) / α
d

dW(r,h)/dr / (α
d
/h)

Figure 2.9: Quadratic smoothing function

In figure 2.9, one can observe the first derivative always decreasing (in absolute value)
when the distance increases. The authors of this smoothing function consider this aspect
as an advantage. In fact, the smoothing function appears often under its first derivative
form. If we consider the derivative of the cubic spline (2.26) (figure 2.8), some very close

2The second derivative is piecewise linear.

CHAPTER 2. BASICS OF THE SPH METHOD 21

particles may have less influence in comparison to particles situated around r/h = 2/3.
The quadratic smoothing function does not have this disadvantage.

Considering its smoothness, it can be considered as good when observing figure 2.9,
especially when approaching r/h = 2.

Quintic kernel

Some higher degree kernels have been developed. I will first show the one developed by
[Wendland, 1995] and used in SPHysics3 as mentioned in [Gomez-Gesteira et al., 2012b].
This smoothing function can be written as

W (r, h) = αd


(

1−
1

2

r

h

)4 (
2
r

h
+ 1
)

0 ≤
r

h
≤ 2

0
r

h
> 2

(2.29)

Its derivative is

dW

dr
=
αd
h


−5

r

h

(
1−

1

2

r

h

)3

0 ≤
r

h
≤ 2

0
r

h
> 2

(2.30)

This kernel is supported on a compact (κ = 2) and the values of the normalisation coeffi-
cient (αd) are given in table 2.1. A graphical representation of equations (2.29) and (2.30)
is given in figure 2.10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

r/h

W(r,h) / α
d

dW(r,h)/dr / (α
d
/h)

Figure 2.10: Quintic smoothing function

3SPHysics is an open-source SPH code developed by the University of Vigo (Spain), the University
of Manchester (UK) and the John Hopkins University (USA). It is mainly used for the study of coastal
processes. More information can be found on the project website: www.sphysics.org.

CHAPTER 2. BASICS OF THE SPH METHOD 22

Quintic spline kernel

Another high order smoothing function is the one proposed by [Morris, 1996]:

W (r, h) = αd



(
3−

r

h

)5
− 6

(
2−

r

h

)5
+ 15

(
1−

r

h

)5
0 ≤

r

h
< 1(

3−
r

h

)5
− 6

(
2−

r

h

)5
1 ≤

r

h
< 2(

3−
r

h

)5
2 ≤

r

h
< 3

0
r

h
≥ 3

(2.31)

Its first derivative is:

dW

dr
=
αd
h



−5
(

3−
r

h

)4
+ 30

(
2−

r

h

)4
− 75

(
1−

r

h

)4
0 ≤

r

h
< 1

−5
(

3−
r

h

)4
+ 30

(
2−

r

h

)4
1 ≤

r

h
< 2

−5
(

3−
r

h

)4
2 ≤

r

h
< 3

0
r

h
≥ 3

(2.32)

A graphical representation of equations (2.31) and (2.32) is given in the figure 2.11.

0 0.5 1 1.5 2 2.5 3
−60

−40

−20

0

20

40

60

80

r/h

W(r,h) / α
d

dW(r,h)/dr / (α
d
/h)

Figure 2.11: Quintic spline smoothing function

The advantage of this smoothing function is that it is very close to the Gaussian
kernel. The main drawback is the larger smoothing length (κ = 3) in comparison to the
other smoothing functions. Nevertheless, it is still supported on a compact which is an
advantage compared to the Gaussian kernel. The values of αd are given in table 2.1.

CHAPTER 2. BASICS OF THE SPH METHOD 23

Comparison of the kernels

A first comparison of the smoothing lengths (κh) can be obtained by observing the values
of κ for the different smoothing functions (table 2.1). A large smoothing length will tend
to increase the number of particles in the support domain. This will result in a longer
computation time. The Gaussian and the quintic spline are subject to larger calculation
times.

Kernel αd in 1D αd in 2D αd in 3D κ

Gaussian 1/(π1/2h) 1/(πh2) 1/(π3/2h3) ∞
Bell-shaped 5/(4h) 5/(πh2) 105/(16πh3) 1
Cubic spline 1/h 15/(7πh2) 3/(2πh3) 2
Quadratic 1/h 2/(πh2) 5/(4πh3) 2
Quintic 3/(4h) 7/(4πh2) 21/(16πh3) 2
Quintic spline 1/(120h) 7/(478πh2) 3/(359πh3) 3

Table 2.1: Normalisation coefficients (αd) and scaling factors (κ) for some smoothing
functions

Figure 2.12 compares the six smoothing functions developed above. Figure 2.13 com-
pares the first derivatives of these functions.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1D and h = 1

r/h

W
i(r

,h
)

Gaussian

Bell−shaped

Cubic spline
Quadratic

Quintic

Quintic spline

0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1D and h = 1 − zoom

r/h

Figure 2.12: Comparison of six smoothing functions

The first observation that can be made is that the bell-shaped function is very different
from the others. In fact, it is the only one to use κ = 1. Then, if we consider the Gaussian
kernel to be the best suited for SPH simulation, as stated in [Monaghan, 1992], the best
smoothing functions should be approaching the Gaussian kernel. The Gaussian kernel itself
presents the advantage to be very stable. Unfortunately, its theoretical infinite smoothing
length is a real disadvantage.

Thus, other functions which tries to approach the Gaussian kernel have been developed.

CHAPTER 2. BASICS OF THE SPH METHOD 24

0 0.5 1 1.5 2 2.5 3
−2.5

−2

−1.5

−1

−0.5

0

1D and h = 1

r/h

d
W

i(r
,h

)/
d

r

Gaussian

Bell−shaped

Cubic spline
Quadratic

Quintic

Quintic spline

0 0.5 1 1.5
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

1D and h = 1 − zoom

r/h

Figure 2.13: Comparison of six smoothing functions’ first derivatives

The cubic spline and its first derivative are not so far from the Gaussian kernel but better
results can be found. However, this function has a compact support.

The quadratic smoothing function has the advantages of being compactly supported,
having a decreasing (in absolute value) first derivative and being close to the Gaussian
smoothing function, at least for r/h > 0.5.

The quintic kernel is supported on a compact. Even if it has a high order and is used
in SPHysics, it does not come very close to the Gaussian. I do not think that this kernel is
the best alternative.

Finally, the quintic spline smoothing function comes very close to the Gaussian kernel
and it has a compact support. I think that this function is the best alternative to the
Gaussian kernel.

Given the observations made above, the smoothing functions that will be preferred and
implemented in the code that will be developed later are:

• the cubic spline kernel,

• the quadratic kernel and,

• the quintic spline kernel.

Chapter 3

The SPH method applied to
hydraulics

So far we have seen the basic ideas of the SPH method. Now, I will introduce some
concepts relative to the SPH method applied to hydraulics.

First of all, I will develop the Navier-Stokes equation in the Lagrangian form. Then,
I will apply the SPH method to those equations. Finally, I will introduce some solutions
relative to the smoothing length, the boundary conditions, etc.

3.1 Navier-Stokes equations

The Navier-Stokes equations describe mainly two fundamental principles:

1. The continuity, i.e. the conservation of the mass in the system. If there is no inflow
nor outflow, the mass of the system remains constant. This law is from Lavoisier:

"Nothing is lost, nothing is created, everything is transformed."

2. The conservation of momentum. This is relative to Newton’s second law which can
be expressed today1 as:

"When viewed from an inertial reference frame, the change of momentum
of a body is proportional to the forces applied on this body."

There is also a third principle described by Navier-Stokes equations:

3. The energy conservation. It states that no energy is created nor lost if the system is
closed.

1In Newton’s Principia Mathematica (1687) the law was expressed in Latin as:

"Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam
qua vis illa imprimitur."

25

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 26

However, this third principle will not be used in the following developments. This third
equation is rarely used in hydrodynamic applications. For example, [Gomez-Gesteira et al.,
2010; Crespo et al., 2007; Monaghan, 1994] do not use this equation. This is due to the
fact that the temperature of the fluid is assumed to be constant. Thus, the thermal energy
is constant. Only the kinetic and the potential energy change during the simulation time.
These changes are already included in the two first principles.

As explained earlier, the SPH method is a Lagrangian method. This means that the
Navier-Stokes equations must be expressed in a Lagrangian form.

3.1.1 Analytical development in the Lagrangian formalism

In this subsection, I will establish the Navier-Stokes equations in their Lagrangian form.
The different steps of the development will be explained.

The Navier-Stokes equations are often established in the Eulerian formalism. This is
done for example in [Ryhming, 2004]. In that situation, the control volume used to establish
the equations is fixed. In the Lagrangian formalism, the observer moves with the flow. This
leads to a mobile control volume. This situation is depicted in figure 3.1. The development
of the Navier-Stokes equations is explained in [Liu and Liu, 2003].

S

V

dS
n

Figure 3.1: Control volume in the Lagrangian formalism

The total mass of the volume remains constant as we are working in a Lagrangian
formalism. In order to keep a constant mass, the volume V and the surface S must change
while the fluid contained in the volume is compressed, expands, etc. This means that
to keep the same particles of fluid inside the volume, the surface S must change. The
movement of the surface is induced by the movement of the fluid inside the volume V . A
change of S directly leads to a change of V . This can be written mathematically as

∆V =

∫
S

u · n ∆t dS (3.1)

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 27

with n the unit normal vector to the surface S. Dividing by ∆t leads to

∆V

∆t
=

∫
S

u · n dS (3.2)

Thanks to the divergence theorem (2.8), equation (3.2) becomes

∆V

∆t
=

∫
V

∇ · u dV (3.3)

For a very small volume δV where the properties of the fluid can be considered constant,
a particle derivative can be used:

D(δV)

Dt
=

∫
δV

∇ · u d(δV)

= ∇ · u
∫
δV

1 d(δV)

= ∇ · u δV (3.4)

Conservation of mass

The density ρ of the fluid contained in a very small volume δV can be considered constant.
Thus, the mass of that volume is

δm = ρ δV (3.5)

We know that the mass of a Lagrangian control volume doesn’t change in time:

D(δm)

Dt
=
D(ρ δV)

Dt
= 0 (3.6)

Equation (3.6) can be rewritten:

Dρ

Dt
δV + ρ

D(δV)

Dt
= 0 (3.7)

Thanks to equation (3.4), we obtain

Dρ

Dt
= −ρ ∇ · u (3.8)

Equation (3.8) is the equation of conservation of mass written in the Lagrangian formalism.

Conservation of momentum

To express the conservation of momentum, I will use a 2-D control volume. This control
volume and the forces acting on it in the x direction are represented in figure 3.2.

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 28

x

z
(
τyx +

∂τyx
∂z dz

)
dx

τyx dx

p dz

(
p + ∂p

∂x dx
)
dz

Figure 3.2: 2-D control volume and the forces acting in the x direction

The equilibrium of the control volume of figure 3.2 along the x direction can be written
as:

ρ dx dz
Dux
Dt

= p dz −
(
p +

∂p

∂x
dx

)
dz +

(
τyx +

∂τyx
∂z

dz

)
dx − τyx dx

= −
∂p

∂x
dx dz +

∂τyx
∂z

dx dz (3.9)

After adding the body forces in the x direction and having simplified equation (3.9), we
obtain

ρ
Dux
Dt

= −
∂p

∂x
+
∂τyx
∂z

+ ρFx (3.10)

Equation (3.10) can be generalised in 3-D and written with a vectorial formalism:

ρ
Du

Dt
= −∇p +∇ · T+ ρF (3.11)

with T a second-order tensor which contains the stresses τi j . Equation (3.11) is the second
Navier-Stokes equation.

3.1.2 Application to the SPH method

Now that we have the equations that express the conservation of mass (3.8) and the
conservation of momentum (3.11), I will use the SPH formalism in order to implement
them.

Conservation of mass

In order to express the conservation of the mass, there is more than one technique [Liu and
Liu, 2003]. One of them is to use equation (2.13) developed earlier. When using f (x) = ρ,
equation (2.13) becomes

ρa =

N∑
b=1

mbWab (3.12)

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 29

with a and b which represent the current particle and the neighbouring ones respectively.
Equation (3.12) is called the summation density. It represents the essence of the SPH
method but doesn’t take into account the conservation of mass (3.8) established earlier.

Another way to calculate the density of a particle is to use the conservation of mass
(3.8). It can also be written as

Dρ

Dt
= u · ∇ρ−∇ · (ρu) (3.13)

Using equation (2.15) for the two terms of the RHS:

u · ∇ρ = ua

N∑
b=1

mb
ρb
ρb∇aWab =

N∑
b=1

mbua∇aWab (3.14)

∇ · (ρu) =

N∑
b=1

mb
ρb
ρbub∇aWab =

N∑
b=1

mbub∇aWab (3.15)

We can get what is called the continuity density by using equations (3.13), (3.14) and
(3.15):

Dρa
Dt

=

N∑
b=1

mbuab∇aWab (3.16)

with uab = ua − ub.
The continuity density (3.16) will be preferred to the summation density (3.12) for two

main reasons:

• The continuity density equation represents the physical behaviour described by the
Navier-Stokes equations.

• The density will be updated thanks to the relative velocity between two particles.
This update will directly lead to a change in the pressure field. This will avoid
interpenetration between particles.

It can be seen from equation (3.16) that mainly two parameters will influence the change
of the density of a particle:

1. The relative velocities between the particles: if two particles are approaching each
other quickly, their densities will increase. A density increase leads to a pressure
increase as it will be seen in a few lines. This pressure increase creates a repulsive force
between the particles which avoids interpenetration. This means that the equation
of conservation of mass will directly influence the conservation of momentum.

2. The distance between the particles: the closer the particles, the bigger the gradient of
the kernel. This leads to a larger change rate of ρ. However, for very close particles,
this is not always true. This has already been discussed in the section about the
smoothing functions.

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 30

Conservation of momentum

I will first neglect the friction term T and the body forces F of the conservation of mo-
mentum (3.11):

Du

Dt
= −

1

ρ
∇p (3.17)

The RHS of equation (3.17) can also be written as

−
1

ρ
∇p = −

(
∇
(
p

ρ

)
+
p

ρ2
∇ρ
)

(3.18)

When relation (2.15) is applied to the terms of the RHS of equation (3.18), we have:

∇
(
p

ρ

)
=

N∑
b=1

mb
pb

ρ2
b

∇aWab (3.19)

p

ρ2
∇ρ =

pa
ρ2
a

N∑
b=1

mb
ρb
ρb∇aWab =

N∑
b=1

mb
pa
ρ2
a

∇aWab (3.20)

Equation (3.17) can be rewritten thanks to equations (3.18), (3.19) and (3.20):

Dua
Dt

= −
N∑
b=1

mb

(
pb

ρ2
b

+
pa
ρ2
a

)
∇aWab (3.21)

The body forces can be added to equation (3.21). The friction forces will be considered
in this work with an artificial viscosity denoted Πab [Monaghan, 1992]. This term will be
discussed in the following pages. The conservation of momentum is written in the SPH
formalism as

Dua
Dt

= −
N∑
b=1

mb

(
pb

ρ2
b

+
pa
ρ2
a

+ Πab

)
∇aWab + F (3.22)

Equation (3.22) shows that the change of the motion of a particle is due to the pressure
field, the viscosity (a virtual viscosity in this case) and the body forces acting on the fluid
such as gravity.

In order to have a better understanding of this equation, I will apply it to a very simple
case where there is no gravity and where a constant pressure field is applied. The situation
is depicted in figure 3.3. In the beginning, the particles are motionless. I will check now
that Dua/Dt = 0. First of all, the viscosity term Πab = 0 for all the particles as they
have no velocity at the beginning2. The terms pa/ρ2

a and pb/ρ
2
b are not equal to zero and

positive. The last term ∇aWab is the gradient of the kernel, i.e. a vector. This term gives
a direction and a part of the intensity of the force applied from the particles bi to the
particle a. Its expression is given at equation (2.16). If the masses mb are equal and the
particles arranged in a Cartesian lattice, the result Dua/Dt is equal to 0. A representation
of the vectors ∇aWab is given in figure 3.3. It can be seen that the vectors of the particles
b1, b3, b5 and b7 are smaller than for the other particles. This is due to the fact that those
particles are further from a. Thus, the value of ∂W/∂r is smaller.

2This fact will be highlighted in the section that is relative to the artificial viscosity.

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 31

ab8 b4

b6

b2 b3b1

b5b7

Figure 3.3: Very simple situation to understand the conservation of momentum

3.2 Numerical and implementation aspects

We have now the two main equations necessary to solve an hydrodynamic problem with
the SPH method. Neverthless, a few points still have to be clarified. Those points concern
the temporal integration, the equation of state, the viscosity, the boundary conditions, etc.

3.2.1 Equation of state

As seen in the continuity equation (3.16), the density is updated. In equation (3.22), the
densities as well as the pressures are used to update the velocity. The pressure is not
a direct variable of the problem. However, we can calculate the pressure thanks to an
equation of state which links the density to the pressure. At the end of this subsection, I
will also explain how we can compute the speed of the sound c in the fluid.

Different possibilities are available to link the pressure to the density. We can consider
the fluid as:

1. an ideal gas or,

2. a quasi-incompressible fluid.

Ideal gas law

The ideal gas law is often expressed as

p =
ρ R T

M
(3.23)

where p [N/m2] is the pressure, ρ [kg/m3] the density, R = 8.314 [J/(K mol)] the ideal
gas constant, T [K] the temperature and M [kg/mol] is the molar mass. The temperature
will be considered constant and will be taken at 20̊ C, i.e. 293.15̊ K. Equation (3.23) gives
an absolute pressure. Indeed, if we consider a point at the free-surface its pressure is null.
Then, by equation (3.23), the density ρ should be null as well. Physically it is not the case.

Equation (3.23) will be transformed in a relative form:

p =
R T

M

(
ρ

ρ0
− 1

)
(3.24)

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 32

where ρ0 is the reference density.
From equation (3.24), we easily notice a linear evolution of the pressure with respect

to the density. Equation (3.24) is represented in figure 3.4. We see that for high pressures
(100 bars) the density can increase up to 75000 kg/m3. This means that the fluid is highly
compressible.

This is not very realistic for the case of water. In fact, it can be easily understood that
the density of water will barely increase with an increasing pressure. This is the reason why
we need another equation of state for water.

Quasi-incompressible fluid

To solve the problem introduced above, [Monaghan, 1994] used another equation of state.
This one is based on the fact that water is weakly compressible. He explained that the
variation of density in a fluid flow is proportional to M2, where M is the Mach number.
The equation of state proposed is

p = B

((
ρ

ρ0

)γ
− 1

)
(3.25)

with γ ≈ 7 and B a term relative to the speed of sound. [Landau and Lifshitz, 1971]
explain that the speed of sound is linked to the density by the following relation:

c2 =

(
∂p

∂ρ

)
s

(3.26)

at constant entropy. By applying this relation to the equation of state (3.25), we obtain

B =
c2

0ρ0

γ
(3.27)

More details are available in the appendix A.1.
In order to understand the origin of this equation of state, I have reviewed the literature

that concerns it. Equation (3.25) proposed by Monaghan is derived from [Batchelor, 1967].
In that book, the equation is written as

p + B

1 + B
=

(
ρ

ρ0

)γ
(3.28)

If B is considered very big3, we can find back equation (3.25). This equation is established
for oceanic purposes where large pressures are measured.

Batchelor references [Cole, 1948] who references the Tait equation.
The Tait equation has been established by the Scottish mathematician and physician

Peter Guthrie Tait during a scientific expedition between 1873 and 1876 [Dymond and
Malhotra, 1988]. His work was to investigate the physical conditions of the deep seas.

3In practice, for water, B ≈ 3 108 [N/m2] with c0 = 1480 [m/s].

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 33

He made a number of measurements of density for different depths in the ocean. After
these measurements he established an empirical law considered today as one of the most
satisfactory. The equation established is isothermal.

According to [Dymond and Malhotra, 1988], what is called the true Tait equation is
written

V0 − V
p V0

=
A

π + p
(3.29)

where A and π are quantities to be found and V a volume. This equation can be written
in a different way by replacing the compressibility coefficient by a differential operator:

∆V

∆p
=

A

B + p
(3.30)

After integrating, we obtain what is called the modified Tait equation:

V = V0

(
1− A ln

(
1 +

p

B

))
(3.31)

[Cole, 1948] uses equation (3.30) written with a derivative:

−
(
∂V

∂p

)
T

=
1

γ (p + B(T))
(3.32)

with B(T) a function of the temperature. The next step is to integrate at constant entropy
the following expression:

−
1

V

(
∂V

∂p

)
s

=
1

γ (p + B(s))
(3.33)

After integration (see appendix A.2 for details) we obtain equation (3.25). The value
of γ is approximately 7 according to experiments.

The main features of this equation of state are:

1. Equation (3.29) is established thanks to experimental measures for sea water for
large pressures. The Tait equation is empirical but widely used and recognised.

2. The integrated form (3.25) assumes that the phenomenon is isentropic.

Equation (3.25) is depicted in figure 3.4. We notice a quicker increase in density with
pressure with the ideal gas law than with a quasi-incompressible fluid law.

When equation (3.25) is plotted separately, it can be seen that the evolution of ρ(p) is
quasi linear up to large pressures such as 100 bars. This is shown in figure 3.5. The error
for 100 bars is lower than 0.01%. The two first terms of the Taylor expansion4 of equation
(3.25) are:

p = 0 + B γ

(
ρ

ρ0
− 1

)
+O

(
ρ

ρ0
− 1

)2

(3.34)

4The Taylor expansion is performed around ρ/ρ0 = 1.

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 34

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
3

10
4

10
5

p [Pa]

ρ
 [
k
g
/m

3
]

Ideal gas law

Quasi−incompressible fluid

Figure 3.4: Comparison between the two equations of state

Neglecting the last term,

p = B γ

(
ρ

ρ0
− 1

)
= c2

0 ρ0

(
ρ

ρ0
− 1

)
(3.35)

This shows that the evolution of density in respect to pressure can be considered linear for
a practical range of pressures. It also shows that γ has no influence for practical pressures.

However, equation (3.25) will be used instead of equation (3.35). As explained later,
the speed of sound can be lessened in order to increase the time steps. This leads to the
impossibility to use a linear expression for the equation of state. This is shown in figure
3.6 for c0 = 100 m/s.

Remarks about the speed of the sound

The use of a lower speed of sound can have a significant impact on the resolution time.
This is why [Monaghan and Kos, 1999] suggest to use a speed of sound c = 10

√
gH, with

H the biggest depth. This is possible because the flows studied have a free surface.
The use of a different speed of sound has a direct impact on the compressibility of the

fluid. This can be easily observed in figures 3.5 and 3.6. Indeed, for a pressure of 10 bars,
a density of 1000.5 kg/m3 is obtained for c0 = 1480 m/s and a density of 1080 kg/m3 is
obtained for c0 = 100 m/s. However, [Monaghan, 1994] states that the density variations
stay consistent. It will be seen later that this assumption is not always relevant.

During the calculation, the speed of sound can be deduced from the density of the
particles. Using equation (3.26), the speed of sound is

c = c0 (3.36)

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 35

0 1 2 3 4 5 6 7 8 9 10

x 10
6

1000

1000.5

1001

1001.5

1002

1002.5

1003

1003.5

1004

1004.5

1005

p [Pa]

ρ
 [
k
g
/m

3
]

Quasi−incompressible fluid

Taylor series

Figure 3.5: Evolution of density in respect to pressure for a quasi-incompressible fluid
(c0 = 1480 m/s)

for an ideal gas law and

c = c0

√(
ρ

ρ0

)γ−1

(3.37)

for a quasi-incompressible fluid.

Setting of the hydrostatic pressure

For some situations, an hydrostatic pressure is present in the fluid at the beginning of a
simulation. This is the case, for example, for a dam break. This means that an hydrostatic
pressure must be initialised at the beginning of the simulation. However, the pressure is not
a variable attached to a particle. Indeed, the pressure is deduced from the density which is
a variable of a particle. Thus, the initial pressure field within the fluid is set thanks to the
initial densities of the particles.

This is done thanks to the following formulations (details in the appendix A.3):

1. For an ideal gas law,

ρ = ρ0

(
1 +

M

RT
ρ0 g H

)
(3.38)

2. For a quasi-incompressible fluid law,

ρ = ρ0

(
1 +

1

B
ρ0 g H

)1/γ

(3.39)

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 36

0 1 2 3 4 5 6 7 8 9 10

x 10
6

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

p [Pa]

ρ
 [
k
g
/m

3
]

Quasi−incompressible fluid

Taylor series

Figure 3.6: Evolution of density in respect to pressure for a quasi-incompressible fluid
(c0 = 100 m/s)

3.2.2 Artificial viscosity

As seen in equation (3.22), which describes the conservation of momentum, an artificial
viscosity term Πab is present. This term has two main purposes:

1. to create a viscosity term in order to reproduce the friction that occurs in a real fluid
and,

2. to avoid numerical instabilities when the particles are moving away from each other.

This artificial viscosity has been introduced by [Monaghan, 1992]. Its expression is

Πab =


−αc̄abµab + βµ2

ab

ρ̄ab
for uab · (xa − xb) < 0

0 for uab · (xa − xb) ≥ 0

(3.40)

with

• c̄ab the mean speed of sound of the particles a and b

• ρ̄ab the mean density of the particles a and b

• µab expressed as

µab =
h uab · (xa − xb)

(xa − xb)2 + η2
(3.41)

with η2 = 0.01h2 which is used to avoid singularities.

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 37

• α and β two coefficients that must be chosen by the user. [Monaghan, 1992] suggests
the values to be around 1 for α and 2 for β. However, in practice, β is often taken
at 0 and α ∈ [0.01; 0.5].

The term of equation (3.40) associated to α produces a bulk and shear viscosity. The
term associated to β is useful to handle shocks.

The artificial viscosity is quite easy to implement and very flexible for the user. However,
the values given to α or β have no physical meaning. They are only used to stabilise the
system and produce a shear force. The lack of physical values associated to this formulation
may be a difficulty when the numerical method is used to predict the behaviour of a problem
for which the result is unknown. This emphasizes the need for a physical formulation of the
viscosity. This kind of formulation is developed in [Violeau, 2012] from the Navier-Stokes
equations and the dynamic viscosity (often noted µ) appears clearly. This formulation
has not been implemented in the context of this master thesis. Nevertheless, it would be
interesting to include this kind of viscosity for further works.

3.2.3 Smoothing length

The smoothing length h is an important parameter for the SPH method. Indeed, it influ-
ences directly the number of neighbours that will intervene in the summations. The first
thing to do is to choose an initial smoothing length. In [Liu and Liu, 2003], h = 1.2s with
s the initial spacing between the particles. Other authors take the smoothing length as
1s, 1.5s or 2s. The choice made for this master thesis is h = 1.2s as [Liu and Liu, 2003]
or [Crespo et al., 2007] did for their work. This choice has been made because it offers a
good compromise between computational efficiency and the number of particles that are
part of the support domain.

The choice of h is important as it will influence the number of neighbours. Too many
neighbours will lead to a greater calculation time but it may also lead to non-physical
phenomenon as the properties of the closer particles will be smoothed by the further ones.
On the other hand, not enough neighbours would not represent well the physics of the
problem. The influence of this choice is represented in figure 3.7 for κ = 2.

s

2κh = 4s

2κh = 4.8s

2κh = 6s

2κh = 8s

Figure 3.7: Influence of the smoothing length on the number of neighbours in 1D

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 38

During the computation, the particles are moving away from each other (the density
decreases) or toward each other (the density increases). If h stays constant for a given
particle, the number of neighbours will vary while the density increases or decreases. This
may lead to accuracy problems. To avoid this, the smoothing length can be updated in
order to keep a constant number of neighbours. Two techniques are mainly available:

1. update all the smoothing lengths together at every time step or,

2. update the smoothing lengths separately at every time step.

The second possibility is more complicated to handle. Indeed, the support and influence
domain of a particle (see chapter 2) can be different. This will lead to the violation of
Newton’s third law. In order to avoid this violation, [Nelson and Papaloizou, 1994] explain
that additional terms must be added to the equation of conservation of momentum. An
easier way to make the smoothing length evolute with the change of density is to update
all the smoothing lengths at once with the same value. This is done with the formulation
suggested by [Monaghan and Lattanzio, 1985]:

h = h0

(
ρ0

ρ

)1/d

(3.42)

with d the number of dimensions and ρ the average density. The drawback of this method
is for local low or high densities. Indeed, the update of h is made for the average density
and not for local densities. A lack of information is possible for local high or low densities.

For this work, equation (3.42) has been chosen for its simplicity and the good results
it provides in the case of hydrodynamic problems.

3.2.4 Nearest neighbours search

The smoothing function W is supposed to be compactly supported. This means that the
number of neighbours is finite. In order to calculate the value of ∇aWab or Wab, the
neighbours of a particle must be known. To achieve this the particles within a given radius
must be found thanks to a nearest neighbours search algorithm.

[Liu and Liu, 2003] identify three algorithms:

1. all-pair search algorithm

2. linked-list algorithm

3. tree search algorithm

The first one is the least efficient one. In fact, in order to find the neighbours of one
particle, all the particles of the domain are scanned and the distances rab verified. This
leads to a computing time of the order of N2 5, which is not very efficient.

5N is the number of particles in the domain.

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 39

The search of neighbours being achieved several times (N) every iteration, it must be
as efficient as possible. The linked-list algorithm consists of dividing the domain in cells
with sides of κh and of sorting the particles in its corresponding cell. When it is done, the
neighbours of a particle are in the neighbouring cells. This limits the number of calculations
of rab. This method is represented in figure 3.8 for a 2-D domain and randomly distributed
particles. This algorithm is much more efficient than the previous one. According to [Liu
and Liu, 2003], its efficiency is estimated to O(N) if the number of particles per cell is low
enough.

κh

≥ κh

Figure 3.8: Linked-list algorithm in 2D

The only drawback of this algorithm is that it is not very efficient for variable smooth-
ing lengths in space. However, for this master thesis, the smoothing length was chosen
constant in space.

The last algorithm is called the tree search algorithm. The domain is divided into
smaller sub-domains that contain only one particle. The particles are sorted along a tree.
The efficiency of this algorithm is O(N logN). It is slower than the previous one but it can
handle more efficiently variable smoothing lengths in space. More information about this
algorithm can be found in [Liu and Liu, 2003].

The linked-list algorithm described above is used for this work. It offers the most
efficient way to find the neighbours of a particle when the smoothing length is constant in
space. The way to implement this kind of algorithm will be explained in the next chapter.

3.2.5 Numerical precision

During the implementation of the code, I noticed that the numerical precision for the real
numbers is essential. This kind of problem may not be an issue in many applications but it
is important to point out that for a few situations it might lead to some troubles.

First of all, I will recall some basis about the representation of real numbers in the
memory of a computer [Boigelot, 2009]. A real number is represented thanks to a set
of bits. The bits are distributed between the sign, the mantissa and the exponent. The

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 40

number of bits used for each part is given in table 3.1. The mantissa is a number f that
can be calculated thanks to

f = 1 +

m∑
i=1

bi2
−i (3.43)

with m the number of bits used for the mantissa and bi the value of a bit (1 or 0). Formula
(3.43) can only be used for non-extreme exponents.

From equation (3.43), we can deduce the number of significant digits of a given rep-
resentation. This information is given in table 3.1.

Sign Mantissa Exponent Total Significant digits
Single precision 1 8 23 32 bits 7
Double precision 1 11 52 64 bits 16

Table 3.1: Representation of a real number in the IEEE 754 standard

Now, let me take a simple case where a column of particles is set with an hydrostatic
pressure. The particles are distant of 0.01 m. The table 3.2 gives the densities of two
neighbouring particles placed on a same vertical line. The densities are calculated with the
equation for quasi-incompressible fluids (3.39) for two different c0.

Depth Pressure ρ [kg/m3] ρ [kg/m3]
[m] [Pa] with c0 = 1480 m/s with c0 = 30 m/s

Part. 1 0.50 4905.0 1000.0022393 1003.957
Part. 2 0.51 5003.1 1000.0022841 1004.035

Table 3.2: Densities of two particles when the hydrostatic pressure applies

It can be seen from table 3.2 that a double precision must be used for c0 = 1480 m/s
in order to have enough precision to distinguish the densities of the two particles. Indeed,
it is only the ninth significant digit that makes the difference between the two particles. If
a single precision was used, no pressure difference would be seen between the two particles
which can lead to a non-physical behaviour.

When a lower speed of sound c0 is used, i.e. when the fluid is considered more com-
pressible, a single precision is enough to distinguish the pressure difference between the
particles.

3.2.6 Unity of the smoothing function

One of the properties of the smoothing function is that it must be normalised. This property
is expressed by equation (2.17). This property is not always respected, especially in two
cases:

1. when the particle is near a boundary or,

2. when the particle is near the free surface.

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 41

Those two possibilities are represented is figure 3.9. It can be seen that there is a lack of
particles in some regions of the smoothing function. This can lead to the loss of the unity
of the kernel.

Figure 3.9: Examples of truncated smoothing functions

In order to remedy to this, the kernel or its gradient can be renormalised. In this master
thesis, the formulae used to solve the Navier-Stokes equations use only the gradient. Thus,
I will only focus on the kernel gradient. The normalisation of the kernel itself is quite easy
and can be achieved thanks to the following expression:

W̃ab =
Wab

N∑
b=1

mb
ρb
Wab

(3.44)

As the∇aWab intervenes in (3.16) and (3.22), the normalisation will be done differently.
The developments are explained in [Chen et al., 1999]. First, let us focus on a 1-D case.
The Taylor series expansion for a function f about x ′ can be written:

f (x) = f (x ′) +
1

1!

df (x ′)

dx
(x − x ′) +

1

2!

d2f (x ′)

dx2
(x − x ′)2 + · · · (3.45)

This equation can be multiplied by W ′ = dW (x − x ′, h)/dx to both sides and integrated.
The second order or higher derivative of f are ignored:∫

Ω

f (x)W ′ dx ≈ f (x ′)

∫
Ω

W ′ dx +
df (x ′)

dx

∫
Ω

(x − x ′)W ′ dx (3.46)

Equation (3.46) can be manipulated and written as

df (x ′)

dx
≈

∫
Ω

(f (x)− f (x ′))W ′ dx∫
Ω

(x − x ′)W ′ dx
(3.47)

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 42

The particle approximation (2.12) allows me to write

df (xa)

dx
≈

N∑
b=1

mb
ρb

(f (xb)− f (xa))
dWab

dx

N∑
b=1

mb
ρb

(xb − xa)
dWab

dx

(3.48)

From equation (3.48), we can deduce an expression for the corrected kernel first derivative:

dW̃ab

dx
=

dWab

dx
N∑
b=1

mb
ρb

(xb − xa)
dWab

dx

(3.49)

For a 3-D case, the problem can be generalised using the same reasoning. Neglecting
the second order and higher derivatives, the Taylor series expansion in 3-D can be written
as

f (x) ≈ f (x′) + (x1 − x ′1)
∂f (x′)

∂x1

+ (x2 − x ′2)
∂f (x′)

∂x2

+ (x3 − x ′3)
∂f (x′)

∂x3
(3.50)

Equation (3.50) can be abbreviated by

f (x) ≈ f (x′) + (xi − x ′i)
∂f (x′)

∂xi
(3.51)

When both sides of equation (3.51) are multiplied by ∂W (x− x′, h)/∂xj and integrated, it
becomes ∫

Ω

f (x)
∂W

∂xj
dΩ ≈ f (x′)

∫
Ω

∂W

∂xj
dΩ +

∂f (x′)

∂xi

∫
Ω

(xi − x ′i)
∂W

∂xj
dΩ (3.52)

This equation can also be written as

∂f (x′)

∂xi
≈

∫
Ω

(f (x)− f (x′))
∂W

∂xj
dΩ∫

Ω

(xi − x ′i)
∂W

∂xj
dΩ

(3.53)

After the particle approximation, equation (3.53) is written as

∂f (xa)

∂xi
≈

N∑
b=1

mb
ρb

(f (xb)− f (xa))
∂Wab

∂xj

N∑
b=1

mb
ρb

(xb,i − xa,i)
∂Wab

∂xj

(3.54)

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 43

The corrected gradient of the kernel can be written as

∇̃aWab =M−1∇aWab (3.55)

with the elements of the matrix M expressed by

Mi j =

N∑
b=1

mb
ρb

(xb,i − xa,i)
∂Wab

∂xj
(3.56)

The derivative of the smoothing function is also expressed as in equation (2.16):

∂Wab

∂xj
=
xa,j − xb,j

rab

dW

dr

∣∣∣∣
r=rab

(3.57)

It can be seen from equation (3.55) that a system must be solved in order to normalise
the gradient. I have noticed however that the matrixM is symmetric. In fact, this is due to
expression (3.57) where (xa,j − xb,j) appears. This leads to a potential time saving during
the resolution.

The normalisation has a big drawback. As explained in [Vaughan et al., 2008], the
normalisation leads to the loss of symmetry. Indeed, the gradients of two neighbouring
particles which are not at the same distance of a boundary or free surface will have their
gradient corrected differently. This means that Newton’s third principle will be violated:
the force produced by a particle a toward a particle b will not be the same as the force
produced by the particle b toward the particle a as it should be. The violation of this basic
principle induces a small loss of interest for the normalisation.

If the correction of the kernel gradient is applied, it should be applied only on the
conservation of momentum as stated by [Gomez-Gesteira et al., 2010]. In fact, the loss of
symmetry applied to the continuity equation may lead to severe oscillations of the density.

To correct the continuity equation, other methods exist but are not implemented for this
master thesis. A review of these is available in [Gomez-Gesteira et al., 2012b]. They are
named density filters. The most straightforward mean to filter the densities is to perform
every ∼ 30 iterations the following filter:

ρ̃a =

N∑
b=1

mbW̃ab (3.58)

This filter is based on the summation density (3.12) and the corrected kernel equation
(3.44). This technique avoids large density variations in the fluid.

3.2.7 Boundary conditions

The boundaries of a domain can be modelled in different ways. For this work, only one
was chosen. This choice will be discussed later. [Crespo et al., 2007] cites three kinds of
boundary conditions:

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 44

1. Ghost particles. This kind of boundary condition was introduced by [Randles and
Libersky, 1996]. It consists of three kinds of particles:

(a) Interior particles which are the fluid particles.

(b) Boundary particles which represents the boundary itself.

(c) Ghost particles which are used to complete the kernel.

These particles are represented in figure 3.10. This kind of boundary condition can
be implemented easily for regular surfaces but it is much more complicated when
special boundaries have to be used.

Figure 3.10: Interior, boundary and ghost particles [Randles and Libersky, 1996]

The principle of this method can be summarised as follows: when a particle ap-
proaches the boundary, a ghost particle is created to the other side of the boundary
with the same density but with an opposite velocity which creates a repulsive force.
The variable number of particles is not easy to handle.

2. Repulsive particles were introduced by [Monaghan, 1994] in order to create boundary
conditions. These particles exert a repulsive central force on a fluid particle. This
repulsive force is based on the Lennard-Jones equation.

3. Dynamic particles are well described and analysed by [Crespo et al., 2007]. These
particles have the same properties than the fluid particles except that the conservation
of momentum is not solved for them. It means that Du/Dt is set by the user to
0 (the particles keep their initial velocity) or to an arbitrary law. This is very useful
for moving boundaries. This kind of boundary condition is very flexible for the shape
of the boundaries er for the motion of the boundaries. It is also easy to treat the
boundary conditions as the dynamic particles can be included in the same loop as the
the fluid particles.

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 45

For this master thesis, the dynamic particles have been chosen for their flexibility and
their ease of use. These particles offer a repulsive mechanism thanks to the continuity
equation (3.16). When a mobile (fluid) particle approaches a fixed (boundary) particle and
when the distance between the particles is lower than κh, the terms of equation (3.16) are
not null. This leads directly to an increase in density as Dρ/Dt 6= 0. This density increase
induces a non null pressure. This non null pressure will at its turn lead to a Du/Dt 6= 0

for the fluid particle. This can be seen in equation (3.22). From this description of the
phenomenon, it can be deduced that it is the term uab = ua−ub together with the distance
between the particles (via the gradient of the smoothing function) that play the biggest
roles in the repulsive effect.

The use of dynamic particles as boundary can create a gap between the fluid particles
and the boundary. This phenomenon can be observed when a thin layer of fluid flows
paralleled to the boundary. This gap is approximately equal to the distance κh.

The way to initialise the boundary particles is an important factor. The most straight-
forward way to set the particles is to set them in a Cartesian lattice with the same spacing
as the fluid particles. The density assigned to each particle is deduced from the hydrostatic
pressure if the boundary touches the fluid. Only one layer of particles can be used. How-
ever, in some cases, some precautions must be taken. For example, when violent shocks
between the particles and the boundary are possible, a second layer of particles can be used.
This was done by [Crespo et al., 2007] to simulate the fall of a single particle on a boundary.
The particles should be staggered as shown in figure 3.11 for a 2 or 3-D problem.

boundary

domain

s/2

s

Figure 3.11: Two layers of boundary particles

3.2.8 Initialisation of the particles

The initialisation of the particles is an important step in the simulation of a problem. For
this master thesis, it has been decided to initialise the position in a Cartesian grid. Some
authors decide to initialise the particles in a staggered way. As it will be seen later, this
decision has no impact on the implementation of the SPH program because the input files
are created separately.

After having decided the position given to the particles, the other parameters such as
the velocity, the density and the mass must be set. The velocity is an initial condition which
will be set to 0 in many test cases of this work. The pressure and the mass are dependant
from each other.

If we consider an initial hydrostatic pressure in the fluid, the density of each particle can
be determined thanks to equation (3.38) or equation (3.39). Considering what is written in

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 46

[Violeau, 2012], the mass should be set according to the the volume occupied by a particle
and its density:

ma = Vaρa (3.59)

with a volume Va calculated according to the spacing between the particles: Va = sd with
s the spacing between the particles and d the number of dimensions.

However, this kind of initialisation do not lead to the equilibrium of water in a tank
as exposed in the section 5.1.2. In order to have a perfect equilibrium when setting the
particles in a Cartesian grid with an initial hydrostatic pressure, it has been decided to
analyse the problem in 1-D. This discussion is done in the appendix A.5. In this appendix,
I found a solution only when the number of particles was even. This question is very
interesting and further research should be done.

Finally, the technique used during this work to initialise the particles is the one proposed
by [Violeau, 2012], which does not lead to an initial equilibrium. However, the SPH method
is mainly used for dynamic problems. For example, for a dam break, the initial hydrostatic
pressure is only used to initiate the movement of water. The pressure inside the fluid comes
quickly to be more uniformly distributed. This is why the imprecision introduced at the
beginning of the simulation can be considered as negligible for the range of problems that
suits best to the SPH method.

3.2.9 Time integration

The time steps can be deduced from the Courant condition, the forces acting on the
particles and the viscous forces. [Monaghan, 1992] gives the expression for the time step.
The first expression given is relative to the body forces:

∆tf = min
a

(
ha
|Fa|

)
(3.60)

with a = 1, · · · , N, N being the total number of particles. The second expression is relative
to the Courant condition as well as the viscous diffusion:

∆tcv = min
a

(
ha

ca + 0.6(αca + βmaxb µab)

)
(3.61)

where the coefficients α and β are the same as the ones in the artificial viscosity (3.40).
ca is the speed of sound at the particle a.

The final time step in obtained by

∆tqi = min(0.25∆tf ; 0.4∆tcv) (3.62)

The coefficients 0.25 and 0.4 are given by [Monaghan, 1992] from computer experiments.
For an ideal gas, the time step can be increased as the fluid is more compressible. After

a few experiments, the time step for the ideal gases was taken at ∆tig = 5∆tqi .

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 47

The time integration scheme used for this work was a Runge-Kutta second order
predictor-corrector scheme, abbreviated RK22. Before developing this integration scheme,
let us concentrate on the Eulerian scheme. It can be written:

yi+1 = yi + hf (xi , yi) (3.63)

with xi+1 = xi + h and f (xi , yi) = y ′i . This scheme is the most straightforward way to
calculate yi+1. This method is illustrated in figure 3.12 (a). However, the results obtained
are quite bad as the error is Oh [Kreyszig, 2006].

x

y

xi

yi

xi+1

yi+1

x

y

xi

yi

xi+1

yi+1

x

y

xi

yi

xi+ 1
2
xi+1

yi+1

(a) (b) (c)

Figure 3.12: Integration schemes: (a) Euler, (b) RK22 – θ = 0.5 and (c) RK22 – θ = 1

The RK22 schemes are second order methods. This means that the error is Oh2

[Kreyszig, 2006]. A first version is the Heun (or improved Euler) method. It can be
obtained thanks to a development given in [Jedrzejewski, 2005]:

yi+1 = yi + 1
2h (k1 + k2)

k1 = f (xi , yi)

k2 = f (xi + h, yi + hk1)

(3.64)

The Heun method can be visualised in figure 3.12 (b). The slope in this method is obtained
thanks to a mean of the slope at the beginning of the step and at the end of the step.
Equations (3.64) can be generalised:

yi+1 = yi + h ((1− θ)k1 + θk2)

k1 = f (xi , yi)

k2 = f (xi + 1
2θh, yi + 1

2θhk1)

(3.65)

The explanations concerning this generalisation can be found in [Jedrzejewski, 2005]. The
Heun method is obtained when θ is replaced by 0.5.

Another version of the RK22 is obtained by substituting θ = 1 in equations (3.65).
This gives: 

yi+1 = yi + hk2

k1 = f (xi , yi)

k2 = f (xi + 1
2h, yi + 1

2hk1)

(3.66)

CHAPTER 3. THE SPH METHOD APPLIED TO HYDRAULICS 48

This method is represented in figure 3.12 (c). It can be understood as if a slope was
calculated at the middle of the step and applied at the beginning of the step. The error is
the same between the two variants of RK22. It can be also noted that other values of θ
can be used.

For this master thesis, the two RK22 schemes will be used and the three integration
schemes will be compared.

Other integration schemes exist like the Leap-Frog scheme or higher order Runge-Kutta
schemes (e.g. RK44). However, because of the high computational cost inherent to the
SPH method and the didactic purpose of this work, the RK22 schemes will be chosen for
its good compromise between the computational cost and the precision.

Chapter 4

Implementation of the method

This chapter will focus on the practical implementation of an SPH program. First of all, I
will discuss the main scheme of the program, regardless of the implementation choices that
can be made. Then, I will explain the different choices made to implement this program. I
will concentrate on two implementations and I will discuss the reason why I chose one and
not another.

A copy of the source code is available in the appendix B.4.

4.1 General scheme of the program

I will begin by the presentation of the general scheme of the program. A graphical repres-
entation is shown in figure 4.1.

The first step consists in initialising the system. This step includes:

1. The creation of the boundaries thanks to dynamic particles. These particles will be
named fixed particles (FP) for the following pages. They are named fixed because
they are mainly used as non moving boundaries. However, this type of boundary
conditions can be used to model mobile boundaries. The data needed to initialise a
boundary particle are:

(a) its position x (3 components in 3-D),

(b) its initial velocity u (3 components in 3-D)1,

(c) its mass and,

(d) its density.

This means that for one boundary particle, 8 data should be given to the program.
The density and the mass are needed as an initial pressure may exist in the fluid,
which induces a density ρ 6= ρ0.

1The velocity is only useful when the boundaries are moving. In order to be as general as possible these
three components are included in the initialisation.

49

CHAPTER 4. IMPLEMENTATION OF THE METHOD 50

Initialisation: boundary and fluid
particles, ρ0, h0, etc.

Particles sorting

Find neighbours + ∇aWab

Continuity equation

Volume forces F

Artificial viscosity Πab

Equation of state

Momentum equation

Update of ρ, x and u

Time increment and h update

Output

Time loop

Part. loop

Figure 4.1: General scheme of an SPH program

2. The creation of the fluid particles is similar to the creation of the FP. The fluid
particles will be named mobile particles (MP) for the following pages. These MP
need the same data as the FP. However, the fixed and mobile particles should be
distinguished as the conservation of momentum is not solved for the FP.

3. The initialisation of some parameters. These parameters include:

• the kind of smoothing function to use,

• the simulation time,

• the saving interval,

• etc.

CHAPTER 4. IMPLEMENTATION OF THE METHOD 51

The parameters given to the implemented program will be detailed later.

This initialisation can be done in different ways: the program itself can create the set of
data that is needed, or the program reads some input files. The second option seems more
flexible and was chosen for this master thesis.

After the initialisation, the program can enter into a time loop. In figure 4.1, the
predictor and corrector steps are not represented for the sake of clarity. The first thing to
do at the beginning of a time step is to sort the particles. Indeed, the search algorithm
chosen is the linked-list search algorithm. The first step of this algorithm is to sort the
particles in the different cells of the domain. Then, the neighbours can be searched. The
step called particle sorting in figure 4.1 refers to the operation that calculates the cell in
which a particle is. This operation is done only once every time step, not at every predictor
or corrector step. Practically speaking, this operation requires a loop over all the particles.

After this sorting, a loop over all the particles can begin. For every particle, the neigh-
bours (rab ≤ κh) must be found. This is done thanks to the summarised algorithm 1.
The variable Ncel ls refers to the number of cells that have to be scanned to find the
neighbours. For the particular case presented in figure 3.8, Ncel ls = 9.

Algorithm 1 Algorithm used to find the neighbours of a particle
for i = 1→ Ncel ls do . Ncel ls is the number of cells where neighbours can be found

for j = 1→ Nparts do . Nparts is the number of particles in the cell i
calculate rab . a refers to the current particle and b to the tested one
if rab ≤ κh then

add neighbour . the particle b will be known as a neighbour of a
end if

end for
end for

When the neighbours of a particle are found, the values of the vector ∇aWab can be
calculated for every particle. This is done thanks to formula (2.16). The values of ∇aWab

can be saved in order to use them for the continuity and the conservation of momentum.
If a corrected kernel is required, its calculation can take place now.

After these preliminary steps, the calculations to solve the continuity equation (3.16)
and the conservation of momentum (3.22) can begin. These calculations can be performed
in parallel because they are independent from each other at a given predictor or corrector
step.

The continuity equation is solved for all the particles (FP and MP). In order to solve it
for a given particle a, a loop over the neighbours b is performed as shown in the algorithm
2.

The conservation of momentum can be solved in a similar way for the MP: the sum over
the neighbours can be done thanks to a loop over them. Moreover, some other terms must
be computed: the artificial viscosity Πab and the pressures pa and pb. The pressures can
be saved for each particle in order to save some time. The pressure is given thanks to the
equation of state (3.24) or (3.25). Indeed, the pressure at a given particle will be needed

CHAPTER 4. IMPLEMENTATION OF THE METHOD 52

Algorithm 2 Calculation of the continuity equation
sum ← 0 . sum = Dρa/Dt

for b = 1→ Nneigh do
uab ← ua − ub . a stands for the current part. and b for the current neigh.
sum ← sum +mbuab∇aWab

end for

more than once as it is part of more than one support domain. The artificial viscosity can
be obtained thanks to equation (3.40). The body forces F can be calculated separately
but can also be assumed constant with time which is the case for the gravitational force.
The conservation of momentum is not solved for the fixed particles. Indeed, these particles
are not part of the fluid and their movement is ruled by an arbitrary law (no movement or
imposed movement).

After having calculated Dρ/Dt from the continuity equation and Du/Dt from the
conservation of momentum, the variables ρ, u and x of a particle can be updated. If the
time integration scheme is an Eulerian scheme, the data are updated this way:

ρa,next = ρa +
Dρa
Dt

∆t (4.1)

ua,next = ua +
Dua
Dt

∆t (4.2)

xa,next = xa + ua∆t (4.3)

The pressure and the speed of sound of each particle can be updated and saved after having
obtained ρa,next.

After having updated the variables ρ, u and x of each particle, we can go to the next
time step. The time step can be updated as well as the smoothing length. These operations
are performed thanks to equations (3.62) and (3.42), respectively. The new smoothing
length is the same for every particle as the choice of a constant smoothing length in space
has been made.

Finally, after all the required time steps, the output can be generated. This output can
include the following information:

• the positions x, velocities u, densities ρ and/or pressures p of the MP

• the same data for the FP

• the saving times

• the performance information of the program

These data can be treated in two different ways:

1. directly by the program that performs the calculation: after or during the calculation

2. by another program that will use the output files generated by the main program

CHAPTER 4. IMPLEMENTATION OF THE METHOD 53

For this work, the second option was chosen because it offers more flexibility. Moreover,
the first option slows down the calculation. The programming language used to make the
calculations may not be suitable for graphical representations. The second option allows
the user to plot the information he desires while the first one is more complicated to adjust.

4.2 Practical implementation of the SPH method

The previous section explained the main scheme of an SPH program. I will now focus on
the way I implemented the program that will be used. I will also discuss an alternative
implementation that has not been used because of performance problems. These problems
will be explained.

4.2.1 First choices

Object-oriented programming

Before any implementation, a choice of programming philosophy must be done. In many
situations a sequential philosophy is chosen because it is straightforward and it offers a
lot of advantages for many applications. However, for this SPH code I chose to design
the program around an object-oriented philosophy. This way to implement is not usual
in a classical civil engineering curriculum but I had the opportunity to attend a course of
object-oriented programming some years ago. This slight knowledge of the subject made
me think that it could be interesting to try this kind of implementation.

Before going further, I would like to describe the object-oriented programming [Budd,
2002]. This kind of programming exists from the 1960’s. However, it became truly popular
in the 1980’s. Nowadays, a lot of programmers use this paradigm. Budd describes this
paradigm as being a new way of viewing the world. Indeed, an object-oriented program can
be seen as a community of agents. [Budd, 2002] states that:

"An object-oriented program is structured as a community of interacting agents
called objects. Each object has a role to play. Each object provides a service
or preforms an action that is used by other members of the community."

The different objects of a program can communicate between them thanks to messages.
From a general point of view, an object contains two things:

1. Variables such as numbers, strings, arrays, etc.

2. Methods that are some mechanisms used to perform actions.

In the object-oriented paradigm, the variables and methods can have different scopes. But
this possibility will not be used in this work.

An object is an instance of a class. The class is a kind of mould. It is used to create
the objects. This mould (class) can also be modified in order to create other objects that

CHAPTER 4. IMPLEMENTATION OF THE METHOD 54

have the same kind of properties but with other features. This is called the inheritance and
hierarchy in object-oriented programming.

The object-oriented paradigm includes other mechanisms that will not be discussed
here.

Choice of a programming language

In order to implement a program with the object-oriented paradigm, a language must be
chosen. For example, Java and C++ are well known for their object-oriented features.
These languages will not be used because Java is not directly processed by the computer.
It must use a virtual machine in order to run on a device. This is an advantage for programs
which must be easily portable. However, it is a big drawback for programs that require
high performance. C++ was not a solution either because I preferred to concentrate my
attention on more fundamental problems linked to the SPH method instead of learning a
new language.

Given these observations Fortran seemed to be the best solution. Indeed, this language
offers some object-oriented features and is quicker to learn given my programming back-
ground. Fortran is also a high-level programming language that allows very good perform-
ance. It was first designed by IBM in the 1950’s for scientific and engineering problems. It is
still mainly used today in that field. Fortranmay appear as an old-fashion language to many
people but it has been reviewed many times in the last years. The last standard in called
Fortran 2008 and was approved in 2010 [Chivers and Sleightholme, 2012]. The last up-
dates of Fortran brought some object-oriented features (since Fortran 90 and more with
Fortran 2003 and Fortran 2008) and bindings with the C language (Fortran 2003).

As discussed earlier, the pre and post-processing can be handled in two different ways:

1. the particles are created and post-processed by the main program or,

2. the particles are created and post-processed by a secondary program implemented in
a more convenient language.

The second solution has been chosen for its flexibility. The pre and post-processing will be
done thanks to two Matlab programs. Three files will be needed for the input and two files
will be produced for the output.

The input files are:

1. A parameter file. This is a text file with an extension *.prm. It contains 15 lines
with the following information:

• number of fixed particles

• number of mobile particles

• initial smoothing length h0

• reference speed of sound c0

• reference density ρ0

CHAPTER 4. IMPLEMENTATION OF THE METHOD 55

• size of the domain. The whole domain is considered cubic. This data is the
length of one side. Even if the whole domain is cubic, the boundaries can be
set in order to use only a part of the domain and thus the final domain can be
of any geometry.

• kind of kernel

• artificial viscosity coefficient α

• artificial viscosity coefficient β

• equation of state

• value of γ in the equation of state for quasi-incompressible fluids

• molar mass in the equation of state for ideal gases

• kernel correction

• simulation time

• saving interval

The values to give to these properties will be given later.

2. A file which contains the information of the fixed particles. It is also a text file with
an extension *.fp. A line represents a particle. For a line, there are 8 data:

• columns 1 to 3: initial position x

• columns 4 to 6: initial velocity u

• column 7: initial density of the particle

• column 8: mass of the particle

The columns are separated with a tabulation.

3. A file which contains the information of the mobile particles. It is also a text file with
an extension *.mp. Its structure is the same as for the fixed particles.

In order to localise these files, the main program requires a file named paths.txt placed
in the same directory as the main program. This file contains the paths toward the files
*.prm, *.fp and *.mp. This technique allows to save the working files in a different
directory than the main program’s directory. This is more convenient than handling the
files manually from one directory to another.

The output files are:

1. results.out which contains

• the 3 components of the position x

• the 3 components of the velocity u

• the density ρ

• the pressure p

CHAPTER 4. IMPLEMENTATION OF THE METHOD 56

these data are saved for every mobile particle, every time a saving is required.

2. time.out which contains the saving times

The two output files are binary files that contain single precision real numbers. The choice
of binary files has been made in order to increase the efficiency of saving and of reading.

To sum up, it has been decided to implement an SPH model in Fortran in an object-
oriented way. This program will use 3 input files and output 2 binary files for post-
processing.

4.2.2 The implemented program

Now that the main choices are explained, I will focus on the practical implementation of
the SPH model.

As stated earlier, I chose to write the program in an object-oriented way. Thus I have
to decide the classes to implement. In the Fortran language the classes are called types.
A basic diagram of the program is sketched in figure 4.2. This diagram will help to create
the types needed. The central entity of the program is what is called the particle manager.
This manager knows all the particles (fixed and mobile). It knows also the characteristics
of the simulation. This manager can communicate with an object called particle_sort.
This object is used by the particle manager to sort the particles in the different cells of the
domain as discussed earlier. The role of this sorting machine is based on the explanations
of figure 3.8. A link between the particles and the particle manager is necessary. This can
be achieved thanks to the use of an array. Each cell of the array contains a pointer toward
an object particle (MP or FP). The use of an array of pointer instead of an array of objects
was done because of the limited possibilities of Fortran for this particular case2.

The diagram of figure 4.2 gives a first idea of how the different objects of the program
interact with each other. I will now explain what is contained in each type.

Particle manager

Let us begin with the particle manager. It contains a lot of information relative to the the
problem. For example: the number of particles (total, FP and MP), the kind of kernel,
the simulation time, the equation of state to use, etc. Beside all these information, it
is linked to the particle_sort object and to a list that contains pointers toward the
particle objects. This list will be explained later. The particle manager also contains four
procedures:

• initialisation which initialises all the problem. It is the first procedure called. Its
job is to load all the data from the input files and to create and prepare the different
objects used by the program.

2As it will be seen later, the mobile and fixed particles use polymorphism which does not make the use
of an array of objects possible.

CHAPTER 4. IMPLEMENTATION OF THE METHOD 57

particle_manager particle_sort

...

...

...

MP

MP

MP

FP

FP

FP

Figure 4.2: Diagram of the program

• solver is used to solve the problem. It is the main procedure that will call other
procedures from the object particle_manager or from other objects. Its behaviour
will be described later.

• timeStepUpdate is used to update the time step according to equation (3.62).

• slUpdate is used to update the smoothing length according to equation (3.42).

Sorting of the particles

Then, let us focus on the object particle_sort. This object is present only once in the
program. Its role is to know in which cell a particle is. It communicates with the particles
via the particle manager. Its variables are, the maximum smoothing length, the length of
a side of a cell, the number of cells on a side and the total number, a pointer toward the
particle manager and a 2-D list that stores the particles in each cell. A minimal example of
this list is given in figure 4.3. It can be seen that an array with a size equal to the number
of cells is created. This array contains a list of particles. This list has not a constant
size in time. The mechanism used to handle this variable size will be explained later. The
construction of this array of lists allows to know which particles are in which cell. This will
be very useful for the search of neighbours of a particle. Indeed, as a particle knows in
which cell it is located, it also knows the surrounding cells. This allows a particle to know
its potential neighbours. Its last job will be only to check the distances between it and the
potential neighbours.

In order to build the lists of particles, the object particle_sort needs a few procedures:

CHAPTER 4. IMPLEMENTATION OF THE METHOD 58

1 2

34

a

b

c
d
e

f

g

hi

a

b c d

e f

g h i

Figure 4.3: Lists of sorted particles

• get_h_max calculates the maximum smoothing length. This procedure is only useful
if the smoothing lengths are not constant in space. This has been implemented in
order to be as general as possible. After having found the maximum h, the result is
multiplied by a coefficient ≥ 1 in order to keep the same number of cells during all
the computation time. This coefficient is chosen according to the equation of state.
If the fluid is an ideal gas, it will be more compressible and the smoothing length will
tend to vary more. The calculations made to determine these coefficients are given
in the appendix A.4. The results are given in table 4.1.

• setCells is used to set the size of the cells. The cells are cubic and the domain
is cubic. This means that there is the same number of cells on every side. The
procedure allocates also the array of lists of figure 4.3.

• particlesSort is the main procedure and its job is to sort the particles in the
different cells. The lists presented in figure 4.3 are created or updated. Firstly, some
modulo operations are done in order to know in which cell a particle is located. Then,
it is added to the corresponding list.

Ideal gas Quasi-incompressible fluid
h̃max = 1.1hmax 1.02hmax

Table 4.1: Coefficients used to increase the maximum smoothing length

The sorting operation is not performed at every predictor-corrector step. It is done only
at the beginning of a time step.

Particles

The last objects are the mobile and fixed particles. As these objects have many sim-
ilar properties, a system of inheritance has been implemented. The main class is the
fixed_particle type. The mobile_particle type extends the fixed_particle type
because it has exactly the same properties as the fixed particles except that the conserva-
tion of momentum must be solved. The type fixed_particle has mainly the following

CHAPTER 4. IMPLEMENTATION OF THE METHOD 59

variables: position, velocity, density, pressure, speed of sound, smoothing length, list of
neighbours, values of the kernel gradient for every neighbour, etc. All theses variables are
common with the mobile particles. The procedures of a fixed particle are:

1. getNeighbours is used to find the neighbours. The procedure scans the cell in which
the particle is located as well as the neighbouring cells. It calculates the distance
between two particles and then add the particle as a neighbour if the distance ≤ κh.

2. calcPressure is a function that calculates the pressure according to the equation
of state chosen.

3. calcCelerity is a function that calculates the speed of sound according to the
equation of state chosen.

4. gradW is a procedure that loops over all the neighbours in order to calculate the
gradient of the kernel at a considered neighbour. The values of the gradients are
saved in a matrix (3× Nneigh).

5. kernelCorr is the routine used to correct the kernel gradient as described in the
section 3.2.6.

6. varUpdate_fixed is the procedure that performs the calculations required by the
equation of continuity. The results are saved in the variables of the concerned object
according to the current Runge-Kutta step.

As said earlier, the mobile_particle type is an extension of the fixed_particle
type. The only two differences between these two types are:

1. ArtificialViscosity is a new procedure that calculates the Πab terms.

2. varUpdate_mobile is an overload procedure that solves the equations of continuity
and of conservation of momentum. It updates also the variables according to the
current Runge-Kutta step.

Lists in the program

Lists of particles are needed at several places in the code. Two kinds of lists can be
distinguished:

1. Lists with a fixed size

2. Lists with a variable number of elements

The first kind of list can be observed in the particle manager. This list has a constant
number of particles as the number of particles in the system is supposed to stay constant.
This kind of list can be easily handled with an array. However, the arrays in Fortran do not
allow to have polymorphic types as elements of the array. This has been handled thanks to
the use of a pointing objects which were called min_link (to abraviate minimal link). This

CHAPTER 4. IMPLEMENTATION OF THE METHOD 60

type contains only a variable which can point toward an object of class fixed_particle.
As the type mobile_particle extends the type fixed_particle, the mobile particles can
be pointed by an object min_link. The declaration of min_link in Fortran is

type min_link
class (fixed_particle) , pointer :: ptr => null()

end type min_link

This pointing object will be used to point toward a created particle object (MP or FP)
and will be stored in the array. The creation of the objects MP or FP is done during the
initialisation of the system. The particles must be declared at this time as a FP or a MP:

allocate(fixed_particle :: this%part(i)%ptr)

or

allocate(mobile_particle :: this%part(i)%ptr)

respectively. These expressions allow the minimal link to know if it is pointing a FP or a
MP. Thanks to this trick, an array of polymorphic objects can be created.

The second kind of list has a variable number of elements. This could be handled thanks
to linked-list for example. This implementation will be developed in the next subsection.
Lists of variable length can be found for the lists of neighbours of a particle or the lists
of particles contained in a cell of the domain. The choice made for this type of list relies
on the arrays and the possibility to allocate and deallocate them. Let us imagine a first
kind of array which has a variable length every time an element is added or removed. The
array in this case must be allocated and deallocated every time. This leads to a lot of
manipulations in the memory of the computer which can lead to a longer computation.
Another way would be allocate an array only once at the beginning with a very large size
in order to be sure to keep the same size during all the computation. Even if this solution
is very efficient concerning the execution time, it has a big drawback: the memory used.

The advantages of the two solutions described can be implemented in what I will call
a dynamic list. A dynamic list is a type which is composed of an array and some auxiliary
variables. These variables are:

• the total size of the array,

• the number of elements in the array and,

• an incremental value used to increase the size of the array.

A UML diagram of this type is given in figure 4.4. In order to handle such a list, three
procedures are needed:

1. initList is used to initialise the dynamic list

CHAPTER 4. IMPLEMENTATION OF THE METHOD 61

2. addElement is used to add an element to the list. If the array is full, the elements of
the array must be saved in a temporary array. The previous array is deallocated and
a new array is allocated with the previous number of elements plus the increment.
This is described by the algorithm 3.

3. resetList is used to reset the list. The size of the array is unchanged but the
number of elements in it is set to zero. When new elements will be added to the list,
the previous elements (not erased) will be overwritten.

It must be noted that the elements of the implemented list are of type link. These
elements are the same as min_link except that they have one more value which describes
the distance between two particles. This new variable is useful for the list of neighbours

list

integer :: nbr
integer :: max_nbr
integer :: incr = 35
type(link) , dimension(:) , allocatable :: lst

initList()
addElement(ptr,r)
resetList()

Figure 4.4: UML diagram of a dynamic list

Algorithm 3 Adding an element to a dynamic list
Require: ptr . pointer toward a particle
Require: r . distance between two particles
if maxnbr = 0 then . the list is empty

call initList()
else if nbr = maxnbr then . the list is full

allocate(temp_lst(1:maxnbr + incr)) . a temp. list is allocated with a bigger size
temp_lst(1:maxnbr) = lst(1:maxnbr) . the elements are transferred
call move_alloc(temp_lst,lst)
maxnbr ← maxnbr + incr

end if
nbr ← nbr + 1

l st(nbr).ptr ← ptr . the pointer of an element of the list points toward the ptr
l st(nbr).r ← r

In this work, the increment was set at 35. This was done because the dynamic list
was used at two places: as a list of neighbours and as a list of particles in a cell. These
two lists have not the same length at all. The first one is estimated to have a number of

CHAPTER 4. IMPLEMENTATION OF THE METHOD 62

particles around 50, but in areas of very high density, the number of neighbours can reach
65-70. This means that two increments are enough to reach this number without wasting
too many space in the memory of the computer. For the lists of every cells the number can
be of approximately 300 for full cells and 0 for empty cells. This means that the increment
chosen will not cause too many reallocations. The increment of 35 seemed to fit well the
problem.

There is a final detail I would like to mention. It concerns the elements of the dynamic
list. For the lists of neighbours, the elements need to know who is the neighbour and
it can also save the distance between the current particle and the neighbouring particle.
This avoids to calculate this distance again when the value of the kernel gradient must
be determined. This is why it is necessary to have an element link with two variables: a
pointer and a real number for the distance. For the list of particles in a cell, the elements
of the list do not need to have an information of distance. However, the type list could
not be implemented with two kinds of elements or even polymorphic elements. This is due
to Fortran. This is why a dynamic list is implemented with only one kind of elements:
link. This leads to a very small loss of memory space. In fact, the unused variable r
is a real in double precision (8 bytes). The number of particles of the domain can reach
150000 in ordinary situations. This means that the lists of all the cells will have in total
a bit more than 150000 elements allocated in memory. This means that a little bit more
than 1200000 bytes (1.14 MB) will be allocated but not used. This amount of memory is
not a problem for actual computers (RAM ≥ 4 GB). The implementation of a single type
of list is justified for this reason.

Parallelism

Current computers have more than one core. This property can be used in order to reduce
the calculation time. Indeed, if two or more processors are used to compute the same
calculation as on a single processor, the execution time will be decreased as the different
calculations are spread over the processors. This technique cannot always be used.

For the implemented program, more than one processor can be used. The parallelism
can be used when the procedures varUpdate are launched. In fact, at that moment, the
particles are independent from each other, they do not share a same variable that could be
changed during the calculation. Parallelising this part of the program can be useful.

The parallelising can be done thanks to the library OpenMP (Open message passing).
This is done very easily in the implemented program. Indeed, only two lines have to be
added around a loop that can be be parallelised. These two lines are:

!$OMP PARALLEL DO PRIVATE(i) SCHEDULE(DYNAMIC)
...
!$OMP END PARALLEL DO

These instructions are placed around the loop over the particles for updating ρ, x and u.

CHAPTER 4. IMPLEMENTATION OF THE METHOD 63

4.2.3 An alternative program

In order to have better performances, another implementation has been tried. This new
implementation concentrates mainly on linked-list and on another way to update the lists.

The linked-list implemented is composed of elements that are called link. The linked-
list must know which element is the first one, which is the last one and the number of
elements in the list. If this list has to be updated by a number of new elements, it is
interesting to know which element is the first added and how many elements have been
added. The procedures used by a linked list must include an initialisation procedure, a
procedure to add elements to the list, another to remove elements and a last one to reset
the list. The type linked-list is given in figure 4.5. The type link is an element of a linked
list. Its structure is given in figure 4.6. This type being an element of a list, it must have
two pointers in order to know which element is the previous one and which element is the
next one.

linked_list

integer :: nbr
class (link) , pointer :: first_elem
class (link) , pointer :: last_elem
class (link) , pointer :: first_added
integer :: nbr_added

initList()
addElement(lnk)
rmvElement(lnk)
resetList()

Figure 4.5: UML diagram of a linked-list

link

class (fixed_particle) , pointer :: ptr → null()
class (link) , pointer :: prev → null()
class (link) , pointer :: nxt → null()
real :: r

Figure 4.6: UML diagram of a linked-list element

This linked-list can be used to store the particles of a cell or to store the neighbours of
a particle.

For the storage of the particles in a cell, two procedures are used: one for initialisation
and another for the update. The initialisation sorts for the first time the particles in the
different cells. After this first sorting, the loops over the particles will be done directly

CHAPTER 4. IMPLEMENTATION OF THE METHOD 64

via the linked-lists of the different cells. After a time step, the linked-list of every cell is
updated, i.e. the linked-list are not reset but only updated with the particles that changed
of cell. The procedure used to update the linked-list of every cell is the algorithm 4.

Algorithm 4 Update of the linked-list of the sorting cells
for i = 1→ Ncel ls do

for j = 1→ NpartP erCel l do
if particle changed of cell then

delete particle from old list
add particle to new list

end if
end for

end for

In this alternative implementation, each particle has two lists: one with the neighbours
and another with the potential neighbours. The potential neighbours are particles that
are located in the neighbouring cells but are too far to be neighbours. This new kind
of implementation is useful to update the the list of neighbours at each time step. The
initialisation of these lists is done thanks to the procedure initNeighbours. This procedure
is summarised by the algorithm 5.

Algorithm 5 Initialisation of the neighbours and potential neighbours lists
reset pot_neighbours and neighbours lists
for i = 1→ NsuroundingCel ls do

for j = 1→ NpartP erCel l do
calculation of the distance r
if r < κh then

add the particle to the list of neighbours
else

add the particle to the list of pot_neighbours
end if

end for
end for

After a whole time step, the list of neighbours is updated. The procedure that do this
is called updateNeighbours and an overview of its structure is the algorithm 6. This pro-
cedure scans the lists of neighbours and potential neighbours. The distance is recalculated
and the lists updated according to this distance. The particles added to the neighbouring
cells are also scanned and the distances calculated. According to this distance, the new
particle is added to the list of neighbours or the list of potential neighbours.

This new implementation seems very efficient on an algorithmic point of view as the
changes in the lists are minimised. However, for a given problem, this alternative program
was approximately 25% slower than the previous implementation. This can be explained
thanks to the way Fortran handles the pointers. A pointer is a memory address of a given

CHAPTER 4. IMPLEMENTATION OF THE METHOD 65

Algorithm 6 Update of the lists of neighbours and potential neighbours
if the particle is in the same cell then

for i = 1→ Nneigh do
calculation of the distance r
if r > κh then

delete from the list of neighbours
add to the list of pot_neighbours

end if
end for
for i = 1→ NpotNeigh do

calculation of the distance r
if r < κh then

delete from the list of pot_neighbours
add to the list of neighbours

end if
end for
for i = 1→ Nadded do . loop over the part. added to neigh. cells

calculation of the distance r
if r < κh then

add to the list of neighbours
else

add to the list of pot_neighbours
end if

end for
else

call initNeighbours()
end if

real, integer or type for example. Fortran uses a lot of memory space in order to store
this address. It can reach up to 72 bytes as stated by [Kumbera]:

"At run time, there is no additional overhead used by Cray pointers. Each
pointer uses only the number of bits necessary to hold a memory address (typ-
ically 4 or 8 bytes on current machines). In contrast, on the 32-bit compilers
available at the Laboratory, Fortran 90 pointers use up to 72 bytes of memory
each – 18 times the size of a Cray pointer!"

For comparison, the C language needs 4 or 8 bytes only to store a pointer. As pointers are
intensively used in the new implementation, the size of the Fortran pointers can be the
cause of a slower code.

In order to take advantage of the new implementation, it could be interesting to use self-
made pointers which are more efficient than the one offered by Fortran. Another solution
could be to investigate the possibilities of the C-binding offered by the Fortran 2003
standard.

CHAPTER 4. IMPLEMENTATION OF THE METHOD 66

4.3 How to run the program

The implementation of the program being explained, I will concentrate on how to run
the program. The user must only focus on the input and the output files. These files
have already been presented in a previous section. I will discuss now the different possible
parameters.

4.3.1 The input files

There are 3 input files:

• one for the mobile particles and one or the fixed particles. The different particles
must be initialised according to what was explained in the chapter 3.

• one parameter file. This file takes 15 values. These values and the possible options
are given and explained in table 4.2.

Parameters Possible values Explanations
Number of fixed part. D.O.F3

Number of mobile part. D.O.F
h0 U.C4 initial smoothing length
c0 U.C. reference speed of sound
ρ0 U.C. reference density
Size of the domain U.C. cubic domain
Kind of kernel 1 cubic spline

2 quadratic kernel
3 quintic spline

α e.g. [0.01; 0.5] coefficient of bulk viscosity
β often 0 used in Πab to handle shocks
Equation of state 1 ideal gas law

2 quasi-incompressible fluid
γ e.g. 7 exponent of the eqn state 2
Molar mass U.C. used for the ideal gas law
Kernel correction 0 no correction

1 correction of the gradient
Simulation time U.C. time is seconds
Saving interval U.C time in seconds

Table 4.2: Description of the options of the parameter file

The paths of the input files must be mentioned in an auxiliary file named paths.txt.
After all these files created, the program can be launched. At every saving, the program will

3D.O.F. = depends on other files
4U.C. = user choice

CHAPTER 4. IMPLEMENTATION OF THE METHOD 67

show a message that indicates the number of iterations done, the time of the simulation
when the saving was performed as well as the time step. These information allow the user
to estimate the remaining time.

4.3.2 The output files

The output files are binary files. This type of file has been chosen in order to increase the
efficiency to access the saved data. For the file time.out the saving times are saved as
single precision real numbers. It is easy to extract these times as a vector.

Concerning the file results.out the data are saved as single precision real numbers.
The order in which the MP are saved is given in table 4.3. Knowing this sequence of saving,
an exterior program can extract these data easily.

x1(p1, t1) · · · u3(p1, t1) ρ(p1, t1) m(p1, t1) x1(p2, t1) · · · x1(p1, t2) · · ·

Table 4.3: Saving of the mobile particles state

The graphs that can be generated by an exterior program are varied:

• film of the movement of the particles

• evolution of the pressure

• evolution of the position of a single particle

• evolution of the velocities

• etc.

Some possibilities will be illustrated in the next chapter.

4.3.3 Compilation

The implemented program has been written in order to respect the Fortran standard.
This makes the program compilable by any Fortran compiler on any platform. This is a
considerable advantage for a didactic program.

The compilers tested were the GNU compiler for Fortran, gfortran, as well as the Intel
compiler. After a few tests, gfortran seemed to offer better results than the Intel compiler.
The calculation was, in the same conditions, approximately 40% quicker with gfortran.
This may seem to be a lot of difference between a commercial and a free compiler. A
reason that was found for this difference concerns the way Intel handles a pointer that
points another pointer.

All the tests made in the next chapter use gfortran.

Chapter 5

Testing the program

In this chapter, the program implemented will be tested and validated thanks to some test
cases. The limitations will also be highlighted. After the validation, some comparisons
between different parameters will be done. Finally, the possibilities of the method will be
exposed thanks to some specific situations.

All the tests were made on the same computer, fitted with an Intel i7 920 processor
with a frequency of 2.66 GHz. This processor is composed of 4 cores but 8 threads. All
the indicated times are real times and not CPU times. They were calculated in the same
conditions of use.

5.1 Test cases to validate the program

In order to validate the program, five test cases will be done. Some limitations will be
highlighted and ideas of remedy will be proposed.

5.1.1 Particles fall

The first test case consists in letting a cubic set of particles fall. The initial geometry of
this problem is given in figure 5.1. The dimensions are given from particle to particle.

The goal of this test case is to check if the particles fall according to the uniformly
accelerated (UA) law. In this particular case, the position is given by

z = z0 − g
t2

2
(5.1)

with g = 9.81 m/s2, z0 the initial z position of a particle and t the elapsed time. The final
aim of this test case is to verify the integration scheme used in the implementation.

The test has been done for an ideal gas as well as for a quasi-incompressible fluid. The
characteristics of this test case are given in table 5.1.

A particle fall is represented in figure 5.2 (a) for an ideal gas and in figure 5.2 (b) for
a quasi-incompressible fluid. The line is given for an arbitrary particle of the set. Only the

68

CHAPTER 5. TESTING THE PROGRAM 69

1.2 m

1.2 m

0.6 m

0.6 m

1.2 m

1.2 m

0.6 m

0.6 m

Elevation Plan

Figure 5.1: Initial geometry of the test case particles fall

Characteristics Ideal gas QI fluid
Nb FP 745 745
Nb MP 343 343
h0 [m] 0.12 0.12
c0 [m/s] 30 30
Smoothing function Cubic spline Cubic spline
α 0.5 0.5
Equation of state Ideal gas QI fluid
Kernel correction no no
Simulation time [s] 1.5 1.5
Calculation time 1 s 5 s

Table 5.1: Particles fall characteristics

interval of time during which the particles are falling is represented. It can be seen that
the z position corresponds well to what is expected by the analytical solution (5.1). The
analytical solution being a parabola, the numerical solution should fit perfectly as a RK22
scheme is used. This can be observed when a zoom is done. This observation validates
the RK22 integration scheme used.

When the particles approach to the bottom boundary, they are repelled and a splashing
occurs. This occurs differently according to the fluid used. Snapshots are taken at 4
different times for each fluid. They can be observed in figure 5.3. The color scale represents
the pressures of every particle. It is different for each frame in order to see easily where
there is a high pressure. A difference of behaviour can be observed between the two fluids,
especially at 0.7 s. Indeed, a QI fluid being less compressible than an ideal gas, larger forces
are produced when particles tend to go away from each other. This is why the particles of
a QI fluid will tend to stay closer to the boundaries than the particles of an ideal gas.

CHAPTER 5. TESTING THE PROGRAM 70

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time [s]

z
 p

o
s
it
io

n
 [
m

]

numeric (SPH)

analytic (UA)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time [s]

z
 p

o
s
it
io

n
 [
m

]

numeric (SPH)

analytic (UA)

(a) (b)

Figure 5.2: z position of a particle that falls: (a) ideal gas, (b) quasi-incompressible fluid

The evolution of the pressure and density of a given particle is given in figure 5.4 for
an ideal gas as well as for a QI fluid. It can be observed that larger pressures are observed
for a QI fluid than for an ideal gas. This is due to the equation of state used. For the
densities, larger oscillations are observed for an ideal gas. This is because an ideal gas is
more compressible than a QI fluid. At the end of the simulation, the fluid stabilises and
the pressure, as well as the density, stabilises around a given value. It is also important to
notice that there is no density fluctuation before the interaction between a fluid particle and
a boundary particle. Indeed, uab = 0 as all the particles of the set has the same velocity.
This leads to have Dρ/Dt = 0 according to equation (3.16).

At the end of the simulation (at 1.5 s), the water in the tank is almost still. A plan view
of this situation is given in figure 5.5. Four symmetry axes can be observed and are drawn
in figure 5.5. The initial situation has the same symmetry axis at the beginning. Thus, it
is normal to have a symmetric situation at the end of the simulation. This highlights the
fact that the program solves the same equations according to x , y and z .

The elapsed times for this simulation are given in table 5.1. We can observe that these
simulations are quite fast. For an ideal gas, the calculation time is even shorter than the
simulation time. This can be obtained only because the number of particles is relatively
low and because of a low speed of sound.

Two conclusions can be drawn after this first test case:

1. the integration scheme RK22 is correct and,

2. the symmetry of a problem is respected.

CHAPTER 5. TESTING THE PROGRAM 71

0 0.5 1
0

0.5

1

t = 0 s
Id

e
a

l
G

a
s

0 0.5 1
0

0.5

1

t = 0.4 s

0 0.5 1
0

0.5

1

t = 0.7 s

0 0.5 1
0

0.5

1

t = 1.5 s

0 0.5 1
0

0.5

1

Q
I

fl
u

id

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 5.3: Comparison of the positions at different times

0 0.5 1 1.5
−1

0

1

2

3
x 10

5

p
 [

P
a

]

Ideal gas

QI fluid

0 0.5 1 1.5
800

1000

1200

1400

1600

ρ
 [

k
g

/m
3
]

time [s]

Figure 5.4: Comparison of the pressures and densities for a given particle

CHAPTER 5. TESTING THE PROGRAM 72

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

x [m]

y
 [

m
]

Figure 5.5: Symmetry axis at the end of the simulation

CHAPTER 5. TESTING THE PROGRAM 73

5.1.2 Water in a still tank

In this test case, an amount of water will be placed in a still tank. The aim of this test
case is to check the equilibrium of the system. Multiple cases have been done but they are
not all given in this section. Please refer to the appendix B.1 for further information.

In this section, I will just treat the case of an amount of water placed in a tank with a
pressure equal to zero for every particle. The goal is to see if the hydrostatic pressure is the
pressure that will be found for the particles in the tank. The initial geometry of the test is
given in figure 5.6. The parameters used are given in table 5.2. The problem is simulated
during only 5 s. After such a period of time, some conclusions can be made even if the
system is not stabilised. A longer simulation would request too much calculation time.

0.7 m

0.62 m

0.7 m

0.7 m

Elevation Plan

Figure 5.6: Initial geometry of the test case water in a still tank

Characteristics Test a
Nb FP 6196
Nb MP 35836
h0 [m] 0.024
c0 [m/s] 30
Smoothing function Cubic spline
α 0.05
Equation of state QI fluid
Kernel correction no
Simulation time [s] 5
Calculation time 75.8 min

Table 5.2: Characteristics of the test water in a still tank

The goal of this simulation is to show that the hydrostatic pressure is the solution of
the problem. After 5 s, the distribution of the pressure is given in figure 5.7 (a). The
particles concerned are the particles of a column of water at the center of the tank. It
can be seen that the pressures are quite close too the analytical solution, especially for the

CHAPTER 5. TESTING THE PROGRAM 74

particles of the top. However, the results are very bad for the bottom of the tank. This is
due to the fact that the kernel is not normalised at the bottom. In the appendix B.1, it is
shown that adding more boundary particles has a positive effect. Figure 5.7 (b) shows that
the pressure stabilises around the hydrostatic pressure ρgH. After 5 s, the stabilisation is
not completed but the oscillations are damped which suggests that the stabilisation will
occur a few seconds after.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p [bar]

z
 [
m

]

Numeric

Analytic

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

p
/(

ρ
 g

 H
)

partcile at a middle depth

(a) (b)

Figure 5.7: (a) Pressure distribution ate the center of the tank after 5 s and (b) evolution
of a central particle

In order to see how the pressure establishes on a slice of the tank, some snapshots
were taken at different times and are shown in figure 5.8. It can be understood that the
hydrostatic pressure establishes slowly (more than 2 s are needed). After this first general
establishment, some oscillations occurs and need to be damped. As shown in figure 5.7
(b), more than 5 s are needed. Moreover, near the boundaries the pressure is not equal to
the hydrostatic pressure. This is due to the fact that the kernel is not normalised there.

This test case shows that the hydrostatic pressure is a solution that is obtained a few
seconds after the beginning of the simulation. However, some problems can be seen near
the boundaries. As explained in the appendix A.5, an initial equilibrium state can be found
with an initial hydrostatic pressure. However, this requires the resolution of a system of
equations in order to find a particular distribution of masses. This solution was found only
for an even number of particles.

Some other test cases are presented and discussed in the appendix B.1 in order to show
the influence of different parameters on this very particular test case.

5.1.3 Dam break on a dry bed

This test case is performed in many articles such as [Crespo et al., 2007; Gomez-Gesteira
et al., 2010, 2012a]. It is based on the experiments of [Koshizuka and Oka, 1996].The
initial geometry of the problem is given in figure 5.9. It can be seen that the problem is a

CHAPTER 5. TESTING THE PROGRAM 75

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 0 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 1 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 2 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 3 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 4 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 5 s

p
re

s
s
u

re
 [

b
a

r]

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 5.8: Snapshots ate different times of the establishment of the hydrostatic pressure

2-D problem. However, the code is implemented in 3-D which force me to make this test
run in 3-D.

4L

4L

L

2L

4L

4L
L

Elevation Plan

Figure 5.9: Initial geometry of the test case dam break on a dry bed

In this case, it has been decided to take L = 0.5 m. All the parameters of the test are
given in table 5.3.

In order to check the good results given by the code, I will refer to [Koshizuka and Oka,
1996]. This article gives the position of the front measured experimentally1. My results
are compared to the experiment in figure 5.10. This figure takes non dimensional values
in abscissa and ordinate. Z is the position of the front compared to the left boundary. It
can be seen that the numerical results follow quite well the experimental measures. The

1The experimental results are given in a graph in this article. No numerical values were available. The
points represented in my figures are points that were measured on the article’s graph. Some errors may be
present.

CHAPTER 5. TESTING THE PROGRAM 76

Characteristics Dam break on a dry bed
Nb FP 60402
Nb MP 123750
h0 [m] 0.024
c0 [m/s] 35
Smoothing function Cubic spline
α 0.5
Equation of state QI fluid
Kernel correction no
Simulation time [s] 2
Calculation time 2.9 h

Table 5.3: Characteristics of the test dam break on a dry bed

artificial viscosity has been increased to 0.5 in order to take into account, as well as possible,
the friction between the tank and the fluid.

0 0.5 1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5

4

t (2g/L)
1/2

Z
/L

Numeric

Experimental

Figure 5.10: Position of the front for the dam break on a dry bed

Some snapshots taken from the numerical simulation are shown in figure 5.11. The
colors represent the pressure in the fluid. The first observation that can be made concerns
the pressure field. It is not smoothly distributed and oscillations around a given point can
be observed. However, the general layout of the pressure field is good: high pressures are
observed when the water hits the boundary and higher pressures can be seen for bigger
depth. The oscillations in the fluid are due to the fact that the kernel gradient is not
normalised. This can be handled thanks to a density filter which is not implemented in this

CHAPTER 5. TESTING THE PROGRAM 77

code. [Gomez-Gesteira et al., 2010] shows that the results obtained with a filter are not
significantly better.

0 1 2
0

0.5

1

1.5

2
t = 0 s

0 1 2
0

0.5

1

1.5

2
t = 0.1 s

0 1 2
0

0.5

1

1.5

2
t = 0.4 s

0 1 2
0

0.5

1

1.5

2
t = 0.6 s

0 1 2
0

0.5

1

1.5

2
t = 1.2 s

0 1 2
0

0.5

1

1.5

2
t = 1.8 s

p
re

s
s
u

re
 [

b
a

r]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 5.11: Snapshots of a dam break on a dry bed

Another observation that can be made is that some particles stay glued on the left
boundary. This is an unwanted phenomenon. However, it can be explained quite easily.
It is due the artificial viscosity introduced in the system. This viscosity creates a force
that makes it more difficult for two particles to go away from each other. As the boundary
particles do not move, some particles cannot overcome that attraction force with their own
weight. In many articles which consider dynamic particles as boundary conditions, these
particles are erased for the graphics. [Violeau, 2012] highlights also this phenomenon.

A small gap can also be observed between the fluid and the bottom boundary. This is
due to the dynamic particles used as boundary conditions. This problem is documented in
[Crespo et al., 2007] and explained in the chapter 3.

The last observation about these snapshots is about the shape of the fluid when it
falls from the right boundary. [Koshizuka and Oka, 1996] give some snapshots of their
experiment. One of these is given in figure 5.12. We can observe a similarity between the
snapshot at 1.2 s of figure 5.11 and figure 5.12.

From the observations that have been made, it can be concluded that a dam break
on a dry bed is well represented by the SPH program concerning the motion of the fluid.
However, without a density filter, the pressures do not look so good even if the general
pressure field layout is consistent. According to these observations, the results obtained by
the SPH program can be concluded as satisfactory.

5.1.4 Dam break on a wet bed

Another test case that was done is a dam break on a wet bed. This test case is often used
for testing many programs. An experiment was done by [Jánosi et al., 2004]. However,

CHAPTER 5. TESTING THE PROGRAM 78

Figure 5.12: Snapshot of a dam break on a dry bed taken from [Koshizuka and Oka, 1996]

the implemented program being in 3-D, the domain should also be a 3-D domain. The
experiment needs a very long domain (∼ 10 m) but very flat (∼ 0.15 m). If this problem
was implemented in the program, a lot of space would be lost as the implemented domain
must be cubic. This experiment cannot be easily represented by the program of this work.

In order to simulate a dam break on a wet bed, the geometry will be adapted and
the checking will be done on the celerity of the wave front. For an infinite domain, the
analytical wave celerity is U = c1 =

√
gh1 for a rectangular section, h1 being the bigger

depth before the dam break. The domain is not infinite and this solution is not exact as
some waves will reflect on the boundaries. However, this solution can be considered as a
good start to check if the program is consistent.

The implemented domain is given in figure 5.13. The values of the parameters used
are given in table 5.4. A low α was taken in order to avoid numeric instabilities and not to
add too much viscosity. The execution time is not too long: 23.5 min.

2 m

0.15 m
0.20 m

0.02 m

0.38 m

2 m

0.4 m

Elevation Plan

Figure 5.13: Initial geometry of the test case dam break on a dry bed

Some snapshots were taken at different times. They are given in figure 5.142. The red
dashed line represents the theoretical position of the wave front calculated thanks to the
constant velocity U =

√
gh1 = 1.21 m/s. As said earlier, this position is not exact as:

2It must be noticed that the x and z scales are different.

CHAPTER 5. TESTING THE PROGRAM 79

Characteristics Dam break on a wet bed
Nb FP 17841
Nb MP 34788
h0 [m] 0.012
c0 [m/s] 15
Smoothing function Cubic spline
α 0.01
Equation of state QI fluid
Kernel correction no
Simulation time [s] 1.5
Calculation time 23.5 min

Table 5.4: Characteristics of the test dam break on a wet bed

1. waves may reflect on boundaries and,

2. h1 is not constant because the domain is not infinite.

This red dashed line is an approximation of the wave position. However, it can be used as
a good estimation of the position of wave front.

Figure 5.14: Snapshots of a dam break on a wet bed

As seen in figure 5.14, the theoretical position is very close to the wave front up to 1 s.
After, the wave front calculated by the SPH method is not so close. This can be explained
by the high decrease of h1.

An interesting observation in figure 5.14 is the surface waves that can be seen especially
at t = 0.8 and 1.2 s. These waves are due to sound waves that propagate in a fluid in
open channel.

CHAPTER 5. TESTING THE PROGRAM 80

As it has been observed, the SPH program gives results quite close to what was expected
by a theoretical approximation. This allows me to state that this test case is passed.

5.1.5 Spinning tank

The last test case used to validate the code is a cylindrical tank half-filled with water3.
This tank is spinning around its axis at an angular velocity ω = 1.5 rad/s. The dimensions
and the initial configuration are given in figure 5.15. At the beginning of the simulation,
the tank has an initial velocity which stays constant during all the time, while the water
has no velocity with an horizontal free-surface.

ω

1 m

0.5 m

1 m

φ = 1 m

Elevation Plan

Figure 5.15: Initial geometry of the test case spinning tank

The parameters used for this test case are given in table 5.5. Two experiments were
made: one with a low speed of sound as suggested by [Monaghan and Kos, 1999] and
discussed earlier (test a) and another with the real speed of sound c0 = 1480 m/s (test b).
The first observation concerns the calculation time. The speed of sound is an important
parameter is the calculation of the time step as it can be seen in equation (3.61). A bigger
speed of sound will lead to a longer calculation time. This is obvious when table 5.5 is
observed. When c0 = 1480 m/s is used, more than 4.5 days are needed to simulate only
7 s.

The profile of the free-surface of a fluid in rotation is given by the following analytical
solution:

z(r) =
r2ω2

2g
+ z0 −

ω2R2

6g
(5.2)

The development used to obtain equation (5.2) is given in the appendix A.6. The analytical
profile will be compared to the numerical results. This is done in figure 5.164 for the two

3Acknowledgement: this test case was suggested by Laurent Miny, a classroom mate.
4The figures represent a slice of the cylinder.

CHAPTER 5. TESTING THE PROGRAM 81

Characteristics Test a Test b
Nb FP 9894 9894
Nb MP 47175 47175
h0 [m] 0.024 0.024
c0 [m/s] 50 1480
Smoothing function Cubic spline Cubic spline
α 0.2 0.01
Equation of state QI fluid QI fluid
Kernel correction no no
Simulation time [s] 7 7
Calculation time 4.5 h 109.8 h

Table 5.5: Characteristics of the test spinning tank

speed of sound chosen. The most obvious observation is about the test a. Indeed, it is
clear that the profile obtained numerically has a good shape but is not placed correctly.
The numerical profile is under the analytical one. This is due to a too big compressibility
due to the fact that the speed of sound was lowered. In comparison, the numerical solution
fits perfectly the analytical one for a speed of sound that has a physical meaning (test b).
This shows clearly that the assumption made by [Monaghan and Kos, 1999] is not always
usable, especially when the compressibility of the fluid is an important parameter. The
influence of the speed of sound on the compressibility was discussed in the chapter 3.

After this observation, it is important to recall the importance of the speed of sound
on the calculation time. Some calculations would be impossible if c0 = 1480 m/s was
always used. This is why a lower speed of sound can be used in the situations where the
compressibility is not as important as in this test case.

0 0.5 1 1.5
0

0.5

1

1.5

x [m]

z
 [
m

]

After 7 s, ω = 1.5 π rad/s

Fluid particles

Boundary particles

Analytical solution

0 0.5 1 1.5
0

0.5

1

1.5

x [m]

z
 [
m

]

After 7 s, ω = 1.5 π rad/s

Fluid particles

Boundary particles

Analytical solution

test a test b

Figure 5.16: Profile of the free surface for two c0

Another observation that can be made in figure 5.16 concerns the gaps near the bound-

CHAPTER 5. TESTING THE PROGRAM 82

aries. These ones can be explained thanks to the repulsive forces created by the dynamic
particles that make the boundaries. The fluid being less compressible for the test b, the
forces exerted by the boundary particles are greater and the radial acceleration is not enough
to overcome this repulsion force and get the fluid particles closer to the boundary. For the
test a, the gap is much smaller because the repulsion forces are lower due to the greater
compressibility of the fluid.

Given the previous visual observation, it is important to know if the system is stabil-
ised. This analysis has been made in the appendix B.2. It comes that the system can be
considered as stabilised.

The fluid particles are initialised without velocity and with an horizontal free surface.
This does not represent an equilibrium state. The different steps of the system to stabilise
are given in figure 5.17. We can observe a stabilised profile after 4 s. Form this figure, it
can be understood that the fluid experience shear forces in order increase the velocity of
the particles and to obtain a profile close to the analytical solution.

0 0.5 1 1.5
0

0.5

1

1.5

t = 1e−015 s

0 0.5 1 1.5
0

0.5

1

1.5

t = 1 s

0 0.5 1 1.5
0

0.5

1

1.5

t = 2.5 s

0 0.5 1 1.5
0

0.5

1

1.5

t = 4 s

0 0.5 1 1.5
0

0.5

1

1.5

t = 5.5 s

0 0.5 1 1.5
0

0.5

1

1.5

t = 7 s

Figure 5.17: Snapshots at different times of the spinning tank

To sum up, this last test case was very interesting because:

1. It showed that the assumption that takes c0 = 10
√
gH is not always good to make.

The real value of c0 should be preferred in some cases.

2. The program is able to deal with moving boundaries, even if not natively implemented.

3. The program is able to reproduce the profile of the free surface of a fluid placed in a
spinning tank. This suggests that the equation of conservation of momentum (see
the appendix A.6 for the analytical solution and the governing equation) as well as
the equation of continuity are solved correctly (update of the density and thus of the
pressure which lead to a consistent pressure field in order to solve the equation of
conservation of momentum).

CHAPTER 5. TESTING THE PROGRAM 83

5.1.6 Conclusions

The previous test cases allowed to validate the code. The following features were assessed
and validated:

1. The integration scheme (RK22) allows to fit perfectly a particle fall. This validates
the implementation of the integration scheme as it is a second order scheme which
must fit perfectly a parabola.

2. The hydrostatic pressure is found for the particles in the middle of a tank after
damping.

3. The position of the wave front of a dam break on a wet bed follows well the experi-
mental results.

4. The propagation of a wave on a wet bed is close to the theoretical velocity of the
propagation in an infinite domain.

5. The profile of the water contained in a spinning tank respects the theoretical profile.

However, a few limitations linked to the SPH method (but not the implementation of it)
were highlighted. These limitations concern mainly the boundary conditions: a gap was
observed for the dam break on a wet bed, some particles stay attached to the boundary
particles and the fact that the kernel is not normalised in this region leads to large pressure
oscillations (water in a still tank). Nevertheless, these limitations do not lead to the
impossibility to use the SPH method, only to a few little errors near the boundaries.

According to the good results found in the five previous test cases, the program can be
validated.

5.2 Comparison of some implemented options

In this section, I will compare the differences between some options (implemented or easily
implementable). All the tests are based on the a same initial configuration which is the
same dam break as the one given in figure 5.9. The differences between the results as well
as the differences between the execution times will be discussed.

5.2.1 Comparison between the different smoothing functions

The first comparison concerns the 3 implemented smoothing functions: a cubic spline,
a quadratic kernel and a quintic spline. Each are tested on the same test case. The
parameters are given in table 5.6.

Before having a look ate the results, the first observation concerns the calculation time.
A bar graph is given in figure 5.18. It can be easily understood that the quintic spline asks
much more time for the calculation. This is due to the fact that its support domain is
bigger (×1.33) than the support domains of the other smoothing functions. The small

CHAPTER 5. TESTING THE PROGRAM 84

Characteristics Test a Test b Test c
Nb FP 9762 9762 9762
Nb MP 7800 7800 7800
h0 [m] 0.06 0.06 0.06
c0 [m/s] 35 35 35
Smoothing function Cubic spline Quadratic kernel Quintic spline
α 0.5 0.5 0.5
Equation of state QI fluid QI fluid QI fluid
Kernel correction no no no
Simulation time [s] 1.5 1.5 1.5
Calculation time 3.4 min 3.4 min 8.5 min

Table 5.6: Characteristics of the tests used to compare the smoothing functions

difference between the cubic spline and the quadratic kernel can be explained by exterior
factors such as a background task. The difference is not significant enough to draw any
conclusion. A same calculation time seems legit as the number of neighbours of every
particles should be the same (same support domains for every particle).

100.0 s

200.0 s

300.0 s

400.0 s

500.0 s

203 204

508

te
st
a

te
st
b

te
st
c

Figure 5.18: Calculation times for different smoothing functions

Let us focus now on the results given by the three chosen smoothing functions. A first
comparison is given in figure 5.19. It shows the position of the wave front. This is the
same graph as the one produced earlier for the dam break on a dry bed (see figure 5.10). It
can be observed that there is nearly no difference between the three smoothing functions.

However, it can be noticed that the number of particles has a great impact on the
solution. Indeed, when we look at figure 5.10, we see that the solution with more particles
(previous test) was more accurate (closer to the experimental measures).

CHAPTER 5. TESTING THE PROGRAM 85

0 1 2 3 4
1

1.5

2

2.5

3

3.5

4

t (2g/L)
1/2

Z
/L

Cubic spline

Quadratic kernel

Quintic spline

Experimental

1 1.2 1.4 1.6

1.4

1.6

1.8

2

t (2g/L)
1/2

Z
/L

2.2 2.4 2.6 2.8 3 3.2

2.6

2.8

3

3.2

3.4

3.6

t (2g/L)
1/2

Z
/L

Figure 5.19: Comparison of the position of the wave front for three smoothing functions

A slice of the fluid has been captured at a given time for the three smoothing functions.
These snapshots are given in figure 5.20. Nearly no differences can be observed. The only
comment that can be made concerns the position of the particles. For the quintic spline,
it appears that the particles in the middle of the fluid are better ordered than for the two
other kernels. This is most probably due to the bigger support domain. However, this
characteristic does not influence much the final result.

0 1 2
0

0.5

1

1.5

2
Cubic spline at t = 0.48022 s

x [m]

z
 [

m
]

0 1 2
0

0.5

1

1.5

2
Quadratic kernel at t = 0.48024 s

x [m]

z
 [

m
]

0 1 2
0

0.5

1

1.5

2
Quintic spline at t = 0.48023 s

x [m]

z
 [

m
]

Figure 5.20: Comparison of a slice of fluid for three smoothing functions

To sum up, the three smoothing functions give very close results. Concerning the
execution time, the cubic spline and the quadratic kernel are better than the quintic spline.

CHAPTER 5. TESTING THE PROGRAM 86

During my tests, I noticed that the cubic spline was more stable than the quadratic kernel.
For these reasons, I recommend the use of the cubic spline.

5.2.2 Comparison between 3 integration schemes

In the chapter 3, three integration schemes have been explained. In this section, these
schemes will be tested and compared thanks to a dam break on a dry bed. The geometry
used is the same as the one given in figure 5.9. The parameters used for this comparison
are given in table 5.7.

Characteristics Dam break on a dry bed
Nb FP 9762
Nb MP 7800
h0 [m] 0.06
c0 [m/s] 35
Smoothing function Cubic spline
α 0.5
Equation of state QI fluid
Kernel correction no
Simulation time [s] 1.5
Calculation time see table 5.8

Table 5.7: Characteristics of the comparison between the integration schemes

Let us first begin with the execution time. The results are given in table 5.8. The code
has been compiled with two compilers: gfortran (free) and Intel (commercial). First of
all, the execution time is approximately 70% greater with an Intel compilation5. This is a
huge difference in the advantage of a free compiler. This can be explained thanks to a bad
handling of the pointers by the Intel compiler.

Then, it can be be noticed that the difference between an Euler and an RK22 scheme is
not as big as it could be thought. Indeed, the search for neighbours is an expensive operation
and it is performed only once per time step (at the beginning). For the correcting step (in
the RK22 scheme), only the distances between neighbours are recalculated which is not as
expensive as a complete search of neighbours. This is why there is not a factor 2 between
the execution times of an Euler scheme and a RK22 scheme.

Concerning the results, the figure 5.21 shows the position of the wave front with respect
to the time for the three integration schemes. It can be seen that they are very close. The
Euler integration scheme is not as precise as the RK22 schemes. These two schemes offer
exactly the same results.

A snapshot at a given time is given in figure 5.22 for the three schemes. No difference
can be seen for the two RK22 schemes. However, there is a slight difference between the
Euler and the RK22 schemes. Indeed, more particles stay attached to the left boundary
for an Euler scheme.

5The same compiling options were chosen. OpenMP was turned on for both compilers.

CHAPTER 5. TESTING THE PROGRAM 87

Euler RK22 RK22
θ = 1 θ = 0.5

gfortran 168 s 204 s 203 s
Intel 299 s 335 s -

100.0 s

200.0 s

300.0 s

Eu
ler

RK
22
(1
)

RK
22
(0
.5)

gfortran

Intel

Table 5.8: Execution times for the comparison between the integration schemes

It can be concluded that a RK22 scheme is preferable to an Euler scheme. Indeed,
there is not a big difference between the execution times but the precision provided by a
second order scheme is better.

CHAPTER 5. TESTING THE PROGRAM 88

0 1 2 3 4
1

1.5

2

2.5

3

3.5

4

t (2g/L)
1/2

Z
/L

Euler

RK22 mid slope

RK22 mean slope

Experimental

1 1.2 1.4 1.6

1.4

1.6

1.8

2

t (2g/L)
1/2

Z
/L

2.2 2.4 2.6 2.8 3 3.2

2.6

2.8

3

3.2

3.4

3.6

t (2g/L)
1/2

Z
/L

Figure 5.21: Comparison of the position of the wave front for three integration schemes

0 1 2
0

0.5

1

1.5

2
Euler at t = 0.48017 s

x [m]

z
 [

m
]

0 1 2
0

0.5

1

1.5

2
RK22 mid slope at t = 0.48018 s

x [m]

z
 [

m
]

0 1 2
0

0.5

1

1.5

2
RK22 mean slope at t = 0.48018 s

x [m]

z
 [

m
]

Figure 5.22: Comparison of a slice of fluid for three integration schemes

CHAPTER 5. TESTING THE PROGRAM 89

5.2.3 Using a symmetry condition in order to implement a boundary

The boundary conditions are not easy to handle in the SPH formalism. Indeed, near the
boundaries, the kernel is not normalised and some undesired viscosity forces can happen.
In order to avoid these problems, the symmetry properties of some specific situations can
be used. In this section, the example of a dam break on a wet bed will be illustrated. Two
situations will be considered. One which takes the same geometry as the one given in figure
5.9 and another which will consider a symmetry axis. This one is given in figure 5.23.

2 m2 m

2 m
0.5 m0.5 m

1 m

2 m2 m

2 m
0.5 m0.5 m

Elevation Plan

Figure 5.23: Initial geometry of test case that uses the symmetry

The parameters used for the ordinary test (test a) and the symmetric test (test b) are
given in table 5.9. The execution time of the test b is nearly equal to twice the execution
time of the ordinary test. This is normal as the number of particles is approximately
doubled.

Characteristics Test a Test b
Nb FP 9762 16242
Nb MP 7800 16380
h0 [m] 0.06 0.06
c0 [m/s] 35 35
Smoothing function Cubic spline Cubic spline
α 0.5 0.5
Equation of state QI fluid QI fluid
Kernel correction no no
Simulation time [s] 1.5 1.5
Calculation time 3.4 min 6.9 min

Table 5.9: Characteristics of the tests used to compare the influence of the boundary
consditions

The position of the wave front is given in figure 5.24. It can be easily seen that the use
of a symmetry condition offers better results than the ordinary configuration. From figure
5.25, it can be understood that no more viscous force intervene near the boundary which
is the cause of better results.

Such boundary conditions seem very interesting even if the calculation time is doubled.

CHAPTER 5. TESTING THE PROGRAM 90

0 0.5 1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5

4

t (2g/L)
1/2

Z
/L

With boundary

Symmetric

Experimental

Figure 5.24: Comparison of the position of the wave front when using or not a symmetry
condition

Nevertheless, the same level of precision is obtained more quickly with a symmetry than
with more particles (such as in the section 5.1.3). This kind of boundary condition is not
studied more in this master thesis but it could be interesting to investigate more deeply
this possibility for further works.

5.2.4 Influence of the kernel gradient correction

The last comparison concerns the use of the correction of the kernel gradient. The geo-
metry used is the one of figure 5.9. The parameters are given in table 5.10. It shows an
execution time 40% greater when the kernel gradient correction is turned on.

Concerning the results, nearly no difference are observed between the two approaches.
The kernel gradient correction shows a very slight advantage when the positions of wave
front are compared. However, the increase in the execution time is not justified by the
poor gain obtained. The figures 5.26 and 5.27 display the small differences.

It should be noticed that the test has been performed only for a dam break on a dry
bed. The conclusions could be different in another situation.

CHAPTER 5. TESTING THE PROGRAM 91

0 0.5 1 1.5 2
0

0.5

1

1.5

2
With boundary at t = 0.48018 s

x [m]

z
 [

m
]

2 2.5 3 3.5 4
0

0.5

1

1.5

2
Symmetric at t = 0.48015 s

x [m]

z
 [

m
]

Figure 5.25: Comparison of a slice of fluid when using or not a symmetry condition

Characteristics Nor correction With correction
Nb FP 9762 9762
Nb MP 7800 7800
h0 [m] 0.06 0.06
c0 [m/s] 35 35
Smoothing function Cubic spline Cubic spline
α 0.5 0.5
Equation of state QI fluid QI fluid
Kernel correction no yes
Simulation time [s] 1.5 1.5
Calculation time 3.4 min 4.8 min

Table 5.10: Characteristics of the tests used to compare the influence of a kernel gradient
correction

CHAPTER 5. TESTING THE PROGRAM 92

0 1 2 3 4
1

1.5

2

2.5

3

3.5

4

t (2g/L)
1/2

Z
/L

Without kernel corr

With kernel corr

Experimental

0 0.5 1
1

1.1

1.2

1.3

1.4

1.5

t (2g/L)
1/2

Z
/L

2.2 2.4 2.6 2.8 3 3.2

2.6

2.8

3

3.2

3.4

3.6

t (2g/L)
1/2

Z
/L

Figure 5.26: Comparison of the position of the wave front when using or not a kernel
gradient correction

CHAPTER 5. TESTING THE PROGRAM 93

0 0.5 1 1.5 2
0

0.5

1

1.5

2
Without kernel corr at t = 0.48018 s

x [m]

z
 [

m
]

0 0.5 1 1.5 2
0

0.5

1

1.5

2
With kernel corr at t = 0.48008 s

x [m]

z
 [

m
]

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x [m]

y
 [

m
]

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x [m]

y
 [

m
]

Figure 5.27: Comparison of a slice of fluid and a plan view when using or not a kernel
gradient correction

CHAPTER 5. TESTING THE PROGRAM 94

5.3 Test cases to expose the possibilities

The previous test cases are quite simple. Most of them can be done thanks to an Eulerian
program in 2-D. In this section, I will focus on some problems that are more suited to a
3-D SPH program. The possibilities of the code will be highlighted.

We have already seen that the program was able to:

1. reproduce some simple problems such as a dam break

2. handle moving boundaries

Here, I will show the 3-D features of the program as well as the flexibility of the boundary
conditions used.

5.3.1 Dam break followed by a jump

This test case takes the same geometry as for the dam break on a dry bed except that a
jump is added. The initial geometry is described in figure 5.28.

0.12× 0.12 m2

2 m

2 m
0.5 m

1 m

2 m

2 m
0.5 m

Elevation Plan

Figure 5.28: Initial geometry of the test case dam break followed by a jump

The parameters used for this test case are given in table 5.11. It can be seen that a
higher speed of sound was taken. This was done in order to avoid problems when the water
hits the right boundary. With a lower speed of sound (and thus a higher time step), the
fluid particles penetrated the boundary. Even if the results presented after are in 2-D, the
simulation was done in 3-D. Nothing interesting happens in the third dimension.

The results of this test case are given as snapshots in figure 5.29. The colours represent
the velocity of a particle calculated as:

U =
√
u2
x + u2

y + u2
z (5.3)

We can observe a greater speed when the fluid takes the jump. When it hits the right
corner, the velocity is also increased as a high repulsion force is created by the boundary.
Finally, a wave is observed at the end of the simulation.

CHAPTER 5. TESTING THE PROGRAM 95

Characteristics Dam break with a jump
Nb FP 52973
Nb MP 123750
h0 [m] 0.024
c0 [m/s] 70
Smoothing function Cubic spline
α 0.12
Equation of state QI fluid
Kernel correction no
Simulation time [s] 1.8
Calculation time 4.1 h

Table 5.11: Characteristics of the test dam break followed by a jump

In order to have a better view of the simulation, a website has been created with some
animations. Information about this website is given in the appendix B.3.

This test case shows that a SPH model can deal easily with jumps. This kind of
simulation can be helpful to simulate the flow on a spillway and the jump. It can be also
imagined to simulate the impact of two jets coming from two spillways (e.g. Hoover dam,
NV-AZ, USA, see figure 5.30).

CHAPTER 5. TESTING THE PROGRAM 96

Figure 5.29: Snapshots at different times of the dam break with a jump

Figure 5.30: Impacting jets from the Hoover dam (source: United States Bureau of Re-
clamation)

CHAPTER 5. TESTING THE PROGRAM 97

5.3.2 Dam break through a grid

Another test case that has been implemented is a dam break through a grid. This test will
show how the the dynamic particles can handle this kind of boundary condition. The initial
geometry is given in figure 5.31. The grid is generated thanks to fixed particles that are
placed with a greater distance than for ordinary boundaries. For example, the traditional
boundary particles are spaced with 2 cm. For the grid, the spacing was 8 cm. This allows
the fluid particles to go through the grid without being stuck.

grid

2 m

2 m
0.5 m

1 m

Figure 5.31: Initial geometry of the test case dam break through a grid

The parameters used for this simulation are given in table 5.12. The speed of sound
has been lowered since there is no more impact to handle.

Characteristics Dam break through a grid
Nb FP 60978
Nb MP 123750
h0 [m] 0.024
c0 [m/s] 35
Smoothing function Cubic spline
α 0.25
Equation of state QI fluid
Kernel correction no
Simulation time [s] 1
Calculation time 1.3 h

Table 5.12: Characteristics of the test dam break through a grid

The results are given in figure 5.32. A slow-down in speed can be observed around the
grid. This can be well seen at 0.6 s: the flow slows down upstream of the grid while a
higher velocity can be observed downstream. Another observation is about the velocities
just next to the grid. At 0.4 s, a stream through a mesh can be clearly observed. This
means that the velocities increase locally in order to go through the grid.

This test was not verified. It could be interesting to check the physics of this phe-

CHAPTER 5. TESTING THE PROGRAM 98

Figure 5.32: Snapshots at different times of the dam break through a grid

nomenon thanks to experimental measures. However, this task is not part of this master
thesis.

5.3.3 3-D dam break

The next test case is a 3-D dam break. This is the second test case that really needs a
3-D implementation, after the spinning tank. The initial geometry is described in figure
5.33. An initial water column is placed in a corner of the domain. An initial hydrostatic
pressure in set. Then, the set of particles is released.

2 m

2 m

0.7 m

1.3 m

2 m

2 m0.7 m

0.7 m

Elevation Plan

Figure 5.33: Initial geometry of the test case 3-D dam break

The parameters used for this test case are given in table 5.13.
Some snapshots are given in figure 5.34. It is interesting to notice the splashing that

CHAPTER 5. TESTING THE PROGRAM 99

Characteristics 3-D dam break
Nb FP 60402
Nb MP 79625
h0 [m] 0.024
c0 [m/s] 35
Smoothing function Cubic spline
α 0.2
Equation of state QI fluid
Kernel correction no
Simulation time [s] 2
Calculation time 1.8 h

Table 5.13: 3-D dam break characteristics

occurs at 1.2 s. This is a good illustration of the possibilities of an SPH program. This
kind of phenomenon is not reproducible by an Eulerian code.

Figure 5.34: Snapshots at different times of the 3-D dam break

This simulation represents exactly the purpose of the implemented code:

1. the SPH method is especially well suited to deal with

(a) discontinuous problems (e.g. the splashing of this case)

(b) problems where the dynamic terms are dominant

2. the implemented code is a 3-D code made to handle problems which cannot be
represented in 2-D.

CHAPTER 5. TESTING THE PROGRAM 100

5.3.4 Structure impact

The last test case concerns the impact of two structures by a breaking dam. The initial
geometry is given in figure 5.35.

1 m

2 m

2 m
0.5 m

1 m
0.68 m

0.68 m

2 m

2 m
0.5 m

Elevation Plan

Figure 5.35: Initial geometry of the test case structure impact

The parameters used for this simulation are given in table 5.14. These parameters are
similar to what was used earlier.

Characteristics Structure impact
Nb FP 67134
Nb MP 123750
h0 [m] 0.024
c0 [m/s] 35
Smoothing function Cubic spline
α 0.2
Equation of state QI fluid
Kernel correction no
Simulation time [s] 2
Calculation time 2.7 h

Table 5.14: Characteristics of the test structure impact

A snapshot at 0.6 s is given in figure 5.36. It shows a splashing on the structures as
well as a jet that impacts the boundary of the domain. An animation can be viewed on the
website given in the appendix B.3. This animation gives a better view of the simulation.
In this animation, some interesting phenomena can be observed such as vortexes behind
the structures and a better view of the free surface. It could be interesting to check the
existence of these vortexes via an experimental model.

CHAPTER 5. TESTING THE PROGRAM 101

Figure 5.36: Snapshot of the a structure impact by a dam break

5.3.5 Conclusions

The previous simulations have showed that the SPH program implemented had a lot of pos-
sibilities. Indeed, it can handle 3-D problems natively, 2-D problems can be also simulated
if they are generated in 3-D. Moreover, the SPH method implemented shows interesting
behaviours that are difficult to reproduce with Eulerian methods. These behaviours include
splashes, jumps, etc. Finally, with minimal efforts, the code is able to deal with mobile
boundaries (e.g. spinning tank).

These observations make the implemented SPH code usable for a wide range of prob-
lems which are not suited for Eulerian methods.

Chapter 6

Conclusion

6.1 Summary of this master thesis

During this work, I started without any knowledge about the SPH method. My first job was
to make a review of the method. I began with the positioning the method in the context
of current numerical methods. The SPH method is a meshless, particle and Lagrangian
method. It is quite different from the classical methods which are mainly, in hydraulics,
Eulerian methods.

After the positioning, I had to understand the establishment of the SPH formalism. It
is based on the integral representation of a function. Then, the Naviers-Stokes equations
needed to be written in a Lagrangian form in order to be used with the SPH method.
After having applied the SPH formalism to the Naviers-Stokes equations of continuity and
of conservation of momentum, I discussed a few problems relative to the method. These
issues concerned mainly the equations of state, the nearest neighbours search as well as
the boundary conditions.

After having well described the method, I could begin with the explanation of the im-
plementation. It was based on the object-oriented paradigm. This kind of implementation
was very useful for different reasons.

Finally, the program has been tested with some test cases. These tests were made in
order to validate the program, to compare different options as well as to show the different
possibilities of the code.

6.1.1 Objectives fulfilment

The main objective was to develop a program based on the SPH method in order to provide
didactic results to the user. I will explain in this section how my work provided such results.

The development began with the understanding of the SPH method and its different
options. The choices of the different options were made in order to allow an easy and
efficient way to run any desired simulation. To do so, I have decided:

1. To implement the code in 3-D. Thanks to this, the users are not limited to only
2-D problems. An infinite range of asymmetric and 3-D distributed problems (e.g.

102

CHAPTER 6. CONCLUSION 103

3-D dam break) can be modelled. Moreover, it has been decided to implement cubic
domains only in order to give an easy way to simulate any problem. If the physical
domain is not cubic, the boundaries can be initialised in order to avoid the restriction
of a cubic domain. Nevertheless, memory will be allocated for the whole cubic domain.

2. To use dynamic boundary particles. These particles provide an easy way to implement
the boundaries. Indeed, many geometries can be done with these particles. For
example, in the different tests, I used the particles for traditional boundaries but also
for moving boundaries and for obstacles put in the middle of the domain. With such
boundaries, the user is free to model a large range of boundary conditions.

3. To use two equations of state. The one used for ideal gas allows to use a lower
time step which allows quicker simulations. This choice can be done for a first
approximation. The second one can be used for incompressible fluids. The use of
two equations of state allows the user to understand better the influence of the
compressibility on a flow.

4. To use an artificial viscosity. This kind of viscosity has the disadvantage to have
no physical coefficients in its expression. However, it is very flexible which allows
the user to play on the viscosity parameter (thanks to the coefficients α and β) to
understand better the role of the viscosity in a problem.

5. To implement the program with an object-oriented paradigm. This allows the more
advanced users to change easily the code according to some specific requirements
which could not be taken into account in the current code.

6. To use input and output files. These are generated and post-processed by a user’s
program. This gives much more possibilities to the user than with an integrated
interface.

The previous items show clearly that the program has been designed in order to provide
the best experience to a wide range of users: from the student to the researcher.

Indeed, the students can test the program with a limited number of particles and
play with some parameters in order to see how they influence physically the problem. The
execution time can be fast if the number of particles is lower than 5000. For the researchers,
the implemented program can provide a first overview of the main characteristics of a
problem. These reasons allows me to state that the implemented program is a didactic
model.

In order to provide better results (more quantitative than qualitative) some improve-
ments should be done. These improvements are discussed later.

6.1.2 Difficulties and solutions

During the study of the method, the implementation and the tests, a few issues were
encountered. Here are the solutions I brought.

CHAPTER 6. CONCLUSION 104

The first one concerns the equation of state for quasi-incompressible fluids. During the
spinning tank test case, I saw that using a lower speed of sound as suggested by [Monaghan
and Kos, 1999] leads to wrong results. Indeed, as analysed in the chapter 3, the speed of
sound has a great influence on the compressibility of a fluid. The assumption introduced
by [Monaghan and Kos, 1999] should be used carefully. If problems occur, it is preferable
to take the physical value (1480 m/s) which is the value used in the Tait equation.

Then, during my tests, I figured out that the numerical precision was an important
parameter. In fact, as shown in the chapter 3, if a very low compressibility is used, a single
precision is not enough and the repulsive forces between the particles could not be taken
into account as it should. A single precision is still possible for weakly compressible fluids
(with a low speed of sound).

During the implementation, a few solutions had to be found in order to avoid some
Fortran’s restrictions. These problems include some restrictions with polymorphism. This
was solved by using less extendible classes. Another point concerns the execution when the
code is compiled with gfortran or the Intel compiler. Huge differences between the execution
times were observed. The code compiled with Intel is approximately 70% slower1 than with
gfortran. gfortran was naturally chosen for its efficiency as well as because it is free.

The Last problem encountered concerned the initialisation of the particles. Indeed,
when particles are put in a still tank with an hydrostatic pressure, there is no initial equilib-
rium. In order to understand and solve the problem, a study of the problem was led in 1-D
(see appendix A.5). It was shown that an initial equilibrium could be found by initialising
the masses in a particular way. A linear system must be solved and a few iterations should
also be done. However, this system can be solved only when the number of particles is
even.

6.2 Future

This master thesis was a first work on the SPH method in the HECE service of the University
of Liège. This section will show the possibilities of the current program as well as the
improvements that can be made for further work.

6.2.1 Further work

The implemented program features already a few interesting characteristics such as two
equations of state and the possibility to correct the kernel gradient. However, some other
possibilities can be added in order to use the program in a more quantitative way and for
other purposes.

Currently, the boundaries are considered fixed. It is possible to make theme move (e.g.
spinning tank). However, this requires a modification of the code. It could be interesting
to add a file that includes a law of movement for the boundaries. With this kind of
improvement, a moving boundary could be used to generate waves.

1The same compilation options were chosen and the OpenMP was turned on in both cases.

CHAPTER 6. CONCLUSION 105

The implemented boundaries are made to avoid any leakage. But it could be interesting
to add the possibility of permeability and thus inflow and outflow. This kind of boundary
condition has been discussed in [Vacondio et al., 2012].

A correction of the kernel is possible currently for the kernel gradient present in the
equation of conservation of momentum. But no correction is made for the kernel gradient
in the equation of continuity. This leads to some oscillations of the densities. In order to
improve this, adding a density filter should be interesting. This filter smooths the densities
every ∼ 30 iterations which provides better results.

Currently, the viscosity is treated thanks to a term of artificial viscosity. This term is
not a physical quantity. If an unknown problem must be simulated thanks to the method,
it will be difficult to know is the results are correct (quantitatively). Other methods that
use a physical viscosity exists. Some information can be found in [Violeau, 2012]. Using
such a viscosity would be a great advantage for the code.

A final suggestion for further work would be to initialise the particles in order to have
an initial equilibrium. A solution was discussed in the appendix A.5. Nevertheless, this kind
of improvement can be made directly in the input file. No modification is required in the
code.

Other variants of the method are given in the literature such as a smoothing of the
velocities thanks to the XSPH method. However, such corrections are not considered as a
priority.

6.2.2 Potential applications

As shown earlier, the implemented program is able to simulate a lot of situations. These
situations include dam breaks (on dry or wet bed), impact of structures, flows through a
grid, spinning tank, etc. The SPH method is well suited for the problems where the fluid
impact structures. This is what was shown for the dam breaks. These test cases are more
theoretical test cases than practical cases.

Considering the tests made earlier and the properties of the SPH method, it is well
suited for a wide range of practical problems such as the impact of two jets (e.g. Hoover
dam’s spillways), the impact of a flow on a structure (e.g. opening of a valve and sudden
impact of a bridge pier), impact of a structure with openings (e.g. waves that impact a
building with open windows, storm and offshore structures (see figure 6.12),. . .), etc.

Moreover, with some small modifications, the program could be able to handle the
mixing of:

• two liquids, e.g.: water and oil, design of barriers against pollution, etc.

• a gas and a liquid, e.g.: mixed flows, inclusion of air when a wave breaks, etc.

• a liquid and a solid, e.g.: transport of sediments when the properties of the flow
quickly change.

2Source: http://www.theartofdredging.com/jonesactii.htm

CHAPTER 6. CONCLUSION 106

Figure 6.1: Waves impacting an oil platform

These examples show how the SPH method can be used in hydraulics. The possibilities
are very wide and some improvements still must be done in order to increase its accuracy.
The SPH method is a very promising method in many fields.

Appendix A

Mathematical developments

A.1 B in the equation of state

The value of B in the equation of state (3.25)

p = B

((
ρ

ρ0

)γ
− 1

)
can be determined thanks to the relation between the density and the speed of sound (3.26)

c2 =

(
∂p

∂ρ

)
s

When applying this relation to the equation of state, we obtain

c2 =

(
∂p

∂ρ

)
s

=
Bγ

ρ0

(
ρ

ρ0

)γ−1

(A.1)

Knowing that at the reference density (ρ0), the speed of sound is equal to the the speed
of sound at the reference density (c = c0), equation (A.1) can be rewritten as

c2
0 =

Bγ

ρ0

(
ρ0

ρ0

)γ−1

=
Bγ

ρ0
(A.2)

Equation (A.2) gives the expression of B:

B =
c2

0ρ0

γ
(A.3)

A.2 Integration of the modified Tait equation

Equation (3.33)

−
1

V

(
∂V

∂p

)
s

=
1

γ (p + B(s))
(A.4)

107

APPENDIX A. MATHEMATICAL DEVELOPMENTS 108

can be integrated in order to obtain a relation between the pressure and the the density:∫ V

V0

−1

V
dV =

∫ p

p0=0

1

γ

1

p + B
dp (A.5)

Once integrated, we obtain

ln

(
V0

V

)
=

1

γ
(ln (p + B)− ln (B)) (A.6)

which can be simplified into
V0

V
=
(

1 +
p

B

)1/γ
(A.7)

Equation (A.7) can also be written as

p = B

((
V0

V

)γ
− 1

)
(A.8)

For an arbitrary volume of fluid, we have

m = V ρ

= V0 ρ0

thanks to the conservation of mass. This expression leads to

V0

V
=
ρ

ρ0
(A.9)

Equation (A.9) allows to write equation (A.8) in respect to densities ρ and ρ0:

p = B

((
ρ

ρ0

)γ
− 1

)
(A.10)

Equation (A.10) is the same as equation (3.25).

A.3 Setting of an initial pressure

The setting of the pressure within a fluid is done thanks to the initialisation of the densities.
The hydrostatic pressure is expressed by

p = ρ0 g H (A.11)

where H is the depth of a particle and ρ0 the reference density. The situation is represented
in figure A.1.

For an ideal gas, we can write

p = ρ0 g H =
R T

M

(
ρ

ρ0
− 1

)
(A.12)

APPENDIX A. MATHEMATICAL DEVELOPMENTS 109

boundary

H

Figure A.1: Initialisation of densities

thanks to equations (A.11) and (3.24). After a trivial manipulation, we obtain

ρ = ρ0

(
1 +

M

RT
ρ0 g H

)
(A.13)

For a quasi-incompressible fluid, equations (A.11) and (3.25) can be combined:

p = ρ0 g H = B

((
ρ

ρ0

)γ
− 1

)
(A.14)

This leads to the following equation:

ρ = ρ0

(
1 +

1

B
ρ0 g H

)1/γ

(A.15)

A.4 Coefficients used to increase the maximum smoothing length

The maximum smoothing length is useful for the setting of the cells’ size used to sort
the particles. In order to avoid a modification in the number of these cells, the maximum
smoothing length hmax is increased. The coefficient used to increase this smoothing length
is based on formula (3.42):

h

h0
=

(
ρ0

ρ

)1/d

It is estimated that, if water is considered as an ideal gas, the density ρ can decrease to
800 kg/m3. This seemed to be a good order of magnitude when observing the results of
some tests. This leads to a coefficient of(

h

h0

)
IG

=

(
1000

800

)1/3

= 1.077 ≈ 1.1 (A.16)

For a quasi-incompressible fluid, the minimum density was estimated at 950 kg/m3.
This leads to the following coefficient:(

h

h0

)
QI

=

(
1000

950

)1/3

= 1.017 ≈ 1.02 (A.17)

APPENDIX A. MATHEMATICAL DEVELOPMENTS 110

This development is based on estimations that were verified during the test cases.
However, it is possible that the coefficients do not cover all the possible density fluctuations.
This is why a warning message is implemented in the program. Nevertheless, this warning
message never appeared during the tests of the program. The reasons are:

• The smoothing length is updated according to the mean of the densities. This means
that the coefficients are taken with a sufficient safety factor.

• The cells are initialised in order to have an integer number of cells on a side and a
size of cell ≤ κhmax. In many situations, this allows to have a new safety margin.

A.5 Initial equilibrium of a water column

A.5.1 First approach

The initialisation of the particles described in section 3.2.8 do not lead to the equilibrium
of an amount of water placed in a tank. This is highlighted in section 5.1.2.

In order to have an initial equilibrium, it has been decided to analyse the problem in
1-D. The system used for this is shown in figure A.2. There are 4 mobile particles and a
fixed particle used to represent the boundary. They are spaced with s = 0.01 m.

boundary

x

1

2

3

4

5

Figure A.2: Easy system to analyse the initial equilibrium

In order to have the equilibrium at the beginning of the simulation, Du/Dt must be
equal to 0 for every particle. The expression of Du/Dt is given in equation (3.22). The
artificial viscosity is equal to 0 as initially uab = 0. It remains in 1-D:

Dua
Dt

= −
N∑
b=1

mb

(
pb

ρ2
b

+
pa
ρ2
a

)
∇aWab − g (A.18)

Let us consider an initial hydrostatic pressure. Thus, the pressures and the densities can be
calculated. A quasi-incompressible law is used with c0 = 5 m/s. The last variable on which

APPENDIX A. MATHEMATICAL DEVELOPMENTS 111

we can play in order to have the equilibrium is the mass, or more especially the volume
occupied by a particle. A quadratic kernel is used with h = 1.2s.

Equation (A.18) can be written for each particle with the masses mb as unknowns.
This gives a linear system of equations to solve, Am = b:

0 −2.3134 −0.5795 0 0

2.3134 0 −1.7473 −0.4166 0

0.5795 1.7473 0 −1.1731 −0.2513

0 0.4166 1.1731 0 −0.5904

0 0 0.2513 0.5904 0



m1

m2

m3

m4

m5

 =


9.81

9.81

9.81

9.81

9.81

 (A.19)

where the elements of the matrix are equal to

Aab = −
(
pb

ρ2
b

+
pa
ρ2
a

)
∇aWab (A.20)

The particle 1 is a boundary particle. This means it cannot move freely. In order to take
it into account, a virtual force must be added to equilibrate the gravity and the pressure
forces coming from the neighbours. This repulsive force is introduced in equation (A.18)
which becomes for the particle 1:

Du1

Dt
= −

N∑
b=1

mb

(
pb

ρ2
b

+
p1

ρ2
1

)
∇1W1b − g + R (A.21)

with R = g +
∑N
b=1mb

(
pb
ρ2
b

+ p1

ρ2
1

)
∇1W1b. The term R is added to the vector b:

b =


9.81− R

9.81

9.81

9.81

9.81

 (A.22)

Adding R in the vector b asks an iterative solving.
When we want to solve the system (A.19), we get detA = 0. This means that the

system cannot be solved. In order to solve it, I have tried to give an initial mass to a
particle by modifying the matrix A and the vector b. I have decided to fix the mass of the
top particle (5) by assigning it to m5 = sρ5. The system (A.19) becomes

0 −2.3134 −0.5795 0 0

2.3134 0 −1.7473 −0.4166 0

0.5795 1.7473 0 −1.1731 −0.2513

0 0.4166 1.1731 0 −0.5904

0 0 0 0 1



m1

m2

m3

m4

m5

 =


9.81− R

9.81

9.81

9.81

10.02

 (A.23)

Now, the matrix A can be inverted. In order to begin the iteration, the masses m2 and
m3 should be given initial values. To converge as quickly as possible, the values assigned

APPENDIX A. MATHEMATICAL DEVELOPMENTS 112

must be around mi = sρi . When a first estimation of the masses is obtained, the masses
m2 and m3 should be used to modify the artificial repulsive force R. After approximately 5
iterations, the system has converged. The mass vector is equal to:

m =


m1

m2

m3

m4

m5

 =


13.69

10.13

9.81

11.35

10.02

 (A.24)

When the results are verified by using equations (A.18) and (A.21), all the Dui/Dt = 0

except for the particle 5: Du5/Dt = 0.21. The equilibrium is not found and it seems
impossible to find an equilibrium using this technique. Indeed, having a singular matrix in
(A.18) leads to the impossibility to find a unique solution.

Having a singular matrix is due to the fact that the matrix is anti-symmetric with an
odd number of equations. With an even number of equations, the system can be solved.
This condition is very annoying for a random problem. Indeed, nothing guaranty to have
an even number of particles.

A.5.2 Second approach

For the second approach, an even number of particles is considered. It is equal to 10. The
first particle is still a boundary particle. After having written equation (A.18) for every
particles, the matrix A is obtained:

0.00 −5.27 −1.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.27 0.00 −4.70 −1.26 0.00 0.00 0.00 0.00 0.00 0.00

1.42 4.70 0.00 −4.12 −1.09 0.00 0.00 0.00 0.00 0.00

0.00 1.26 4.12 0.00 −3.54 −0.93 0.00 0.00 0.00 0.00

0.00 0.00 1.09 3.54 0.00 −2.95 −0.76 0.00 0.00 0.00

0.00 0.00 0.00 0.93 2.95 0.00 −2.37 −0.59 0.00 0.00

0.00 0.00 0.00 0.00 0.76 2.37 0.00 −1.78 −0.42 0.00

0.00 0.00 0.00 0.00 0.00 0.59 1.78 0.00 −1.19 −0.25

0.00 0.00 0.00 0.00 0.00 0.00 0.42 1.19 0.00 −0.60

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.60 0.00


(A.25)

with detA = 2063. After having inverted the matrix A (A.25) and solved the system in
the same way as in the previous subsection1, the masses can be found. These masses are
represented in figure A.3 (a). The volumes that correspond to every particles are given in
figure A.3 (b). This volume is calculated thanks to Va = ma/ρa.

In figure A.3, the masses are close to a mean value ≈ 10 kg and the volumes are close
to a mean value ≈ 0.01 m3/m2. These mean values are coherent with the characteristics
of the problem. Indeed, the initial spacing is equal to 0.01 m which leads to a mass that
should be around ρ0s = 10 kg/m2.

1With the iterations to find the good R.

APPENDIX A. MATHEMATICAL DEVELOPMENTS 113

(a) (b)

Figure A.3: Distribution of the masses (a) and equivalent volumes (b) in order to have an
initial equilibrium

A.5.3 Conclusion

The previous developments have shown that an initial equilibrium can only be found for an
even number of particles. When this condition is fulfilled, the masses are distributed around
a mean value close to what is expected. However, some small oscillations are observed
and the masses near the boundaries (with a kernel not normalised) are not so close to the
mean value. Meanwhile, the masses found allow to have an initial equilibrium.

For further works, a more general solution or a trick should be found in order to have
an initial equilibrium for an odd number of particles.

A.6 Free-surface of a fluid in a spinning tank

For a static fluid, the conservation of momentum can be written as

ρg = ∇p + F (A.26)

Thus, the pressure gradient is written as

∇p = ρ (g− a) (A.27)

For a rotating cylindrical tank (represented in figure A.4), the acceleration terms are equal
to

g− a =

rω2

0

−g

 (A.28)

APPENDIX A. MATHEMATICAL DEVELOPMENTS 114

Using equations (A.27) and (A.28), we get

∇p =

∂p/∂r∂p/∂θ

∂p/∂z

 =

ρrω2

0

−ρg

 (A.29)

ω

R

z0

z

r

Figure A.4: Diagram of a rotating cylindrical tank

An increment of pressure is equal to

dp =
∂p

∂r
dr +

∂p

∂θ
dθ +

∂p

∂z
dz

= ρrω2dr − ρgdz (A.30)

At the free surface, dp = 0. From (A.30), we have ρrω2dr = ρgdz . This gives the
derivative of z in respect to r :

dz

dr
=
rω2

g
(A.31)

After having integrated (A.31), we have

z(r) =
r2ω2

2g
+ C (A.32)

with C an integration constant that can be defined thanks to the conservation of mass. If
the fluid is incompressible (the case of water), the initial projected surface A0 = 2Rz0 is
equal to the final projected surface Af which can be calculated by

Af = 2

∫ R

0

(
r2ω2

2g
+ C

)
dr (A.33)

With A0 = Af , the constant C can be determined:

C = z0 −
ω2R2

6g
(A.34)

APPENDIX A. MATHEMATICAL DEVELOPMENTS 115

Finally, the profile of the free surface is obtained thanks to equations (A.32) and (A.34):

z(r) =
r2ω2

2g
+ z0 −

ω2R2

6g
(A.35)

Appendix B

Additional contents

This appendix shows some additional contents that could not be presented in the previous
chapters. The source code is also available at the end of this appendix.

B.1 Still tank

It was shown in the chapter 5 that the hydrostatic pressure was found after a few seconds
for an amount of water set without initial pressure in still tank. The next step is naturally
to set the particles with an initial hydrostatic pressure. It has been shown earlier that it
does not lead to an initial equilibrium. However, let see what happens.

Three tests have been made: the first one is the same as the one in the chapter 5
except that an initial pressure is set (test b), the second one is made with the kernel
gradient correction (test c) and for the last one, a second layer of fixed particles has been
added (test d). The parameters used for these are given in table B.1.

Characteristics Test b Test c Test d
Nb FP 6196 6196 11840
Nb MP 35836 35836 30720
h0 [m] 0.024 0.024 0.024
c0 [m/s] 30 30 30
Smoothing function Cubic spline Cubic spline Cubic spline
α 0.05 0.05 0.05
Equation of state QI fluid QI fluid QI fluid
Kernel correction no yes no
Simulation time [s] 5 5 5
Calculation time 75.2 min 94.8 min 73.2 min

Table B.1: Characteristics of additional tests for water in a still tank

The results for the test b are given in figure B.1 (a) and figure B.2 (a). The oscillations
are limited in comparison to the test case without initial pressure. However, the pressure

116

APPENDIX B. ADDITIONAL CONTENTS 117

does not settle around the hydrostatic pressure. This is due to some factors such as a non
normalised kernel. Some snapshots are given in figure B.3. It can be seen that the particles
are no longer ordered. and the pressure does not vary linearly. Near the boundaries, pressure
oscillations can be observed.

The results obtained are not very satisfying. In order to improve these, the tests c and
d will be observed and discussed.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p [bar]

z
 [
m

]

Numeric

Analytic

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p [bar]

z
 [
m

]

Numeric

Analytic

Figure B.1: Distribution of the pressure without the kernel gradient correction (a) and with
it (b)

The results of the test c are provided in figures B.1 (b) and B.2 (b). The snapshots
are not given because they are very similar to figure B.3. It can be observed that the
pressures are closer to the analytical solution with a kernel gradient correction. It can be
also seen that the pressures stabilise around the hydrostatic pressure. For these reasons,
the correction of the kernel gradient can be considered as positive. However, the initial
equilibrium is not obtained.

0 1 2 3 4 5
0.8

1

1.2

1.4

1.6

p
/(

ρ
 g

 H
)

partcile at a middle depth

0 1 2 3 4 5
0

0.5

1

1.5

time [s]

p
/(

ρ
 g

 H
)

partcile at the bottom of the tank

0 1 2 3 4 5
0.8

0.9

1

1.1

1.2

p
/(

ρ
 g

 H
)

partcile at a middle depth

0 1 2 3 4 5
0

0.5

1

1.5

time [s]

p
/(

ρ
 g

 H
)

partcile at the bottom of the tank

Figure B.2: Evolution of the pressure without the kernel gradient correction (a) and with
it (b)

APPENDIX B. ADDITIONAL CONTENTS 118

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 0 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 1 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 2 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 3 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 4 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 5 s

p
re

s
s
u

re
 [

b
a

r]

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Figure B.3: Snapshots without kernel gradient correction

In the previous tests, the boundary conditions seemed to play an important role in the
results’ quality. In order to assess this, it has been decided to had a second layer of boundary
particles. This is the test d. Some results are given in figure B.4. Some snapshots are given
in figure B.5. An improvement of the results is observed. Indeed, the pressures are closer
to the analytical solution and converge quicker toward it. Moreover, the results are greatly
improved next to the boundaries as it can be seen in figures B.4 (a) and B.5. Adding a
second layer of boundary particle, and thus having a more normalised kernel, helps to have
better results even if there is no equilibrium at the beginning.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p [bar]

z
 [
m

]

Numeric

Analytic

0 1 2 3 4 5
0.8

1

1.2

1.4

1.6

p
/(

ρ
 g

 H
)

partcile at a middle depth

0 1 2 3 4 5
0.8

1

1.2

1.4

time [s]

p
/(

ρ
 g

 H
)

partcile at the bottom of the tank

Figure B.4: Evolution of the pressure for a column of water (a) and for two given particles
(b)

The previous observations show that the hydrostatic pressure is the equilibrium pressure
of the fluid. However, setting the particles in a Cartesian grid with an hydrostatic pressure
does not lead to an initial equilibrium. This is also highlighted in the chapter 3 and the

APPENDIX B. ADDITIONAL CONTENTS 119

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 0 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 1 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 2 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 3 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 4 s

0 0.2 0.4 0.6
0

0.2

0.4

0.6

t = 5 s

p
re

s
s
u

re
 [

b
a

r]

0

0.01

0.02

0.03

0.04

0.05

Figure B.5: Snapshots with two layers of boundary particles

appendix A.5. In order to have this initial equilibrium, a work should be done on the masses
and/or on their initial position. A further work should deal with it.

However, a few techniques were found in order to improve the results. These techniques
concern the normalisation of the kernel. It was done thanks to the adding of boundary
particles or the correction of the kernel gradient. Adding a density filter should also help.

It has been observed that the particles go from a regular ordering to a staggered one.
Positioning the particles in a staggered way should also help.

B.2 Spinning tank

The test case that concerns the rotating tank presents some gaps near the boundaries (see
figure 5.16). In the chapter 5, I gave a reason that concerned the repulsive forces produced
by the the boundary particles and the incompressible nature of the fluid. However, in order
to validate this theory, I must show that the fluid is in equilibrium.

To do so, I have plotted some parameters in figure B.6. This figure concerns an arbitrary
particle close to the boundary. r is the distance between the particle and the center of the
tank, v is the tangential velocity of the particle and the up right graph gives the x and y
position of the particle at different times.

The first thing to notice is that r is quickly stabilised. The z position is almost stabilised
after 7 s. Moreover, when the snapshots of figure 5.17 are observed, a global stabilisation
is noticed after 4 s. These observations allow to conclude that the system is stabilised
when the profiles are plotted in figure 5.16, i.e. after 7 s.

We can also look at the oscillations of the tangential velocity. A bigger plot with more
information is available in figure B.7. It shows that the velocity of a particle oscillates
around the velocity of the boundary. The mean tangential velocity is even lower than the

APPENDIX B. ADDITIONAL CONTENTS 120

0 2 4 6 8
0.45

0.46

0.47

0.48

t [s]

r
[m

]

−0.5 0 0.5
−0.5

0

0.5

x [m]

y
 [

m
]

0 2 4 6 8
0.5

0.52

0.54

0.56

0.58

0.6

t [s]

z
 [

m
]

0 2 4 6 8
0

1

2

3

4

t [s]

v
 [

m
/s

]

Figure B.6: Evolution of some parameters in test case that concerns the spinning tank

tangential velocity of the boundary which is consistent as the fluid particle is closer to the
axis of rotation. However, the velocities calculated are not always equal to the theoretical
velocity (according to the distance between the axis of rotation and the particle). These
oscillations are mostly due to the changes in the neighbourhood of the particle.

B.3 Animations

Animations have been created for some test cases. In order to visualise them, a tem-
porary website has been created. It can be visited at the following URL: http://www.
sphprogram.p.ht.

APPENDIX B. ADDITIONAL CONTENTS 121

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

t [s]

v
 [

m
/s

]

calculated velocity

boundary velocity

v = f(r)

mean velocity

Figure B.7: Tangential velocity of a particle near the boundary

APPENDIX B. ADDITIONAL CONTENTS 122

B.4 Source code

B.4.1 Main file

1 !> SPH s i m u l a t i o n
! ! @n Th i s program i s used to s o l v e the Nav i e r−Stoke s

e q u a t i o n s
! ! u s i n g the SPH method . A number o f f i l e s must be g i v e n :
! ! p a t h s . t x t , ∗ . prm , ∗ . f p and ∗ .mp .

5 ! ! @wa r i n i n g The domain must be c u b i c !
! ! @ b r i e f Main program to l a u n c h an SPH s i m u l a t i o n
! ! @author Lou i s G o f f i n
! ! @date 2013−05−26
! ! @ v e r s i o n 1 . 0 . 0

10 program SPH_simulat ion
use SPH_module
i m p l i c i t none
i n t ege r : : t1 , t2 , c l o ck_ra t e , clock_max
type (p a r t i c l e_manage r) : : manager

15
c a l l sy s tem_c lock (t1 , c l o ck_ra t e , clock_max)

c a l l manager%i n i t i a l i s a t i o n
c a l l manager%s o l v e r

20
c a l l sy s tem_c lock (t2 , c l o ck_ra t e , clock_max)
p r i n t ∗ , ’ E l a p s ed ␣ r e a l ␣ t ime ␣=␣ ’ , (t2 − t1) / c l o c k_ r a t e
wr i t e (24 ,∗) ’ E l a p s e d ␣ r e a l ␣ t ime ␣ (s) ␣=␣ ’ , (t2 − t1) /

c l o c k_ r a t e

25 c l o s e (un i t =24)

end program SPH_simulat ion

B.4.2 Module file

1 !> SPH module
! ! @n Con t a i n s a l l t he c l a s s e s n e c e s s a r y to run a SPH

s i m u l a t i o n .
! ! @ b r i e f Group o f c l a s s e s (t y p e s) and p r o c e d u r e s

d e f i n i t i o n s .
! ! @author Lou i s G o f f i n

5 ! ! @date 2013−05−26
! ! @ v e r s i o n 1 . 0 . 0

APPENDIX B. ADDITIONAL CONTENTS 123

module SPH_module

10 i m p l i c i t none
i n t ege r , parameter : : p r e c = 8 !> @param p r e c s e t s the

r e a l p r e c i s i o n .
! ! 4 = s i n g l e p r e c i s i o n
! ! 8 = doub l e p r e c i s i o n

r e a l (k ind=p r e c) , parameter : : p i = 3.14159265359 d0
15

!> Min ima l l i n k c l a s s
! ! @n Th i s c l a s s i s a m in ima l p o i n t e r , i . e . t he o b j e c t

i s composed o f o n l y a p o i n t e r .
! ! No o t h e r i n f o rm a t i o n i s i n c l u d e d . The p o i n t e r s p o i n t

toward p a r t i c l e s
type min_ l i nk

20 c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : p t r => n u l l ()
!< p o i n t e r toward a p a r t i c l e

end type min_ l i nk

!> L i n k c l a s s
25 ! ! @n Th i s c l a s s c o n t a i n s a p o i n t e r t h a t p o i n t s toward

an o b j e c t
! ! and the d i s t a n c e between 2 p a r t i c l e s . Th i s c l a s s i s

used to
! ! b u i l d v e c t o r s o f p o i n t e r s toward o b j e c t s .
type l i n k

c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : p t r => n u l l ()
!< p o i n t e r toward a p a r t i c l e

30 r e a l (k ind=p r e c) : : r = 0
!< d i s t a n c e between n e i g h b o u r s

end type l i n k

!> L i s t c l a s s
! ! @n Th i s c l a s s i s a l i s t t h a t c o n t a i n s p o i n t e r s toward

o b j e c t s (+ d i s t a n c e) .
35 ! ! The o n l y p rob l em o f t h i s l i s t c l a s s i s t h a t o n l y l i n k

o b j e c t s (p t r + r) can be added
type l i s t

i n t e g e r : : nb r = 0 !< number o f e l emen t s i n the l i s t
i n t e g e r : : max_nbr = 0 !< max number o f e l emen t s i n

the l i s t (s i z e o f the a r r a y)

APPENDIX B. ADDITIONAL CONTENTS 124

i n t e g e r : : i n c r = 35 !< i n c r emen t : number o f s p a c e s
to add when the l i s t i s f u l l

40 type (l i n k) , dimens ion (:) , a l l o c a t a b l e : : l s t
!< l i s t c o n t a i n i n g e l emen t s

conta i n s
!> i n i t i a l i s e s the l i s t

45 p r o c e du r e i n i t L i s t
!> adds an e l ement to the l i s t
p r o c e du r e addElement
!> r e s e t the l i s t
p r o c e du r e r e s e t L i s t

50 end type l i s t

!> F i x e d p a r t i c l e c l a s s
! ! @n Th i s c l a s s c o n t a i n s a c e r t a i n number o f p a r ame t e r s

d e s c r i b i n g
55 ! ! t he s t a t e o f a f i x e d p a r t i c l e (bounda ry p a r t i c l e) . I t

a l s o
! ! i n c l u d e s the needed p r o c e d u r e s to c a l c u l a t e the

c o n t i n u i t y
! ! and some o t h e r e q u a t i o n s .
type f i x e d _ p a r t i c l e

r e a l (k ind=p r e c) , dimens ion (1 : 3 , 1 : 3) : : coo rd
60 !< 3 x3 a r r a y c o n t a i n i n g the

c o o r d i n a t e s o f a p a r t i c l e .
! ! co lumn 1 = cu r r en tT ime
! ! column 2 = RK s t e p
! ! column 3 = nextTime

r e a l (k ind=p r e c) , dimens ion (1 : 3 , 1 : 3) : : speed
65 !< 3 x3 a r r a y c o n t a i n i n g the v e l o c i t y

o f a p a r t i c l e .
! ! co lumn 1 = cu r r en tT ime
! ! column 2 = RK s t e p
! ! column 3 = nextTime

r e a l (k ind=p r e c) , dimens ion (1 : 3) : : rho
70 !< 3 x1 a r r a y c o n t a i n i n g the d e n s i t y

o f a p a r t i c l e .
! ! e l ement 1 = cu r r en tT ime
! ! e l ement 2 = RK s t e p
! ! e l ement 3 = nextTime

r e a l (k ind=p r e c) : : m !< mass o f the p a r t i c l e

APPENDIX B. ADDITIONAL CONTENTS 125

75 r e a l (k ind=p r e c) , dimens ion (1 : 3) : : p
!< p r e s s u r e o f the p a r t i c l e
! ! e l ement 1 = cu r r en tT ime
! ! e l ement 2 = RK s t e p
! ! e l ement 3 = nextTime

80 r e a l (k ind=p r e c) , dimens ion (1 : 3) : : c
!< speed o f sound o f a p a r t i c l e
! ! e l ement 1 = cu r r en tT ime
! ! e l ement 2 = RK s t e p
! ! e l ement 3 = nextTime

85 r e a l (k ind=p r e c) : : h !< smooth ing l e n g t h
type (l i s t) : : n e i g h b o u r s !< l i s t o f n e i g h b o u r s
i n t e g e r : : numOfNeighbours !< number o f n e i g h b o u r s
r e a l (k ind=p r e c) , dimens ion (1 : 3 , 1 : 1 5 0) : : vec_gradW

!< a r r a y t h a t c o n t a i n s the g r a d i e n t
f o r e v e r y

90 ! ! n e i g h b o u r s ; i n i t i a l l y s e t to 150
e l emen t s to

! ! i n c r e a s e the c ompu t a t i o n a l
e f f i c i e n c y

r e a l (k ind=p r e c) , dimens ion (1 : 3 , 1 : 1 5 0) : :
vec_gradW_mod

!< c o r r e c t e d vec_gradW i f a sked
c l a s s (p a r t i c l e_manage r) , po i n t e r : : manager

95 !< p o i n t e r toward the o b j e c t
p a r t i c l e_manage r

r e a l (k ind=p r e c) : : max_mu_ab
!< maximum mu_ab o f a p a r t i c l e (used

f o r the t ime s t e p c a l c u l a t i o n)

conta i n s
100 !> c r e a t e s the v e c t o r n e i g h b o u r s (p o i n t e r s and

d i s t a n c e)
p r o c e du r e g e tNe i g hbou r s
!> c a l c u l a t e s the p r e s s u r e p
p r o c e du r e c a l c P r e s s u r e
!> c a l c u l a t e s the c e l e r i t y c

105 p r o c e du r e c a l c C e l e r i t y
!> c r e a t e s a v e c t o r w i t h the v a l u e s o f the

g r a d i e n t o f the smooth ing f u n c t i o n :
! ! @f [\ vec {\ n ab l a }_{a} W_{ab} @f]
p r o c e du r e gradW

APPENDIX B. ADDITIONAL CONTENTS 126

!> c o r r e c t i o n o f the g r a d i e n t o f the k e r n e l i f
a sked

110 p r o c e du r e k e r n e l_ c o r r
!> update o f rho
p r o c e du r e : : va rUpdate => va rUpda t e_f i x e d

end type f i x e d _ p a r t i c l e

115 !> Mob i l e p a r t i c l e c l a s s
! ! @n Th i s i s an e x t e n s i o n o f the f i x e d_ p a r t i c l e c l a s s .
! ! The p r o c e du r e v a rUpd t a t e i s o v e r w r i t t e n to i n c l u d e

the update o f u and x .
type , e x t e n d s (f i x e d _ p a r t i c l e) : : m o b i l e_ p a r t i c l e

120 conta i n s
!> update o f rho , u and x
p r o c e du r e : : va rUpdate => varUpdate_mob i l e
!> f u n c t i o n t h a t c a l c u l a t e s the a r t i f i c i a l

v i s c o s i t y \ f $ \Pi_{ab} \ f$
p r o c e du r e A r t i f i c i a l V i s c o s i t y

125 end type mob i l e_ p a r t i c l e

!> P a r t i c l e s o r t c l a s s
! ! @n Th i s c l a s s i s a b l e to s o r t the p a r t i c l e s . A g r i d

i s g e n e r a t e d
! ! and the p a r t i c l e s a r e s o r t e d i n each c e l l .

130 type p a r t i c l e _ s o r t
r e a l (k ind=p r e c) : : h_max !< maximum smooth ing

l e n g t h
r e a l (k ind=p r e c) : : c e l l S i z e !< l e n g t h o f a s i d e

o f a cube
i n t e g e r : : n C e l l s =0 !< number o f c e l l s

i n the domain
i n t e g e r : : n C e l l s S i d e !< number o f c e l l s

on a row
135 l o g i c a l : : i n i t !< t r u e i f t he c e l l s

must be i n i t i a l i s e d
type (l i s t) , dimens ion (:) , a l l o c a t a b l e : : s t o r a g e

!< v e c t o r o f l i s t s t h a t c o n t a i n
! ! the p a r t i c l e s i n a c e l l

c l a s s (p a r t i c l e_manage r) , po i n t e r : : manager
140 !< p o i n t e r toward the o b j e c t

p a r t i c l e_manage r

APPENDIX B. ADDITIONAL CONTENTS 127

conta i n s
!> c a l c u l a t e s the maximum smooth ing l e n g t h to

b u i l d a g r i d
p r o c e du r e get_h_max

145 !> s e t s the s i z e s o f the c e l l s , t he number o f
c e l l s and i t a l s o a l l o c a t e s " s t o r a g e "

p r o c e du r e s e t C e l l s
!> s o r t s the p a r t i c l e s i n t h e i r c e l l
p r o c e du r e p a r t i c l e s S o r t

end type p a r t i c l e _ s o r t
150

!> P a r t i c l e manager c l a s s
! ! @n Th i s c l a s s i s used to manage a l l t he p a r t i c l e s ,
! ! i . e . i t c o n t a i n s a r e f e r e n c e to e v e r y p a r t i c l e s ,
! ! i t c o n t a i n s a number o f p a r ame t e r s u s e f u l f o r the

p rob l em
155 ! ! (v a r i a b l e smooth ing l e n g t h o r not , . . .) , i t has a

s o l v e r , e t c .
type pa r t i c l e_manage r

type (p a r t i c l e _ s o r t) : : s o r t i n g !< s o r t i n g mach ine
type (m in_ l i nk) , dimens ion (:) , a l l o c a t a b l e : : p a r t

!< a r r a y o f p o i n t e r s toward
p a r t i c l e s

160 i n t e g e r : : numFP !< number o f f i x e d p a r t i c l e s
i n t e g e r : : numMP !< number o f mob i l e p a r t i c l e s
i n t e g e r : : numPart !< number o f p a r t i c l e s (FP+MP)
i n t e g e r : : k e r n e l K i n d !< k i n d o f k e r n e l

! ! 1 = c u b i c s p l i n e k e r n e l
165 ! ! 2 = q u a d r a t i c k e r n e l

! ! 3 = q u i n t i c s p l i n e k e r n e l
i n t e g e r : : kappa !< kappa l i n k e d to the e q n s t a t e
r e a l (k ind=p r e c) : : a l p h a !< w e i g h t i n g f a c t o r i n the

a r t i f i c i a l v i s c o s i t y f o rm u l a t i o n
r e a l (k ind=p r e c) : : be ta !< w e i g h t i n g f a c t o r i n the

a r t i f i c i a l v i s c o s i t y f o rm u l a t i o n
170 i n t e g e r : : e qnS ta t e !< e q u a t i o n o f s t a t e

! ! 1 = i d e a l gas law
! ! 2 = qua s i− i n c om p r e s s i b l e

f l u i d
i n t e g e r : : state_gamma !< power i n eqnSta te2 .

! ! o f t e n taken around 7
175 r e a l (k ind=p r e c) : : molMass !< Molar mass o f the

f l u i d f o r the p r e f e c t gas law

APPENDIX B. ADDITIONAL CONTENTS 128

i n t e g e r : : k e r n e l C o r r e c t i o n !< c o r r e c t i o n o f the
k e r n e l

! ! 0 = no c o r r e c t i o n
! ! 1 = c o r r e c t i o n

e n a b l e d
r e a l (k ind=p r e c) : : maxTime !< s i m u l a t i o n t ime i n

s e cond s
180 r e a l (k ind=p r e c) : : s a v e I n t !< s a v i n g i n t e r v a l

r e a l (k ind=p r e c) : : h_0 !< i n i t i a l smooth ing l e n g t h
r e a l (k ind=p r e c) : : rho_0 !< d e n s i t y o f the f l u i d a t

f r e e s u r f a c e
r e a l (k ind=p r e c) : : c_0 !< speed o f sound i n

norma l c o n d i t i o n s
r e a l (k ind=p r e c) : : t imeStep !< t ime s t e p (not

c o n s t a n t)
185 r e a l (k ind=p r e c) : : c u r r en tT ime !< c u r r e n t t ime

i n t e g e r : : RKstep !< used to know i n wh ich RK
i t e r a t i o n we a r e

r e a l (k ind=p r e c) : : dom_dim
!< l e n g t h o f a s i d e o f the domain (

e x t e r i o r p a r t i c l e to e x t e r i o r
p a r t i c l e) .

! ! t he domain i s assumed to be c u b i c
190

conta i n s
!> i n i t i a l i s e s the p a r t i c l e manager and the

p a r t i c l e s
p r o c e du r e i n i t i a l i s a t i o n
!> s o l v e s the p rob l em

195 p r o c e du r e s o l v e r
!> upda t e s the t ime s t e p
p r o c e du r e t imeStepUpdate
!> upda t e s the smooth ing l e n g t h
p r o c e du r e s lUpda t e

200 end type pa r t i c l e_manage r

conta i n s

!> e va l_r i s a f u n c t i o n t h a t c a l c u l a t e s the d i s t a n c e
between two p a r t i c l e s

205 f unc t i on e va l_r (xyz , xyz2)
r e a l (k ind=p r e c) , dimens ion (3) : : x yz
r e a l (k ind=p r e c) , dimens ion (3) : : xyz2

APPENDIX B. ADDITIONAL CONTENTS 129

r e a l (k ind=p r e c) : : e v a l_ r

210 eva l_ r = s q r t (sum ((xyz (:) − xyz2 (:)) ∗(xyz (:) −
xyz2 (:))))

end func t i on e va l_r

!> i n i t L i s t i s a r o u t i n e used to i n i t i a l i s e a l i s t
when i t i s f i r s t c r e a t e d

! ! @param t h i s : c a l l i n g o b j e c t
215 sub rout i ne i n i t L i s t (t h i s)

c l a s s (l i s t) t h i s

i f (t h i s%i n c r < 1) then
t h i s%i n c r = 1

220 end i f
t h i s%max_nbr = t h i s%i n c r
a l l o c a t e (t h i s%l s t (1 : t h i s%max_nbr))

end sub rout i ne i n i t L i s t

225 !> addElement i s a r o u t i n e t h a t adds an e l ement to a
l i s t . I f t he l i s t i s f u l l , t hen

! ! i t i n c r e a s e s the s i z e o f the l i s t .
! ! @param t h i s : c a l l i n g o b j e c t
! ! @param p t r : p o i n t e r o f t ype l i n k to be added i n

the l i s t
! ! @param r : d i s t a n c e between two p a r t i c l e s

230 sub rout i ne addElement (t h i s , p t r , r)
c l a s s (l i s t) t h i s
c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : p t r
r e a l (k ind=p r e c) : : r
type (l i n k) , dimens ion (:) , a l l o c a t a b l e : :

temp_lst
235 !< tempora r y l i s t used when i t i s

n e c e s s a r y
! ! to i n c r e a s e the s i z e o f the

e x i s t i n g l i s t

!< i f t he l i s t i s empty , i t must be i n i t i a l i s e d
i f (t h i s%max_nbr == 0) then

240 c a l l t h i s%i n i t L i s t
!< i f t he l i s t i s f u l l i t must be r e s i z e d
e l s e i f (t h i s%nbr == t h i s%max_nbr) then

a l l o c a t e (temp_lst (1 : t h i s%max_nbr+ t h i s%i n c r))

APPENDIX B. ADDITIONAL CONTENTS 130

temp_lst (1 : t h i s%max_nbr) = t h i s%l s t (1 : t h i s%
max_nbr)

245 c a l l move_al loc (temp_lst , t h i s%l s t)
t h i s%max_nbr = t h i s%max_nbr+ t h i s%i n c r

end i f
t h i s%nbr = t h i s%nbr + 1
t h i s%l s t (t h i s%nbr)%p t r => p t r

250 t h i s%l s t (t h i s%nbr)%r = r
end sub rout i ne addElement

!> r e s e t L i s t i s a r o u t i n e t h a t r e s e t the l i s t . I t
o n l y s e t s the number

! ! o f e l emen t s to 0 but i t k eep s the max imal s i z e to
max_nbr

255 ! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne r e s e t L i s t (t h i s)

c l a s s (l i s t) t h i s

t h i s%nbr = 0
260 end sub rout i ne r e s e t L i s t

!> g e tNe i g h bou r s i s a r o u t i n e t h a t q u e s t i o n s the
p a r t i c l e _ s o r t o b j e c t

! ! to ge t the p a r t i c l e s i n the n e i g h b o u r i n g c e l l s .
The d i s t a n c e i s

! ! c a l c u l a t e d and the n e i g h b o u r s s e l e c t e d .
265 ! ! @param t h i s : c a l l i n g o b j e c t

sub rout i ne g e tNe i g hbou r s (t h i s)
c l a s s (f i x e d _ p a r t i c l e) , t a rge t : : t h i s
r e a l (k ind=p r e c) , dimens ion (:) , po i n t e r ,

c o n t i g u o u s : : x yz
!< p o s i t i o n o f the p a r t i c l e

270 i n t e g e r : : x C e l l , y C e l l , z C e l l !< number o f the
c e l l a c c o r d i n g to x , y and z

i n t e g e r : : n C e l l s S i d e !< number o f c e l l s on a
row o f the domain

i n t e g e r : : i , j , k !< l o op coun t e r
i n t e g e r , dimens ion (1 : 2 7) : : c e l l sToChe c k

!< number o f the c e l l s to check f o r
the n e i g h b o u r s

275 r e a l (k ind=p r e c) , dimens ion (:) , po i n t e r ,
c o n t i g u o u s : : neighXYZ

!< c o o r d i n a t e s o f a n e i g h bou r

APPENDIX B. ADDITIONAL CONTENTS 131

r e a l (k ind=p r e c) : : r !< d i s t a n c e between two
p a r t i c l e s

c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : cu r_pt r
!< c u r r e n t p o i n t e r toward a p a r t i c l e

280 type (l i n k) , po i n t e r : : cu r_ne igh
!< c u r r e n t l i s t o f n e i g h b o u r s

type (p a r t i c l e _ s o r t) , po i n t e r : : s r t
!< p o i n t e r toward the s o r t i n g

mach ine
type (l i s t) , po i n t e r : : s t o r a g e

285 !< p o i n t e r toward the s t o r a g e
i n t e g e r , po i n t e r : : cur_RKstep

!< p o i n t e r toward the RKstep

!> p o i n t e r i n i t i a l i s a t i o n
290 s r t => t h i s%manager%s o r t i n g

cur_RKstep => t h i s%manager%RKstep

!> c o o r d i n a t e s o f the p a r t i c l e
xyz => t h i s%coord (: , cur_RKstep)

295
i f (cur_RKstep == 1) then

!> c a l c u l a t e s the number o f the c e l l i n
wh ich the p a r t i c l e i s

n C e l l s S i d e = s r t%nC e l l s S i d e
i f (xyz (1) == t h i s%manager%dom_dim) then

300 x C e l l = n C e l l s S i d e
e l s e

x C e l l = n i n t ((xyz (1)−mod(xyz (1) , s r t%
c e l l S i z e)) / s r t%c e l l S i z e) + 1

end i f
i f (xyz (2) == t h i s%manager%dom_dim) then

305 y C e l l = n C e l l s S i d e
e l s e

y C e l l = n i n t ((xyz (2)−mod(xyz (2) , s r t%
c e l l S i z e)) / s r t%c e l l S i z e) + 1

end i f
i f (xyz (3) == t h i s%manager%dom_dim) then

310 z C e l l = n C e l l s S i d e
e l s e

z C e l l = n i n t ((xyz (3)−mod(xyz (3) , s r t%
c e l l S i z e)) / s r t%c e l l S i z e) + 1

end i f

APPENDIX B. ADDITIONAL CONTENTS 132

315 !> c a l c u l a t e s the number o f the n e i g h b o u r i n g
c e l l s

do i =−1,1
do j =−1,1

do k=−1,1
i f ((x C e l l + i > 0) . and . (y C e l l + j

> 0) . and . (z C e l l + k > 0) .
and . (x C e l l + i <= n C e l l s S i d e)
. and . &

320 (y C e l l + j <= nC e l l s S i d e)
. and . (z C e l l +k <=
nC e l l s S i d e)) then

c e l l sToChe c k ((i +1) ∗9+(j +1)
∗3+(k+2)) =&
(x C e l l + i −1)∗ n C e l l s S i d e
∗∗2 + (y C e l l + j −1)∗
n C e l l s S i d e + (z C e l l +k
)

e l s e
c e l l sToChe c k ((i +1) ∗9+(j +1)
∗3+(k+2)) = 0

325 end i f
end do

end do
end do

end i f
330

!> s t o r e s the n e i g h b o u r s o f the p a r t i c l e i n the
n e i g h b o u r s l i s t .

! ! F i r s t , t he l i s t i s r e s e t e d , then the
n e i g h b o u r i n g c e l l s a r e scanned .

! ! I n each c e l l , t he d i s t a n c e between the two
p a r t i c l e s i s c a l c u l a t e d .

! ! I f i t i s l owe r than the s u ppo r t domain and i t
i s not the p a r t i c l e we

335 ! ! a r e wo rk i ng w i t h (r > 0 but h e r e r > 1E−12
f o r n ume r i c a l e r r o r s) , an e l ement

! ! l i n k (p t r + r) i s added to the n e i g h b o u r s
l i s t .

! ! For the second RK step , o n l y the d i s t a n c e s r
a r e r e c a l c u l a t e d . I t i s assumed t h a t

APPENDIX B. ADDITIONAL CONTENTS 133

! ! t he n e i g h b o u r s r ema in the same between 2 RK
s t e p .

i f (cur_RKstep == 1) then
340 c a l l t h i s%n e i g h b o u r s%r e s e t L i s t

do i =1 ,27
i f (c e l l sToChe c k (i) > 0) then

s t o r a g e => s r t%s t o r a g e (c e l l sToChe c k (
i))

do j =1 , s r t%s t o r a g e (c e l l sToChe c k (i))%
nbr

345 cu r_pt r => s t o r a g e%l s t (j)%p t r
neighXYZ => cur_pt r%coord (: ,

cur_RKstep)
r = eva l_ r (xyz , neighXYZ)
i f ((r <= t h i s%manager%kappa ∗

t h i s%h) . and . (r > 1E−12))
then
c a l l t h i s%n e i g h b o u r s%

addElement (cur_ptr , r)
350 end i f

end do
end i f

end do
t h i s%numOfNeighbours = t h i s%n e i g h b o u r s%nbr

355 e l s e
do i =1 , t h i s%numOfNeighbours

cu r_ne igh => t h i s%n e i g h b o u r s%l s t (i)
neighXYZ => cur_ne igh%p t r%coord (: ,

cur_RKstep)
cu r_ne igh%r = eva l_r (xyz , neighXYZ)

360 end do
end i f

end sub rout i ne g e tNe i g hbou r s

!> c a l c P r e s s u r e i s a f u n c t i o n t h a t c a l c u l a t e s the
p r e s s u r e a c c o r d i n g

365 ! ! to the e q u a t i o n o f s t a t e chosen .
! ! @param t h i s : c a l l i n g o b j e c t
! ! @param rho : a c t u a l d e n s i t y
f unc t i on c a l c P r e s s u r e (t h i s , rho)

c l a s s (f i x e d _ p a r t i c l e) t h i s
370 r e a l (k ind=p r e c) : : rho

r e a l (k ind=p r e c) : : c a l c P r e s s u r e

APPENDIX B. ADDITIONAL CONTENTS 134

r e a l (k ind=p r e c) , parameter : : i d e a l G a sC s t =
8.3144621 d0

r e a l (k ind=p r e c) : : B

375 i f (t h i s%manager%eqnSta t e == 1) then !< 1 =
i d e a l gas law at 20 d e g r e e s C
c a l c P r e s s u r e = (rho / t h i s%manager%rho_0−1)∗

i d e a l G a sC s t ∗293 .15 d0/ t h i s%manager%molMass
e l s e i f (t h i s%manager%eqnSta t e == 2) then !< 2 =

qua s i− i n c om p r e s s i b l e f l u i d
B = t h i s%manager%c_0 ∗∗2 . d0∗ t h i s%manager%

rho_0/ t h i s%manager%state_gamma
c a l c P r e s s u r e = B∗ ((rho / t h i s%manager%rho_0) ∗∗

t h i s%manager%state_gamma−1)
380 end i f

end func t i on c a l c P r e s s u r e

!> c a l c C e l e r i t y i s a f u n c t i o n t h a t c a l c u l a t e s the
c e l e r i t y a c c o r d i n g

! ! to the e q u a t i o n o f s t a t e chosen . The e q u a t i o n
used i s

385 ! ! @f [c = \ s q r t {\ f r a c {dp}{d\ rho }} @f]
! ! @param t h i s : c a l l i n g o b j e c t
! ! @param rho : a c t u a l d e n s i t y
f unc t i on c a l c C e l e r i t y (t h i s , rho)

c l a s s (f i x e d _ p a r t i c l e) t h i s
390 r e a l (k ind=p r e c) : : rho

r e a l (k ind=p r e c) : : c a l c C e l e r i t y

i f (t h i s%manager%eqnSta t e == 1) then !< 1 =
c o n s i d e r i n g the i d e a l gas law at 20 d e g r e e s C
c a l c C e l e r i t y = t h i s%manager%c_0

395 e l s e i f (t h i s%manager%eqnSta t e == 2) then !< 2 =
c o n s i d e r i n g a qua s i− i n c om p r e s s i b l e f l u i d
c a l c C e l e r i t y = t h i s%manager%c_0 ∗ ((rho / t h i s%

manager%rho_0) ∗∗(t h i s%manager%state_gamma
−1)) ∗∗0 .5 d0

end i f
end func t i on c a l c C e l e r i t y

400 !> gradW i s a r o u t i n e used to c r e a t e a v e c t o r t h a t
c o n t a i n s the v a l u e s

! ! o f the g r a d i e n t f o r each n e i g h bou r .

APPENDIX B. ADDITIONAL CONTENTS 135

! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne gradW(t h i s)

c l a s s (f i x e d _ p a r t i c l e) , t a rge t : : t h i s
405 i n t e g e r : : i

r e a l (k ind=p r e c) : : a lpha_d !< n o rm a l i s a t i o n
c o e f f i c i e n t

r e a l (k ind=p r e c) , po i n t e r : : r !< d i s t a n c e
between a p a r t i c l e and a n e i g h bou r

c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : cu r_ne igh !<
p o i n t e r toward a n e i g h bou r

r e a l (k ind=p r e c) : : cur_h !< v a l u e o f h
410 i n t e g e r , po i n t e r : : cur_RKstep !< p o i n t e r

toward the c u r r e n t RK s t e p

i f (t h i s%numOfNeighbours > 150) then
p r i n t ∗ , ’ E r r o r : ␣Number␣ o f ␣ n e i g h b o u r s ␣ g r e a t e r

␣ than ␣ e xp e c t e d ␣ (max␣150␣ f o r ␣vec_gradW) : ␣ ’
, t h i s%numOfNeighbours

wr i t e (24 ,∗) ’ E r r o r : ␣Number␣ o f ␣ n e i g h b o u r s ␣
g r e a t e r ␣ than ␣ e xpe c t e d ␣ (max␣150␣ f o r ␣
vec_gradW) : ␣ ’ , t h i s%numOfNeighbours

415 stop
end i f

cur_h = t h i s%h
cur_RKstep => t h i s%manager%RKstep

420
i f (t h i s%manager%k e r n e l K i n d == 1) then !< c u b i c

s p l i n e
alpha_d = 3 . d0 / (2 . d0∗ p i ∗ cur_h ∗∗3 . d0)
do i =1 , t h i s%numOfNeighbours

r => t h i s%n e i g h b o u r s%l s t (i)%r
425 cu r_ne igh => t h i s%n e i g h b o u r s%l s t (i)%p t r

i f ((r /cur_h >= 0 . d0) . and . (r /cur_h < 1 .
d0)) then
t h i s%vec_gradW (: , i) = alpha_d/cur_h
∗ (3 . d0 /2 . d0 ∗(r /cur_h) ∗∗2 . d0 − 2 .
d0 ∗(r /cur_h)) ∗ &

(t h i s%coord (: , cur_RKstep)−cu r_ne igh%
coord (: , cur_RKstep)) / r

e l s e i f ((r /cur_h >= 1 . d0) . and . (r /cur_h
< 2 . d0)) then

APPENDIX B. ADDITIONAL CONTENTS 136

430 t h i s%vec_gradW (: , i) = alpha_d/cur_h
∗ (−0.5 d0 ∗ (2 . d0 − r /cur_h) ∗∗2 .
d0) ∗ &

(t h i s%coord (: , cur_RKstep)−cu r_ne igh%
coord (: , cur_RKstep)) / r

e l s e
t h i s%vec_gradW (: , i) = 0 . d0

end i f
435 end do

e l s e i f (t h i s%manager%k e r n e l K i n d == 2) then !<
q u a d r a t i c
alpha_d = 5 . d0 / (4 . d0∗ p i ∗ cur_h ∗∗3 . d0)
do i =1 , t h i s%numOfNeighbours

r => t h i s%n e i g h b o u r s%l s t (i)%r
440 cu r_ne igh => t h i s%n e i g h b o u r s%l s t (i)%p t r

i f ((r /cur_h >= 0 . d0) . and . (r /cur_h <= 2 .
d0)) then
t h i s%vec_gradW (: , i) = alpha_d/cur_h
∗ (3 . d0 /8 . d0∗ r /cur_h − 3 . d0 /4 . d0)
∗ &

(t h i s%coord (: , cur_RKstep)−cu r_ne igh%
coord (: , cur_RKstep)) / r

e l s e
445 t h i s%vec_gradW (: , i) = 0 . d0

end i f
end do

e l s e i f (t h i s%manager%k e r n e l K i n d == 3) then !<
q u i n t i c s p l i n e
alpha_d = 3 . d0 / (359 . d0∗ p i ∗ cur_h ∗∗3 . d0)

450 do i =1 , t h i s%numOfNeighbours
r => t h i s%n e i g h b o u r s%l s t (i)%r
cu r_ne igh => t h i s%n e i g h b o u r s%l s t (i)%p t r
i f ((r /cur_h >= 0 . d0) . and . (r /cur_h < 1 .

d0)) then
t h i s%vec_gradW (: , i) = alpha_d/cur_h
∗ (−5. d0 ∗ (3 . d0−r /cur_h) ∗∗4 . d0 +30.
d0 ∗ (2 . d0−r /cur_h) ∗∗4 . d0−75. d0∗&

455 (1 . d0−r /cur_h) ∗∗4 . d0) ∗(t h i s%coord (: ,
cur_RKstep)−cu r_ne igh%coord (: ,
cur_RKstep)) / r

e l s e i f ((r /cur_h >= 1 . d0) . and . (r /cur_h
< 2 . d0)) then

APPENDIX B. ADDITIONAL CONTENTS 137

t h i s%vec_gradW (: , i) = alpha_d/cur_h
∗ (−5. d0 ∗ (3 . d0−r /cur_h) ∗∗4 . d0 +30.
d0 ∗ (2 . d0−r /cur_h) ∗∗4 . d0) ∗ &

(t h i s%coord (: , cur_RKstep)−cu r_ne igh%
coord (: , cur_RKstep)) / r

e l s e i f ((r /cur_h >= 2 . d0) . and . (r /cur_h
< 3 . d0)) then

460 t h i s%vec_gradW (: , i) = alpha_d/cur_h
∗ (−5. d0 ∗ (3 . d0−r /cur_h) ∗∗4 . d0) ∗
&

(t h i s%coord (: , cur_RKstep)−cu r_ne igh%
coord (: , cur_RKstep)) / r

e l s e
t h i s%vec_gradW (: , i) = 0 . d0

end i f
465 end do

end i f
i f (t h i s%manager%k e r n e l C o r r e c t i o n == 1) then

t h i s%vec_gradW_mod = t h i s%vec_gradW
end i f

470 end sub rout i ne gradW

!> k e r n e l_ c o r r i s a r o u t i n e t h a t t a k e s i n t o account
the f a c t t h a t the k e r n e l may be t r u n c a t e d .

! ! I t c o r r e c t s the g r a d i e n t o f the k e r n e l
! ! @param t h i s : c a l l i n g o b j e c t

475 sub rout i ne k e r n e l_ c o r r (t h i s)
c l a s s (f i x e d _ p a r t i c l e) t h i s
r e a l (k ind=p r e c) , dimens ion (3 , 3) : : M !< ma t r i x

used to c o r r e c t the k e r n e l g r a d i e n t
r e a l (k ind=p r e c) , dimens ion (3 , 3) : : L !<

i n v e r s e o f the ma t r i x used to c o r r e c t the
k e r n e l g r a d i e n t

r e a l (k ind=p r e c) : : detM !< d e t e rm i n a n t o f M
480 i n t e g e r : : i !< l o op coun t e r

r e a l (k ind=p r e c) : : MDivRho !< m_b/rho_b
c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : cu r_ne igh !<

p o i n t e r toward the c u r r e n t n e i g h bou r
i n t e g e r , po i n t e r : : cur_RKstep !< c u r r e n t RK

s t e p

485 cur_RKstep => t h i s%manager%RKstep
M(1 , 1) = 0 . d0

APPENDIX B. ADDITIONAL CONTENTS 138

M(2 , 2) = 0 . d0
M(3 , 3) = 0 . d0
M(1 , 2) = 0 . d0

490 M(1 ,3) = 0 . d0
M(2 , 3) = 0 . d0
do i =1 , t h i s%numOfNeighbours

cu r_ne igh => t h i s%n e i g h b o u r s%l s t (i)%p t r
MDivRho = cur_ne igh%m/ cur_ne igh%rho (

cur_RKstep)
495 M(1 ,1) = M(1 , 1) + MDivRho ∗(cu r_ne igh%coord

(1 , cur_RKstep)− t h i s%coord (1 , cur_RKstep)) ∗
t h i s%vec_gradW (1 , i)

M(2 , 2) = M(2 ,2) + MDivRho ∗(cu r_ne igh%coord
(2 , cur_RKstep)− t h i s%coord (2 , cur_RKstep)) ∗
t h i s%vec_gradW (2 , i)

M(3 , 3) = M(3 ,3) + MDivRho ∗(cu r_ne igh%coord
(3 , cur_RKstep)− t h i s%coord (3 , cur_RKstep)) ∗
t h i s%vec_gradW (3 , i)

M(1 , 2) = M(1 ,2) + MDivRho ∗(cu r_ne igh%coord
(1 , cur_RKstep)− t h i s%coord (1 , cur_RKstep)) ∗
t h i s%vec_gradW (2 , i)

M(1 , 3) = M(1 ,3) + MDivRho ∗(cu r_ne igh%coord
(1 , cur_RKstep)− t h i s%coord (1 , cur_RKstep)) ∗
t h i s%vec_gradW (3 , i)

500 M(2 , 3) = M(2 , 3) + MDivRho ∗(cu r_ne igh%coord
(2 , cur_RKstep)− t h i s%coord (2 , cur_RKstep)) ∗
t h i s%vec_gradW (3 , i)

end do
M(2 ,1) = M(1 ,2) !< M i s symmet r i c
M(3 ,1) = M(1 ,3) !< M i s symmet r i c
M(3 ,2) = M(2 ,3) !< M i s symmet r i c

505
detM = M(1 ,1) ∗(M(2 , 2) ∗M(3 ,3)−M(3 ,2) ∗M(2 ,3))−M

(1 ,2) ∗(M(2 , 1) ∗M(3 ,3)−M(3 ,1) ∗M(2 ,3))+ &
M(1 ,3) ∗(M(2 , 1) ∗M(3 ,2)−M(3 ,1) ∗M(2 ,2))
L (1 , 1) = M(2 , 2) ∗M(3 ,3)−M(3 ,2) ∗M(2 ,3)
L (2 , 2) = M(1 , 1) ∗M(3 ,3)−M(3 ,1) ∗M(1 ,3)

510 L (3 , 3) = M(1 , 1) ∗M(2 ,2)−M(2 ,1) ∗M(1 ,2)
L (1 , 2) = M(3 , 1) ∗M(2 ,3)−M(2 ,1) ∗M(3 ,3)
L (2 , 1) = L (1 , 2) !< the i n v e r s e o f a symmet r i c

ma t r i x i s s ymmet r i c
L (1 , 3) = M(2 , 1) ∗M(3 ,2)−M(3 ,1) ∗M(2 ,2)

APPENDIX B. ADDITIONAL CONTENTS 139

L (3 , 1) = L (1 , 3) !< the i n v e r s e o f a symmet r i c
ma t r i x i s s ymmet r i c

515 L (2 , 3) = M(3 , 1) ∗M(1 ,2)−M(1 ,1) ∗M(3 ,2)
L (3 , 2) = L (2 , 3) !< the i n v e r s e o f a symmet r i c

ma t r i x i s s ymmet r i c
L = (1 . d0/detM) ∗L

do i =1 , t h i s%numOfNeighbours
520 t h i s%vec_gradW_mod (1 , i) = L (1 , 1) ∗ t h i s%

vec_gradW (1 , i) + L (1 , 2) ∗ t h i s%vec_gradW (1 ,
i) + L (1 , 3) ∗ t h i s%vec_gradW (3 , i)

t h i s%vec_gradW_mod (2 , i) = L (2 , 1) ∗ t h i s%
vec_gradW (1 , i) + L (2 , 2) ∗ t h i s%vec_gradW (2 ,
i) + L (2 , 3) ∗ t h i s%vec_gradW (3 , i)

t h i s%vec_gradW_mod (3 , i) = L (3 , 1) ∗ t h i s%
vec_gradW (1 , i) + L (3 , 2) ∗ t h i s%vec_gradW (2 ,
i) + L (3 , 3) ∗ t h i s%vec_gradW (3 , i)

end do
end sub rout i ne k e r n e l_ c o r r

525
!> va rUpda t e_f i x e d i s a r o u t i n e used to update the

d e n s i t y o f a f i x e d p a r t i c l e .
! ! The update o f the v e l o c i t y e t the p o s i t i o n a r e

not pe r f o rmed .
! ! The i n t e g r a t i o n scheme i s a RK22 scheme .
! ! @param t h i s : c a l l i n g o b j e c t

530 sub rout i ne v a rUpda t e_f i x e d (t h i s)
c l a s s (f i x e d _ p a r t i c l e) t h i s
r e a l (k ind=p r e c) : : De l ta_rho !< \ f$ d\ rho / dt \

f$
r e a l (k ind=p r e c) , dimens ion (1 : 3) : : u_ab !<

r e l a t i v e v e l o c i t y between the p a r t i c l e and a
n e i g h bou r

i n t e g e r : : i !< l o op coun t e r
535 i n t e g e r , po i n t e r : : cur_RKstep !< p o i n t e r

toward the v a l u e o f the c u r r e n t RK s t e p
c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : cu r_ne igh !<

c u r r e n t n e i g h bou r
Delta_rho = 0 . d0
cur_RKstep => t h i s%manager%RKstep

540 c a l l t h i s%ge tNe i g hbou r s
c a l l t h i s%gradW

APPENDIX B. ADDITIONAL CONTENTS 140

do i =1 , t h i s%numOfNeighbours
cu r_ne igh => t h i s%n e i g h b o u r s%l s t (i)%p t r
u_ab (:) = t h i s%speed (: , cur_RKstep) −

cu r_ne igh%speed (: , cur_RKstep)
545 Del ta_rho = Delta_rho + t h i s%m∗ dot_product (

u_ab , t h i s%vec_gradW (: , i))
end do

i f (cur_RKstep == 1) then !< 1 s t RK s t e p
t h i s%rho (2) = t h i s%rho (1) + Delta_rho ∗ t h i s%

manager%t imeStep
550 t h i s%rho (3) = t h i s%rho (1) + Del ta_rho ∗ t h i s%

manager%t imeStep /2 . d0
t h i s%speed (: , 2) = t h i s%speed (: , 1)
t h i s%coord (: , 2) = t h i s%coord (: , 1)
t h i s%p (2) = t h i s%c a l c P r e s s u r e (t h i s%rho (2))
t h i s%c (2) = t h i s%c a l c C e l e r i t y (t h i s%rho (2))

555 e l s e !< 2nd RK s t e p
t h i s%rho (3) = t h i s%rho (3) + Delta_rho ∗ t h i s%

manager%t imeStep /2 . d0
t h i s%speed (: , 3) = t h i s%speed (: , 2)
t h i s%coord (: , 3) = t h i s%coord (: , 2)
t h i s%p (3) = t h i s%c a l c P r e s s u r e (t h i s%rho (3))

560 t h i s%c (3) = t h i s%c a l c C e l e r i t y (t h i s%rho (3))
end i f

end sub rout i ne v a rUpda t e_f i x e d

!> va rUpdate_mob i l e i s a r o u t i n e t h a t upda t e s the
d e n s i t y , the v e l o c i t y

565 ! ! and the p o s i t i o n o f a mob i l e p a r t i c l e .
! ! The i n t e g r a t i o n scheme i s a RK22 scheme .
! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne va rUpdate_mob i l e (t h i s)

c l a s s (m o b i l e_ p a r t i c l e) t h i s
570 r e a l (k ind=p r e c) : : De l ta_rho !< \ f$ d\ rho / dt \

f$
r e a l (k ind=p r e c) , dimens ion (1 : 3) : : Delta_u !<

\ f$ du/ dt \ f$
r e a l (k ind=p r e c) , dimens ion (1 : 3) : : Delta_x !<

\ f$ dx/ dt \ f$
r e a l (k ind=p r e c) , dimens ion (1 : 3) : : u_ab !<

r e l a t i v e v e l o c i t y between the p a r t i c l e and a
n e i g h bou r

APPENDIX B. ADDITIONAL CONTENTS 141

r e a l (k ind=p r e c) , dimens ion (1 : 3) : : F !< Volume
f o r c e s

575 r e a l (k ind=p r e c) : : pi_ab !< A r t i f i c i a l
v i s c o s i t y

i n t e g e r : : i !< l o op coun t e r
i n t e g e r , po i n t e r : : cur_RKstep !< p o i n t e r

toward the v a l u e o f the c u r r e n t RK s t e p
c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : cu r_ne igh !<

c u r r e n t n e i g h bou r
Delta_rho = 0 . d0

580 Delta_u = (/0 . d0 , 0 . d0 , 0 . d0 /)
Delta_x = (/0 . d0 , 0 . d0 , 0 . d0 /)
F = (/ r e a l (0 , p r e c) , r e a l (0 , p r e c) , r e a l (−9.81 , p r e c)

/)
cur_RKstep => t h i s%manager%RKstep

585 c a l l t h i s%ge tNe i g hbou r s
c a l l t h i s%gradW
i f (t h i s%manager%k e r n e l C o r r e c t i o n == 1) then

c a l l t h i s%k e r n e l_ c o r r
end i f

590 !> r e s e t max_mu_ab
i f (cur_RKstep == 1) then

t h i s%max_mu_ab = 0 . d0
end i f
i f (t h i s%manager%k e r n e l C o r r e c t i o n == 1) then

595 do i =1 , t h i s%numOfNeighbours
cu r_ne igh => t h i s%n e i g h b o u r s%l s t (i)%p t r
u_ab (:) = t h i s%speed (: , cur_RKstep) −

cu r_ne igh%speed (: , cur_RKstep)
pi_ab = t h i s%A r t i f i c i a l V i s c o s i t y (

cur_ne igh , t h i s%manager%a lpha , t h i s%
manager%beta)

De l ta_rho = Delta_rho + t h i s%m∗
dot_product (u_ab , t h i s%vec_gradW (: , i))

600 Delta_u = Delta_u + t h i s%m∗(cu r_ne igh%p (
cur_RKstep)/&

cur_ne igh%rho (cur_RKstep) ∗∗2 . d0+ t h i s%p (
cur_RKstep)/&

t h i s%rho (cur_RKstep) ∗∗2 . d0+pi_ab) ∗ t h i s%
vec_gradW_mod (: , i)

end do
e l s e

APPENDIX B. ADDITIONAL CONTENTS 142

605 do i =1 , t h i s%numOfNeighbours
cu r_ne igh => t h i s%n e i g h b o u r s%l s t (i)%p t r
u_ab (:) = t h i s%speed (: , cur_RKstep) −

cu r_ne igh%speed (: , cur_RKstep)
pi_ab = t h i s%A r t i f i c i a l V i s c o s i t y (

cur_ne igh , t h i s%manager%a lpha , t h i s%
manager%beta)

De l ta_rho = Delta_rho + t h i s%m∗
dot_product (u_ab , t h i s%vec_gradW (: , i))

610 Delta_u = Delta_u + t h i s%m∗(cu r_ne igh%p (
cur_RKstep)/&

cur_ne igh%rho (cur_RKstep) ∗∗2 . d0+ t h i s%p (
cur_RKstep)/&

t h i s%rho (cur_RKstep) ∗∗2 . d0+pi_ab) ∗ t h i s%
vec_gradW (: , i)

end do
end i f

615 Delta_u = −Delta_u+F

i f (cur_RKstep == 1) then !< 1 s t RK s t e p
t h i s%rho (2) = t h i s%rho (1) + Del ta_rho ∗ t h i s%

manager%t imeStep
t h i s%rho (3) = t h i s%rho (1) + Del ta_rho ∗ t h i s%

manager%t imeStep /2 . d0
620 t h i s%speed (: , 2) = t h i s%speed (: , 1) + Delta_u ∗

t h i s%manager%t imeStep
t h i s%speed (: , 3) = t h i s%speed (: , 1) + Delta_u ∗

t h i s%manager%t imeStep /2 . d0
t h i s%coord (: , 2) = t h i s%coord (: , 1) + t h i s%

speed (: , 1) ∗ t h i s%manager%t imeStep
t h i s%coord (: , 3) = t h i s%coord (: , 1) + t h i s%

speed (: , 1) ∗ t h i s%manager%t imeStep /2 . d0
t h i s%p (2) = t h i s%c a l c P r e s s u r e (t h i s%rho (2))

625 t h i s%c (2) = t h i s%c a l c C e l e r i t y (t h i s%rho (2))
e l s e !< 2nd RK s t e p

t h i s%rho (3) = t h i s%rho (3) + Del ta_rho ∗ t h i s%
manager%t imeStep /2 . d0

t h i s%speed (: , 3) = t h i s%speed (: , 3) + Delta_u ∗
t h i s%manager%t imeStep /2 . d0

t h i s%coord (: , 3) = t h i s%coord (: , 3) + t h i s%
speed (: , 2) ∗ t h i s%manager%t imeStep /2 . d0

630 t h i s%p (3) = t h i s%c a l c P r e s s u r e (t h i s%rho (3))
t h i s%c (3) = t h i s%c a l c C e l e r i t y (t h i s%rho (3))

APPENDIX B. ADDITIONAL CONTENTS 143

end i f
end sub rout i ne va rUpdate_mob i l e

635 !> The f u n c t i o n A r t i f i c i a l V i s c o s i t y c a l c u l a t e s the
v i s c o s i t y term

! ! i n the momentum equ a t i o n .
! ! @param t h i s : c a l l i n g o b j e c t
! ! @param ne i ghOb j : n e i g h b o u r i n g o b j e c t
! ! @param a l p h a : c o e f f i c i c e n t i n the a r t i f i c i a l

v i s c o s i t y f o rm u l a t i o n
640 ! ! @param beta : c o e f f i c i c e n t i n the a r t i f i c i a l

v i s c o s i t y f o rm u l a t i o n
f unc t i on A r t i f i c i a l V i s c o s i t y (t h i s , ne ighOb j , a l pha ,

be ta)
c l a s s (m o b i l e_ p a r t i c l e) t h i s
c l a s s (f i x e d _ p a r t i c l e) ne i ghOb j
r e a l (k ind=p r e c) : : a l p h a

645 r e a l (k ind=p r e c) : : be ta
r e a l (k ind=p r e c) : : A r t i f i c i a l V i s c o s i t y

r e a l (k ind=p r e c) : : mu_ab = 0 . d0 !< t h i s term
r e p r e s e n t s a k i n d o f v i s c o s i t y

r e a l (k ind=p r e c) , dimens ion (1 : 3) : : u_ab !<
r e l a t i v e v e l o c i t y o f a i n compa r i s on w i t h b

650 r e a l (k ind=p r e c) , dimens ion (1 : 3) : : x_ab !< the
d i s t a n c e between a and b

r e a l (k ind=p r e c) : : c_ab !< mean speed o f sound
r e a l (k ind=p r e c) : : rho_ab !< mean d e n s i t y

u_ab = t h i s%speed (: , t h i s%manager%RKstep)−
ne i ghOb j%speed (: , t h i s%manager%RKstep)

655 x_ab = t h i s%coord (: , t h i s%manager%RKstep)−
ne i ghOb j%coord (: , t h i s%manager%RKstep)

i f (dot_product (u_ab , x_ab) <0) then
!> mu_ab i s c a l c u l a t e d u s i n g \ f [\mu_{ab} =

\ f r a c {h \ vec {u}_{ab} \ cdot \ vec {x}_{ab
}}{\ vec {x}_{ab}^2+\ e ta ^2} \ f]

mu_ab = t h i s%h∗ dot_product (u_ab , x_ab) /(
dot_product (x_ab , x_ab) +0.01 d0∗ t h i s%h ∗∗2 .
d0)

c_ab = 0 .5 d0 ∗(t h i s%c (t h i s%manager%RKstep)+
ne i ghOb j%c (t h i s%manager%RKstep))

APPENDIX B. ADDITIONAL CONTENTS 144

660 rho_ab = 0 .5 d0 ∗(t h i s%rho (t h i s%manager%RKstep
)+ne i ghOb j%rho (t h i s%manager%RKstep))

A r t i f i c i a l V i s c o s i t y = (− a l p h a ∗c_ab∗mu_ab+
beta ∗mu_ab∗∗2 . d0) / rho_ab

e l s e
A r t i f i c i a l V i s c o s i t y = 0 . d0

end i f
665

!> update o f max_mu_ab f o r the c a l c u l a t i o n o f
the t ime s t e p

i f ((t h i s%manager%RKstep == 1) . and . (mu_ab >
t h i s%max_mu_ab)) then
t h i s%max_mu_ab = mu_ab

end i f
670 end func t i on A r t i f i c i a l V i s c o s i t y

!> i n i t i a l i s a t i o n i s a s u b r o u t i n e t h a t i n i t i a l i s e s
the p a r t i c l e manager

! ! and a l l t he p a r t i c l e s . The r o u t i n e t a k e s the
da t a s from e x t e r n a l f i l e s .

! ! The f i l e s pa th s a r e g i v e n i n a f i l e s a ved i n the
same d i r e c t o r y as the program .

675 ! ! The e x t e r n a l f i l e s c o n t a i n s : the pa ramete r s , the
f i x e d p a r t i c l e s p r o p e r t i e s

! ! and the mob i l e p a r t i c l e s .
! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne i n i t i a l i s a t i o n (t h i s)

c l a s s (p a r t i c l e_manage r) , t a rge t : : t h i s
680 cha rac te r (250) : : param_path !< path o f the

pa r ame t e r s f i l e
cha rac te r (250) : : fp_path !< path o f the

f i x e d p a r t i c l e (f p) f i l e
cha rac te r (250) : : mp_path !< path o f the

mob i l e p a r t i c l e (mp) f i l e
r e a l (k ind=p r e c) : : x , y , z !< c o o r d i n a t e s

o f a p a r t i c l e
r e a l (k ind=p r e c) : : u_x , u_y , u_z !< v e l o c i t y o f a

p a r t i c l e
685 r e a l (k ind=p r e c) : : rho ,m !< d e n s i t y and

mass o f a p a r t i c l e
i n t e g e r : : i !< l o op coun t e r
c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : cu r_pt r

APPENDIX B. ADDITIONAL CONTENTS 145

t h i s%t imeStep = 1E−15 !< i n i t i a l t ime s t e p
690 t h i s%cu r r en tT ime = 0 . d0 !< c u r r e n t t ime

i n i t i a l i s a t i o n
t h i s%RKstep = 1 !< RK s t e p coun t e r

i n i t i a l i s a t i o n

!> Read ing o f the pa th s o f the i n p u t f i l e s
695 open (un i t =1 , f i l e = ’ pa th s . t x t ’)

read (1 ,∗) param_path
read (1 ,∗) fp_path
read (1 ,∗) mp_path

700 !> Read ing and s t o r i n g o f the da t a s i n the
pa ramete r f i l e s

open (un i t =2 , f i l e =t r im (param_path))
read (2 ,∗) t h i s%numFP
read (2 ,∗) t h i s%numMP
read (2 ,∗) t h i s%h_0

705 read (2 ,∗) t h i s%c_0
read (2 ,∗) t h i s%rho_0
read (2 ,∗) t h i s%dom_dim
read (2 ,∗) t h i s%k e r n e l K i n d
read (2 ,∗) t h i s%a l p h a

710 read (2 ,∗) t h i s%beta
read (2 ,∗) t h i s%eqnSta t e
read (2 ,∗) t h i s%state_gamma
read (2 ,∗) t h i s%molMass
read (2 ,∗) t h i s%k e r n e l C o r r e c t i o n

715 read (2 ,∗) t h i s%maxTime
read (2 ,∗) t h i s%s a v e I n t
t h i s%numPart = t h i s%numFP + t h i s%numMP
a l l o c a t e (t h i s%pa r t (1 : t h i s%numPart)) !<

a l l o c a t i o n o f the p a r t i c l e s a r r a y
s e l e c t case (t h i s%k e r n e l K i n d)

720 case (1)
t h i s%kappa = 2

case (2)
t h i s%kappa = 2

case (3)
725 t h i s%kappa = 3

end s e l e c t

APPENDIX B. ADDITIONAL CONTENTS 146

!> Read ing and s t o r i n g o f the data f o r the f i x e d
p a r t i c l e s

open (un i t =3 , f i l e =t r im (fp_path))
730 do i =1 , t h i s%numFP

read (3 ,∗) x , y , z , u_x , u_y , u_z , rho ,m
a l l o c a t e (f i x e d _ p a r t i c l e : : t h i s%pa r t (i)%p t r)
cu r_pt r => t h i s%pa r t (i)%p t r
cu r_pt r%coord = 0 . d0

735 cu r_pt r%coord (1 , 1) = x
cu r_pt r%coord (2 , 1) = y
cu r_pt r%coord (3 , 1) = z
cu r_pt r%speed = 0 . d0
cu r_pt r%speed (1 , 1) = u_x

740 cur_pt r%speed (2 , 1) = u_y
cur_pt r%speed (3 , 1) = u_z
cur_pt r%rho = 0 . d0
cu r_pt r%rho (1) = rho
cu r_pt r%m = m

745 cur_pt r%h = t h i s%h_0
cur_pt r%manager => t h i s
cu r_pt r%p = 0 . d0
cu r_pt r%p (1) = cur_pt r%c a l c P r e s s u r e (cu r_pt r%

rho (1))
cu r_pt r%c = 0 . d0

750 cu r_pt r%c (1) = cur_pt r%c a l c C e l e r i t y (cu r_pt r%
rho (1))

c a l l cu r_pt r%n e i g h b o u r s%i n i t L i s t
end do

!> Read ing and s t o r i n g o f the data f o r the
mob i l e p a r t i c l e s

755 open (un i t =4 , f i l e =t r im (mp_path))
do i =1 , t h i s%numMP

read (4 ,∗) x , y , z , u_x , u_y , u_z , rho ,m
a l l o c a t e (m o b i l e_ p a r t i c l e : : t h i s%pa r t (t h i s%

numFP+ i)%p t r)
cu r_pt r => t h i s%pa r t (t h i s%numFP+ i)%p t r

760 cu r_pt r%coord = 0 . d0
cu r_pt r%coord (1 , 1) = x
cu r_pt r%coord (2 , 1) = y
cu r_pt r%coord (3 , 1) = z
cu r_pt r%speed = 0 . d0

765 cu r_pt r%speed (1 , 1) = u_x

APPENDIX B. ADDITIONAL CONTENTS 147

cu r_pt r%speed (2 , 1) = u_y
cur_pt r%speed (3 , 1) = u_z
cur_pt r%rho = 0 . d0
cu r_pt r%rho (1) = rho

770 cu r_pt r%m = m
cur_pt r%h = t h i s%h_0
cur_pt r%manager => t h i s
cu r_pt r%p = 0 . d0
cu r_pt r%p (1) = cur_pt r%c a l c P r e s s u r e (cu r_pt r%

rho (1))
775 cu r_pt r%c = 0 . d0

cu r_pt r%c (1) = cur_pt r%c a l c C e l e r i t y (cu r_pt r%
rho (1))

c a l l cu r_pt r%n e i g h b o u r s%i n i t L i s t
end do

780 !> F i l e s c l o s i n g
c l o s e (un i t =1)
c l o s e (un i t =2)
c l o s e (un i t =3)
c l o s e (un i t =4)

785
!> P a r t i c l e s o r t
t h i s%s o r t i n g%manager => t h i s
t h i s%s o r t i n g%i n i t = . t r u e .

790 !> c r e a t i o n o f the l o g f i l e
open (un i t =24 , f i l e = ’ l o g . t x t ’ , form= ’ f o rma t t ed ’ ,

access= ’ s t r eam ’ , s t a tu s= ’ r e p l a c e ’)
wr i t e (24 ,∗) ’ I n i t i a l i s a t i o n ␣ f i n i s h e d . ’
p r i n t ∗ , ’ I n i t i a l i s a t i o n ␣ f i n i s h e d . ’

end sub rout i ne i n i t i a l i s a t i o n
795

!> The s o l v e r r o u t i n e i s used to s o l v e the p rob l em .
I t l o o p s o v e r t ime and u s e s

! ! a RK22 t ime i n t e g r a t i o n scheme .
! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne s o l v e r (t h i s)

800 c l a s s (p a r t i c l e_manage r) t h i s
i n t e g e r : : i , j
i n t e g e r : : i t e !< i t e r a t i o n c oun t e r
l o g i c a l : : to_save !< s a v i n g f l a g . I f t r u e a

s a v i n g i s done

APPENDIX B. ADDITIONAL CONTENTS 148

805 i t e = 0

open (un i t =22 , f i l e = ’ r e s u l t s . out ’ , form= ’
un fo rmat t ed ’ , access= ’ s t r eam ’ , s t a tu s= ’ r e p l a c e ’
)

open (un i t =23 , f i l e = ’ t ime . out ’ , form= ’ un fo rmat t ed ’
, access= ’ s t r eam ’ , s t a tu s= ’ r e p l a c e ’)

810 do wh i l e (t h i s%cu r r en tT ime <= t h i s%maxTime)
!> Time i n c r emen t and s a v i n g s t a t u s
i f ((f l o o r (t h i s%cu r r en tT ime / t h i s%s a v e I n t) /=

&
f l o o r ((t h i s%cu r r en tT ime+ t h i s%t imeStep) / t h i s%

s a v e I n t)) . o r . i t e == 0) then
to_save = . t r u e .

815 end i f
t h i s%cu r r en tT ime = t h i s%cu r r en tT ime + t h i s%

t imeStep
!> Runge Kutta l o op
do j =1 ,2

t h i s%RKstep= j
820 c a l l t h i s%s o r t i n g%p a r t i c l e s S o r t

!> Loop ov e r the p a r t i c l e s
!$OMP PARALLEL DO PRIVATE(i) SCHEDULE(

DYNAMIC)
do i =1 , t h i s%numPart

c a l l t h i s%pa r t (i)%p t r%va rUpdate
825 end do

!$OMP END PARALLEL DO
end do
!> Update o f the c u r r e n t t ime v a r i a b l e s (

cu r r en tT ime = nextTime)
do i =1 , t h i s%numPart

830 t h i s%pa r t (i)%p t r%rho (1) = t h i s%pa r t (i)%
p t r%rho (3)

t h i s%pa r t (i)%p t r%p (1) = t h i s%pa r t (i)%p t r
%p (3)

t h i s%pa r t (i)%p t r%c (1) = t h i s%pa r t (i)%p t r
%c (3)

t h i s%pa r t (i)%p t r%speed (: , 1) = t h i s%pa r t (
i)%p t r%speed (: , 3)

APPENDIX B. ADDITIONAL CONTENTS 149

t h i s%pa r t (i)%p t r%coord (: , 1) = t h i s%pa r t (
i)%p t r%coord (: , 3)

835 end do

!> Test f o r the data s a v i n g
i f (to_save) then

do i =1 , t h i s%numMP
840 wr i t e (un i t =22) r e a l (t h i s%pa r t (t h i s%

numFP+ i)%p t r%coord (1 , 1) ,4)
!> x s a v i n g

wr i t e (un i t =22) r e a l (t h i s%pa r t (t h i s%
numFP+ i)%p t r%coord (2 , 1) ,4)

!> y s a v i n g
wr i t e (un i t =22) r e a l (t h i s%pa r t (t h i s%

numFP+ i)%p t r%coord (3 , 1) ,4)
845 !> z s a v i n g

wr i t e (un i t =22) r e a l (t h i s%pa r t (t h i s%
numFP+ i)%p t r%speed (1 , 1) ,4)

!> u_x s a v i n g
wr i t e (un i t =22) r e a l (t h i s%pa r t (t h i s%

numFP+ i)%p t r%speed (2 , 1) ,4)
!> u_y s a v i n g

850 wr i t e (un i t =22) r e a l (t h i s%pa r t (t h i s%
numFP+ i)%p t r%speed (3 , 1) ,4)

!> u_z s a v i n g
wr i t e (un i t =22) r e a l (t h i s%pa r t (t h i s%

numFP+ i)%p t r%rho (1) ,4)
!> rho s a v i n g

wr i t e (un i t =22) r e a l (t h i s%pa r t (t h i s%
numFP+ i)%p t r%p (1) ,4)

855 !> p r e s s u r e s a v i n g
end do
wr i t e (un i t =23) r e a l (t h i s%cur r en tT ime , 4)

!> c u r r e n t t ime s a v i n g
p r i n t ∗ , ’ I t e r a t i o n ␣nb␣ ’ , i t e

860 p r i n t ∗ , ’ ␣␣␣Time␣ (s) ␣=␣ ’ , t h i s%
cu r r en tT ime

p r i n t ∗ , ’ ␣␣␣Time␣ s t e p ␣ (s) ␣=␣ ’ , t h i s%
t imeStep

wr i t e (24 ,∗) ’ I t e r a t i o n ␣nb␣ ’ , i t e
wr i t e (24 ,∗) ’ ␣␣␣Time␣ (s) ␣=␣ ’ , t h i s%

cu r r en tT ime

APPENDIX B. ADDITIONAL CONTENTS 150

wr i t e (24 ,∗) ’ ␣␣␣Time␣ s t e p ␣ (s) ␣=␣ ’ , t h i s%
t imeStep

865 to_save = . f a l s e .
end i f
c a l l t h i s%t imeStepUpdate
c a l l t h i s%s lUpda t e
i t e = i t e + 1

870 end do
c l o s e (un i t =22)
c l o s e (un i t =23)

end sub rout i ne s o l v e r

875 !> t imeStepUpdae i s a r o u t i n e t h a t computes the nex t
t ime s t e p u s i n g

! ! the p r o p e r t i e s o f the p a r t i c l e s .
! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne t imeStepUpdate (t h i s)

c l a s s (p a r t i c l e_manage r) t h i s
880 r e a l (k ind=p r e c) : : dTf , dTftemp !< t ime s t e p

r e l a t i v e to the body f o r c e s
r e a l (k ind=p r e c) : : dTcv , dTcvtemp !< t ime s t e p

r e l a t i v e to the v i s c o u s f o r c e s and Cou r r an t
number

i n t e g e r : : i
c l a s s (f i x e d _ p a r t i c l e) , po i n t e r : : cu r_pt r

885 !> computes the t ime s t e p r e l a t i v e to the body
f o r c e s

dTf = s q r t (t h i s%pa r t (t h i s%numFP+1)%p t r%h /9 .81 d0)
do i = t h i s%numFP+2 , t h i s%numPart

cu r_pt r => t h i s%pa r t (i)%p t r
dTftemp = s q r t (cu r_pt r%h /9 .81 d0)

890 i f (dTftemp < dTf) then
dTf = dTftemp

end i f
end do

895 !> computes the t ime s t e p r e l a t i v e to the CN and
the v i s c o u s f o r c e s

dTcv = t h i s%pa r t (t h i s%numFP+1)%p t r%h/(t h i s%pa r t (
t h i s%numFP+1)%p t r%c (1) + 0 .6 d0∗ &

(t h i s%a l p h a ∗ t h i s%pa r t (t h i s%numFP+1)%p t r%c (1) +
t h i s%beta ∗ t h i s%pa r t (t h i s%numFP+1)%p t r%

APPENDIX B. ADDITIONAL CONTENTS 151

max_mu_ab))
do i = t h i s%numFP+2 , t h i s%numPart

cu r_pt r => t h i s%pa r t (i)%p t r
900 dTcvtemp = cur_pt r%h /(cu r_pt r%c (1) + 0 .6 d0 ∗(

t h i s%a l p h a ∗ cu r_pt r%c (1) + t h i s%beta ∗
cu r_pt r%max_mu_ab))

i f (dTcvtemp < dTcv) then
dTcv = dTcvtemp

end i f
end do

905
!> computes the f i n a l t ime s t e p
i f (0 . 4 d0∗dTf > 0 .25 d0∗dTcv) then

t h i s%t imeStep = 0 .25 d0∗dTcv
e l s e

910 t h i s%t imeStep = 0 .4 d0∗dTf
end i f

!> p o s s i b i l i t y to change the t ime s t e p i f we use
the i d e a l gas law

i f (t h i s%eqnSta t e == 1) then
915 t h i s%t imeStep = 5 . d0∗ t h i s%t imeStep

end i f
end sub rout i ne t imeStepUpdate

!> s lUpda t e i s a r o u t i n e t h a t upda t e s the smooth ing
l e n g t h a t each t ime s t e p .

920 ! ! I t i s w r i t t e n to p r o v i d e the same smooth ing
l e n g t h f o r e v e r y p a r t i c l e .

! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne s lUpda t e (t h i s)

c l a s s (p a r t i c l e_manage r) t h i s
r e a l (k ind=p r e c) : : mean_rho !< mean v a l u e o f

the d e n s i t i e s o f the mob i l e p a r t i c l e s
925 r e a l (k ind=p r e c) : : new_h !< new smooth ing

l e n g t h
i n t e g e r : : i

mean_rho = 0 . d0
!> c a l c u l a t i o n o f the a v e r a g e d e n s i t y

930 do i =1 , t h i s%numPart
mean_rho = mean_rho + t h i s%pa r t (i)%p t r%rho

(1)

APPENDIX B. ADDITIONAL CONTENTS 152

end do
mean_rho = mean_rho/ t h i s%numPart
!> c a l c u l a t i o n o f the new smooth ing l e n g t h

935 new_h = t h i s%h_0∗(t h i s%rho_0/mean_rho) ∗ ∗ (1 . d0 /3 .
d0)

!> i f t he smooth ing l e n g t h i s g r e a t e r than 0 .5
the s i z e o f a c e l l , h i s l i m i t e d

i f (new_h > 0 .5 d0∗ t h i s%s o r t i n g%c e l l S i z e) then
new_h = 0 .5 d0∗ t h i s%s o r t i n g%c e l l S i z e
p r i n t ∗ , ’ Warning : ␣ the ␣ smooth ing ␣ has ␣ been ␣

l i m i t e d ’
940 wr i t e (24 ,∗) ’ Warning : ␣ the ␣ smooth ing ␣ has ␣ been

␣ l i m i t e d ’
end i f
!> update o f the smooth ing l e n g t h
do i =1 , t h i s%numPart

t h i s%pa r t (i)%p t r%h = new_h
945 end do

end sub rout i ne s lUpda t e

!> get_h_max i s a r o u t i n e used to f i n d the l a r g e s t
smooth ing l e n g t h o f the p a r t i c l e s .

! ! Th i s i s u s e f u l when h i s not c o n s t a n t o v e r the
p a r t i c l e s .

950 ! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne get_h_max (t h i s)

c l a s s (p a r t i c l e _ s o r t) t h i s
i n t e g e r : : i

955 t h i s%h_max = 0
do i =1 , t h i s%manager%numPart

i f (t h i s%manager%pa r t (i)%p t r%h > t h i s%h_max)
then
t h i s%h_max = t h i s%manager%pa r t (i)%p t r%h

end i f
960 end do

!> i n c r e a s e o f max_h i n o r d e r to have a s e c u r i t y
i f h changes

! ! t h i s i s done a c c o r d i n g to the e q u a t i o n o f
s t a t e used .

i f (t h i s%manager%eqnSta t e == 1) then
965 t h i s%h_max = 1 .1 d0∗ t h i s%h_max

APPENDIX B. ADDITIONAL CONTENTS 153

e l s e
t h i s%h_max = 1 .02 d0∗ t h i s%h_max

end i f

970 end sub rout i ne get_h_max

!> s e t C e l l s i s a r o u t i n e t h a t s e t s the s i z e o f the
c e l l s i n wh ich the p a r t i c l e s

! ! w i l l be s o r t e d . A c e l l must be c u b i c . The domain
i s assumed to be c u b i c .

! ! Th i s r o u t i n e a l s o s e t s the number o f c e l l s and
a l l o c a t e s the v e c t o r wh ich c o n t a i n s

975 ! ! t he l i s t s o f p a r t i c l e s .
! ! I n o r d r e r to be as e f f i c i e n t as p o s s i b l e , t he

s t o r a g e v e c t o r i s not d e a l l o c a t e d and
! ! r e a l l o c a t e d a t each i t e r a t i o n .
! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne s e t C e l l s (t h i s)

980 c l a s s (p a r t i c l e _ s o r t) t h i s

!> c a l c u l a t e s the n e c e s s a r y number o f c e l l s on a
s i d e

c a l l t h i s%get_h_max
t h i s%nC e l l s S i d e = 0

985 do wh i l e (t h i s%manager%dom_dim/(t h i s%nC e l l s S i d e
+1) > t h i s%manager%kappa ∗ t h i s%h_max)
t h i s%nC e l l s S i d e = t h i s%nC e l l s S i d e +1

end do
t h i s%nC e l l s = t h i s%nC e l l s S i d e ∗∗3

990 !> a l l o c a t e d w i t h the n e c e s s a r y number o f c e l l s .
a l l o c a t e (t h i s%s t o r a g e (1 : t h i s%nC e l l s))
t h i s%c e l l S i z e = t h i s%manager%dom_dim/ t h i s%

nC e l l s S i d e
end sub rout i ne s e t C e l l s

995 !> p a r t i c l e s S o r t i s a r o u t i n e used to s o r t e v e r y
p a r t i c l e i n a c e l l . Th i s w i l l be u s e f u l

! ! i n o r d e r to f i n d the n e i g h b o u r s .
! ! @param t h i s : c a l l i n g o b j e c t
sub rout i ne p a r t i c l e s S o r t (t h i s)

c l a s s (p a r t i c l e _ s o r t) , t a rge t : : t h i s
1000 i n t e g e r : : i

APPENDIX B. ADDITIONAL CONTENTS 154

i n t e g e r : : x C e l l , y C e l l , z C e l l
!< number o f the c e l l i n the x , y and

z d i r e c t i o n
i n t e g e r : : part_pos

!< a b s o l u t e p o s i t i o n o f a p a r t i c l e
1005 r e a l (k ind=p r e c) , dimens ion (:) , po i n t e r ,

c o n t i g u o u s : : x yz
!< p o s i t i o n o f a p a r t i c l e

i n t e g e r , po i n t e r : : n C e l l s S i d e
!< number o f c e l l s on a row

1010 i f (t h i s%i n i t) then
c a l l t h i s%s e t C e l l s
t h i s%i n i t = . f a l s e .

end i f
!> the l i s t s o f e v e r y c e l l a r e r e s e t e d

1015 do i =1 , t h i s%nC e l l s
c a l l t h i s%s t o r a g e (i)%r e s e t L i s t

end do
n C e l l s S i d e => t h i s%nC e l l s S i d e
do i =1 , t h i s%manager%numPart

1020 xyz => t h i s%manager%pa r t (i)%p t r%coord (: , t h i s
%manager%RKstep)

i f (xyz (1) == t h i s%manager%dom_dim) then
x C e l l = n C e l l s S i d e

e l s e
x C e l l = n i n t ((xyz (1)−mod(xyz (1) , t h i s%

c e l l S i z e)) / t h i s%c e l l S i z e) + 1
1025 end i f

i f (xyz (2) == t h i s%manager%dom_dim) then
y C e l l = n C e l l s S i d e

e l s e
y C e l l = n i n t ((xyz (2)−mod(xyz (2) , t h i s%

c e l l S i z e)) / t h i s%c e l l S i z e) + 1
1030 end i f

i f (xyz (3) == t h i s%manager%dom_dim) then
z C e l l = n C e l l s S i d e

e l s e
z C e l l = n i n t ((xyz (3)−mod(xyz (3) , t h i s%

c e l l S i z e)) / t h i s%c e l l S i z e) + 1
1035 end i f

part_pos = (xC e l l −1)∗ n C e l l s S i d e ∗∗2 + (yC e l l
−1)∗ n C e l l s S i d e + z C e l l

APPENDIX B. ADDITIONAL CONTENTS 155

c a l l t h i s%s t o r a g e (part_pos)%addElement (t h i s%
manager%pa r t (i)%pt r , r e a l (0 , p r e c))

end do
end sub rout i ne p a r t i c l e s S o r t

1040
end module SPH_module

Bibliography

P. Archambeau, B. Dewals, S. Erpicum, T. Mouzelard, and M. Pirotton. Wolf software: a
fully integrated device applied to modelling gradual dam failures and assessing subsequent
risks. Advances in Fluid Mechanics IV, 2002.

G.K. Batchelor. An introduction to fluid dynamics. Cambridge university press, 1967.

B. Boigelot. Ordinateurs et systèmes d’exploitation. Centrale des Cours de l’AEES, ULg,
2009.

T. Budd. An Introduction to Object-Oriented Programming. Addison-Wesley, 2002.

T. Canor and V. Denoël. Transient Fokker-Planck-Kolmogorov equation solved with
smoothed particle hydrodynamics method. International Journal for Numerical Meth-
ods in Engineering, 2013.

J.K. Chen, J.E. Beraun, and T.C. Carney. A corrective smoothed particle method for
boundary value problems in heat conduction. International Journal for Numerical Meth-
ods in Engineering, 46(2):231–252, 1999.

I. Chivers and J. Sleightholme. Introduction to programming with Fortran. Springer, 2012.

T.J. Chung. Finite element analysis in fluid dynamics. McGraw-Hill, 1978.

R.H. Cole. Underwater explosions. Princeton University Press, 1948.

A.J.C. Crespo, M. Gomez-Gesteira, and R.A. Dalrymple. Boundary conditions generated
by dynamic particles in SPH methods. CMC: Computers, Materials, & Continua, 5(3):
173–184, 2007.

R.A. Dalrymple and O. Knio. SPH modelling of water waves. In Coastal Dynamics. ASCE,
2001.

J.H. Dymond and R. Malhotra. The Tait equation: 100 years on. International Journal of
Thermophysics, 9(6):941–951, 1988.

R.A. Gingold and J.J. Monaghan. Smoothed particle hydrodynamics-theory and application
to non-spherical stars. Monthly notices of the royal astronomical society, 181:375–389,
1977.

156

BIBLIOGRAPHY 157

M. Gomez-Gesteira, B. D. Rogers, R. A. Dalrymple, and A.J.C. Crespo. State-of-the-art
of classical SPH for free-surface flows. Journal of Hydraulic Research, 48(S1):6–27,
2010.

M. Gomez-Gesteira, A.J.C. Crespo, B.D. Rogers, R.A. Dalrymple, J.M. Dominguez, and
A. Barreiro. SPHysics-development of a free-surface fluid solver-part 2: Efficiency and
test cases. Computers & Geosciences, 2012a.

M. Gomez-Gesteira, B.D. Rogers, A.J.C. Crespo, R.A. Dalrymple, M. Narayanaswamy, and
J.M. Dominguez. SPHysics-development of a free-surface fluid solver-part 1: Theory
and formulations. Computers & Geosciences, 2012b.

I. M. Jánosi, D. Jan, K. G. Szabó, and T. Tél. Turbulent drag reduction in dam-break
flows. Experiments in Fluids, 37(2):219–229, 2004.

F. Jedrzejewski. Introduction aux méthodes numériques. Springer Verlag France, 2005.

G.R. Johnson, R.A. Stryk, and S.R. Beissel. SPH for high velocity impact computations.
Computer methods in applied mechanics and engineering, 139(1):347–373, 1996.

A. Kiara. Analysis of the smoothed particle hydrodynamics method for free-surface flows.
PhD thesis, Massachusetts Institute of Technology, 2010.

S. Koshizuka and Y. Oka. Moving-particle semi-implicit method for fragmentation of
incompressible fluid. Nuclear science and engineering, 123(3):421–434, 1996.

E. Kreyszig. Advanced engineering mathematics. John Wiley & Sons, 2006.

M. Kumbera. Adding Cray Pointers to GNU Fortran. URL https://iscr.llnl.gov/
guests/students/FY05_posters/LangtonAsher.pdf.

L.D. Landau and E.M. Lifshitz. Mécanique des fluides. Mir, 1971.

G.R. Liu. Mesh free methods: moving beyond the finite element method. CRC, 2003.

G.R. Liu and M.B. Liu. Smoothed particle hydrodynamics: a meshfree particle method.
World Scientific Publishing Company Incorporated, 2003.

L.B. Lucy. A numerical approach to the testing of the fission hypothesis. The astronomical
journal, 82:1013–1024, 1977.

B. Maurel. Modélisation par la méthode SPH de l’impact d’un réservoir rempli de fluide.
PhD thesis, INSA de Lyon, 2008.

J.J. Monaghan. An introduction to sph. Computer Physics Communications, 48(1):89–96,
1988.

J.J. Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy and as-
trophysics, 30:543–574, 1992.

BIBLIOGRAPHY 158

J.J. Monaghan. Simulating free surface flows with SPH. Journal of computational physics,
110(2):399–406, 1994.

J.J. Monaghan. Smoothed particle hydrodynamics. Reports on progress in physics, 68(8):
1703, 2005.

J.J. Monaghan and J.B. Kajtar. SPH particle boundary forces for arbitrary boundaries.
Computer Physics Communications, 180(10):1811–1820, 2009.

J.J. Monaghan and A. Kos. Solitary waves on a Cretan beach. Journal of waterway, port,
coastal, and ocean engineering, 125(3):145–155, 1999.

J.J. Monaghan and J.C. Lattanzio. A refined particle method for astrophysical problems.
Astronomy and Astrophysics, 149:135–143, 1985.

J.P. Morris. A study of the stability properties of SPH. Applied Mathematics Reports and
Preprints, 1994.

J.P. Morris. Analysis of smoothed particle hydrodynamics with applications. PhD thesis,
Monash University, 1996.

R.P. Nelson and J.C.B. Papaloizou. Variable smoothing lengths and energy conservation
in smoothed particle hydrodynamics. Queen Mary and Westfield College, 1994.

P.W. Randles and L.D. Libersky. Smoothed particle hydrodynamics: some recent improve-
ments and applications. Computer methods in applied mechanics and engineering, 139
(1):375–408, 1996.

I.L. Ryhming. Dynamique des fluides: un cours de base du deuxième cycle universitaire.
PPUR, 2004.

R. Vacondio, B.D. Rogers, P.K. Stansby, and P. Mignosa. SPH modeling of shallow flow
with open boundaries for practical flood simulation. Journal of Hydraulic Engineering,
138(6):530–541, 2012.

G.L. Vaughan, T. R. Healy, K. R. Bryan, A. D. Sneyd, and R.M. Gorman. Completeness,
conservation and error in SPH for fluids. International journal for numerical methods in
fluids, 56(1):37–62, 2008.

D. Violeau. Fluid Mechanics and the SPH Method: Theory and Applications. Oxford
University Press, 2012.

D. Violeau and R. Issa. Numerical modelling of complex turbulent free-surface flows with
the SPH method: an overview. International Journal for Numerical Methods in Fluids,
53(2):277–304, 2006.

H. Wendland. Piecewise polynomial, positive definite and compactly supported radial func-
tions of minimal degree. Advances in computational Mathematics, 4(1):389–396, 1995.

