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Abstract

Nowadays, the functioning of the human brain is still one of the biggest mysteries of
humanity. The multiple holes in the understanding of the human brain explain why an
intensification of brain-oriented research can be observed since a few years.

One of the most recent techniques to better understand the brain is Diffusion Tensor
Imaging (DTI), a noninvasive imaging modality that provides information about orienta-
tion of nervous fibers, and their spatial density, with a high resolution. The particular
nature of DTI images makes them multi-valued. Their processing therefore requires to
adapt state-of-the-art techniques, which are fundamentally tailored to scalar-valued im-
ages.

The objective of this PhD thesis is to develop a novel framework for the processing of
tensor diffusion images. The focus is threefold: first, we adopt a Riemannian geometric
framework to generalize image processing from linear to nonlinear spaces. Second, we aim
at developing a processing framework that retains the physical information of measurement
data. Thirdly, the proposed algorithm must be computationally efficient in order to scale
with the data size of clinical applications.

The main contribution of this thesis is the development of a novel processing method,
which has the particularity to preserve the important features of diffusion tensors, while
being computationally affordable. This technique is based on the decoupling between the
two types of information conveyed by tensors: the diffusion intensity on one hand, and the
orientation of diffusion on the other hand. Moreover, the computational cost is limited
thanks to the use of unit quaternions to represent tensors orientation.

Another contribution of the thesis lies in the development of a statistical method for
group comparison. This method uses the notion of similarity measure between the values,
a notion that can be defined for multi-valued images, and which enables to reduce the
computational cost. The use, for the statistical tests, of the similarity measure associated
to our framework turns out to be efficient and informative.

The study of geometric methods for multi-valued images together with the study of
potential applications of diffusion tensor images have enabled the introduction of a novel
framework, which is particularly appropriate for those images. The basic operations de-
veloped in the thesis open the way to more sophisticated processing algorithms, while
ensuring the preservation of the main information associated to the tensors.
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Résumé

Le fonctionnement du cerveau humain reste de nos jours un des plus grands mystères
de l’humanité. Les nombreuses zones d’ombre dans la compréhension du système nerveux
expliquent pourquoi, depuis quelques années, on assiste à une intensification des recherches
concernant le cerveau.

Une des plus récentes techniques pour mieux appréhender le cerveau est l’Imagerie par
Tenseur de Diffusion (ITD), une technique non invasive qui fournit des informations sur
l’orientation des fibres nerveuses et sur leur densité spatiale, avec une haute résolution.
La nature particulière des images obtenues par ITD en fait des images à valeurs multiples.
Leur traitement requiert donc l’adaptation des techniques de l’état de l’art, qui sont fon-
damentalement conçues pour les images à valeurs scalaires.

L’objectif de cette thèse de doctorat est de développer un nouvel ensemble de tech-
niques pour le traitement des images par tenseur de diffusion. Cet objectif est triple :
premièrement, nous adoptons un ensemble d’outils géométriques et Riemannien afin de
généraliser le traitement d’images dans des espaces linéaires vers les espaces non-linéaires.
Deuxièmement, nous cherchons à développer un système de traitement qui retienne les
informations physiques des données mesurées. Troisièmement, l’algorithme proposé doit
être efficace au niveau coût de calcul, de façon à être compatible avec la taille des données
des applications cliniques.
La contribution principale de la thèse est le développement d’une technique de traitement
des images qui a la particularité de préserver les caractéristiques principales des tenseurs
de diffusion, tout en étant utilisable à des coûts de calculs raisonnables. Cette technique
est basée sur le traitement découplé des deux types d’informations associés aux tenseurs:
l’intensité de la diffusion d’une part, et l’orientation de la diffusion d’autre part. Le coût de
calcul est par ailleurs limité grâce à l’utilisation des quaternions unitaires pour représenter
l’orientation des tenseurs.

Une autre contribution de la thèse réside dans le développement d’une méthode statis-
tique de comparaison de groupes. La méthode utilise la notion de distance entre les
éléments, notion qui peut être définie pour les images non-linéaires, et qui permet de lim-
iter les coûts de calcul. L’utilisation de la mesure de similarité fournie par notre méthode
de traitement d’images pour les tests statistiques s’avère être efficace et informative.

La combinaison de l’étude des méthodes géométriques pour les images à valeurs multi-
ples et de l’étude des applications potentielles des images par tenseur de diffusion a permis
la création d’un nouvel ensemble d’outils particulièrement appropriés à ces images. Les
opérations de base développées dans cette thèse ouvrent la voie aux méthodes d’analyse
plus sophistiquées, tout en assurant la préservation des informations principales associées
aux tenseurs.
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Chapter 1

Introduction

Now, as humans, we can identify galaxies light years away.
We can study particles smaller than an atom,

but we still haven’t unlocked the mystery
of the three pounds of matter that sits between our ears.

- Barack Obama, April 2013.

In April 2013, Barack Obama, President of the United States of America, announced
his BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative1.
The goal of this initiative, often compared to the Human Genome Project, is to ‘give
to the scientists the tools they need to a get a dynamic picture of the brain and better
understand how we think, learn, and remember’.

Some weeks before, the European FET (Future and Emerging Technologies) Flagship
Programme had announced that it will support the Human Brain Project of the Ecole
Polytechnique Fédérale de Lausanne2. The 86 institutions involved in this project will
receive one billion euro in funding over ten years. The Human Brain Project aims to
simulate the human brain with supercomputers. The goal is to better understand how
it functions, and eventually to be able to mimic it. This should help to better diagnose
different brain problems.

The attention that these two ‘grand challenges’ caught in the media provides a sug-
gestive evidence that brain research is ‘the place to be’ for coming years.

Among the multitude of tools which will be developed or improved in the following
years, there is no doubt that imaging methods will occupy a central place. All over the
world, researchers develop novel methods to image the brain non invasively. It is in this
particularly blossoming context that this dissertation takes place, as following sections will
illustrate it.

1A summary infographic of this initiative can be found at www.whitehouse.gov/infographics/brain-
initiative.

2http://www.humanbrainproject.eu
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2 Chapter 1. Introduction

1.1 Research Context

The research presented in this thesis has the particularity of being rooted in two distinct
fields. These two young fields have each attracted a growing interest over the last years,
and the connection between them is recent. In the sequel, a brief presentation of these
fields will enable to relate the present work to recent research development, and to motivate
the path that our research has followed.

Diffusion Tensor Imaging

The method of Diffusion Tensor Imaging (DTI) is a relatively recent medical imaging
method. The seminal paper which introduces the very concept of DTI was published in
1992 (Basser et al., 1992, 1994a). This method has attracted a lot of interest, because of
both its potential applications and the very particular nature of the images themselves.
It is often said that DTI enables to visualize, or reconstruct, the architecture of the brain,
without having to open it. This wonderful ability easily explains why researchers have
worked a lot to improve this imaging method. To understand how Diffusion Tensor Imag-
ing works and what it shows, imagine a (terribly intricate) maze, in which many people
walk freely. Suppose that you want to know where the walls of this maze are, and how
the people go from one point to another. One solution is to put a GPS chip on every
people, and record their displacements. If the record lasts long enough, you should be
able to distinguish between the aisles of the maze (where many people walk through)
and the walls of it (where no one goes through). The principle of DTI is the same: the
brain is a maze, whose walls are the boundaries of axons. In this maze, water molecules
move freely. The equivalent of the GPS chips here is the proton in water molecules. DTI
uses different magnetic fields to ‘label’ those protons, and follow their displacements. The
‘production’ of those images has of course been the topic of much research, as it will be
shown in Chapter 3. In this thesis, we focus on the images themselves.

In practice, the images obtained by Diffusion Tensor Imaging are matrix-valued: they
associate a diffusion tensor to each of their pixels. This diffusion tensor, which can be
visualized as an ellipsoid, represents the way the water move in each voxel of the brain. The
resolution is high, with voxel size ranging from 5 to 1.5 mm. If the ellipsoid is spherical,
it means that the water does not encounter any obstacle in this part of the brain. This
is usually the case in gray matter, or in the cerebro-spinal fluid. To the contrary, if
the ellipsoid is elongated, this indicates that water moves in a favorite direction. Water
movement is restricted by the presence of ‘walls’, the boundaries of axons. This part of
the brain is then viewed as white matter. The processing of diffusion tensor images thus
implies to process all the information which is conveyed by the tensors: the direction of
the movement and its intensity. In the early years after the development of the method,
researchers usually processed those images by using only one kind of information, the
shape of the tensors. The inherent ‘loss of information’ of this processing has however
limited its use.
Mathematically, diffusion tensors are symmetric positive definite matrices, which among
other things, do not live in a linear space, like ordinary matrices, but rather on a nonlinear
space, nevertheless highly structured. This consideration is at the core of the connection
between diffusion tensor imaging on one hand and processing on manifolds on the other
hand. This connection has first been made in (Lenglet et al., 2006; Pennec et al., 2006;
Fletcher and Joshi, 2007).
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Optimization on manifolds

Optimization on manifolds relates to a multitude of algorithms which have the particu-
larity to be defined over particular spaces, Riemannian manifolds. Those spaces can be
viewed as sets of elements that satisfy some nonlinear constraints in a linear space (for
instance, positive numbers are real numbers λ satisfying the inequality constraint λ > 0).
The processing of those data implies to develop algorithms which preserve the constraints,
in other words, data need to be geometrically processed in their own space. As an anal-
ogy, we can consider the field of musical acoustics. Musical sounds of course are sounds
but they are more than that, and their particular properties enable to classify them as
’musical’. The writing and analysis of music should then be limited to those particular
sounds. The signal processing of musical sounds should have musical sounds as outputs.
These ideas can be translated to the field of Riemannian matrix manifolds: the processing
of matrices belonging to a particular manifold should be constrained in this manifold.

Originally, the idea of treating optimization problems defined on Riemannian mani-
folds was presented in (Luenberger, 1972). Early work in the control community includes
(Brockett, 1972, 1993), who focused on systems properties on a manifold state space. The
monograph (Helmke and Moore, 1996) deals with optimization and dynamical systems
from a differential geometric viewpoint. The monograph (Absil et al., 2008) presents
recent advances in the field, focusing on algorithmic developments and addressing the
problem of optimizing a smooth function on a manifold.

The concepts of optimization on manifolds apply to a broad variety of computational
problems. For instance, (Ma et al., 2001) studies motion and structure recovery for com-
puter vision, (Absil, 2003) deals with invariant subspace computation, (Journée, 2009) fo-
cuses on component analysis and analysis of gene expression data, (Sarlette, 2009) presents
distributed consensus algorithms.

In this thesis, the manifold of interest is the manifold of symmetric positive definite
matrices, which represent diffusion tensors. It seems indeed natural to demand that the
processing of diffusion tensors results in diffusion tensors. As explained above, the ‘man-
ifold viewpoint’ for the processing of diffusion tensor images has emerged in 2006. The
principal tools which are needed to process those images are a similarity measure and a
weighted mean of tensors. Those tools can be defined from the theory of Riemannian
manifolds, as explained in Chapter 2 and Section 3.4.3.

Motivations of the thesis

The research presented in this dissertation comes at the intersection between Diffusion
Tensor Imaging and optimization on manifolds. The first goal of the thesis was indeed to
define and develop appropriate tools for the (nonlinear) processing and statistical analysis
of those images.

Concerning the processing, the detailed study of the existing research in the field had
highlighted three issues which can be viewed as the foundations of the research.

• Due to their nonlinear nature, image processing of diffusion tensors calls for a geo-
metric framework.
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• The two most basic processing operations are a similarity measure between ten-
sors and an averaging (or interpolation) of tensors. These operations need to be
computationally efficient, because they are widely and repetitively used.

• Existing Riemannian metrics suffer from an intrinsic limitation: they tend to degrade
the anisotropy of tensors, i.e. their shape, through averaging. Since many analyses
of diffusion tensor images are based on this information, it seems natural to favor
algorithms which will preserve it.

The statistical analysis of Diffusion Tensor Images has attracted a lot of research in
the recent years but is still largely under development. The study of the state-of-art
has shown that most algorithms are based on single scalars, for instance the fractional
anisotropy of tensors. One of our motivation was thus to propose analyses based on
the whole information conveyed by the tensors, i.e intensity of diffusion as well as its
orientation. Existing statistical analysis methods which use the whole tensor are often
based on statistical models. However, the true distribution of tensors is not known. The
research has thus focused on non-parametric methods, i.e. methods which do not need
any assumptions about the distribution. Another motivation was to develop statistical
analysis which can scale with the medical application needs.

1.2 Contributions

The answers to the various questions or objectives explained above have given rise to
different contributions of our thesis to the topic of geometric processing of diffusion tensor
images. These contributions are listed below.

• A first contribution of this thesis is the definition of a rank-preserving mean of N
positive semi-definite matrices of fixed rank. This mean is related to an interpolating
curve defined on the space of those matrices, which has the advantage to admit
explicit formulas. This contribution highlighted the fact that interpolating curves
should not necessarily be geodesics.

This contribution is developed in Section 2.3 and is the topic of a recent paper in Linear
Algebra and its Applications, (Bonnabel et al., 2013).

Silvère Bonnabel, Anne Collard and Rodolphe Sepulchre. Rank-preserving geometric
means of positive semi-definite matrices. Linear Algebra and its Applications, 438(8):3202-
3216, 2013.

The following contributions concern the development of our novel geometric framework.

• The affine-invariant and Log-Euclidean frameworks are well-known in the field of
processing of diffusion tensor images. However, as far as we know, this work is the
first to highlight their important limitation regarding anisotropy. As explained in
Section 3.4.3, both methods tend to degrade this information during the processing.

• To address this limitation, the method developed in this thesis has been specifically
constructed to be anisotropy preserving.
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• The thesis also introduces a novel anisotropy index, the Hilbert Anisotropy (see
Section 4.3.4). The choice of this index is motivated by its intrinsic meaning on
cones. Moreover, with the proposed framework, the Hilbert Anisotropy is linearly
interpolated during interpolation between two tensors. The mean Hilbert anisotropy
of N tensors is the arithmetic mean of the N Hilbert Anisotropies.

• In order to ensure the computational efficiency of the method, unit quaternions have
been used to parametrize orientation of tensors. To the best of our knowledge, this
parametrization had never been used for the processing of diffusion tensor images.
Several illustrations of this thesis however suggest that the chordal mean of quater-
nions is an attractive substitute for the mean of rotation matrices.

• Besides the conservation of anisotropy and the attractive computational cost, a third
important issue has been addressed in the research: the more a tensor is isotropic,
the more its orientation is uncertain. This observation led us to propose a different
interpolating curve between quaternions, depending upon the anisotropy of tensors.
This notion has also been used to define a weighted term for the orientation compo-
nent in the similarity measure.

• A particular attention has been devoted to the definition of a symmetric mean of
N tensors. It is indeed crucial that the mean of a set of tensors is permutation
invariant, that is, independent on the order in which the tensors are considered. A
method has been proposed to meet this need, which is based on the appropriate
selection of a reference tensor. The notion of information conveyed by the tensor
has been used to perform this selection, see Section 4.4.1.

• Chapter 5 of this dissertation suggests that the developed framework can be used in
all processing algorithms, and is competitive with the state-of-the-art framework.

The contributions above are presented in:

Anne Collard, Silvère Bonnabel, Christophe Phillips and Rodolphe Sepulchre. Anisotropy
preserving DTI processing. Submitted in revised form to International Journal of Com-
puter Vision, May 2013.

The ‘statistical analysis’ part of this thesis has led to the following contributions.

• Starting from the idea that the distribution of tensors is seldom known, this work
focuses on permutation methods for the statistical comparison of groups. However,
Section 6.1.1 explains how mean-based methods could be computationally expensive.
A different method, based on dispersion of data, is thus introduced in Section 6.1.2.
This method is novel for the analysis of diffusion tensor images.

• Chapter 6 also shows results of statistical analyses on synthetical data sets. Those
results prove that the spectral-quaternion framework is efficient to compare diffusion
tensor images.

• The weighting parameter introduced in the similarity measure associated to the
spectral-quaternion framework (Equation (4.44)) provides a ‘tunable’ parameter
which induces a tradeoff between the robustness and the sensitivity of the measure
to a variation of orientation.
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• A geometric parametrization is introduced in Equation (6.4), based on the spectral-
quaternion framework. Section 6.2.3 shows that this framework is easily interpretable
and that its use could represent a particularly useful input of information about the
difference between diffusion tensor images.

The contributions above are presented in:

Anne Collard, Christophe Phillips and Rodolphe Sepulchre. Statistical tests for group
comparison of manifold-valued data. Submitted to 52nd IEEE Conference on Decision
and Control, March 2013.

1.3 Outline

The dissertation is organized as follows.

Chapter 2 is devoted to the definition of interpolating curves, weighted means and sim-
ilarity measures in two nonlinear spaces: the space of n × n symmetric positive definite
matrices and the space of fixed-rank positive semi-definite matrices.

Chapter 3 provides a historical perspective on Diffusion Tensor imaging, emphasizing the
physical and information properties of this particular modality.

Chapter 4 presents the core development of our novel framework for the processing of dif-
fusion tensor images. Definitions and algorithms are provided for the interpolating curve
between tensors, weighted mean of tensors and similarity measure.

Chapter 5 presents some simple image processing operations using our framework, and
compare the results with state-of-the-art methods.

Finally, Chapter 6 introduces a novel method for the statistical analysis of diffusion tensor
images, and evaluates the relevance of the proposed framework in that context.

"Water is the driving force of all nature."

"Realize that everything connects to everything else."

- Leonardo da Vinci.



Notations

The following notations for spaces and manifolds are used throughout the thesis.

R The set of real numbers.
R

+ The set of positive real numbers.
R

n The set of n-dimensional real column vectors.
R

n×p The set of n × p real matrices with n rows and p columns.

R
n×p
∗ The set of n × p full rank real matrices with n rows and p columns.

M An arbitrary manifold.
S1 The unit sphere in R

2, the set of unit norm vectors in R
2.

Gl(n) The general linear group of dimension n, the set of invertible n × n matrices.
O(n) The orthogonal group, the set of n × n orthogonal matrices.
S+(n) The set of symmetric positive definite matrices of size n.
S+(p, n) The set of symmetric positive semi-definite matrices of size n with rank p.
Vn,p The Stiefel manifold, the set of n × p orthonormal matrices.
Gr(p, n) The Grassmann manifold, the set of p-dimensional subspaces in R

n.

S+(3) The set of symmetric positive definite matrices of size 3, the group of diffusion
tensors.

S+
∗ (3) The set of symmetric positive definite matrices of size 3 with distinct eigen-

values.
SO(3) The special orthogonal group, the set of 3 × 3 rotation matrices.
D+(3) The set of diagonal matrices of size 3 × 3, with positive elements.
H1 The set of unit quaternions.

Given an arbitrary matrix A, we define the notations,

Ai,j The element at row i and column j in the matrix A.
AT The transpose of the matrix A.
Tr(A) The trace of the square n × n matrix A, Tr(A) =

∑n
i=1 Aii.

Det(A) The determinant of the square and invertible matrix A.

||A||2 The Frobenius norm of the matrix A, ||A||2 = Trace(AT A)1/2.
A ≻ 0 The matrix A is (symmetric) positive definite, all its eigenvalues are strictly

positive.
A � 0 The matrix A is (symmetric) positive semi-definite, all its eigenvalues are

nonnegative.
exp(A) The matrix exponential of A.
log(A) The matrix logarithm of (the positive definite matrix) A.

7
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Given a tensor S ∈ S+(3) whose spectral decomposition is UΛUT , we define the notations,

U The rotation matrix whose columns are the eigenvectors of the tensor.
Λ The diagonal matrix of eigenvalues.
λi The i-th eigenvalue of the tensor.
q The unit quaternion associated to the orientation of tensors.
Q The set of eight unit quaternions representing the different decompositions of

the tensor.
qr A realigned quaternion, i.e. a chosen quaternion in the set Q.

The following notations are also used throughout the thesis.

t The interpolating parameter.
wi The weight of element i in a weighted sum.
k The weighting parameter of the spectral metrics.
κ The weighting parameter of the spectral-quaternion similarity measure.
M A transformation matrix.
t A translation vector.
x The spatial coordinates of a point, x ∈ R

d, with d = 2 or 3 for 2D or 3D
images.

V(x) The set of (spatial) neighbors of the point at x.
α The level of uncertainty for statistical tests.

The following acronyms are also used in the thesis.

MRI Magnetic Resonance Imaging.
DTI Diffusion Tensor Imaging.
DWI Diffusion Weighted Imaging.
FA Fractional Anisotropy.
RA Relative Anisotropy.
HA Hilbert Anisotropy.
SVD Singular Value Decomposition.
SPD Semi-Positive Definite.



Chapter 2

Interpolating curves and means in manifolds

The images considered in this thesis belong to the general field of
matrix-valued images, a field which has received growing interest in the
past few years. In the case of Diffusion Tensor Imaging, these (matrix-
valued) images have an additional property: they belong to a nonlinear
(but nevertheless highly structured) space, i.e. a Riemannian manifold.
In this chapter, we show why those types of nonlinear images should be
processed geometrically, i.e. with specific operations defined on man-
ifolds. For that purpose, we exploit the concept of invariances. The
basic operations of interpolating curves, means, and similarity mea-
sures are presented for two different manifolds: the space of symmetric
positive definite matrices and the space of positive semi-definite ma-
trices of fixed rank. The definition of a new mean for an arbitrary
number of fixed-rank positive semi-definite matrices is a contribution
of the present thesis. In particular, it highlights the fact that interpo-
lating curves should not necessarily be curves of minimal length.

Multivalued variables appear in many fields of research, one of the most important being
imaging. Multivariate images include color images, multi- and hyperspectral images. This
thesis is particularly interested in Diffusion Tensor Imaging, a novel imaging method which
produces matrix-valued images. These matrices are not ‘simply’ matrices, but belong to
the particular space of symmetric positive definite matrices, also called the Riemannian
manifold S+(3). The development of algorithms which specifically operate on manifolds
is a current topic of research, which will be addressed in this chapter. Algorithms on
manifolds are motivated by the fact that, for many applications, it appears that it is very
important to geometrically process the data, i.e. to process them in their particular space,
using the appropriate invariant metric. Invariance to a particular group action is indeed
an important concept of the Riemannian manifold theory. The ‘geometric processing’ is
in contrast with an arithmetic processing of data, which could be simpler but often has
the disadvantage not to preserve some important features of the data.

Among the different operations which can be extended to manifold-valued data, this chap-
ter will focus on interpolating curves and on the definitions of means. Indeed, these are two
crucial operations in image processing, and in multivariate statistics, see (Thévenaz et al.,
2000) and references therein. Moreover, these concepts have been shown to be important
for Diffusion Tensor Images processing, for example in (Zhang et al., 2006; Kindlmann
et al., 2007; Arsigny et al., 2007; Fletcher and Joshi, 2007; Fletcher et al., 2009).

9



10 Chapter 2. Interpolating curves and means in manifolds

The concepts of mean and interpolating curves are current topic of research in many other
fields, see (Absil et al., 2004; Ando et al., 2004; Arsigny et al., 2007; Bonnabel et al., 2013;
Bonnabel and Sepulchre, 2009; Fletcher and Joshi, 2007; Moakher, 2005; Petz and Temesi,
2005; Moakher and Zéraï, 2011).

In this chapter, we will focus on two spaces: the manifold of n × n symmetric positive
definite matrices, S+(n) and the manifold of fixed-rank semi-definite positive matrices,
S+(p, n). The first section will discuss interpolating curves in S+(n), introducing two dis-
tinct frameworks: the affine-invariant and Log-Euclidean frameworks. The second section
will be devoted to the different definitions of means of two, or more than two, matrices.
Finally, Section 2.3 will define those tools in S+(p, n).

2.1 Interpolating curves in S+(n)

Symmetric positive definite matrices of size n × n, which form the space S+(n), appear
in many areas of engineering and applied mathematics, as explained in (Bonnabel et al.,
2013). For example, they appear as covariance matrices in statistics, as variables in convex
and semidefinite programming, as unknowns of important matrix (in)equalities in systems
and control theory, and as kernels in machine learning, to cite a few. Diffusion tensor im-
ages, which are the topic of this dissertation, are fields of diffusion tensors, which belong
to S+(3).

In this section, we will focus on the interpolating curves between two elements of
S+(n). An interpolating curve of parameter t between two elements S1 and S2 of S+(n)
is a one-parameter curve S(t) which starts from S(0) = S1 and ends in S(1) = S2. Each
element S(t), 0 ≤ t ≤ 1, belongs to S+(n).

2.1.1 The case of positive scalars

The space of positive scalars can be denoted by S+(1). Two different definitions of inter-
polation between scalars exist.

Definition 2.1.1. Consider two scalars s1 and s2, with s1, s2 > 0. The arithmetic inter-
polation between those two scalars is given by

sa(t; s1, s2) = (1 − t)s1 + ts2 , (2.1)

while the geometric interpolation is given by

sg(t; s1, s2) = exp((1 − t) log s1 + t log s2) = s1 exp(t log(
s2

s1
)) . (2.2)

Those curves are illustrated in Figure 2.1, with s1 = 1 and s2 = 3.

The major difference between those two curves comes from their different interpreta-
tion of the space of positive scalars. Indeed, the arithmetic interpolation considers the set
of positive scalars as a subset of the line of real numbers, R. To the contrary, the geometric
interpolation considers R

+ as a homogeneous space. Those different conceptions lead to
different definitions of interpolating curve, mean and distance.
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Figure 2.1: Difference between linear and geometric interpolation. The gray zone indicates the space of
positive scalars, S+(1).

The two sets R and R
+ are two different groups, which can be viewed as Lie groups,

if equipped with an appropriate composition operation, or group action. If we denote by
G a group, a group action associates to two elements g1 and g2 ∈ G an element g1g2 ∈ G.
G is a Lie group if the group action satisfies the following properties:

Associativity If g1,g2 and g3 ∈ G, then (g1g2)g3 = g1(g2g3) = g1g2g3.

Identity There exists an element e ∈ G, called the identity, such that for all g ∈ G,
eg = ge = g.

Inverse For all g ∈ G, there exists an element g−1 ∈ G such that gg−1 = g−1g = e.

Smoothness The group operation should be smooth and differentiable.

The group of real numbers R is a Lie group if we consider the addition as group action,
with zero as identity and −g as the inverse of g. To the contrary, the addition can not
be used as a group action for R

+, and the appropriate group action for this set is the
multiplication. In this case, the identity is 1 and the inverse of g is 1/g.
An important concept when dealing with Lie groups is to require that the operations
defined on these groups are invariant by the group action. This explains why the tools on
R need to be invariant by translation while the ones on R

+ should be invariant by scaling.
In particular, if δ, β > 0,

sa(t; s1 + δ, s2 + δ) = sa(t; s1, s2) + δ , (2.3)

sg(t; βs1, βs2) = βsg(t; s1, s2) . (2.4)

This concept of invariances also applies to the notion of measure in the spaces, which helps
to explain how the length of a curve is computed, and depends on the space of interest.
For example, the appropriate measure in R is the Euclidean norm. For the space R

+, the
norm is the Euclidean norm of the logarithm of the value. The concept of norm is used
to define distances.
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Definition 2.1.2. The distance between two points is given by the length of the curve
between them. Using the appropriate measure in each space, we have

da(s1, s2) = |s1 − s2| , (2.5)

dg(s1, s2) =

∣

∣

∣

∣

log

(

s1

s2

)∣

∣

∣

∣

. (2.6)

It can be observed that the two distances are invariant by the action of their respective
group actions, since

da(s1 + δ, s2 + δ) = da(s1, s2) ,

dg(βs1, βs2) = dg(s1, s2) .

Finally, the interpolating curves can be used to define means. Indeed, means are
defined as the midpoint of interpolating curves.

Definition 2.1.3. The mean between two scalars is the midpoint of the corresponding
interpolating curve.
Using the arithmetic interpolation, the arithmetic mean is

meana(s1, s2) =
s1 + s2

2
. (2.7)

The geometric mean is the midpoint of the geometric interpolation, i.e.

meang(s1, s2) = exp(
1

2
log s1s2) =

√
s1s2 . (2.8)

As expected, the means are invariant by their group action and we have

meana(s1 + δ, s2 + δ) = meana(s1, s2) + δ , (2.9)

meang(βs1, βs2) = βmeang(s1, s2) . (2.10)

It is important to note that the geometric curve, distance and mean can be computed
by using their arithmetics counterparts on the logarithms of the values, followed by an
exponentiation. For example, we have

√
s1s2 = exp

(

log(s1) + log(s2)

2

)

. (2.11)

There is in fact a one-to-one mapping between the space R and the space R
+, since for

s ∈ R
+ and b ∈ R, we have

log : R+ → R : b = log(s) , (2.12)

exp : R → R
+ : s = exp(b) . (2.13)

This mapping allows to handle positive values as simple scalars, using their logarithms.
At the end of the processing, an exponentiation should be used to ‘go back’ to the space R+.

The example of positive scalars has enabled to define in a simple way some important
concepts, which are the notions of group action and invariance to this action, the notions of
interpolating curve, distance, and mean, as well as the importance of processing elements
in their own space. The following sections will show how to extend those simple concepts
to elements of S+(n).
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2.1.2 Geodesics are the natural extension of interpolating curves in S+(n)

Viewing positive definite matrices as matrix generalizations of positive numbers, we search
for matrix analogues of the interpolating curve (2.2). Some necessary definitions to un-
derstand the developed frameworks will first be reminded. Most of those definitions come
from (Absil et al., 2008).

Riemannian manifolds and metrics

Informally, a d-dimensional manifold can be defined as a set M covered with a ‘suitable’
collection of coordinate patches, or charts, that identify certain subsets of M with open
subsets of Rd (Absil et al., 2008). Such a collection of coordinate charts can be thought
of as the basic structure required to do differential calculus on M.

Definition 2.1.4. A tangent vector ξx to a manifold M at a point x is a mapping from
Fx(M) (the set of smooth real-valued functions defined on a neighborhood of x) to R such
that there exists a curve γ on M with γ(0) = x, satisifying

ξxf = γ̇(0)f :=
d(f(γ(t)))

dt

∣

∣

∣

∣

t=0
(2.14)

for all f ∈ Fx(M). Such a curve γ is said to realize the tangent vector ξx.

The tangent space to M at x, denoted by TxM, is the set of all tangent vectors to M
at x. It is important to note that this set admits a structure of vector space. In order
to define a notion of length that applies to tangent vectors, every tangent space TxM is
endowed by an inner product 〈·, ·〉x, which induces a norm

||ξx||x :=
√

〈ξx, ξx〉x (2.15)

on TxM.

A manifold whose tangent spaces are endowed with a smoothly varying inner product
is called a Riemannian manifold. The inner product is then called the Riemannian metric.

Definition 2.1.5. The length of a curve γ : [a, b] → M on a Riemannian manifold is
defined by

L(γ) =

∫ b

a

√

〈γ̇(t), γ̇(t)〉dt . (2.16)

The Riemannian distance on a Riemannian manifold is given by

dist : M × M → R : dist(x, y) = inf
Γ

L(γ) , (2.17)

where Γ is the set of all curves in M joining points x and y.

The curve for which the length is the minimal is called the geodesic between x and y.
This geodesic is the generalization on manifolds of the concept of straight lines in R

n. It
can also be defined through the notion of curve with zero acceleration.
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If we come back to the example of positive scalars, the curves (2.1) and (2.2) can be
viewed as geodesics, for two different metrics. Indeed, the arithmetic interpolation is a
geodesic if we consider the (translation) invariant metric of the Lie group R. If the group
R

+ is considered, the group action is the multiplication and the metric has to be scale
invariant, which leads to the geometric curve (2.2), whose length is given by (2.6).

In many works, geodesics have been used as interpolating curves between two points.
It will however be shown in Section 2.3.1 and Chapter 4 that, for some applications, other
curves are preferable, even if these are not of minimal length.

Affine-invariant geometry

The space S+(n) is a Riemannian manifold, whose tangent space at identity is the space of
symmetric (and not necessarily positive definite) matrices, denoted by S(n). As explained,
the tangent space has the structure of a vector space. The simplest inner product on the
tangent space at the identity matrix is given by 〈W1, W2〉 = Tr(W T

1 W2), if W1 and W2 are
tangent vectors, W1, W2 ∈ S(n). This product is the standard matrix scalar product. The
requirement which is at the basis of the affine-invariant metric is that the scalar product
at a point S is invariant by the action of any affine transformation, i.e.

〈W1, W2〉S = 〈A ⋆ W1, A ⋆ W2〉A⋆S , (2.18)

where A ⋆ S = ASAT , A belongs to the space of general linear group GL(n), the space
of n × n invertible matrices. This requirement is the matrix generalization of the scaling
invariance for scalar curves, explained in Section 2.1.1. In this case, the group action is
A ⋆ S. The invariance property should be true if A = S−1/2, which allows to define the
scalar product at any S from the scalar product at the identity I:

〈W1, W2〉S = 〈S−1/2W1S−1/2, S−1/2W2S−1/2〉I

= Tr(S−1/2W1S−1W2S−1/2) .

This Riemannian metric is called the affine-invariant metric, and has been proposed in
many works, as (Lenglet et al., 2006; Pennec et al., 2006; Lenglet, 2006; Moakher, 2005).
Using this metric, the geodesic between two symmetric definite positives matrices can be
defined.

Definition 2.1.6. With the affine-invariant metric, the curve of minimal length (the
geodesic) between two symmetric positive definite matrices S1 and S2 is

S(t) = S
1/2
1 exp(t log(S

−1/2
1 S2S

−1/2
1 ))S

1/2
1 . (2.19)

The length of this curve gives the Riemannian distance between those two matrices:

d(S1, S2) = || log(S
−1/2
1 S2S

−1/2
1 )||2 (2.20)

where ||A||2 is the Frobenius norm of matrix, ||A||2 =
√

Tr(AT A).

It is important to note that this distance is globally defined and makes S+(n) a com-
plete metric space (Fletcher and Joshi, 2007). Indeed, symmetric matrices with null or
negative eigenvalues are at an infinite distance from any symmetric positive definite ma-
trices. This means that the original cone of positive definite symmetric matrices has been
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changed into a regular and complete (but curved) manifold with an infinite development
in each of its directions.

The computational cost of the affine-invariant distance (2.20) is high, due to the use of
matrix inverses, square roots, logarithms and exponentials. This explains why other meth-
ods, more computationally efficient, have been proposed. The Log-Euclidean geometry,
presented in the following, is one of these methods.

Log-Euclidean geometry

The motivation for the development of the Log-Euclidean geometry was to define a
new Riemannian framework which overcomes the computational limitations of the affine-
invariant framework while preserving some of its theoretical properties (Arsigny et al.,
2006, 2007).
It should be noted that other ‘computationally efficient’ methods have been proposed as
an alternative to the affine-invariant framework, as in (Sra, 2011). This paper introduced
a novel metric for which the computational cost is reduced, because it avoids spectral
decompositions or logarithms of matrices, and prefers the Cholesky decomposition.
In this thesis, we choose to focus on the Log-Euclidean method, because of the widespread
use of this framework in our domain of application, the diffusion tensor imaging.

To introduce this framework, some important definitions are reminded.

• Matrix exponential For any matrix A, its exponential is given by

exp(A) =
∞
∑

k=0

Ak

k!
.

In the particular case of symmetric positive definite matrices, for which it always exist
an orthonormal coordinate system in which these matrices are diagonal, the matrix
exponential can be computed through diagonalization. If the spectral decomposition
of a symmetric positive definite matrix S is equal to RΛRT where R is a rotation
matrix and Λ a diagonal matrix with the eigenvalues of S in its diagonal, then the
exponential is equal to

exp(S) = RΛ∗RT ,

where Λ∗ is a diagonal matrix with the exponential of the eigenvalues in its diagonal.

• Matrix logarithm As in the scalar case, the matrix logarithm is defined as the
inverse of the exponential. It is important to note that for general matrices, neither
the uniqueness nor the existence of a logarithm is guaranteed for a given invertible
matrix. However, in the particular case of symmetric positive definite matrices, the
logarithm always exists and is unique. It can be defined in a similar way as the
exponential, through

log(S) = RΛ̃RT . (2.21)

Λ̃ is a diagonal matrix, whose diagonal elements are equal to the logarithms of the
eigenvalues of S.
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The logarithm of a symmetric positive definite matrix is always a symmetric matrix.
Conversely, the exponential of any symmetric matrix yields a symmetric positive definite
matrix. There is a one-to-one correspondence between those two spaces.

The one-to-one mapping between the (non-linear) space of symmetric positive definite
matrices and the (vector) space of symmetric matrices is at the core of the Log-Euclidean
framework. Indeed, this means that standard algebraic operations can be transferred to
symmetric positive definite matrices, thanks to the matrix exponential. In particular, the
logarithmic multiplication ⊙ and the logarithmic scalar multiplication ⊛ can be defined.

S1 ⊙ S2 = exp(log(S1) + log(S2)) , (2.22)

λ ⊛ S = exp(λ log(S)) = Sλ . (2.23)

The logarithmic product (which is commutative) is based on the idea that, since the space
of symmetric matrices S(n) has an additive group structure, it ‘suffices’ to transport this
additive structure to S+(n) with the exponential. This idea is similar to the one expressed
in Section 2.1.1 for positive scalars. In this section, we said that geometric processing
could be done by using the logarithms of positive scalars, and an exponentiation. This
idea is exactly the same as the one used to construct Equation (2.22). Using ⊙ and ⊛,
the space S+(n) has by construction a vector space structure.

If only the multiplication ⊙ is considered, a Lie group structure can be given to S+(n).
A Lie group is a space that is both a smooth manifold and a group in which multiplication
and inversion are smooth mappings. Since the logarithm and exponential mappings are
smooth, this is also the case of ⊙. Considering S+(n) as a Lie group, the goal is to associate
to this group a metric. For Lie groups, bi-invariant metrics(i.e. metrics which are invari-
ant by multiplication and inversion) are considered as the most convenient in practice.
This kind of metrics exist for symmetric positive definite matrices, and are particularly
simple. These metrics have been named Log-Euclidean metrics, since they correspond to
Euclidean metrics in the domain of logarithms. All the theoretical developments of the
Log-Euclidean framework are presented in (Arsigny et al., 2007).

Definition 2.1.7. Using the Log-Euclidean metric, the distance between two symmetric
positive matrices S1 and S2 is given by

d(S1, S2) = || log(S1) − log(S2)||2 . (2.24)

This distance corresponds to the length of the geodesic between those two matrices, which
is

S(t) = exp((1 − t) log(S1) + t log(S2)) . (2.25)

In comparison to the affine-invariant metric, the Log-Euclidean metric enables a sim-
pler processing of symmetric positive definite matrices. However, the price to pay is the
limitation of the invariances: the Log-Euclidean framework is not invariant by any affine
transformation, but is invariant by inversion, scaling and rotation, i.e.

d(S1, S2) = d(sRS1RT , sRS2RT ) , (2.26)

with R an orthogonal matrix and s a positive scalar. These two invariances are often
viewed as sufficient in applications such as medical imaging. The differences between
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affine-invariant and Log-Euclidean metrics are rooted in the fact that the affine-invariant
geometry is intrinsic while the Log-Euclidean one is extrinsic. This extrinsic behavior
enables to perform computations in the embedding (Euclidean) space, but has the disad-
vantage of deforming the intrinsic notions. Extrinsic geometry produces a good approxi-
mation of the intrinsic one while close to the identity, but the quality of the approximation
decreases while moving away from it.

2.2 The different definitions of means on S+(n)

Just like interpolating curves, means appear in many processing algorithms. As in the
scalar case, where the arithmetic and geometric definitions of means co-exist, different
ways exist to define means on manifolds. In particular, means could be computed through
a simple arithmetic average of matrices. However, for many applications where data repre-
sent some physical processes, it is important to define a geometric mean, in order to have
a property of invariance of this mean with respect to inversion, as well as group action
invariances.

In this section, the important case of means of two symmetric positive definite matrices
(two ellipsoids) will first be introduced. The extension to means of more than two ellipsoids
is the topic of Section 2.2.2.

2.2.1 Means of two ellipsoids

Two definitions of a geometric mean between two ellipsoids will be presented and compared
in this section. If different in appearance, it can be shown that those means are in fact
equivalent.

As the midpoint of the geodesic

An intuitive way to define a mean between two points is to take the midpoint of the curve
of minimal length between those two points.

Definition 2.2.1. The mean of two matrices S1 and S2 is given by the midpoint of the
geodesic between them, i.e

mean(S1, S2) = S(1/2; S1, S2) , (2.27)

where S(t; S1, S2) is the geodesic between S1 and S2, parametrized by t.

This mean is of course unique and commutative, and corresponds to a Riemannian
mean between two ellipsoids. Moreover, the geodesic can also be used to define a weighted
mean between two ellipsoids, since

mean(w1S1, w2S2) = S(w2; S1, S2) (2.28)

where w1 and w2 are the weights associated to the ellipsoids, and w1 + w2 = 1.

This definition is of course not limited to S+(n) and is general for any Riemannian
manifolds for which a geodesic can be computed. It corresponds to the Kärcher mean
(Kärcher, 1977) when only two elements are considered.
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Through a notion of order

Another well-known definition of the mean is through a notion of order. If we denote by
S ≻ 0 the fact that a matrix is positive definite, there exists an ordering of matrices, which
is given by A ≻ B ⇐⇒ A − B ≻ 0. The Ando geometric mean A#B is defined through
an extremal problem.

Definition 2.2.2. The Ando mean of two positive definite matrices S1 and S2 is the
solution of an extremal problem.

A#B = max

{

X ≻ 0 :

(

A X
X B

)

� 0

}

(2.29)

It is important to note that the solution of this extremal problem corresponds to the
midpoint of the geodesic between the two matrices, i.e. that the two definitions (2.27)
and (2.29) are equivalent. Those two definitions satisfy all the usual properties which are
required to be geometric means (Ando et al., 2004; Bhatia, 2009).

2.2.2 Means of N > 2 ellipsoids

If the definition of a mean between two ellipsoids seems quite intuitive, this is not the case
when more than two ellipsoids have to be averaged. Indeed, some problems arise in this
case, such as the symmetry of the mean. This issue is well described in (Bhatia, 2009)
and (Ando et al., 2004).

Considering the case of 3 ellipsoids can help to understand the case of N matrices. If we
consider three positives matrices A1, A2, A3 ∈ S+(n), their geometric mean G(A1, A2, A3)
should be a positive matrix with the following properties.

• If the three matrices A1, A2, A3 commute with each other, their mean should be
given by (A1A2A3)1/3.

• Symmetry G(A1, A2, A3) = G(Aπ(1), Aπ(2), Aπ(3)) for every permutation π of
{1, 2, 3}.

• Monotonicity G(A1, A2, A3) � G(A′
1, A2, A3) whenever A1 � A′

1.

None of the definitions given in the previous section for the mean of two matrices is
easily extendable to the case of three matrices. This explains why another ‘point of view’
has to be adopted in this section. In a few words, the idea is to define the mean as the
‘center’ of the triangle that has the three matrices as its vertices. Transposing this idea
to a manifold leads to the usual definition of the Kärcher mean.

Kärcher mean

The Kärcher mean (Kärcher, 1977) can be viewed as the extension to the case of N positive
matrices of the mean between two matrices defined by the midpoint of the geodesic.

Definition 2.2.3. For a group of matrices S1, S2, . . . , SN , the Kärcher mean is given by

mean(S1, S2, . . . SN ) = arg min
S∈S+(n)

N
∑

i=1

d2(S, Si) . (2.30)

This definition corresponds to the ‘center of mass’ of the group of N matrices.
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With the affine-invariant metric, the solution to (2.30) can be computed through an
optimization algorithm, explained in (Pennec et al., 2006; Fletcher and Joshi, 2007). This
algorithm uses a gradient descent scheme on the space S+(n). The computational cost of
this algorithm is prohibitive, as for the other tools of this framework.

With the Log-Euclidean metric, however, a closed-form formula for the solution of
(2.30) is given by (Arsigny et al., 2006, 2007)

meanLE(S1, S2, . . . , SN ) = exp

(

1

N

N
∑

i=1

log(Si) .

)

(2.31)

This formula does not require an optimization algorithm, while sharing most of the prop-
erties of the Riemannian mean. In particular, the determinant of the geometric mean is
the geometric mean of the determinants. This property is not satisfied by the Euclidean
mean

meanE(S1, S2, . . . , SN ) =
1

N

N
∑

i=1

Si , (2.32)

which induces a ‘swelling effect’. This effect is due to the fact that the determinant of the
Euclidean mean could be higher than all the determinants det(Si).

Ando mean

Another definition of a mean for many matrices is found in (Ando et al., 2004). In a few
words, this mean is constructed by a recursive procedure, based on the mean between
two matrices. Suppose first that the mean between k matrices G(S1, S2, . . . Sk) has been
defined, let S = (S1, S2, . . . , Sk+1), and let T denote the transformation

T (S) ≡ (G((Si)i6=1), G((Si)i6=2), . . . , G((Si)i6=k+1) (2.33)

Then, the sequence {T r(S)}∞
r=1 has a limit, which has the form (S̃, . . . , S̃). Ando et al

define the geometric mean G(S1, S2, . . . Sk+1) to be S̃.

However, this recursive procedure suffers from the same limitation as the affine-invariant
mean: the computational cost of the method is prohibitive. Moreover, those two means,
as well as the Log-Euclidean mean, are not appropriate for the processing of rank-deficient
matrices (Bonnabel et al., 2013).

2.3 Interpolating curve and means in S+(p, n)

The preceding section presented the important tool of means for positive-definite matrices.
However, those means are not appropriate for semi-definite positive matrices of fixed rank.
Symmetric matrices of dimension n are said to be semi-definite positive if xT Sx ≥ 0 for
all x ∈ R

n. The rank of those matrices is denoted by p < n, and the space of symmetric
positive semi-definite matrices of fixed rank p is called S+(p, n). This section will explain
how appropriate interpolating curve and means could be defined for this particular space
and will be based on the work presented in (Bonnabel and Sepulchre, 2009; Bonnabel
et al., 2013).
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The main motivation for the development of a mean on S+(p, n) comes for the observa-
tion that typical matrix computations (like Singular Value Decomposition, QR factoriza-
tion) require O(n3) operations for a matrix in S+(n), thus limiting their use in large-scale
problems. A possible solution to decrease this cost is to work with low-rank approxima-
tions instead of the full matrices. A rank p approximation of a positive definite matrix
can be factored as A = ZZT , where Z ∈ R

n×p is of much reduced size if p ≪ n, leading to
a reduction of the numerical cost from O(n3) to O(np2), which grows only linearly with
the size of the problem if p is kept to a moderate value.

The problem is that the Riemannian metric on S+(n) is only valid for full-rank ma-
trices. It is thus important to define a novel metric, specific for the space S+(p, n). The
principal idea of (Bonnabel and Sepulchre, 2009) is to use a decoupling between the sub-
space in which the matrices are living and the shapes of the ellipsoids of size p. Formally,
for A ∈ S+(p, n), we have

A = ZZT = (UR)(UR)T = UR2UT (2.34)

where Z ∈ R
n×p
∗ , the space of full rank matrices of size n×p, R ∈ S+(p) and U ∈ Vn,p, the

Stiefel manifold, i.e. the space of n × p matrices with orthonormal columns, UT U = Ip.
If we consider the following group action for O ∈ O(p), the space of orthogonal matrices
of size p,

R → OT RO ∈ S+(p)

U → UO ∈ Vn,p

then the representation A = UR2UT with (U, R2) ∈ Vn,p × S+(p) is univocal up to the
equivalence relation

(U, R2) ≡ (UO, OT RO) (2.35)

for any O ∈ O(p). We indeed have that A = UR2UT = UO(OT R2O)OT .

Using (2.35), the set S+(p, n) can be defined through a quotient manifold representation

S+(p, n) ∼= (Vn,p × S+(p))/O(p) . (2.36)

Since the Grassmann manifold Gr(p, n) is equivalent to Vn,p/O(p), the metric associated
to the product space (2.35) is naturally given by the sum of the metric in Gr(p, n) and
the metric in S+(p).

2.3.1 Interpolating curve and mean of two fixed-rank ellipsoids

In this section, an interpolating curve between two fixed-rank ellipsoids will be defined,
based on the above definitions. This interpolating curve will be used to define the mean
of those two ellipsoids.
Let A1 = U1R2

1UT
1 and A2 = U2R2

2UT
2 be two elements of S+(p, n). The representatives

of the two matrices (Ui, R2
i ), i = 1, 2 are defined up to an orthogonal transformation, as

explained in (2.35). All the bases UiO(p) correspond to the same p-dimensional subspace
UiU

T
i , as shown in Figure 2.2. This representation of a p-dimensional subspace as the set

of bases UiO(p) is at the core of the definition of the Grassmann manifold as a quotient
manifold. The equivalence classes UiO(p) are called the ‘fibers’.
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In the following, we will assume that the principal angles between span(U1) and
span(U2) are less than π/2. This hypothesis is sufficient to ensure that their mean is
unique.

Due to the equivalence relation explained above, there exists an ambiguity in the
definition of a mean on S+(p, n). The solution proposed in (Bonnabel et al., 2013) to
remove this ambiguity is to pick two particular representatives Y1 = U1Q1 and Y2 =
U2Q2 in the fibers U1O(p) and U2O(p). Those particular bases will be chosen by imposing
that their distance in the Stiefel manifold Vn,p does not exceed the Grassmann distance
between the fibers they generate. Mathematically,

dVn,p
(Y1, Y2) = dGr(p,n)(span(U1), span(U2)) . (2.37)

Because the projection from Vn,p to Gr(p, n) is a Riemannian submersion, and because
Riemannian submersions shorten the distances, the condition (2.37) admits the equivalent
formulation:

(Q1, Q2) = arg min
(O1,O2)∈O(p)×O(p)

dVn,p
(U1O1, U2O2) . (2.38)

This formulation is illustrated in Figure 2.2: a geodesic in the Grassmann manifold admits
the representation of a horizontal geodesic in Vn,p, that is, in the present case, a geodesic
whose tangent vector points everywhere to a direction normal to the fiber.

Y1 Y2

Grassman manifold = quotient space

Stiefel manifold = total space

U O(p)
1

U O(p)2

Figure 2.2: (Y1, Y2) are two bases of the subspaces spanned by the columns of U1 and U2 that minimize
the distance in Vn,p. The dashed line represents the shortest path between those two fibers, thus its
horizontal lift in Gr(p, n), viewed as a quotient manifold, is also a geodesic.

In the following, we will show how to compute the solution (Q1, Q2) to the equation
(2.38).

Proposition 2.3.1. The compact singular value decomposition (SVD) of UT
1 U2 writes

UT
1 U2 = O1(cos Σ)OT

2 (2.39)

where Σ is a diagonal matrix whose entries are the principal angles between the p-dimensional
subspaces spanned by U1 and U2. If the pair (O1, O2) is defined via (2.39), it is a solution
of (2.38).
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Proof The proof will be based on a well-known result in the Grassmann manifold: the
shortest path between two fibers in Vn,p coincides with the geodesic path linking these
two fibers in Gr(p, n), as the projection on the Grassmann manifold is a Riemannian sub-
mersion, and thus shortens the distances. Then, if two bases Y1 and Y2 of the fibers
U1O(p) and U2O(p) are the endpoints of a geodesic in the Grassmann manifold, they
must minimize (2.38). We thus have to prove that Y1 = U1O1 and Y2 = U2O2, where
O1, O2 are defined via (2.39), are the endpoints of a minimizing Grassmann geodesic.

The general form of a geodesic in the Grassmann manifold with Y1 as starting point
and ∆ as tangent vector is

γ(t) = Y1V cos(Θt)VT + U sin(Θt)VT , (2.40)

where UΘVT = ∆ is the compact SVD of ∆. In (Bonnabel et al., 2013), the following
curve is thus proposed

Y(t) = Y1 cos(Σt) + X sin(Σt) . (2.41)

X is given by X = (Y2 − Y1 cos(Σ))(sin(Σ))−1, if we assume that all principal angles
(all diagonal entries of Σ) are strictly positive.

The curve (2.41) is a geodesic, since it is of the form of (2.40), with ∆ = XΣ. It can
be proved that XΣ is a tangent vector, since

YT
1 XΣ = (YT

1 Y2 − YT
1 Y1 cos(Σ))(sin(Σ))−1Σ = 0 , (2.42)

(using the fact that YT
1 Y2 = cos(Σ)). Moreover, XΣ is a compact SVD, as

XT X = (YT
2 − cos(Σ)YT

1 )(Y2 − Y1 cos(Σ))(sin(Σ))−2 = (I − (cos(Σ))2)(sin(Σ))−2 = I ,
(2.43)

using the fact that YT
2 Y1 = YT

1 Y2 = cos(Σ). Finally, we can see that Y(0) = Y1 and
Y(1) = Y2.

If there are null principal angles, it is clear that Y(t) is a geodesic. Denoting C† the
pseudo-inversion of a matrix C, X has to be chosen as X = (Y2−Y1 cos(Σ))(sin(Σ))† along
the directions corresponding to non-zero principal angles, and where X can be completed
arbitrary with orthonormal vectors along the directions corresponding to null principal
angles. Indeed, along those directions Y1 is equal to Y2 and thus Y(t) coincide, and the
value of X does not play any role in the definition of Y(t).

Now that we have a method to choose the specific bases Y1 and Y2, it can be shown
why this choice is relevant for defining a geometric mean. The following proposition proves
that the rotation which maps Y1 to Y2 is equal to the rotation of minimal energy that
maps span(A1) to span(A2).

Proposition 2.3.2. Let Y1 = U1Q1 and Y2 = U2Q2 with (Q1, Q2) a solution of (2.39).
Then the rotation R ∈ SO(n) which maps the basis Y1 to the basis Y2 = RY1 is a
rotation of minimal energy, that is, it minimizes dSO(n)(R, I) among all rotation matrices
that map Y1 to the subspace span(U2) = span(Y2).
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Proof Let assume, without loss of generality, that Y1 = [e1, . . . , er] where (e1, . . . , en) is
the canonical basis of Rn. The search space can then be restricted to the rotations whose
r first columns are of the form Y2O, whereas the n − r remaining columns coincide with
the identity matrix (the rotation sought must indeed minimize the distance to identity).
For any such rotation, we have dVn,n

(R, I) = dVn,p
(Y2O, I). Since Vn,n = SO(n) and

the fact that the metrics coincide, we have dSO(n)(R, I) = dVn,n
(R, I). The problem thus

becomes equivalent to (2.38), and is solved taking O = I.

Once Y1 and Y2 have been computed, the full-rank p × p positive matrices R2
1 and

R2
2 are given by the corresponding representatives

R2
1 = YT

1 A1Y1 ,

R2
2 = YT

2 A2Y2 .

The above developments enable to define a curve in S+(p, n), through the geodesic
curves in the Grassmann manifold and in the space of symmetric positive definite matrices
of size p.

Definition 2.3.1. The interpolating curve between two matrices A1, A2 ∈ S+(p, n) is
given by

γ(t) = Y(t)R2(t)YT , (2.44)

where
R2(t) = R1 exp(t log(R−1

1 R2
2R−1

1 ))R1 (2.45)

and Y(t) is given by (2.41).

It can be observed that (2.45) is the same as the affine-invariant geodesic (2.19), in
the space S+(p).

The length of (2.44) is given by

l2(γ) = ||Θ||22 + k|| log(R−1
A R2

BR−1
A )||22 (2.46)

It is important to note that the length is not a Riemannian distance on S+(p, n), since the
curve (2.44) is not a geodesic.

The mean between two fixed-rank ellipsoids can be defined in a similar way as the
method proposed in (2.27): through the midpoint of the interpolating curve. This mean
is thus equal to

mean(A, B) = γ(1/2) = Y(1/2)R2(1/2)Y(1/2)T . (2.47)

A simple geometric intuition underlying the definition of the mean is the following: the
mean of two flat ellipsoids A1 and A2 is defined in the mean subspace as the geometric
mean of two full p-dimensional ellipsoids R2

1 and R2
2. Among the several ways to rotate

the ellipsoid A1 into the subspace spanned by A2, the choice is made unique and sensible
by selecting the minimal rotation.

As for the length of the curve, it is important to note that this mean does not necessarily
agree with the Riemannian mean. However, this geometric mean is a good approximation
of the Riemannian mean when k is small. Moreover, the geometric mean can be viewed as
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a more natural extension of the Ando mean than the Riemannian mean. The geometric
mean possesses most of the desirable properties of a matrix geometric mean, as shown in
(Bonnabel and Sepulchre, 2009). Those properties will be studied in the following, for the
extension of this geometric mean to N fixed rank matrices.

2.3.2 Rank-preserving mean of N PSD matrices of rank p < n

The extension of the mean between two semi-definite positive matrices of Equation (2.47),
(Bonnabel and Sepulchre, 2009), is a first contribution of this thesis, (Bonnabel et al.,
2013).

Let (A1, A2, . . . AN ) ∈ S+(p, n) be the set of N semi-definite positive matrices for
which a mean has to be computed. The main idea is to define a mean p-dimensional
subspace and to bring all ‘flat’ ellipsoids to this mean subspace by a minimal rotation.
When all the flat ellipsoids are in the common subspace, the problem becomes a ‘usual’
computation of the geometric mean of N matrices in S+(p).

The construction is achieved through the following steps:

1. Computation of a mean subspace: Let Ai = UiR
2
i UT

i , ∀i = 1, . . . , N . Suppose
that the subspaces spanned by the columns of the Ai are enclosed in a geodesic ball
of radius less than π/(4

√
2) in Gr(p, n), the Grassmann space. The mean W ∈ Vn,p

can then be computed as the orthonormal basis of the unique Kärcher mean of the
UiU

T
i . The computation can be made using a method described in (Sarlette and

Sepulchre, 2009).

2. Computation of the minimal rotations: For each i, compute two bases Yi and Wi

of span(Ui) and span(W) such that

dVn,p
(Yi, Wi) = dGr(p,n)(span(Ui), span(W)) (2.48)

This can be viewed as searching for the minimal rotation that brings the flat ellipsoids
to the mean subspace span(W), a concept which is illustrated in Figure 2.3.

3. Rotations of the ellipsoids to the mean subspace: Compute S2
i = YT

i AiYi. The
ellipsoid Ai which has been rotated to the mean subspace writes WiS

2
i WT

i .

4. Expression in a common basis and computation of the mean in S+(p): Let M denote
the geometric mean on S+(p) (computed using one of the method described above).
For all i, compute T2

i = WT
0 WiS

2
i WT

i W0 ∈ S+(p) where W0 ∈ Vn,p is a fixed
basis of the mean subspace. The geometric mean of the matrices A1, A2, . . . , AN is
defined the following way

A1 ◦ A2 ◦ · · · ◦ AN = W0[M(T2
1, T2

2, . . . , T2
N )]WT

0 (2.49)

It is important to note that, in the same way as the rank-preserving mean between two
matrices was not a Riemannian mean, this geometric mean of N matrices is not a Kärcher
mean. This is not viewed as a disadvantage of the mean, but rather as an interesting
feature, since the proposed mean has the advantage of being rank-preserving, and based
on explicit formulas.
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Figure 2.3: The (bold) fiber WO represent the mean subspace. Each pair (Yi, Wi) is chosen in order to
have a minimal distance between the subspaces.

2.3.3 Properties of the mean

In this section, the fundamental properties of the mean will be studied.

Proposition 2.3.3. On the set of rank p projectors, the mean (2.49) coincides with the
Grassmann Riemannian mean. On the other hand, when the matrices in S+(p, n) are
all supported by the same subspace, the mean (2.49) coincides with the geometric mean
induced by M on the common range subspace of dimension p. More generally, the mean
(2.49) coincides with M on the intersection of the ranges.

Proof The first two properties are obvious, from the construction of the mean (2.49).
The last one is due to the special choice of a minimal energy rotation. Indeed, on the
intersection of the ranges, the rotation of minimal energy is the identity.

The next proposition will focus on the fact that the mean (2.49) deserves the designa-
tion ‘geometric’. In fact, the fundamental and axiomatic approach of Ando et al. (Ando
et al., 2004) reserves the adjective ‘geometric’ to a definition of mean that enjoys a list of
seven properties. For a mean between N matrices, the extension of those properties can
be based on the following properties (three of them were presented in Section 2.2.2).

(P1) If A1, A2, A3 commute, their mean is equal to (A1A2A3)1/3.

(P2) If s1, s2 and s3 are positive scalar, s1A1 ◦ s2A2 ◦ s3A3 = (s1s2s3)1/3(A1 ◦ A2 ◦ A3)

(P3) A1 ◦ A2 ◦ A3 = (Aπ(1) ◦ Aπ(2) ◦ Aπ(3)) for every permutation π of {1, 2, 3}.

(P4) The map (A1, A2, A3) → (A1 ◦ A2 ◦ A3) is monotone.

(P5) If {A1,n}, {A2,n} and {A3,n} are monotonic decreasing sequences converging to
A1, A2, A3 then, lim (A1,n ◦ A2,n ◦ A3,n) = (A1 ◦ A2 ◦ A3).

(P6) For any G ∈ Gl(n), we have (GA1GT ◦GA2GT ◦GA3GT ) = G(A1 ◦A2 ◦A3)GT .

(P7) (A1 ◦ A2 ◦ A3)−1 = (A−1
1 ◦ A−1

2 ◦ A−1
3 ).
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When the goal is to define a rank-preserving mean, some adaptations to these properties
must be defined. For example, (P1) is impossible to retain, unless the rank of A1A2A3

is equal to the rank of A1, A2 and A3. This property is then replaced by

(P1’) If A1, A2, A3 commute and are supported by the same subspace, then (A1 ◦ A2 ◦
A3) = (A1A2A3)1/3.

The property (P6) is also impossible to retain when dealing with rank-preserving mean.
This is in fact the property which causes the limitation of the Ando mean for semi-definite
positive matrices. The group of invariances thus have to be replaced by a smaller group.
The property becomes

(P6’) For (s, P) ∈ R
∗ × O(n), we have

(sPT A1sP ◦ sPT A2sP ◦ sPT A3sP) = sPT (A1 ◦ A2 ◦ A3)sP (2.50)

Finally, the inversion of property (P7) must of course by replaced with pseudo-inversion.

(P7’) (A1 ◦ A2 ◦ A3)† = (A†
1 ◦ A†

2 ◦ A†
3).

Proposition 2.3.4. The mean (2.49) (with M a geometric mean on S+(p)) is well-defined
and deserves the designation ‘geometric’ as it satisfies the properties (P1’),(P2-P5) and
(P6’-P7’).

Proof

(P1’) Taking into account the fact that all the Ai have the same range, the Prop. 2.3.3
has proved that the mean of those matrices coincides with M, and thus inherits of
the (P1) property.

(P2) Since M satisfies this property, the construction of (2.49) ensures that the mean
also satisfies the property.

(P3) Obvious since both the Grassmann mean and M are permutation invariant.

(P4) Suppose Ai � A0
i for each i. The two matrices have the same range and can be

written Ai = UiR
2
i UT

i , A0
i = UiR

2
i,0UT

i . The respective means have the same
range, and (P4) is a mere consequence of the monotonicity of M.

(P5) The same arguments as the proof of (P4) can be used to prove continuity from
above of the mean, as a consequence of continuity of M.

(P6) As for all s > 0 and i we have sAi = Ui(sR2
i )UT

i , invariance with respect to
scaling is a consequence of the invariance of M. If we denote O ∈ O(n), the mean
subspace in the Grassmann manifold of the rotated ranges of the (OAiO

T ) is the
rotated mean subspace of the ranges of the Ai. Since the matrices are transformed
according to Wi → OWi, the Ti are unchanged, and the mean of the rotated
matrices is OW0[M(T2

1, T2
2, . . . , T2

N )]WT
0 OT

(P7) For each i, the pseudo-inverse writes A†
i = UiR

−2
i UT

i . The calculation of the mean
of the pseudo inverse yields the inverse T−1

i of Ti and (P7) is a consequence of the
self-duality of M.
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2.3.4 Filtering application

The tools developed in this section can be applied to the processing of diffusion tensor
images. Details about those images can be found in the following chapters. For now, we
will simply explain that each point of a diffusion tensor image contains a matrix belong-
ing to S+(3, 3). Some of them are highly anisotropic, which means that they possess an
elongated shape, with a favorite direction. In this condition, a good approximation of
the tensors can be defined by considering on one hand the dominant direction of diffusion
(∈ S+(1, 3)) and on the other hand the non-dominant flat ellipsoid (∈ S+(2, 3)). The
smoothing of these images is performed by an extension of the Perona-Malik algorithm
(Perona and Malik, 1990), which we decouple into a filtering problem on the Grassman
manifold of one-dimensional subspaces and a filtering problem on the set S+(2, 3).

In the Grassman manifold, using the chordal distance, the Perona-Malik algorithm
becomes

Vt+1
i,j = Vt

i,j + λ
▽V

| ▽ V| , (2.51)

where V denotes the principal eigenvector of the tensor under consideration and,

▽ V = cN ▽N V + cS ▽S V + cE ▽E V + cW ▽W V|ti,j . (2.52)

▽ denotes a difference with the north, south, east or west neighbor,

▽NVi,j = Vi−1,j − Vi,j ,

▽SVi,j = Vi+1,j − Vi,j ,

▽EVi,j = Vi,j+1 − Vi,j ,

▽W Vi,j = Vi,j−1 − Vi,j .

The coefficients are defined by ct
Ni,j

= g(| ▽N Vt
i,j|), e.g. for the north direction. g is a

well-chosen function that allows to diffuse (and thus regularize) along the directions of low
gradient but not along the directions of high gradient. This technique preserves the edges
in the image, and thus prevents from blurring the structures.

The dominant eigenvalue is regularized with the usual algorithm for scalar images, see
(Perona and Malik, 1990).

Once the dominant direction and its corresponding eigenvalue are regularized, we can
proceed with the filtering of the non-dominant flat ellipsoid, which belongs to S+(2, 3).
For each pixel of the image, all of its four neighbors are mapped to its dominant subspace,
and expressed in a common basis (using the ideas described in this section). The 2 × 2
positive definite matrices can then be filtered using a Perona-Malik algorithm on S+(2).

The results of this filtering algorithm are illustrated in Figure 2.4, where we can see
that the fiber (in red) is well reconstructed by this method. The filtering is compared
to a method using the affine-invariant metric (2.19) on S+(3). Some outliers are not well
regularized with this method, an observation which will also be shared by the regularization
algorithm using the Log-Euclidean method described in Section 5.2.



28 Chapter 2. Interpolating curves and means in manifolds

(a) (b)

(c) (d)

Figure 2.4: Implementation of a Perona-Malik filter on a Diffusion Tensor Image. (a): Slice of a Diffusion
Tensor Image: zoom on a fiber of the corpus callosum (in red). Image courtesy of the Cyclotron Research
Centre of the University of Liège. (b): Noise wad added on (a). (c): Result of the regularization with the
natural metric on S+(3). (d): Result of the regularization with an approximation of the matrices, viewed
as a dominant direction of diffusion coupled with a non dominant flat ellipsoid. The figure suggests that
this regularization performs better than the first one in the reconstruction of the fibre.
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2.4 Conclusion

This chapter was devoted to the introduction of the important notions of interpolating
curves and of means in manifolds. The manifold of interest in this thesis being the space
of symmetric positive definite matrices, the existing methods relative to this space have
been presented. This chapter has also introduced the metric of Bonnabel and Sepulchre
for the particular manifold of symmetric semi-definite positives matrices of fixed rank.
The mean between two of those matrices has been presented. The extension of this mean
to many tensors is a contribution of the thesis and the topic of a recent paper, (Bonnabel
et al., 2013).

Silvère Bonnabel, Anne Collard and Rodolphe Sepulchre. Rank-preserving geometric
means of positive semi-definite matrices. Linear Algebra and its Applications, 438(8):3202-
3216, 2013.

The addressed notions of this chapter will be of crucial importance in the rest of this
manuscript. In particular, the principal messages of this chapter are reminded below.

• The example of positive scalars suggests that invariant processing on nonlinear spaces
calls for a Riemannian framework. The selection of relevant metrics is often driven
by invariance considerations: the metric is chosen to be invariant with respect to a
group action on the considered space.

• Affine-invariant and Log-Euclidean metrics are two different metrics for the same
space, S+(n). If the affine-invariant metric possesses a larger invariance group, the
Log-Euclidean distance is simpler to compute than the affine-invariant one. As
explained, the affine-invariant geometry is intrinsic, while the Log-Euclidean one
is extrinsic. Extrinsic geometry is an approximation of the intrinsic one in the
embedding space, but this approximation degrades some important intrinsic notions.

• The Kärcher (or Riemannian) mean is a natural way of defining means on Rie-
mannian manifolds. For positive definite matrices, this mean is well-defined. The
complexity of its computation depends upon the chosen metric.

• In Riemannian manifolds, the ‘shortest’ curve between two points is given by the
geodesic. However, interpolating curves should not necessary be geodesics. Compu-
tational considerations may suggest other choices. For example, if we consider the
space S+(p, n) of positive semi-definite matrices of fixed-rank, we have proposed a
sound notion of interpolating curves which are not the geodesics. Our interpolating
curves admit explicit formulas whereas a closed-form expression is not known for
the geodesics. The definition of a geometric mean of an arbitrary number of those
matrices is a first contribution of this thesis.
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Chapter 3

Background of Diffusion Tensor Imaging

This chapter provides an historical perspective on Diffusion Ten-
sor Imaging (DTI). We first introduce medical imaging in a general
context and then emphasize the physical and information properties of
the particular DTI modality. The state-of-the-art processing of those
images is also presented. In particular, we show that the widespread
Riemannian frameworks suffer from an intrinsic limitation regarding
anisotropy of tensors: they tend to degrade this information through
averaging.

One of the first motivations for this thesis was the development of a novel framework
to process and analyze Diffusion Tensor Images. This imaging method being relatively
recent, there is no clear consensus about the processing of the produced images. A diving
in the literature has shown that this processing should be geometric, which justifies why
we spent some time studying the concepts of curves and means in manifolds. This chapter
will take us away from manifolds to explore the second ingredient of this dissertation, the
Diffusion Tensor Imaging itself.

After a brief global history of medical imaging, we review the basic principles behind
Diffusion Tensor Imaging, going from the Brownian motion of water molecules to the prin-
cipal equations of this method. Section 3.4 presents early contributions about processing
of DT images, and motivates the need for further developments.

3.1 Medical imaging

Medical imaging is a broad field, covering the techniques and processes used to create
non-invasively an image of the human body (or parts and functions thereof) for clinical
purposes (medical procedures seeking to reveal, diagnose, or examine disease) or medical
science (including the study of normal anatomy and physiology). It includes a lot of dif-
ferent techniques, using different signals, aiming at showing different aspects of the human
body.

The very first medical imaging technique, still used today, is the radiography. This
modality uses X-rays for image acquisition. These were discovered in 1895 by Röntgen,
whom first ‘radiography’ was of his wife’s hand. The main idea behind diagnostic radio-
graphy is that, since the body is made up of various substances of different densities, the
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differences in the absorption of the X-rays can be used to reveal the internal structure of
the body. Many years later, the X-rays were used to develop the technique called computed
tomography. This technique utilizes computer-processed X-rays to produce tomographic
images (or ‘slices’) of specific areas of the body. This technique is based on the mathe-
matical theory of the Radon Transform, developed in 1917, but has been used for the first
time only in 1961, by William Oldendorf.

Another type of well-known modality of medical imaging is the ultrasound. This tech-
nique uses high frequency broadband sound waves that are reflected by tissue to varying
degrees to produce images. Ultrasound produces less detailed images than computer to-
mography ones, but offers other advantages, such as the possibility of studying the function
of moving structures in real-time and the fact that it does not use any ionizing radiation.
Moreover, this technique is relatively inexpensive and quick to perform.

Among the medical imaging techniques using gamma cameras, Positron Emission
Tomography (PET) is the most famous one. This technique uses short-lived emitting
positron, for instance 18F (incorporated in a substance such as glucose) to ‘mark’ metabolic
utilization. The system detects pairs of gamma rays emitted indirectly by this marker,
and a computer is used to reconstruct three-dimensional images of marker concentration
in the body. Since the positron is associated to glucose, the concentrations of marker will
indicate tissue metabolic activity, through the regional glucose uptake. One principal lim-
itation to this technique is the high cost of cyclotrons needed to produce the radionuclides.

The fourth main type of medical images comes from Magnetic Resonance Imaging
(MRI). Broadly speaking, this method uses powerful magnets to polarize and excite single
protons in water molecules in human tissues. Magnetic field gradients cause nuclei at
different locations to precess at different speeds, which allows spatial information to be
recovered using Fourier analysis of the measured signal. Compared to CT or radiography,
this technique has no known long-term effects of exposure to strong static fields, and there
is no limit to the number of scans to which an individual can be subjected.

This thesis is about Diffusion Tensor Imaging, a method which uses the same devices
and concepts than MRI. In the following, the main concepts of this modality will be
defined, from the basic principle of Brownian motion to the final diffusion tensor images.

3.2 Basic principles of diffusion MRI

With respect to the the history of medical imaging, diffusion MRI is a newborn. If
the Nuclear Magnetic Resonance (NMR) technique dates back to the 50’s, the basis of
diffusion MRI are due to (Le Bihan and Breton, 1985; Le Bihan et al., 1986), in 1985,
and the first papers mentioning Diffusion Tensor Imaging (DTI) only appeared in the 90’s
(Basser et al., 1992, 1994a). However, this field has received broad attention, because
it helps understanding the structural connections between areas of the brain. This type
of information could be of great interest in the characterization of neuro-degenerative
diseases, in surgical planning, in the study of the evolution of the structure of the brain and
in other medical applications. Diffusion MRI has the capability of accurately describing
the geometry of the underlying cerebral microstructures. This is made possible by the
measure of the average diffusion of water molecules in the brain. This diffusion probes the
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structure of the biological tissues at scales much smaller than the imaging resolution. The
main physical concept related to diffusion MRI is the fact that under normal conditions,
the diffusion of water molecules is Brownian. However, in fibrous structure such as the
axons of the brain, water molecules tend to diffuse along fibers. Information about the
neural structure in vivo can thus be obtained through the diffusion MRI modality. It is
the only known modality to study the architecture of the brain in a noninvasive way. The
basic physical principles of diffusion MRI will be briefly reviewed in the following.

3.2.1 Brownian motion

At a microscopic scale, the movement of water molecules in an isotropic medium is de-
scribed by the Brownian motion. This motion is due to the fact that the molecules freely
move and collide with each other. Figure 3.1 illustrates the Brownian motion, for a unique
particle.

Figure 3.1: Illustration of a Brownian motion, for an unique particle. The red dot represents the origin of
the movement.

At a macroscopic scale, this phenomenon yields a diffusion process. This is commonly
illustrated as a drop of a water-soluble dye placed in a glass of water, which will spread out
and whose color will become less intense until the glass is filled with a solution of uniform
color. This phenomenon can be described by Fick’s first law, derived by Adolf Fick in 1855
(Fick, 1855). This law explains how a population of particles is transported from regions
of high concentration (the drop of dye) to regions of low concentration (the water) so as
to decrease the concentration gradient. Mathematically, if J is the flux of particles, it is
related to the concentration gradient ∇C of the substance C by a proportional constant
D, which is known as the diffusion coefficient. The governing equation of the diffusion
process is thus

J = −D∇C . (3.1)
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The molecular displacements obey a three-dimensional Gaussian distribution, which
means that the molecules travel randomly in space over a distance that is statistically well
described by a diffusion coefficient D. This coefficient was related by Einstein (Einstein,
1956) to the root mean square of the diffusion distance as

D =
1

6τ
〈RT R〉 , (3.2)

where τ is the diffusion time, 〈. . . 〉 denotes an ensemble average and R is the net displace-
ment vector, i.e R = r − r0 with r0 the original position of a particle and R its position
after the time τ .

In anisotropic tissues, such as most biological ones, things are a little bit different.
The mobility of water molecules is indeed constrained by obstacles formed by surrounding
structures, such as the axons in the brain. The actual diffusion distance of water molecules
is reduced compared with that of free water, and the displacement distribution is no longer
Gaussian. The general diffusion displacement probability density function (PDF), also
called diffusion propagator, is extremely complex and still unknown today. This explains
why simple models of diffusion have been proposed. Among those, the most popular one is
the diffusion tensor (DT) model (Basser et al., 1994a), which is derived form the transport
tensors theory previously studied in the mathematical literature. For this simplified model,
Einstein’s and Fick’s laws of diffusion can be generalized, by replacing the scalar diffusion
coefficient D which explains diffusion in isotropic medium with an operator D. This
operator is obtained by considering the covariance matrix of the net displacement vector,
i.e

D =







Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz






=

1

6τ
〈RRT 〉 , (3.3)

The probability density function of the diffusion displacement, denoted P (R, τ), rep-
resents the probability that a water molecule originally located at r0 will have moved by
amount R = r − r0 in time τ . Using the diffusion tensor model, the Taylor’s expansion
(ignoring the higher order terms) of P about R and τ is given by

∂P (R, τ)

∂τ
= D∇2P (R, τ) , (3.4)

using the Einstein’s relation (3.3) and performing some mathematical derivations which
are explained in (Campbell, 2004). The solution of this partial differential equation is P ,
the diffusion PDF of water molecules under the DT model assumption.

If we use the Fick’s formulation, the diffusion tensor D can also be introduced to model
the anisotropic diffusion of biological tissues. In this case, the first law becomes

J = −D∇C . (3.5)

Using this law together with the law of conservation of mass, i.e. ∂C/∂t = −∇ · J, we
obtain

∂C

∂t
= ∇ · (D∇C) = D∇2C , (3.6)
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which is the equivalent of equation (3.4) with the diffusion PDF P replaced by the con-
centration of the medium C. Both laws describe the classical diffusion equation. If D is
an identity matrix, which means that the medium is isotropic, the law of diffusion is called
the heat equation. For anisotropic medium, it is called the geometric heat equation.

3.3 From Nuclear Magnetic Resonance to Diffusion Tensor Imaging

In this section, we review the main steps that have been necessary for the development
of Diffusion Tensor Imaging. Many of those concepts are shared with its ‘older brother’,
the Magnetic Resonance Imaging, and have been defined years before the first Diffusion
Tensor Image.

3.3.1 Historical notes

The key concepts of MRI (and of diffusion MRI) were used for a long time before the
invention of these methods. Nuclear Magnetic Resonance (NMR) was indeed used to
measure properties of substances in chemistry, and to perform NMR spectroscopy.

Felix Bloch and Edward Mills Purcell both described NMR in 1946, in separate works
(Bloch et al., 1946; Purcell et al., 1946). They received a shared Nobel Prize in Physics in
1952 for their discovery. NMR’s basic principle is the following: if a (very) strong external
magnetic field is applied, magnetic nucleus as 1H (proton) will align with this field. A
perturbation of the alignment by an electromagnetic field will produce a characteristic re-
sponse of the nucleus. In 1950, Herman Carr proposed to create the first one-dimensional
MR images by introducing a gradient in the magnetic field (Carr and Purcell, 1954). In
the same time, Hahn published his seminal paper (Hahn, 1950) on the NMR spin echo. In
this paper, the authors noted that the random thermal motion of the spins would reduce
the amplitude of the observed signal in the presence of a magnetic field inhomogeneity.
This notion is fundamental to understand the principles of diffusion MRI.

In 1973, a method was proposed by Lauterbur (Lauterbur, 1973) which used gradients
of magnetic fields to reconstruct two dimensional MR images. This method was fur-
ther developed by Mansfield (Mansfield, 1977), who proposed a new ultrafast acquisition
technique, known as the echo-planar technique. The 2003 Nobel prize in Physiology and
Medicine was awarded to those two researchers for their discoveries in MRI.

The last step towards diffusion MRI was the development of the gradient spin echo
sequence of Stejskal and Tanner (Stejskal and Tanner, 1965), explained below.

3.3.2 Pulse Gradient Spin Echo (PGSE)

The imaging sequence described by Stejskal and Tanner is used to measure the diffusion of
water molecules in a given direction gi, i = 1, . . . , N . The principal idea of this sequence
is to use a pair of sharp magnetic field gradient pulses, the duration and the separation
of them which can be adjusted. In an otherwise homogeneous field, the first pulse has for
goal to magnetically ‘labels’ the protons that are carried by water molecules, according
to their spatial location. This is possible since, for a short time, the magnetic field slowly
varies along one direction. The second pulse is introduced slightly later to detect the
changes in the location of nuclei, i.e. the displacement of nuclei that occurred during the
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time interval between the two pulses. This time interval is also called ‘diffusion time’. A
change in location (along the gradient direction) of a proton carried by a diffusing water
molecule results in a change of the magnetic field ‘seen’ by this proton. This change is
proportional to the displacement. If we consider a population comprising a large number
of water molecules, the overall effect is that the attached protons will experience various
magnetic field changes, that closely reflect the statistical displacement distribution of this
population, that is, the statistical diffusion process. This variation of the magnetic field
seen by the population of nuclei results in an MRI radiowave signal that slightly differs
from the one obtained from a population of nuclei in a perfectly homogeneous field.

The attenuation of the signal can be mathematically expressed, assuming the pulses to
be infinitely narrow (this hypothesis is called the narrow pulse approximation and means
that the duration of the gradient pulse is short enough to consider that the diffusion of
water molecule during that time is negligible). Stejskal and Tanner showed that the signal
attenuation S(q, τ) can be expressed as the three-dimensional Fourier Transform of the
ensemble average propagator P .

S(q, τ)

S0
=

∫

R3
P (r|r0, τ) exp(−2πiqT R)dr = F [P (r|r0, τ)] , (3.7)

where q = γδG/2π, with γ the nuclear gyromagnetic ratio for water protons, G the ap-
plied diffusion gradient vector, δ the gradient pulse duration, S0 is the baseline image
(acquired without any diffusion gradients, also called the b = 0 image) and P (r|r0, τ) is
the diffusion PDF introduced earlier, which is the function that we want to reconstruct.
This reconstruction will only be possible by sampling the diffusion PDF along many q
vectors. The space of all possible 3D q vectors is called the q-space.

If the diffusion PDF is assumed to be Gaussian, the Fourier integral can be computed
analytically. The signal attenuation equation becomes

S(q, τ) = S0 exp(−τqT Dq) , (3.8)

where D(q) = qT Dq is the Apparent Diffusion Coefficient (ADC). Indeed, it should be
noted that the diffusion coefficient measure in diffusion MRI is not the true diffusion co-
efficient of water, unless the imaging object is pure water. In fact, the structure of the
tissue restricts the diffusion. The measure of this restricted diffusion is called the Apparent
Diffusion Coefficient.

The signal attenuation is often written with respect to a unit vector, g = q/|q|. In
this case, it is common to introduce the b-value, b = τ |q|2 in the equation, which becomes

S(b, g) = S0 exp(−bgT Dg) = S0 exp(−b ADC) . (3.9)

Equation (3.9) is the most common formulation of the Stejskal-Tanner equation under a
Gaussian assumption. It is at the heart of diffusion-weighted imaging (DWI).

3.3.3 Diffusion-Weighted Imaging (DWI)

The first diffusion MRI acquisitions were made in 1984-1985. At this time, diffusion NMR
and available imaging techniques were put together to make those acquisitions. If Wesbey
et al were the first to demonstrate DWI, their sequence was however not clinically feasible
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(Wesbey et al., 1984a,b). The first DWI acquisition in vivo of the human brain using a
whole-body scanner is due to Le Bihan et al, in 1985 (Le Bihan and Breton, 1985; Le Bi-
han et al., 1986). These papers also introduce the now famous b-value. At that time, a
DWI was simply the unprocessed result of the application of the PGSE sequence in one
gradient direction.

A few years later, Moseley et al (Moseley et al., 1990) had the idea to measure diffusion
anisotropy in more than one direction. Their measurements were made on a cat brain. At
this time, it was already presumed that diffusion is faster in the direction of fibers than
in perpendicular directions. Using the log version of equation (3.9), i.e.

log

(

S(b, g)

S0

)

= −b ADC , (3.10)

Moseley proposed to measure this ADC along the x and z axis and to use the anisotropy
index ADCz/ADCx to characterize the level of anisotropy in the tissue. This idea requires
the acquisitions of at least two images.

The idea that diffusion MRI and measures of the ADC along two directions could
be used to determine orientations of fiber bundles in the brain was first stated in 1991
by Douek (Douek et al., 1991). The problem at that time was that ADC measures and
anisotropy index were very dependent on the direction of the gradient encoding used in the
acquisition. Soon, the need for rotationally invariant measures became clear, along with a
mathematical model with invariant properties to describe the 3D displacement distribution
of water diffusion. The solution to this problem was provided by Peter Basser, in 1994,
who introduced the Diffusion Tensor Imaging. This model overcomes the limitations of
the preceding measures, and enables the introduction of rotationally invariant measures
(Basser et al., 1994a).

3.3.4 Diffusion Tensor Imaging (DTI)

In his seminal paper of 1992 (Basser et al., 1992), Basser proposed to use a second order
symmetric and positive-definite tensor to model the intrinsic diffusion properties of bio-
logical tissues, and particularly of the brain. This tensor is in fact the same as introduced
earlier in Einstein’s equations for anisotropic diffusion, Eqs. (3.3) and (3.5). As already
explained, the solution of equation (3.4) is the Gaussian diffusion PDF. The probability P
to find a molecule at position r which initially was at position r0 after a delay τ is given by

P (r|r0, τ) =
1

√

(4πτ)3|D|
exp

(

− 1

4τ
(r − r0)T D−1(r − r0)

)

, (3.11)

where |D| is the determinant of the diffusion tensor D. The idea of Basser is thus to
approximates the diffusion PDF by a 3-variate normal distribution with zero mean. In
this case, D can be viewed as the covariance matrix describing the Brownian motion of
water molecules at each imaging voxel.

The symmetry of D implies that it has six unknown coefficients, which have to be
estimated. This means that at least 6 DW images (and one unweighted diffusion image)
have to be acquired to solve the system of equations. In practice, due to noise in the
measures, more than 6 DW images are used. Typically, a b-value of 1000 s/mm2 is used
with 7 to 64 gradient directions.
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Estimation of diffusion tensors through DWI acquisitions has been the subject of much
research in the past fifteen years. First papers used classical linear or non-linear least-
squares estimation methods (Basser et al., 1994b), while more recent papers are based
on Riemannian frameworks (Lenglet, 2006; Arsigny, 2006; Fillard et al., 2007). Diffusion
tensors are indeed elements of the Riemannian manifold of symmetric positive-definite
matrices. The estimation methods based on Riemannian computations prevent degenerate
tensors (non positive or non symmetric matrices).

Principal coordinate axes and principal diffusivities

The diffusion tensors have been shown to be a rich mathematical tool, with interesting
properties that one can exploit for diffusion MRI visualization and analysis. As already
explained in Basser (Basser et al., 1994a), for each estimated tensor, a local orthogonal co-
ordinate system can be constructed. This system represents the principal coordinate axes,
along which diffusive fluxes and concentration gradients are decoupled. The correspond-
ing diffusion coefficients in these three principal directions (the principal diffusivities) can
also be calculated. In fact, due to the symmetry and positive-definiteness of the tensor,
its three eigenvectors are orthogonal, and they thus represent the principal coordinate
directions. The three eigenvalues, which are positive, represent the principal diffusivities.
If we denote by λi, i = (1, 2, 3) the eigenvalues and by ei the eigenvectors, we can write
the spectral decomposition of a tensor S as

S = UΛUT , (3.12)

with U = (e1|e2|e3) and

Λ =







λ1 0 0
0 λ2 0
0 0 λ3






. (3.13)

The three eigenvalues can be ordered, to have λ1 ≥ λ2 ≥ λ3. The main idea behind dif-
fusion imaging was that in ordered structures such as brain white matter, the macroscopic
anisotropy described by the tensor is due to microscopic heterogeneity - in particular to
ordered, semipermeable membranes that retard diffusion. This idea is illustrated in Figure
3.2, left. The diffusion is easy along the fibers, but reduced in a direction perpendicular
to them. This means that, in anisotropic tissues, the principal directions of the tensor
must coincide with orthotropic directions of that tissue. In particular, the eigenvector
associated with the largest eigenvalue λ1 defines the ‘fiber-tract axis’ of the tissue. The
two remaining eigenvectors, which are perpendicular to the first one, should define the two
remaining orthotropic axes. This spectral decomposition is illustrated in Figure 3.2, (b).
If λ1 = λ2, the tensor is said to be planar. The tensor is isotropic if all the eigenvalues are
equal. Isotropic tensors are usually associated to isotropic medium, as gray matter or the
cerebrospinal fluid.

Starting from the spectral decomposition of the tensor, its graphical representation
can be visualized by a diffusion ellipsoid. The principal axes of the ellipsoid are given by
the eigenvectors of the tensors, while the length of these axes is related to the eigenvalues.
Ellipsoids can also be viewed as a three-dimensional representation of the diffusion distance
covered in space by molecules in a given diffusion time. In the case of isotropic diffusion,
the ellipsoid is a sphere, the size of which is proportional to the diffusion coefficient. In
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Figure 3.2: (a): Diffusion of water molecules is easier in the direction of fibers than in directions perpen-
dicular to them. (b): Illustration of the spectral decomposition of tensors. The three principal directions
of the ellipsoid correspond to the eigenvectors of the tensor. Their lengths are related to the corresponding
eigenvalues.

the case of anisotropic diffusion, ellipsoids become elongated (cigar-shaped) if one diffusion
direction predominates. If two directions are more important than a third one, ellipsoids
are flat (pancake-shaped). These different shapes are illustrated in Figure 3.3.

Figure 3.3: Diffusion tensor as ellipsoids. The color of ellipsoids is related to their anisotropy. From left
to right: isotropic tensor, planar tensor (flat ellipsoid) (λ1 ≃ λ2 > λ3), elongated ellipsoid (λ1 ≫ λ2 ≥ λ3)

3.4 Early DTI processing

Parallel to the development of the imaging modality arose the question of how to process
and analyze these new images. Many efficient methods had been developed for the process-
ing of (scalar) Magnetic Resonance images. However, as it will be shown in the following,
scalar processing of DT images is usually focused on a single type of information, forget-
ting all the other information. This has lead researchers to develop new, matrix-valued
processing algorithms.

3.4.1 Projection on scalar maps

As explained above, one of the main reason to use diffusion tensor to model diffusion is
to identify quantities that are independent of the fiber direction. This explains why many
authors have defined different scalar invariants of tensors. In this context, ‘invariants’
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means that the scalar measures do not depend on the fiber direction. All these invariants
are spectral quantities, that is, they are based on the eigenvalues of the tensor.

• Trace The trace of the tensor is given by Tr(S) = Tr(Λ) = λ1 +λ2 +λ3. The trace is
related to the mean diffusivity in the voxel, which is equal to Tr(S)/3 (Basser et al.,
1994a).

• Determinant The determinant is given by Det(S) = Det(Λ) = λ1λ2λ3. It measures
the volume of the ellipsoid (Basser et al., 1994a).

• Volume Ratio The Volume Ratio (VR)(Pierpaoli et al., 1994) is given by

VR =
λ1λ2λ3

(

λ1+λ2+λ3
3

)3 = 27
Det(S)

Tr(S)3
. (3.14)

This index has a geometrical interpretation: it represents the volume of an ellipsoid
whose semi-major axes are the three eigenvalues of S divided by the volume of a
sphere whose radius is the mean diffusivity (Tr(S)/3). A value of VR close to zero
indicates an high anisotropy while a value of 1 represents complete isotropy.

• Fractional Anisotropy This index is very popular and one of the most used in the
DTI literature. It is defined as (Basser and Pierpaoli, 1996)

FA =

√

3

2

√

∑3
i=1(λi − λm)2

√

∑3
i=1 λ2

i

(3.15)

with λm = (λ1 + λ2 + λ3)/3. FA measures the fraction of the ‘magnitude’ of the
tensor that can be ascribed to anistropic diffusion. It goes from zero for isotropic
tensor to one for anisotropic ones.

• Relative Anisotropy This index was also proposed in (Basser and Pierpaoli, 1996),
and is given by

RA =
1√
3

√

∑3
i=1(λi − λm)2

λm
. (3.16)

This index is in fact the ratio between the anisotropic part of the tensor and the
magnitude of its isotropic part. It is equal to zero for isotropic tensors.

A comparison of different anisotropy indices is presented in (Pierpaoli and Basser, 1996),
which shows the importance of rotationally invariant indices. This work also points out
how the sorting of eigenvalues is affected by the background noise, therefore claiming that
indices which are not based on this sorting are more robust to noise.

Many works have used scalar invariants to analyze DT images. The principle is to
construct FA, or RA maps, and to (only) analyze those scalar images, instead of the ten-
sor images. This is for example the case in (Jones et al., 2002), where the registration of
images is based on FA maps, and in (Alexander et al., 2001) where RA maps are used.
The Tract-Based Spatial Statistics (TBSS) software (Smith et al., 2006) is also based on
FA data. As it will be shown in Chapter 6, the Fractional Anisotropy has also been widely
used for statistical analyses of DT images.
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However, in (Alexander and Gee, 2000), the authors used their registration algorithm
with different similarity measures, based either on scalar differences or on more complex
measures. They conclude from their tests that scalar measures are not appropriate for the
processing of Diffusion Tensor Images. This work, among others, motivates multivariate
methods to study DT images. Those methods are briefly reviewed in the next section.

3.4.2 Multivariate DTI processing

Different methods have been proposed for tensor analysis. Early multichannel algorithms
used, for example, the 6 components of the tensor, or its three eigenvalues (Guimond et al.,
2002), or a combination of those channels (Park et al., 2003). The preferred information
depends upon the work and the evaluation methods. In (Leemans et al., 2005), another
type of algorithm is used, which utilizes the DWI as the information channels. Another
point of view of multivariate processing is the one of (Alexander and Gee, 2000), which
perform multivariate processing without using multichannels. The principal information
here is a similarity measure between tensors. This measure can be based on scalar derived
from tensors, or be a simple Euclidean distance between tensors, i.e.

d(S1, S2) =
√

Tr(S2 − S1)2 . (3.17)

This distance is also used in (Cao et al., 2006; Goh and Vidal, 2006). However, the Eu-
clidean processing of tensors has a well-known disadvantage: the interpolation of tensors
suffers from the swelling effect, i.e. the volume of the tensors is not monotonically interpo-
lated and goes through a maximum. This effect is physically unrealistic, since it amounts
to the introduction of more diffusion.

The growing interest for multivariate processing slowly led researchers to focus on the
constraints that the methods have to fulfill. One example of those constraints concerns
the Principal Direction Diffusion (PDD), i.e. the eigenvector associated to the principal
eigenvalue of the tensor. This vector indeed has to be of unit norm. Moreover, it should
be noted that this eigenvector has no sign, i.e. if the PDD is denoted by v1, it is indistin-
guishable of −v1. Different regularization algorithms have been proposed, as for example
in (Chen and Hsu, 2005; Coulon et al., 2004). The latter one also introduces the idea of
decoupling the processing between the orientation of one hand and the diffusivities on the
other hand. This idea is similar to the one of this thesis, which will further be explained
in Chapter 4.

3.4.3 Riemannian processing

The idea of developing algorithms which work directly on the manifold of tensors, i.e. the
manifold of symmetric positive definite matrices S+(3) naturally emerged from the idea
of processing eigenvectors as elements of the manifold S2 (the unit sphere). This idea is
at the core of the affine-invariant framework.

Affine-invariant framework

The Riemannian metric and the geodesic in the space S+(n) have been explained in Section
2.1.2. In this section, we focus on the space of diffusion tensors, S+(3). As a reminder,
the geodesic between S1 and S2 is given by

S(t) = S
1/2
1 exp(t log(S

−1/2
1 S2S

−1/2
1 ))S

1/2
1 , (3.18)
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while the distance between tensors, corresponding to the length of geodesic, is

d(S1, S2) = || log(S
−1/2
1 S2S

−1/2
1 )||2 . (3.19)

The use of the affine-invariant Riemannian framework was first proposed for DTI pro-
cessing in 2006, see (Pennec et al., 2006; Lenglet et al., 2006), see also (Fletcher and
Joshi, 2007; Fletcher et al., 2009; Castaño-Moraga et al., 2006; Gur and Sochen, 2007;
Batchelor et al., 2005; Lenglet et al., 2009). The affine-invariant geometry is the natu-
ral geometry of S+(3) considered as the homogeneous space Gl(3)/O(3), see (Smith, 2005).

Together with the development of geometric processing algorithms, a novel geometric
anisotropy index has been proposed by Fletcher in (Fletcher and Joshi, 2007), which uses
the logarithm of the eigenvalues. This index is called the geodesic anisotropy.

GA =

√

√

√

√

3
∑

i=1

(log(λi) − log(λgm))2 , (3.20)

with λgm = 3
√

λ1λ2λ3. It can be interpreted as the distance between the tensor and its
closest isotropic tensor.

One example of (geodesic) interpolation between two tensors is shown in Figure 3.4
(top). The two tensors have the same shape, but different orientations. It can be observed
that in this case, the framework performs both a modification of the orientation and the
shape. In particular, the midpoint of the interpolation curve between two anisotropic ten-
sors tends to be isotropic. Since the anisotropy is one of the most important information
given by diffusion tensors, this decrease of anisotropy is a limitation of the affine-invariant
framework for the processing of DT images. Moreover, as already explained in 2.1.2, this
framework is computationally expensive.

Figure 3.4: Geodesic interpolation between two tensors. Top: with the affine-invariant framework. Bottom:
with the Log-Euclidean framework. It is clear from those figures that the Log-Euclidean framework is a
good approximation of the affine-invariant one. However, both frameworks suffer from the same limitation
regarding anisotropy.
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Log-Euclidean framework

Section 2.1.2 has introduced the Log-Euclidean framework as an approximation of the
affine-invariant framework, with the great advantage of being computationally cheaper.
This advantage is the main reason why the Log-Euclidean method has been proposed to
process DT images (Arsigny et al., 2006). The geodesic curve is in this case

S(t) = exp((1 − t) log(S1) + t log(S2)) (3.21)

and the distance between the tensors is

d(S1, S2) = || log(S1) − log(S2)||2 . (3.22)

The method became a popular framework and has been used by many authors (Goodlett
et al., 2009; Chiang et al., 2008; Ingalhalikar et al., 2010; Castro et al., 2007; Weldeselassie
and Hamarneh, 2007; Arsigny et al., 2006; Fillard et al., 2007; Yeo et al., 2009, 2008;
Lepore et al., 2006; Awate et al., 2007). Figure 3.4 (bottom) suggests that it is a good
substitute for the affine-invariant interpolation but that it suffers the same limitation re-
garding anisotropy.

This limitation was at the core of the development proposed in this thesis, which will
be explained in details in the following chapter.

Figure 3.5 presents a timeline of the principal notions used to develop and study DTI,
until the introduction of Riemannian methods for the processing of these images.
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Summary

Figure 3.5: Illustrative summary of the chapter: timeline of the principal notions used to develop DTI.



Chapter 4

Anisotropy preserving DTI processing

The objective of this thesis was to develop a suitable framework for
the processing of Diffusion Tensor Images. This chapter introduces
this novel framework, which is based upon two main motivations.
The first motivation is to avoid the limitation of the existing Rie-
mannian frameworks regarding anisotropy of tensors. To address this
limitation, we use a decoupling of the processing between intensities
and orientation of diffusion, through the spectral decomposition of
tensors.
Our second motivation concerns the computational cost of the process-
ing operations, which has to be efficient in order to scale with data
size of clinical applications. To this end, we use unit quaternions to
represent the orientation of tensors. The combination of those two
ideas explain the name ‘spectral-quaternion’ for our framework.
Besides those two concepts, we also deal with uncertainty of the
orientation in isotropic tensors.
The chapter proposes novel algorithms for the basic processing
operations: interpolation, averaging, and similarity measure. Those
operations are invariant by scaling and rotation, and have the remark-
able property of preserving all the characteristics of tensors.

The contributions of this chapter are presented in:

Anne Collard, Silvère Bonnabel, Christophe Phillips and Rodolphe
Sepulchre. Anisotropy preserving DTI processing. Submitted in a
revised form to International Journal of Computer Vision, May 2013.

As emphasized in (Le Bihan, 2003), there are three ‘meta-parameters’ which can be de-
rived from the diffusion tensor and are the three main sources of information about tissue
microstructure and architecture of each voxel.

Those parameters are

• the mean diffusivity, which characterizes both the overall mean-squared displacement
of molecules and the overall presence of obstacles to diffusion. This parameter is also
related to the average ellipsoid size.

• the main direction of diffusivities (given by the eigenvectors) which is linked to the
orientation in space of the structures.

45
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• the degree of anisotropy, which describes the degree to which molecular displacements
vary in space. The anisotropy is related to the presence and coherence of orientated
structure. This information is related to the eccentricity of the ellipsoid and can be
associated to many different indices, as seen in Chapter 3.

The major importance of those three parameters motivates a framework that preserves
them during the processing, in order to preserve the information they convey. As ex-
plained in the preceding chapter, a main limitation of the Euclidean framework is its
swelling effect on the mean diffusivity. Likewise, a main limitation of the affine-invariant
and Log-Euclidean frameworks is to decrease the anisotropy of tensors along the interpo-
lating curves. Those limitations motivated the development of an ‘anisotropy preserving’
framework in this thesis.

The idea of decoupling the processing between intensities of diffusion and orientation
(see Section 4.1) , which seems the best way to preserve anisotropy, is not new, see for
example (Tschumperlé and Deriche, 2001; Weldeselassie et al., 2009; Ingalhalikar et al.,
2010). However, those methods did not become popular mostly due to their expensive
computational cost, due to the difficult processing of orientations. Our second concern
in this thesis has thus been to overcome this computational obstacle thanks to the use of
unit quaternions, as it will be explained in Section 4.2.

The principal features of the developed framework are presented in Section 4.3, while
Section 4.4 is devoted to the extension of interpolating curves to weighted means of more
than two tensors. Finally, the important notion of similarity measure is the subject of
Section 4.5.

4.1 Interpolating curves based on the spectral decomposition

The development of our anisotropy preserving framework is based on the spectral decom-
position of tensors. As stated in (3.12), this decomposition writes S = UΛUT where U
is the orthogonal matrix containing the eigenvectors and Λ is a diagonal matrix whose
elements are the eigenvalues λi, i = 1, 2, 3. Since tensors are symmetric positive definite
matrices, Λ ∈ D+(3), the space of diagonal matrices with positive elements, and the ma-
trix U belongs to the orthogonal group O(3). In this work, we will order the eigenvalues
of the tensors such that λ1 ≥ λ2 ≥ λ3 and we will impose det(U) = 1, i.e., U belongs to
the space of special orthogonal matrices, SO(3).

The spectral decomposition of tensors enables to perform a decoupling between the
intensities of diffusion (the eigenvalues) and the orientation (the eigenvectors). This de-
coupling is at the core of the spectral interpolating curve.

Definition 4.1.1. The spectral interpolating curve between two diffusion tensors S1 and
S2 is based on the decoupling between intensities and orientation of diffusion, and is given
by the following equations.











S(t) = U(t)Λ(t)U(t)T ,
U(t) = U1 exp(t log(UT

1 U2)) ,
Λ(t) = exp((1 − t) log(Λ1) + t log(Λ2)) ,

(4.1)

where Uj is the matrix of eigenvectors of Sj and Λj the corresponding eigenvalues matrix.
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This curve has the geometric interpretation of a geodesic in the product space M =
SO(3) × D+(3), with the bi-invariant metric of M viewed as a Lie group. Indeed, both
U(t) and Λ(t) are computed through the geodesics of their respective spaces.

Figure 4.1 suggests that the decoupling of rotations and scalings in interpolation is
favorable to the conservation of anisotropy along the interpolation curve. If this property
is a great advantage for the processing of Diffusion Tensor Images, spectral interpolation
is in fact not commonly used in applications. This is due to the computational cost of
the framework, which is important because of the processing of orientation matrices, as
explained in the following.

Figure 4.1: Geodesic interpolation between two tensors, in the product space SO(3) × D+(3). Compared
to the curves of Figure 3.4, it can be observed that the anisotropy of tensors is preserved along the
interpolating curve. With this framework, the orientation is the only information which is interpolated.

4.1.1 The problem of the non-uniqueness of spectral decomposition

Consider S+
∗ (3) the subset of S+(3) with distinct eigenvalues λ1 > λ2 > λ3. Every tensor

of S+
∗ (3) can be represented by four distinct elements of the Lie group M, see Figure 4.2.

Using the notation ei for the i-th eigenvector, the four rotations corresponding to a single
tensor S are

U =
(

e1 e2 e3

)

, (4.2)

Ux =
(

e1 −e2 −e3

)

, (4.3)

Uy =
(

−e1 e2 −e3

)

, (4.4)

Uz =
(

−e1 −e2 e3

)

, (4.5)

i.e. the three rotations of angle π around the principal axes of U plus the matrix U itself.
The three matrices of rotation and the identity form the discrete group G.

The formal identification

S+
∗ (3) ≃ SO(3)/G × D+(3) ,

where ≃ is the standard notation to indicate a diffeomorphism between spaces, thus jus-
tifies the spectral interpolation (4.1) provided that U1 and U2 are univocally selected
among the possible discrete spectral decompositions of S1 and S2.
This concept is explained (for 2-D ellipses) in the Figure 4.3. In this case, the orientation
Vi and −Vi are equivalent, in a same way as the four rotation matrices defined in (4.2)-
(4.5) are equivalent for 3-D tensors. Let’s consider that the spectral decompositions of



48 Chapter 4. Anisotropy preserving DTI processing

Figure 4.2: Non-uniqueness of the spectral decomposition. Four different rotation matrices parametrize
the same tensor.

the two tensors give the orientation V1 and V2 in the Figure 4.3. If the interpolation be-
tween orientation is made without paying attention to the non-uniqueness of the spectral
decomposition, the interpolating curve will follow the blue arc. However, it is clear from
the figure that the pink arc, which connect V1 to −V2, is shorter than the blue one. This
highlights the necessity to appropriately select the orientation used for the processing.
This selection is often called the realignment procedure. In the 2D-case, if we consider
V1 as the reference, it simply consists in taking the direction of V2 for which the scalar
product between V1 and V2 is positive. In other words, we choose the orientation which
is the closest to the reference.

The method of realignment for 3 × 3 rotation matrices follows the same principle.
Denoting GU2 the discrete group of four rotation matrices associated to the spectral de-
composition of S2, a reasonable choice is to choose U1 arbitrarily and choose U2 according
to

U2 = arg min
U∈GU2

dSO(3)(U1, U) (4.6)

= arg min
U∈GU2

|| log(UT
1 U)||2 (4.7)

The problem of the non-uniqueness of the spectral decomposition has been described in
(Tschumperlé and Deriche, 2001; Chefd’hotel et al., 2002; Coulon et al., 2001, 2004), where
different ‘realignment procedures’ have been proposed. The problem of those procedures
is that they have to be performed at a local level, i.e. for each tensor of the images, leading
to prohibitive computations for large-scale DTI processing. If the cost of this operation is
decreased, the total cost of the processing could be drastically reduced. This is the basic
idea behind the introduction of unit quaternions to represent orientations.

4.2 Spectral-quaternion interpolating curve

In this section, we present an important idea of the framework developed in the thesis.
This idea consists in parametrizing the orientation of tensors as unit quaternions instead
of rotation matrices. Using the embedding of SO(3) into the linear space of quaternion
is very common in robotics in order to save on computational time, but has not been
proposed for the processing of diffusion tensor images, to the best of our knowledge.
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Figure 4.3: Difference between interpolation without realignment (blue curve) and with realignment (pink
curve).

4.2.1 From rotation matrices to quaternions, and vice-versa

A unit quaternion is generally denoted by q = (a, V) where a is associated to the angle
of rotation by θ = 2 arccos(a) and V is associated to the axis w of rotation through
w = V/ sin(θ/2). The construction of q from R is given by

θ = arccos((Tr(R) − 1)/2) , (4.8)

w =
1

2 sin θ







R3,2 − R2,3

R1,3 − R3,1

R2,1 − R1,2






. (4.9)

Finally, we have a = cos(θ/2), V = sin(θ/2)w. Note that the opposite quaternion
given by (−a, −V) represents the same rotation matrix.
From q, the associated rotation matrix R is given by

R = exp







0 −w3θ w2θ
w3θ 0 −w1θ

−w2θ w1θ 0






. (4.10)

4.2.2 Interpolating curve between quaternions

Unit quaternions form the space H1. This space can be equipped with the Euclidean
metric of its natural embedding in R

4.

Definition 4.2.1. Using the Euclidean metric of R4, the geodesic between two quaternions
q1 and q2 is given by

qg(t) = (1 − t)q1 + tq2 . (4.11)

The chordal interpolation between two unit quaternions is then given by the projection
of this geodesic on the space of unit quaternions. In this case, the projection corresponds
to a normalization of the vector.

q(t) =
(1 − t)q1 + tq2

||(1 − t)q1 + tq2|| . (4.12)
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The difference between a chordal and a geometric interpolation is illustrated in Figure 4.4,
for the unit sphere S1. The linear interpolation is in blue while the geometric one is in
pink. The chordal interpolation is the projection on the sphere of the linear interpolation.
In this case, the projection simply consists in normalizing the vector. It can be seen from
the projection of the linear mean that it is very close to the geometric mean, for points
that are not too far apart on the circle.

Using the same example of Figure 4.4, it is also interesting to compare the length of
the curves. For two points θ1 and θ2, the length of the geometric curve is equal to

dS1(θ1, θ2) = |θ1 − θ2| , (4.13)

while the chordal length is

dR2(θ1, θ2) = 2

∣

∣

∣

∣

sin

(

θ1 − θ2

2

)∣

∣

∣

∣

. (4.14)

It is clear from (4.14) that if θ1 and θ2 are not too far apart, the two distances are
approximatively equal, since in this case sin(θ1−θ2)/2 can be approximated by (θ1 −θ2)/2.
This approximation is often used to simplify algorithms, as in (Absil et al., 2004) for the
computation of a mean on the Grassmann manifold.

θ
1

θ
2

Figure 4.4: Difference between a linear and a geometric interpolation for the unit sphere S1. The chordal
interpolation corresponds to the projection on the sphere of the linear interpolation.

4.2.3 Realignment with quaternions

The realignment step in the quaternion space uses the Euclidean (chordal) distance

d(q1, q2) = ||q1 − q2|| . (4.15)

Because H1 provides a double covering of SO(3) (as already said, q and −q represent the
same rotation matrix), eight different quaternions represent the same orientation (two for
each of the four different rotation matrices of (4.2)-(4.5)). We denote by Q this set of
quaternions, and we construct it as follows.
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Definition 4.2.2. If qi is the quaternion computed from the spectral decomposition of the
tensor and the transformation of the obtained rotation matrix, the set Qi contains the four
elements
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and their opposites.

Realignment in H1 thus involves solving

d(Q1, Q2) = min
q2∈Q2

||q1 − q2|| (4.16)

with q1 arbitrarily chosen.

Because q1 and q2 have unit norm, we have the simplification

||q1 − q2||2 = 2 − 2 q1.q2 (4.17)

which replaces (4.16) with

qa
2 = arg max

q2∈Q2

qr
1.q2 (4.18)

d(Q1, Q2) = ||qr
1 − qa

2 || (4.19)

where qa
2 is called the realigned quaternion.

The computation of (4.18) and (4.19) is in fact very fast compared to (4.7): the eight
scalar products qr

1.q2 can be computed through a single matrix product between the 1×4
vector representing (qr

1)T and the 4 × 8 matrix formed by the eight quaternions q2. In
contrast, computing the distance (4.7) requires four logarithms of product of 3 × 3 matri-
ces, which is expensive. The selection of the parametrization of rotations as quaternions
thus enables the framework to be computationally tractable.

Definition 4.2.3. Using the realignment procedure of equations (4.18) and (4.19), the
spectral-quaternion interpolating curve is given by the equations

S(t) = Uq(t)Λ(t)Uq(t)T (4.20)

where
Λ(t) = exp((1 − t) log(Λ1) + t log(Λ2)) ,

Uq(t) is the rotation matrix associated to the unit quaternion q(t) ∈ H1 and q(t) satisfies

q(t) =
(1 − t)q1 + tqa

2

||(1 − t)q1 + tqa
2 || .

This curve is illustrated in Figure 4.5. The interpolating curve is very close to the curve
shown in Figure 4.1. This observation is similar to the one of Section 3.4.3, where the Log-
Euclidean framework was viewed as a good substitute of the affine-invariant method. In
both cases, the embedding in a linear space has enabled the reduction of the computational
cost while staying close of the intrinsic curves.
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Figure 4.5: Interpolation between two tensors, in the product space H1 × D+(3). Compared to the curve
of Figure 4.1, it can be observed that the approximation of the ‘spectral’ geometric interpolation between
matrices with the chordal interpolation of quaternions is very good. The interpolation of eigenvalues being
the same for the two frameworks, the observation about the preservation of anisotropy is still true in this
case.

4.3 Computational and invariance properties

This section will study and compare the merits of the spectral-quaternion interpolation
method with respect to the ones of the other frameworks presented in this dissertation:
the affine-invariant framework of Eq. (3.18), its extrinsic substitute, the Log-Euclidean
method of Eq. (3.21), and the spectral framework of the beginning of this chapter, Eq.
(4.1).

4.3.1 Computational cost

The two interpolation methods of equations (3.18) (affine-invariant) and (4.1) (spectral
curve) are intrinsic, whereas the methods of equations (3.21) (Log-Euclidean) and (4.20)
(spectral-quaternion) are extrinsic, that is, the interpolating curve is a projection on the
manifold of an interpolating curve in the embedding space. Extrinsic geometries lead to
significant computational savings because they reduce the use of matrix exponential and
matrix logarithm. Table 4.1 illustrates how the difference translates into computational
savings on a (non optimized) MATLAB code, where both extrinsic methods perform faster
than their corresponding intrinsic curves. We expect that the qualitative difference be-
tween intrinsic curves and extrinsic interpolations will scale up dramatically in real DTI
signal processing.

Affine- Log-Euclidean Spectral Spectral-
invariant quaternion

0.47 s 0.17 s 0.65 s 0.11 s

Table 4.1: Computational time of computing 1000 distances between a reference and random samples from
a Wishart distribution. The computations are performed on a Intel Core 2 Duo 2,66 GHz with 4Go of
RAM machine using a (non optimized) MATLAB code. The definitions of the similarity measure for the
two spectral frameworks will be given in Section 4.5.
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4.3.2 Invariances

Invariances of the processing are of great importance in the context of medical imaging.
Indeed, it is important that the processing gives the same result, whatever the orientation
of the head in the scanner, or the intensity of the applied gradient field. In other words,
the processing has to be independent of the units, or the calibration. This is why two
types of invariances are often required for a processing framework: invariance by scaling
and invariance by rotation.

Definition 4.3.1. A framework is said to be invariant by scaling and rotation if the
interpolating curve from S1 to S2 which depends on t, S(t; S1, S2), satisfies

∀s ∈ R
+, ∀R ∈ SO(3) :

S(t; sRS1RT , sRS2RT ) = sRS(t; S1, S2)RT . (4.21)

All the four frameworks presented in this thesis are invariant by rotation and scaling.
The affine-invariant framework (3.18) possesses a larger invariance group:

∀A ∈ Gl(3) :

S(t; AS1AT , AS2AT ) = AS(t; S1, S2)AT (4.22)

In fact, the interpolating curve (3.18) is the unique interpolation formula being in-
variant to an arbitrary congruence transformation, hence its name. This property can be
desirable in other applications (see e.g. (Smith, 2005)), but it is the intrinsic cause of the
anisotropy degradation observed in Figure 3.4.

The invariances of the Log-Euclidean framework have been studied in (Arsigny et al.,
2006): it is invariant to scaling and rotation. Besides, the authors insist in this paper on
the fact that these two invariances are sufficient for medical imaging.

Finally, both spectral frameworks satisfy (4.21), since

• The scaling only affects the eigenvalues, and it is easy to show that for each eigenvalue
λi,

λi(t; sλi,1, sλi,2) = exp((1 − t) log(sλi,1) + t log(sλi,2))

= exp((1 − t) log s + t log s + (1 − t) log λi,1 + t log λi,2)

= s exp((1 − t) log λi,1 + t log λi,2)

= sλi(t; λi,1, λi,2)

• The rotation only affects the interpolation between orientations. Using rotation
matrices, it is easy to show that

U(t; RU1, RU2) = RU1 exp(t log(UT
1 RT RU2))

= RU(t; U1, U2),

which leads to

S(t, RS1RT , RS2RT )) = RU(t; U1, U2)Λ(t)UT (t, U1, U2)RT

= RS(t; S1; S2)RT .
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• Regarding the spectral quaternion framework, it can be proved that the chordal
interpolation between quaternions is also invariant by rotations. First consider the
multiplication of quaternions, which is also known as their Hamilton product. If we
use the notation q = (a, V) introduced above, the multiplication of two quaternions
q1 and q2 is given by

q1 · q2 = (a1a2 − V1.V2, a1V2 + a2V1 + V1 × V2) ,

where V1.V2 is the scalar product of vectors while V1 × V2 is their cross product.
The multiplication of quaternions is equivalent to the (matrix) multiplication of
rotation matrices, i.e the rotation matrix corresponding to q1 · q2 is equal to U1U2.
It should be noted that this multiplication is distributive and compatible with scalar
multiplication. If the tensors are rotated by a matrix R, their quaternions will be
transformed as q∗

i = qR · qi. The interpolating curve between quaternions can thus
be written as

q(t; qR · q1, qR · q2) =
(1 − t)qR · q1 + tqR · q2

||(1 − t)qR · q1 + tqR · q2||

=
qR · ((1 − t)q1 + tq2)

||qR · ((1 − t)q1 + tq2)||

=
qR

||qR|| · (1 − t)q1 + tq2

||(1 − t)q1 + tq2||
= qR · q(t; q1, q2)

where the equality ||qi · qj || = ||qi|| ||qj || has been used. The corresponding rotation
matrix is then RU(t), and the conclusion follows the one of the spectral interpolation.

• The combination of those results proves that spectral frameworks are invariant by
rotation and scaling.

4.3.3 Volume and spectral interpolation

The goal of our framework is to retain the most of the information conveyed by tensors.
It is thus important to study how the framework affects those properties.

Volume The volume of the ellipsoid represented by a positive definite matrix S is the
product of its eigenvalues, i.e. its determinant. The four interpolation formulas
discussed in this dissertation enjoy the remarkable property

det(S(t; S1, S2)) = exp((1 − t) log(det(S1)) + t log(det(S2))) (4.23)

In other words, the determinant of the tensor is geometrically interpolated by the
curves. In particular, the volume is preserved along the interpolation curves between
two tensors of same volume. It is in contrast with the ‘swelling’ effect observed
with simpler interpolation methods and has been a main motivation to promote a
Riemannian framework for DTI processing, as explained in (Pennec et al., 2006) for
the affine-invariant metric, and in (Arsigny et al., 2006, 2007) for the Log-Euclidean
one. Regarding the spectral frameworks, the interpolating curve between eigenvalues
suffices to ensure the geometric interpolation of the determinant.
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Eigenvalues Because the interpolation of rotations and eigenvalues is decoupled in the
two spectral interpolation methods (4.1) and (4.20), they enjoy a further spectral
interpolation property:

λi (S(t; S1, S2)) = exp((1 − t) log(λi(S1)) + t log(S2)) (4.24)

This spectral interpolation is a key property for the anisotropy interpolation. It can
also be viewed as the ‘missing’ property of both affine-invariant and Log-Euclidean
frameworks.

4.3.4 Anisotropy interpolation

As explained in the beginning of this chapter, the degradation of the anisotropy induced
by the affine-invariant and Log-Euclidean interpolations was one of the main motiva-
tion to develop a novel, anisotropy preserving, framework. This important property will
be explained in the sequel. First, we introduce a novel anisotropy index, the Hilbert
Anisotropy (HA).

Intuitively, anisotropy is a measure of ‘how far away’ a diffusion tensor is from being
isotropic, as explained in (Fletcher and Joshi, 2007). In this work, the authors introduced
the Geodesic Anisotropy (GA) (3.20), by measuring the distance between a tensor and
its closest isotropic tensor, in a geodesic sense i.e. GA(S) = d(S, SI) where d is the
affine-invariant distance and SI is the closest isotropic tensor. In a geometric framework,
this tensor is given by (det(S))1/3I. It is important to note that this definition is scale-
invariant, GA(S) =GA(βS).

Our novel definition of anisotropy is based on the fact that, geometrically, any anisotropy
scalar measure should be a scale invariant distance to identity. It is known that projective
distance are scale-invariant. We have thus decided to use the Hilbert metric (Birkhoff,
1957), which is precisely a projective distance that can be defined in arbitrary cones, to
define our anisotropy index. It leads to the following definition that we refer to as Hilbert
anisotropy (HA) in the sequel.

Definition 4.3.2. The Hilbert Anisotropy of a tensor S is

HA = dH(S, I) = log

(

λmax

λmin

)

(4.25)

where λmax and λmin are respectively the maximum and minimum eigenvalues of S.

With a projective distance, the distance between any isotropic tensor and the identity
is null, which explains why the index should be measured as a distance to identity.

The HA index possesses all the required properties for an anisotropy index, i.e.

• HA ≥ 0 and HA = 0 only for isotropic tensors.

• HA is invariant to rotations: HA(S) = HA(USUT ) for all U ∈ O(3).

• HA is invariant by scaling, HA(S) = HA(sS), ∀s ∈ R+ (it means that anisotropy
only depends on the shape of the tensor and not on its size).
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• HA is a dimensionless number. This property is desirable and natural, as the
anisotropy of the tensor physically reflects the microscopic anisotropy of the tissues,
which is independent from the diffusivity.

Figure 4.6 illustrates a comparison of HA with the three popular anisotropy indices: the
fractional anisotropy (FA), the relative anisotropy (RA) and the geodesic anisotropy (GA).
This figure is constructed with eigenvalues equal to λ, (1− λ)/2, (1− λ)/2, λ ∈]0, 1], as ex-
plained in (Batchelor et al., 2005). The diffusion tensor varies from planar to spherical for
λ ∈]0, 1/3] and then tends to become unidirectional when λ increases. By definition, the
Hilbert Anisotropy is more similar to the Geodesic Anisotropy, as they both are geometric.

Figure 4.6: Evolution of four indices of anisotropy with respect to modifications of eigenvalues. The
difference between ‘linear’ indices of anisotropy (FA, ♦ and RA, ⋆) and geometric’ ones (HA, © and
GA,�) is clearly visible. The eigenvalues are given by λ, (1 − λ)/2, (1 − λ)/2, λ ∈]0, 1], (Batchelor et al.,
2005).

The spectral interpolation formula (4.24) leads to a particularly attractive formula for
Hilbert anisotropy interpolation

HA(S(t; S1, S2)) = (1 − t) HA(S1) + t HA(S2) (4.26)

In other words, Hilbert anisotropy is linearly interpolated along the interpolation curves
(4.1) and (4.20). The three other anisotropy indices do not lead to linear interpolation as
the Hilbert anisotropy but they are qualitatively equivalent, since they evolve monotoni-
cally along the interpolating curves. This is a major difference between the affine-invariant
and Log-Euclidean frameworks on one hand and the spectral frameworks on the other
hand.

Figure 4.7 illustrates how the different features of the tensors evolve along the Log-
Euclidean and spectral-quaternion interpolating curves. In particular, it can be observed
how the anisotropy may degrade along the curve (3.21). This ‘anisotropy swelling effect’
is undesirable for a processing framework in which anisotropy carries important informa-
tion. Some difference also appears in the orientation interpolation. The angle between the
principal eigenvectors is quasi linearly interpolated when using quaternions, which is not
the case with the Log-Euclidean framework.
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Figure 4.7: Interpolating curves between two tensors. Top: Log-Euclidean interpolation. Bottom: Spectral-
quaternion interpolation. The represented indices are (from left to right) the determinant, the angle
between the principal eigenvectors of the first tensor and the considered one, the fractional anisotropy and
the Hilbert anisotropy. Anisotropy evolves monotonically along spectral-quaternion interpolating curves,
in contrast to Log-Euclidean interpolation.

4.3.5 Singularities and uncertainty

A potential shortcoming of the proposed spectral-interpolation framework is that it is only
defined on the subset S+

∗ (3) where eigenvalues are distinct. In situations of two or three
similar eigenvalues, small measurements errors may lead to significant differences in the
interpolating curves.

One should bear in mind that an isotropic measurement is also much less certain about
orientation than an anisotropic measurement (Parker et al., 2003). In other words, eigen-
value separation of positive definite matrix correlates with the orientation information
contained in the physical measurement. A similar idea was stated in (Coulon et al., 2004),
which explains that the principal direction of diffusion map does not have any organization
or meaning in isotropic regions. This idea led the authors of (Coulon et al., 2004) to the
introduction of a weighting factor in their regularization algorithm.

In order to account for this uncertainty, we introduce the real function

f(x) =
(βx)4

(1 + (βx)4)
(4.27)

where β is a parameter to be defined in the sequel. The function f defines a smooth
sigmoidal transition between the limits f(0) = 0 and f(∞) = 1. The function of Eq.
(4.27) will be used to rescale the interpolation between orientations of tensors in a way
that mitigates the importance of the orientation information in case of low anisotropy.

Consider two tensors S1, S2, with S1 isotropic. The orientation of S1 (encoded by the
associated quaternion q1) is totally arbitrary. As a result, it seems logical not to take into
account this orientation in the interpolation between S1 and S2. This suggest to fix q2

along the entire interpolation curve, which means weighting q1 by a vanishing weight in
the formula (4.20).
On the other hand, if we consider two very anisotropic tensors (sharing the same eigenval-
ues), then their orientations q1, q2 should be fully taken into account in the interpolation
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process by opting for the linear interpolation (4.20).
The function f can be used as a smooth transition between those two limit cases. Noticing
that the case where one tensor is isotropic corresponds to

min(HA1, HA2) = 0 ,

while the case where both are very anisotropic corresponds to min(HA1, HA2) being large,
we thus let

κ(HA1, HA2) = f(min(HA1, HA2)) . (4.28)

The linear quaternion interpolation in (4.20) can be replaced with

q(t) = w∗
1(t)q1 + w∗

2(t)q2 (4.29)

where

w∗
1(t) = (1 − t)

κ(HA1, HAt)

κ̄
,

w∗
2(t) = t

κ(HAt, HA2)

κ̄

and where κ̄ = (1 − t)κ(HA1, HAt) + tκ(HAt, HA2) ensures that w∗
1 + w∗

2 = 1. HAt is
defined in Eq.(4.26).
Defined this way, the interpolation is consistent with the orientation uncertainty. Indeed
when one tensor, say S1, is isotropic we have w∗

1(t) ≡ 0. More generally as soon as
HA1 < HA2 we have w∗

1 < 1−t as f(HA1) < f(HAt), meaning that the basis q1 is given less
weight than in the linear interpolation case (4.20). Finally, when min(HA1, HA2) → ∞,
we recover the linear interpolation (4.20). Figure 4.8 illustrates the effect of this rescaling
in the case of unequal anisotropies. For the simulations of this paper, we choose β = 0.6
so that κ(HA1, HA2) becomes very close to 1 (more than 0.9) when both anisotropies
are at least equal to 3, which means the Hilbert ratio between the largest and smallest
eigenvalue is at least 20 (for example, λ1 = 10 and λ3 = 0.5). In this case both tensors
can be considered as very anisotropic and the linear interpolation (4.20) is recovered. The
parameter β thus appears as a tuning parameter such that f−1(0.9)/β (where f−1 is the
inverse of f) is considered as a high Hilbert anisotropy. The parameter β can be considered
as a user parameter.

It should be noted that the proposed rescaling does not handle the singularities of
partial isotropy (λ1 ≃ λ2 6= λ3). This theoretical limitation of the quaternion framework
appears as a price to pay for the computational savings in the quaternions space.

4.4 Weighted means and multidimensional interpolation

As explained in the first chapter of this thesis, weighted means are crucial in many steps of
the processing. They appear in interpolation, transformation of images, statistics, averages
of images, construction of atlas,... If the mean between two tensors is naturally given by
the interpolating curve, the extension to many tensors is less straightforward, as it will be
explained in the following.

4.4.1 Weighted means

An interpolating curve S(t; S1, S2) provides a straightforward definition of weighted mean
from

mean((1 − t)S1, tS2) = S(t; S1, S2) , 0 ≤ t ≤ 1 . (4.30)
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Figure 4.8: Impact of the rescaling on interpolating curve. For each interpolation, the quaternion inter-
polation follows q(t) = w∗

1(t)q1 + w∗

2(t)q2. Left: w∗

1 = 1 − t, w∗

2 = t, which corresponds to the linear

interpolation of Eq. (4.20). right: anisotropy is used to rescale the interpolation, and w∗

2(t) = t κ(HAt,HA2)
κ̄

.
Since the anisotropy of the first tensor is very low, the interpolated orientation is mostly based on the one
of the second tensor (which is equivalent to w∗

2 ≈ 1).

In particular, the unweighted mean obtained for t = 1/2 corresponds to the midpoint
of the interpolation curve, a definition which agrees with the usual notion of Riemannian
mean when the interpolating curve is a geodesic (see 2.2.1).

Extending the concept of mean to more than two positive definite matrices is less
straightforward and the topic of current research (Pennec et al., 2006; Ando et al., 2004;
Petz and Temesi, 2005; Moakher and Zéraï, 2011; Moakher, 2005). As explained in the
first chapter, mean on manifolds is usually defined by the Kärcher mean (Kärcher, 1977),
which minimizes the sum of squared distances. Usually, this definition does not enable
to derive a closed-form formula for the computation of the mean of N elements, and this
mean is computed through an optimization algorithm, as for example in (Pennec et al.,
2006; Fletcher and Joshi, 2007). This is another attractive feature of the Log-Euclidean
framework, which provides a closed-form formula for the mean of several matrices (Arsigny
et al., 2006).

One of the main problem which arises for the extension of means to many tensors is
the issue of the uniqueness of the mean, and of its symmetry. For example, the mean of
three tensors should satisfy

mean(S1, S2, S3) = mean(S2, S1, S3) = · · · = mean(S3, S2, S1) . (4.31)

At first sight, this problem seems simple. However, due to non-uniqueness of the spectral
decomposition, the solution to this problem necessitates an appropriate procedure.
This issue is explained in Figure 4.9, for the orientation of 2D tensors. In this figure,
the orientations of three tensors are represented (dotted lines). To the left, the pink ori-
entation is chosen as the reference for the realignment, with the direction indicated by
the pink dot. Using the procedure described above, the chosen directions for the other
orientations are indicated by blue and khaki dots. Using those directions, the orientation
of the mean is given by the plain red line. To the right, however, the khaki orienta-
tion is chosen as the reference. This changes the selection of ‘realigned’ directions, and
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the orientation of the mean is different, which means that three identical tensors could
give different means. This is in contradiction with our postulate of uniqueness of the mean.

It could be decided to always choose the first (or last) tensor as a reference. However,
in this case, the mean would be non-commutative. Another procedure of selection of the
reference has to be defined. In this work, we decided to select the most informative tensor
as the reference. The notion of information is related to the weight of the tensor in the
sum and to its anisotropy.

Figure 4.9: Depending upon the chosen reference for the ‘realignment’ of orientations, the orientation of
the mean is very different.

Given N weights w1, . . . , wN that satisfy
∑

i wi = 1, the weighted w-mean of N tensors
S1, . . . , SN is defined as follows:

• The eigenvalues of the mean tensor are defined from the scalar formula (2.2):

λµ,k = exp(
N
∑

i=1

wi log(λi,k)), k = 1, 2, 3. (4.32)

• We select the (weighted) most informative tensor as the reference quaternion qr.
Namely, we choose r as

r = arg max
i

wiHAi (4.33)

The realigned quaternions are denoted by qi,r.

• We define the mean quaternion as the (chordal) mean in the quaternion space

qm =
∑

i

wiqi,r (4.34)

q =
qm

||qm|| (4.35)

The chordal mean of quaternions is the Riemannian mean over the set of rotations us-
ing the chordal distance on the set of quaternions (Dai et al., 2010; Sarlette et al., 2007).
We emphasize that the only singularity of the proposed mean occurs in the situation
qm = 0, which reflects a situation in which there is so much uncertainty about the average
orientation that any choice for q is equally good (or bad).
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The properties of this mean are similar to those of the interpolating curve, since this
mean is ‘information preserving’: the determinant of the mean of N tensors is the (geo-
metric) mean of the determinant, the length of each principal axis is the geometric mean of
the principal axis lengths, and the Hilbert anisotropy of the mean tensor is the arithmetic
mean of the anisotropies

HA =
N
∑

i=1

wiHAi . (4.36)

Finally, as explained in Section 4.3.5, it is possible to weight the orientations differently
than the eigenvalues, in order to take into account the uncertainty of orientation for
isotropic tensors. Following the developments of Section 4.3.5, a novel weighting of the
quaternions, similar to the curve (4.29), is given by replacing the weights in Eq. (4.34) by

w∗
i = wi

κ(HAi, HA)

κ̄
(4.37)

where κ(HAi, HAj) is given by Eq. (4.28) and κ̄ is the normalizing factor given by κ̄ =
∑

i wiκ(HAi, HA).

4.4.2 Multidimensional interpolation

As previously advocated in (Zhang et al., 2006; Kindlmann et al., 2007; Arsigny et al.,
2007), an adequate interpolation method is important for the processing of diffusion ten-
sor images and particularly for the extension of usual registration techniques (for scalar
images) to the case of tensor images. This interpolation scheme is necessary to resample
images. Here, we provide a direct generalization of classical interpolation method, where
the interpolated value is computed as the weighted mean of the original tensors.

A common definition for multidimensional interpolation is through a weighted average
of diffusion tensors (Pennec et al., 2006; Fletcher and Joshi, 2007; Arsigny et al., 2006).
The weight associated to each tensor is a function of the grid distance between this tensor
and the location of the interpolated tensor. In this work, if (x1, x2, x3) ∈ [0, 1]×[0, 1]×[0, 1]
are the coordinates of the interpolated tensor and (α1, α2, α3) ∈ {0, 1}×{0, 1}×{0, 1} the
coordinates of the point α of the grid, the following function will be used

wα(x1, x2, x3) =
3
∏

i=1

(1 − αi + (−1)1−αixi). (4.38)

The interpolation between two tensors has already been illustrated in Figure 4.7, where
the evolution of the different information conveyed by the tensors is also shown, as in
(Zhou, 2010).

Using the method described above for computing the weighted means of many tensors,
the interpolation of four tensors at the corners of a grid can be computed, as illustrated
in Figures 4.10 and 4.11. For those figures, the alternative weights proposed in (4.37) are
used. In the left columns of those figures, colors of the tensors are determined by HA.
In their middle columns, the evolution of the anisotropy in the grid is represented as a
contour map. Each curve in these subfigures represent a constant level of anisotropy. In
Figure 4.10, which performs the weighted mean of 3 very anisotropic (prolate) tensors and
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an isotropic one, the difference is clearly visible between the two interpolation schemes.
The monotone evolution of anisotropy achieved with the spectral interpolation is strongly
distorted with the Log-Euclidean interpolation. Figure 4.11 uses an isotropic tensor (bot-
tom left), a prolate tensor (bottom right) and two oblate tensors (for which λ1 ≈ λ2 > λ3).
In this case, anisotropy varies in a same way using any of the two methods. Finally, the
direction of the principal eigenvector of tensors is also shown (right columns). Some differ-
ences can be observed, for example on the first row of the subfigures in Figure 4.10, which
corresponds to an interpolation between two orthogonal tensors with the same shape.With
the Log-Euclidean method, the principal eigenvector does not vary until the midpoint of
the interpolation, where it is rotated by π/2 rad. On the contrary, the spectral quaternion
interpolation results in a monotone rotation of the tensor. In Figure 4.11, it is interesting
to note the difference for the orientation interpolation between the prolate tensor and the
oblate one (last columns of the subfigures). Since the principal direction of diffusion (first
eigenvector) of the prolate tensor is in the diffusion plan of the oblate tensor, it is not nec-
essary to vary the orientation of the prolate tensor. This is indeed the case when using the
Log-Euclidean method, but not with the Spectral-Quaternion framework, which performs
a smooth variation of this orientation. This disadvantage of our method could be avoided
by using the whole rotation matrix to represent eigenvectors. This could help to weight
differently the orientation of a prolate tensor if its principal direction is included in the
diffusion plane of an oblate tensor. However, this would imply to weight the orientation
interpolation by a factor depending upon the full orientation, which is not permitted by
the quaternion representation.

Figure 4.10: Multi-dimensional interpolation between four tensors at the corners of the grids. Top: Log-
Euclidean interpolation. Bottom: Spectral interpolation. Colors of the ellipsoids indicates their anisotropy
from yellow (low anisotropy) to red for higher anisotropies. The subfigures in the middle represent a
contour map of the Fractional Anisotropy. Areas of constant anisotropy are represented by color lines. In
the right, the orientation of the first eigenvector of tensors is represented. The lengths of the lines are
proportional to the fractional anisotropy and the colors depend on the direction.
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Figure 4.11: Multi-dimensional interpolation between four tensors at the corners of the grids. Top: Log-
Euclidean interpolation. Bottom: Spectral interpolation. Colors of the ellipsoids indicates their anisotropy
from yellow (low anisotropy) to red for higher anisotropies. The subfigures in the middle represent a
contour map of the Fractional Anisotropy. Areas of constant anisotropy are represented by color lines. In
the right, the orientation of the first eigenvector of tensors is represented. The lengths of the lines are
proportional to the fractional anisotropy and the colors depend on the direction.

In order to further compare the two frameworks, we implemented some synthetic pro-
cessing examples which illustrate how approximation errors could propagate in the pro-
cessing pipeline. The simulations are chosen as in (Thévenaz et al., 2000). The protocol
is the following: a succession of r = 15 rotations of 2π/15 = 24◦ each was applied to some
image, such that the output of any given step ri is the input for the next step ri+1. The
final output is then compared to the initial image, see Figure 4.12.

To enable a better interpretation of the results, the maps of squared differences between
the properties of the original image and the ones of the output are also shown. The errors
in FA are localized, and are bigger in the case of the Log-Euclidean interpolation. There
are more errors for the direction of the principal eigenvector, but it should be noted that
the largest errors are localized in low anisotropy areas. The uncertainty of orientation is
high in these areas, which accounts for large orientation errors.

4.5 Distance, Riemannian metric and similarity measure

As explained in Section 2.1.2, interpolation curves provide a natural measure of similarity
(or closeness) as the length of the interpolating curve in a suitable metric space.
For the scalar interpolation formula (2.2), the definition

d(s1, s2) =

∫ 1

0

√

〈ṡ(t), ṡ(t)〉s(t)dt = | log

(

s1

s2

)

| (4.39)

where gs(t) is the chosen scalar product at s(t), coincides with the (scale-invariant) geo-
metric distance between two positive numbers.
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Figure 4.12: Results of the successive rotations of 2π/15 applied to a real image. Top: Means were
computed with the Log-Euclidean framework. (a): Output of the protocol, (b) Map of the squared
differences in FA between the original image and the output. (c) Map of the squared differences in the
direction of principal diffusion between the original image and the output. Bottom: Idem to top with
the spectral-quaternion framework. It can be observed that the (localized) errors in FA are higher with
the Log-Euclidean framework (color scales are identical). In both cases, the errors in orientation are
concentrated in low anisotropy areas.

Likewise, for the four interpolating formulas considered in this paper, the definition

d(S1, S2) =

∫ 1

0

√

〈Ṡ(t), ˙S(t)〉S(t) dt (4.40)

qualifies as valid distance on S+(3).

The Riemannian distances associated with the affine-invariant metric and the Log-
Euclidean metric have been defined in Equations (3.19) and (3.22).

For the spectral geometry, the distance on the Lie group SO(3)×D+(3) could be taken
as given by formula (4.40) with the following metric.

Definition 4.5.1. The metric associated to the Lie group SO(3) × D+(3) is given by

gS(t)(Ṡ(t), Ṡ(t)) = k2(S(t)) g
SO(3)
U(t) (U̇(t), ˙U(t)) +

∑

(

Λ̇i(S(t))

Λi(S(t))

)2

(4.41)

which is a weighted sum of the (infinitesimal) Riemannian distances on SO(3) and D+(3),
and k is a weighting factor to be defined in the sequel.

The Riemannian distance on SO(3) is not global because of cut-locus singularities.

The spectral-quaternion geometry replaces the geodesic distance on SO(3) by a chordal
distance in the space of quaternion, leading to another metric.
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Definition 4.5.2. Using the chordal distance in the space of quaternion, a novel metric
can be defined as

gS(t)(Ṡ(t), Ṡ(t)) = k2(S(t)) ||q̇(t)||2 +
∑

(

Λ̇i(S(t))

Λi(S(t))

)2

. (4.42)

Building upon the interpolating curves (4.29), we propose to let the weighting factor
in (4.42) be

k(S(t)) = f(HA(t)) , (4.43)

where f is defined in Eq. (4.27). Thus defined, it appears as a sigmoid that discards the
(infinitesimal) distance with the orientation term when the considered tensor is isotropic
(since this term contains no information), and fully accounts for orientation in the case of
large anisotropy (that is, k is close to 1 when the ratio between the largest and smallest
eigenvalue becomes larger than 20).
It is hopeless to compute in explicit form the geodesic distance d associated to the metric
(4.42). However, the geodesic distance satisfies

∑

| log
λi(S1)

λi(S2)
| ≤ d(S1, S2) ≤

κ(S1, S2)||q1 − qr
2||2 +

∑

| log
λi(S1)

λi(S2)
| := ∆(S1, S2) (4.44)

with

κ(S1, S2) = f(min(HA1, HA2)) .

The lower bound is obvious since k(S(t)) ≥ 0 along the path; the upper bound is the
(Riemannian) length in the sense of metric (4.42) of a curve originating at the tensor of
minimal isotropy and made of two arcs: the first one linking the orientations at constant
(minimal) anisotropy and the second one linking the eigenvalues while the orientation
remains fixed. The geodesic distance being by definition smaller than the length of any
path, the upper bound is obtained.
In the limit case of an isotropic tensor, the inequality above becomes an equality, and when
it is close to identity, ∆(S1, S2) is thus a good approximation of the geodesic distance.
It is meaningful, as the weighting factor goes to zero when the orientation information
becomes uncertain. This measure captures the fact that the cost of rotation is weighted
with the orientation information. We propose formula (4.44) as a convenient substitute
for the geodesic distance associated to the Riemannian metric (4.41-4.43). This similarity
measure is not a distance because it does not satisfy the triangular inequality. However,
the bounds in (4.44) show that it approximates the distance when the anisotropy is small
and weights the distance between quaternion only when the anisotropy is high, that is,
when the orientation of tensors carries physical information.
It should be noted that the proposed interpolating curve (4.29), metric (4.42), and similar-
ity measure (4.44) are not very sensitive to the form of the sigmoid f , nor to the parameter
β. The rationale for the term k(S(t)) is simply to let the orientation quaternion q play a
role only when the anisotropy exceeds a certain threshold.



66 Chapter 4. Anisotropy preserving DTI processing

We close this section with a conceptual remark for the interested reader. The interpolat-
ing curve (4.29), metric (4.42), and similarity measure (4.44) approximate a Riemmanian
framework in S+(3) by properly combining a Riemmanian framework in D+(3) and in
SO(3). This means that distances between ellipsoids are approximated by the weighted
sum of distances between rotations and distances between dilations. This idea is in close
analogy with the framework recently developed by the authors (Bonnabel and Sepulchre,
2009; Bonnabel et al., 2013) to define distances between flat ellipsoids, that is, positive
semidefinite tensors of fixed rank: the proposal being to approximate the distance between
the flat ellipsoids by the weighted sum of distances between the subspaces that support
them and distances between full ellipsoids in a common subspace. The Riemmanian frame-
work proposed for flat ellipsoids is probably not directly relevant for the DTI application
but it is of interest to notice that different applications motivate a separate weighting
of rotations and dilations, leading to similar theoretical and computational issues about
reconciling the geometry of the product space to the geometry of the original space.

4.6 Computation of the spectral-quaternion tools

The basic steps for the implementation of the tools presented in this chapter are summa-
rized in the following pages.
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Algorithm 1: Computation of interpolation

Inputs: two tensors S1 and S2, a parameter t
Output: the interpolated tensor for the value t, St

1. S1 = U1Λ1UT
1 , S2 = U2Λ2UT

2 , with the eigenvalues in decreasing order.

2. Compute the quaternions representing the orientations, q1 and q2, and the associ-
ated set Q2. This set contains the four elements
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and their opposites.

3. Compute the interpolated eigenvalues matrix, using λi(t) = exp((1 − t) log(λi,1) +
t log(λi,2).

4. Select the ’realigned’ quaternion qa
2 with respect to q1 using qa

2 =
arg maxq2∈Q2 qr

1.q2

5. Compute the interpolated quaternion as

qm(t) = (1 − t)q1 + tqa
2

q(t) = qm(t)/||qm(t)||

6. Compute U(t) as the rotation matrix corresponding to q(t).

7. The interpolated tensor is given by

S(t) = U(t)Λ(t)U(t)T .
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Algorithm 2: Computation of weighted mean

Inputs: A set of tensors S1, S2, . . . , SN and their associate weights wi, i = 1, . . . , N .
Output: the mean tensor Sµ

1. Perform the spectral decomposition of each of the N tensors.

2. Compute the weighted mean of eigenvalues, through

λµ,k = exp(
N
∑

i=1

wi log(λi,k)), k = 1, 2, 3.

3. Select as the reference tensor the one that maximizes the product wiHAi. The
reference quaternion is qr.

4. For each tensor, select the ’realigned’ quaternion qa
i with respect to qr using

qa
i = arg maxqi∈Qi

qr.qi

5. The weighted mean of quaternions is

qm =
∑

i

wiq
a
i

qµ =
qm

||qm||

6. Compute Uµ from qµ according to (4.10).

7. The mean tensor is Sµ = UµΛµUT
µ .
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Algorithm 3: Computation of similarity measure

Inputs: Two tensors S1 and S2.
Output: the measure of their similarity ∆(S1, S2)

1. Perform the spectral decomposition of each tensor, and compute the quaternions
corresponding to the orientation matrices.

2. The distance between eigenvalues is given by

dΛ =
∑

| log
λi(S1)

λi(S2)
|

3. The weighting factor is given by κ(S1, S2) = (β min (HA1,HA2))4

1+(β min (HA1,HA2))4 , with β = 0.6.

4. Compute the chordal distance between quaternions, using one of the quaternion
as the reference and realigning the other one to this reference, i.e. if q1 is
the reference, select the ’realigned’ quaternion qa

2 with respect to q1 using
qa

2 = arg maxq2∈Q2 q1.q2.

The distance between quaternions is

dq = ||q1 − qa
2 ||2 .

5. Finally, ∆(S1, S2) = κdq + dΛ.
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4.7 Conclusion

This chapter had introduced the novel framework for DTI processing which is called the
spectral-quaternion framework. The development of this method was motivated by the
observed limitation of the affine-invariant and Log-Euclidean methods. Indeed, those two
methods have the drawback of degrading the anisotropy during the processing, although
this information is one of the most important conveyed by the tensor. The decoupling
between the processing of intensities and the processing of orientations had enabled to
avoid this limitation.
Together with the goal of anisotropy preservation, we focused on the computational cost
as another important issue. The processing of rotations matrices can indeed be expensive,
and the idea was to use the alternative parametrization of unit quaternions. The proposed
framework is both information preserving and computationally efficient, as illustrated in
Figure 4.13.

Affine-invariant 

Log-Euclidean 

Spectral

Spectral quaternions

Degradation of anisotropy Anisotropy preserving

Extrinsic

Computationally

 fast

Intrinsic

Computationally

 slow

Figure 4.13: Comparison of the four frameworks presented in this dissertation: the affine-invariant frame-
work (3.18), the Log-Euclidean framework (3.21), the spectral framework (4.1) and the spectral quaternion
framework (4.20).

Another contribution of this chapter concerns the uncertainty of orientation for isotropic
(or nearly isotropic) tensors. Indeed, the orientation of those tensors is highly uncertain,
even irrelevant for isotropic tensors. Based upon this observation, a weighted interpolating
curve between orientations has been proposed. This uncertainty is also taken into account
in the development of our similarity measure.

Finally, the important concept of weighted mean has been defined, leading to a general
definition of mean that is univoque and commutative. This mean satisfies the properties
of invariance by scaling and rotation, and preserves all the important features of tensors.

The work presented in this chapter is the subject of a submitted paper to International
Journal of Computer Vision:

Anne Collard, Silvère Bonnabel, Christophe Phillips and Rodolphe Sepulchre. Anisotropy
preserving DTI processing. Submitted in revised form to International Journal of Com-
puter Vision, May 2013.



Chapter 5

Transformations and filtering of Diffusion Tensor Images

The goal of this chapter is to apply the basic operations defined in
the preceding chapter to some simple processing algorithms.
Using existing reorientation strategies, we show how to transform Diffu-
sion Tensor Images with our spectral-quaternion framework. A simple
rigid-body registration algorithm is also presented.
Weighted means of tensors are used to filter DT images, with a Gaus-
sian kernel and through a Perona-Malik anisotropic filter. The results
of our framework are compared with algorithms using the Log-Euclidean
method.
The results of this chapter suggest that our framework can be used in all
processing algorithms, and is competitive with state-of-the-art methods.

In the preceding chapters, four different Riemannian frameworks for the processing of Dif-
fusion Tensor Images have been studied. The main focus was on three basic operations:
interpolation, averaging, and similarity measure. In this chapter, we use these basic op-
erations to illustrate the generalization of some usual processing algorithms to the case of
matrix-valued images.

To analyse Diffusion Tensor Images, multiple pre- and post-processing steps are re-
quired. In this chapter, we will focus on the transformation of Diffusion Tensor Images,
which can occur in many of those steps, for example in registration, or in the construction
of an atlas. The second application of interest here is the filtering of DT images. Filter-
ing of images is often necessary to reduce the measurement noise. The simple Gaussian
filtering will be illustrated, followed by one version of an anisotropic filtering based on the
well-known developments of Perona and Malik (Perona and Malik, 1990).

Since both the Log-Euclidean and spectral-quaternion frameworks are computation-
ally efficient, a main objective will be to compare the merits of the two methods in DTI
processing.

5.1 Transformations of DT images

Transformations of images appear in many processing algorithms, and the way they are
performed might have a huge impact on the final outputs of those algorithms, as explained
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in (Muñoz-Moreno et al., 2009). Two major concepts have to be considered when deal-
ing with transformations of Diffusion Tensor Images: the interpolation method and the
reorientation strategy. Those two concepts will be explained in the following. We first
introduce the notations which will be used throughout this section.

If the transformed image f ′ is computed from an original image f through the trans-
formation M , this image f ′ satisfies

f ′(x) = f(M(x)) (5.1)

where x denotes a position ‘on the grid’, x ∈ N
3. If the transformation is affine i.e. it

does not depend on the position on the grid, it has the form M(x) = Mx + t, where M is
a n × n linear transformation matrix, and t is a vector which expresses a rigid translation
of the image. Equation (5.1) thus becomes

f ′(x) = f(Mx + t) (5.2)

5.1.1 Interpolation method

During a transformation, it generally occurs that the value M(x) is not a natural, i.e. it
does not correspond to a new point in the grid. This means that the value f(M(x)) is not
defined. It is here that interpolation methods come to rescue: they enable to compute an
‘approximation’ of this tensor, which will be used to assign its value to f ′(x) (Thévenaz
et al., 2000).

As explained in the preceding chapter, interpolation between tensors amounts to com-
puting weighted means. However, it should be noted that other non mean-based interpo-
lation methods are used. This is the case for example in (Alexander et al., 2001; Whitcher
et al., 2007), which rely on a nearest neighbor resampling in order to avoid averaging of
diffusion tensors. This method consists in taking the tensor at the nearest location as the
output of the interpolation.

In this work, we have decided to compute interpolated tensors through weighted means.
There are different ways of assigning the interpolation weights, which would lead to dif-
ferent ‘interpolation methods’. A simple trilinear method was proposed in Chapter 4, but
other more complex methods could be used, as polynomial interpolation, methods based
on B-splines, or on a Gaussian kernel.

5.1.2 Reorientation strategy

The important concept of reorientation of Diffusion Tensors has been introduced in
(Alexander et al., 2001) and widely used since then.

The paper addresses the issue of applying spatial transformations to Diffusion Tensor
Images. Indeed, compared to scalar images, the transformation of Diffusion Tensor Images
is complicated by the fact that the tensors contain orientation information, which is itself
affected by the transformation. This problem is illustrated in Figure 5.1. A rigid rotation
of π/6 rad is applied to a Diffusion Tensor Image ((a) in the Figure). If the rotation
is naively applied to the image, by simply constructing the value at each pixel in the
transformed image f ′ from an interpolation between the tensors in the neighborhood of
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the corresponding position in the original image f , we obtain the result shown in Figure
5.1, (b). It can clearly be seen that the orientation of tensors is problematic. The red box
highlights some positions where this problem is particularly visible. The tensors which
were horizontal in the original image are still horizontal after the transformation. This
observation explains why a reorientation strategy has to be implemented together with
the transformation of the image. In a few words, if the image f has been rotated by R,
each tensor in the transformed image f ′ should be replaced by

S′ = RSRT . (5.3)

The Figure 5.1,(c) illustrates how this reorientation enables to obtain tensors which are
adequately orientated. In particular, the orientation of tensors in the red box is now co-
herent with respect to the true image. It is important to note that if the transformation
is rigid, each tensor will be rotated by the same rotation matrix. However in the case of
an elastic transformation, it could be beneficial to compute local estimates of the ‘reori-
entation matrix’, i.e. for each voxel.

Figure 5.1: Illustration of the problem which could arise if no reorientation procedure is implemented
during an image transformation.
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Different reorientation strategies have been proposed in (Alexander et al., 2001), de-
pending upon the type of transformation applied. The simplest but less accurate strategy
consists in ignoring the problem of reorientation, and to simply interpolate the tensors.

The second strategy, called the Finite Strain (FS) strategy, is particularly adapted for
affine transformations, and widely used in the literature thanks to its simplicity. If we
consider the (nonsingular) transformation matrix M, it can always be decomposed to a
rigid rotation component R and a deformation component D, through M = DR. One
strategy is thus to ‘extract’ the rotation component and to apply it to each tensor of the
image. This rotation component can be computed through

R = (MMT )−1/2M . (5.4)

This method can easily be used with the spectral-quaternion framework. In this case,
the obtained rotation matrix R is converted to a unit quaternion, which will be used
throughout the computations.

The third strategy proposed in (Alexander et al., 2001) is called the preservation of
principal direction (PPD). This strategy was developed in order to overcome a possible lim-
itation of the finite strain one. Indeed, with the FS strategy, the deformation component
of the transformation is discarded. However, transformations as shearing or stretching also
affect the orientation of the image. This impact, which usually depends on the original
orientation of the structure, should be accounted for in the transformation.

Briefly, the chosen rotation should map the first eigenvector of S, e1 to n1 = Me1/|Me1|
and the second eigenvector e2 to a unit vector perpendicular to n1 in the plane spanned
by n1 and n2 = Me2/|Me2|. In other words, the PPD method preserves the principal
direction of the diffusion tensor through the transformation, as well as the plane of the
first two eigenvectors. The detailed method to compute the rotation matrix R can be
found in the appendix of (Alexander et al., 2001).

In practice, this method is less often used than the Finite Strain one, because it is
more complicated. Moreover, it can not be directly used within our spectral-quaternion
framework. To apply it with this framework would imply to ‘go back’ to the rotation
matrix space, in order to obtain the eigenvectors. The increase in accuracy would then be
obtained at the expense of a significant increase in computational cost.

5.1.3 Rigid-body registration

To compare a pair of images, it is necessary to make sure that each pixel of those images
is related to the same physical position in the brain. The procedure which finds the geo-
metrical transformation that maps one image into another, so that objects or structures
in both images are aligned, is called image registration. A lot of procedures exist for the
registration of scalar images, but their extension to the diffusion tensor case is complicated
by the many features of tensors. Multiple issues arise when considering tensors, as for ex-
ample the problem of their reorientation. As explained in the preceding section, tensors
must be reoriented after a transformation. However, it is also important to take this step
into account when searching for the best transformation.
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A detailed review of the principal issues of Diffusion Tensor Images registration is found
in (Muñoz-Moreno et al., 2009). Many papers are concerned with this topic, using varying
similarity measures, or different degrees of freedom for the desired transformation. For
example, in (Goh and Vidal, 2006), a closed-form formula is given for the rigid registration
of images. Affine registration is the topic of (Pollari et al., 2006), while (Alexander and
Gee, 2000) focus on elastic matching. More complex frameworks, such as diffeomorphic
ones, can be found in (Cao et al., 2006) and in (Yeo et al., 2009, 2008) which derive an
exact differential using the Finite Strain strategy.

Registration methods are of course based on a similarity measure between images.
The spectral-quaternion framework and its associated measure could be used to drive
registration procedures, since this method has been shown to be particularly efficient for
the processing of the interesting features of the tensors. As a proof of concept, a very simple
rigid-body algorithm is considered in this thesis, using the spectral-quaternion similarity
measure, the corresponding definition of weighted means and the Finite Strain strategy
for the reorientation of tensors. If f is the moving image and g is the target image, the
goal of the algorithm is to search the minimum of a cost function χ2. In the scalar case,
this cost function is the sum over all pixels of the squared difference between values. A
simple extension of this function to the case of diffusion tensors is

χ2 =
∑

i

d2(Rf(Mxi + t)RT , g(xi)) (5.5)

where R is the rotation component of M, computed using (5.4), and d is the spectral-
quaternion similarity measure. For comparison purposes, the method was also imple-
mented with the Log-Euclidean distance. The cost function can be optimized by using a
Gauss-Newton optimization, since it can be written as

χ2 =
∑

i

b2
i

bi = d(Rf(Mxi + t)RT , g(xi))

For a rigid body registration, the transformation Mx + t is dependent upon 6 pa-
rameters : three translation parameters and three angles of rotation. The translation t
writes

t =







m1

m2

m3






(5.6)

while the matrix M is equal to a composition of three rotation matrices, M = RxRyRz,
i.e.

M =







1 0 0
0 cos(m4) − sin(m4)
0 sin(m4) cos(m4)













cos(m5) 0 − sin(m5)
0 1 0

sin(m5) 0 cos(m5)













cos(m6) − sin(m6) 0
sin(m6) cos(m6) 0

0 0 1






.

(5.7)

In this particular case, the matrix R is equal to M, since the translation does not
affect the orientation of tensors. The gradient of the functions bi with respect to the
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parameters of the transformation is needed to compute the optimization. An adaption of
a finite-difference scheme has been defined, and the gradient will be approximated by

∂bi(m)

∂mj
=

d(R+f(M+xi + t+)(R+)T , g(xi) − d(R−f(M−xi + t−)(R−)T , g(xi))

∆mj
, (5.8)

where M+ and t+ are the transformation matrix and translation vector where mj is
replaced by m+

j = mj + 1
2∆mj, and M−,t− are the same matrix and vector with m−

j =

mj − 1
2∆mj. R+ and R− are the corresponding rotation components.

This simple algorithm has been applied to a pair of images from a single subject which
has been scanned twice, in two different positions (this justifies the fact that only rotation
and translation are considered in the transformation). The same image slice for each of
the acquisitions is shown in Figure 5.2. For the algorithm, the figure (a) is used as the
fixed image, while the figure is (b) the moving image.

(a) (b)

Figure 5.2: Slice of the pair of images to be registered. The same slice was selected in the two images.
They are very different, which is due to the different positions of the head of the subject in the scanner.
For the algorithm, image (a) is the fixed image, while (b) is the moving one.
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Figure 5.3 shows the results of the rigid-body registration: on the left, the Log-
Euclidean similarity measure was used to compute the cost function, and the image was
transformed using a Log-Euclidean interpolation. On the right, the spectral-quaternion
method was used. In both cases, the images are reoriented using the Finite Strain strat-
egy. At first sight, both figures are very close to the fixed image. This indicates that the
algorithms are efficient at finding the ‘true’ displacement of the subject. The two results
are very similar, which suggests that the spectral-quaternion method is competitive with
respect to the Log-Euclidean framework, and that its application in practice should be
considered. The comparison of the obtained parameters for the transformation indicates
a similar observation, as we have (where the units are the size of voxels).

tLE =







2.94
3.76
7.98






, tSQ =







2.53
3.53
7.93






(5.9)

and

MLE =







0.9998 0.0213 0.0038
−0.0213 0.9998 0.0055
−0.0037 −0.0056 1






, MSQ =







0.999 0.0208 0.0114
−0.0209 0.9998 0.0072
−0.0112 −0.0074 0.9999






.

(5.10)

(a) (b)

Figure 5.3: Results of the simple registration algorithm. (a): With the Log-Euclidean similarity measure
and interpolation. (b): With the spectral-quaternion similarity measure and interpolation. Both results
are very similar, and similar to the fixed image shown in Figure 5.2, (a). This is a good indication that
our framework could be used to develop more complex algorithms.
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5.2 Filtering of DT images

In this section, we will illustrate how the framework introduced in Chapter 4 affects the
results of some important processing methods. All these methods are based on the main
notion of weighted means. Many image processing tasks imply the convolution of the
image with some kernels. This is the case of denoising, smoothing, edge detection, image
sharpening and filtering. The convolution of diffusion tensor images is straightforward
from the definition of means.

Gaussian filtering

In a continuous setting, the convolution of a vector field F0(x) by a Gaussian Gσ is given
by

F (x) =

∫

y
Gσ(y − x)F0(y)dy .

In the case of images (i.e pixels or voxels on a discrete grid), the coefficients are
renormalized since the neighborhood V is usually limited to points within one to three
times the standard deviation σ. The discretization is given by

F (x) =

∑

u∈V(x) Gσ(u)F0(x + u)
∑

u∈V(x) Gσ(u)
, (5.11)

which is nothing else than a weighted averaging, where the weights are given by the
coefficients Gσ. We illustrate tensor image smoothing on a 2D example: one slice through
a true image (Figure 5.4 (a)) is corrupted by additive noise (Figure 5.4 (b)) then Gaussian
filtered. The size of the Gaussian filter was 7 × 7, and σ = 3 pixels. The Log-Euclidean
filtering (Figure 5.4 (c)) is compared to a convolution based on the spectral-quaternion
framework (Figure 5.4 (d)). It can be observed that both methods produce smoothened
images.

FA maps were derived from the noisy tensor image (Figure 5.5 (a)), and the smoothed
images obtained with the Log-Euclidean and spectral-quaternion approaches (Figure 5.5
(c) and Figure 5.5 (d) respectively). The FA map of the noisy tensor was also smoothed
(Figure 5.5 (b)) as would be classically done. It is clear from those figures that tensors
which are highly anisotropic in the true image become much more isotropic with the Log-
Euclidean filtering (Figure (c)). This (expected) degradation of anisotropy is fortunately
less important with the spectral-quaternion framework (Figure (d)). For comparison pur-
pose, a Gaussian filtering was applied directly on the FA map of the noisy image. The
resulting map is shown in Figure 5.5,(b). It is interesting to note that the FA map of the
spectral-quaternion filtered image (Figure (d)) is more similar to the filtered FA map (Fig-
ure (b)) than the Log-Euclidean one. This means that the spectral-quaternion smoothing
affects FA as if working directly on the scalar image.

Anisotropic filtering

Anisotropic regularization of images corrupted by noise is very important in medical image
processing, since it allows for a reduction of the noise level while preserving boundaries
and structures. The main idea of anisotropic filtering is to ‘penalize’ the smoothing in the
directions where the derivative is important (Perona and Malik, 1990). As proposed in
(Pennec et al., 2006), if c(·) is a weighting function decreasing from c(0) = 1 to c(∞) = 0,
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(a) (b) (c) (d)

Figure 5.4: Gaussian filtering of a true image. From left to right: Slice of an image constructed from real
data, noisy image, result of the Gaussian filtering with the Log-Euclidean method, Gaussian filtering with
the spectral-quaternion framework. For both methods, boundaries are less visible after the filtering.

anisotropic filtering can be realized using a discrete implementation of the Laplacian op-
erator. The contribution ∆uS of the spatial direction u to the Laplace-Beltrami operator
is weighted by the decreasing function, according to the norm of the gradient in that
direction. The norm of the gradient should of course be evaluated according to the corre-
sponding metric or measure.

Finite difference approximations of the derivatives are explained in (Pennec et al.,
2006) for the affine-invariant metric. The update of a tensor S(x) at position x is computed
through

Sn+1(x) = S(x)1/2 exp
(

S(x)−1/22ε∆aS(x)S(x)−1/2
)

S(x)1/2 , (5.12)

where ∆aS(x) is the Laplace-Beltrami operator for the anisotropic filtering. Using a finite
set V of directions u, this operator can be approximated as

∆aS(x) ≃ 2d

card(V)

∑

u∈V

[

c
(

|| log(S(x)−1/2S(x + u)S(x)−1/2||2
)

× S(x)1/2 log
(

S(x)−1/2S(x + u)S(x)−1/2
)

S(x)1/2
]

(5.13)

where d is the dimension of the image and card(V) is the cardinality of the set V. It is
clear from the equations that this algorithm is expensive to compute, since it requires
many logarithms and square roots of matrices.

In the case of the Log-Euclidean metric, the schemes are simpler since the dependence
of the gradient on the current tensor disappears on the logarithms of tensors. The norm of
gradient is then easily computed, as explained in (Arsigny et al., 2006; Fillard et al., 2007).
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(a) (b) (c) (d)

Figure 5.5: FA maps of the Gaussian filtering of a true image. From left to right: FA map of the noisy
image (Figure 5.4 (b)), Gaussian filtering directly applied to the noisy FA map, FA map of the Gaussian
filtering with the Log-Euclidean method (Figure 5.4 (c)), FA map of Gaussian filtering with the spectral-
quaternion framework (Figure 5.4 (d)). It can be observed that tensors which are highly anisotropic in
the true image are more isotropic with the Log-Euclidean framework. This degradation is less important
with the spectral-quaternion method. Moreover, the FA map of the spectral-quaternion filtering is closer
to the Gaussian filtering of the noisy FA map than the one of the Log-Euclidean filtering.

In this case, the update is given by

Sn+1(x) = exp(2ε∆LES(x)) (5.14)

where the Laplace-Beltrami operator can be computed through

∆LES(x) =
2d

card(V)

∑

u∈V

[c (|| log S(x) − log S(x + u)||2)

× (log S(x + u) − log S(x))] . (5.15)

It is important to note that all the computations can be made on the logarithms of
the tensors, and that the exponential can be applied only at the end of the algorithm, to
come back to the tensor space. This reduces the cost of the filtering.

With the spectral-quaternion framework, the situation is similar to the one of the Log-
Euclidean method. Indeed, with this framework, all the computations can be done in an
Euclidean way by using the quaternions and the logarithms of eigenvalues. For each pixel
at position x and at each time step, both the orientation and the eigenvalues have to be
computed.

For the quaternions, the update equation is a simple chordal sum, followed by a nor-
malization of the quaternion.

qtemp(x) = qn(x) + 2εq∆q(x) , (5.16)

qn+1(x) =
qtemp(x)

||qtemp(x)|| , (5.17)
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where

∆q(x) =
2d

card(V)

∑

u∈V

c(
√

κ||q∗
n(x + u) − qn(x)||)∆uq(x) (5.18)

with q∗
n(x + u) the realigned quaternion with respect to qn(x) and

∆uq(x) = q∗
n(x + u) − qn(x) . (5.19)

The parameter κ in the argument of function c(·) is the one used in the similarity
measure (4.44).

The logarithms of eigenvalues are used to compute their filtering, which explains why
the update equation has a geometric expression.

Λn+1(x) = exp(log Λn(x) + 2εΛ∆Λ(x)) (5.20)

where

∆Λ(x) =
2d

card(V)

∑

u∈V

c(||∆uΛ(x)||)∆uΛ(x) (5.21)

with
∆uΛ(x) = log(Λn(x + u)) − log(Λn(x)). (5.22)

If Uq(x) is the rotation matrix corresponding to qn+1(x), the tensor is updated through

Sn+1(x) = Uq(x)Λn+1(x)Uq(x)T . (5.23)

The same remark as in the Log-Euclidean case can be made: the reconstruction of the
tensor does not need to be performed at each step of the processing, but only when the
optimization is done. This enables substantial computational savings.

The Log-Euclidean and spectral-quaternion algorithms have been applied to the same
noisy image that had been used for the Gaussian filtering, Figure 5.4, and the results are
shown in Figure 5.6. The function c(·) used in both cases is c(t) = exp(−t2/σ2). For the
spectral-quaternion method, different σ are used for the orientation and the eigenvalues
(σq = 0.1 and σΛ = 1). The used time steps are also different, with εq = 0.1 and εΛ = 0.001
in our example. For a 2D-image, d = 2 and card(V) = 4. In the figure one can see that both
methods perform relatively well. Compared to the results of the Gaussian filtering shown
in Figure 5.4, the structures are better preserved. Some ‘outliers’ (very different tensors)
are not regularized with either method. Moreover, the results suggest that the spectral-
quaternion method produces better orientation results, for highly anisotropic tensors. In
the subfigures showing the angular difference between the principal eigenvectors, low errors
areas are observable for the spectral-quaternion framework. Those structures correspond
to high anisotropy areas. This property is important, since the orientation of highly
anisotropic tensors is crucial in many processing algorithms.
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Figure 5.6: Anisotropic filtering of a true image. Top left: Log-Euclidean filtering. Top right: Filtering
based on the spectral-quaternion framework. Bottom: angular difference between the first eigenvector of
the filtered tensor and the one of the ‘true’ tensor. It can be observed that some ‘very noisy’ tensors are
not well regularized. Compared to the Gaussian filtering, the structures are well preserved. Moreover, the
orientation of highly anisotropic tensors is better regularized with the spectral-quaternion framework, as
can be observed from the visible ‘low errors areas’.
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5.3 Conclusions and perspectives

This chapter has presented some processing algorithms for Diffusion Tensor Images, using
both the Log-Euclidean and spectral-quaternion framework. The algorithms studied here
have been kept simple, but they proved to be efficient. The ideas developed in this chapter
could be applied to other more complex algorithms, since for example transformations of
images are crucial in many post-processing procedures.

The framework proposed in this thesis has been compared with the Log-Euclidean,
which has been widely used in many works, and for different procedures (see for exam-
ple (Castro et al., 2007; Fillard et al., 2007; Yeo et al., 2009, 2008; Castro et al., 2007;
Van Hecke et al., 2008)).

Regarding the spectral-quaternion framework, this chapter can be seen as a proof-of-
concept: the developed framework is easily adapted to many processing algorithms and has
been shown to be efficient in applications. Its principal properties should enable a better
processing of tensor images while preserving their core characteristics, such as anisotropy.
Compared to the Log-Euclidean framework, the computational cost is not prohibitive.
This observation opens the way to further developments using our framework, where both
the theoretical and implementation aspects will have to be considered. All the spectral-
quaternion tools have been implemented in Matlab R© and gathered in a single object, which
should enable the easy implementation of more complex algorithms.
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Chapter 6

Statistics on DTI

Statistical analysis of Diffusion Tensor Images is an important
topic of current research.
In this chapter, we introduce a novel method for the statistical
analysis of matrix-valued images. This method is based upon two
motivations: (1) non-parametric methods are more appropriate than
parametric ones for the analysis of diffusion tensor images, since the
distribution of tensors is seldom known, and (2) those methods should
be computationally tractable.
We propose a statistical test based upon the dispersion of data. This
notion is related to the similarity measure between elements.
In order to evaluate the relevance of the spectral-quaternion framework
of Chapter 4 in that context, the proposed test is used with the
spectral-quaternion similarity measure on synthetical data sets. The
spectral-quaternion method is shown to be promising and interpretable.
In addition, it allows for a tunable tradeoff between sensitivity and
robustness to a variation of orientation.

The material of this chapter is presented in:

Anne Collard, Christophe Phillips and Rodolphe Sepulchre. Statistical
tests for group comparison of manifold-valued data. Submitted to 52nd
IEEE Conference on Decision and Control, March 2013.

Medical imaging is about the (non-invasive) observation of the human body. The goal
is to see something, or to look after something in the human body. However, how can
we assess the importance of what we see ? How can we quantify that an observation is
normal, or not ?

Answering this question is the role of statistics. Statistical studies enable to find con-
sistent, significant differences between groups of subjects. They enable to follow, for a
single person, the modifications or alterations which appear in the brain. They enable to
answer many types of questions, with a certain level of confidence.

This chapter is devoted to the development of adequate methods for the statistical
analysis of Diffusion Tensor Imaging. In particular, it focuses on the problem of ‘group
comparison’. Indeed, if statistical analysis of scalar-valued images is a well established
central component of contemporary science, the evolution of sensor technology and data
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storage had increasingly produced images that are multimodal and nonlinear in nature.
This has motivated significant work in the recent years to extend signal processing tech-
niques from scalar-valued data to manifold-valued data, see e.g. (Jensen et al., 1996).
The challenge is methodological as well as computational because clinical studies usually
involve large populations and many voxels, that is, large-scale statistical analysis.

Regarding Diffusion Tensor Imaging, the usual approach consists in converting the ten-
sor information into a scalar information (usually fractional anisotropy, see below). In this
case though, both the intensity information and the orientation information potentially
contain valuable statistical information, calling for new methodological developments.

State of the art for statistical analysis of DTI

There is a vast recent literature on DTI statistical analysis. Among these papers, we can
distinguish the one using univariate tests to compare DT images and the ones trying to
exploit further information. For example, (Chappell et al., 2008), (Chung et al., 2008), and
(Jones et al., 2005) focused on the fractional anisotropy or the mean diffusivity of tensors,
without paying any attention to the orientation of these tensors. These scalar values are
indeed geometric quantities linked to the shape of tensors, but they can not detect any
difference in orientation between tensors. In (Goodlett et al., 2009), the evolution of the
fractional anisotropy along a fiber tract is studied. Some other papers have tried to use the
whole information contained in the tensor, namely through the use of the Log-Euclidean
metric (i.e. they use the logarithms of tensors instead of the tensors themselves). This
is the case in (Lee et al., 2007), where an Hotelling’s T 2 test is developped for the Log-
Euclidean metric, a framework similar to the ones in (Fouque et al., 2011) and in (Grigis
et al., 2012). Some other papers presented a rigorous conceptual framework based on the
Riemannian manifold S+(3), as in (Pennec, 2006), (Fletcher and Joshi, 2007) and (Lenglet
et al., 2006). However, those papers have not addressed the statistical significance of a test
for group comparison. This is also the case of (Dryden et al., 2009), which uses another
parametrization of tensors. Statistical tests were proposed in (Schwartzman et al., 2010),
through a decoupled analysis of the eigenvalues and the eigenvectors of the tensors. The
tests are based on distributional assumptions, which is a potential limitation for diffusion
tensors. The closest published work to the present paper is (Whitcher et al., 2007), where
the authors propose a multivariate dispersion-based permutation test, see Section 6.1.2
for more details.

In Section 6.1, usual mean-based permutation tests will be introduced, before the intro-
duction of dispersion-based permutation tests (Section 6.1.2). Those tests are introduced
as a computationally cheap alternative to mean-based tests. The case of multivariate tests
will be explained in Section 6.1.3. Subsequently, Section 6.2 focuses on the results of those
tests in the case of synthetical data sets.

6.1 Statistical tests for group comparison

Statistical analyses of scalar images are often performed through the use of parametric
methods (Friston et al., 2007), such as the Student t2 test for comparison of Gaussian
variables. However, the distribution of multivariate data is rarely known and, if known, is
often not Gaussian. This explains why many authors opt for non-parametric methods to
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study multivariate images. Among these non parametric methods, permutation tests are
often used because of their relative simplicity. Permutation methods provide statistical
significance testing of difference between groups without having to assume a distribution of
the data (Nichols and Holmes, 2002). These methods have the ability to directly estimate
the null distribution of the statistics describing the difference. Moreover, these methods
are easily applicable to any statistical test, which is interesting to compare results obtained
with different parametrizations of the data.

6.1.1 Mean-based permutation tests

Permutation tests are based on a simple idea. Consider that two populations C and D
have to be compared with respect to the variable x. Suppose that ∆0 is the difference
between the means of the two groups. Permutation tests enable to quantify, without any
assumptions about the distribution of the variable, if this difference is significant or not.
Indeed, if the difference is not significant, it should not be altered by random permuta-
tions between C and D. A permutation here consists in assigning a random labeling to an
element, no matter in which group it truly belongs. The only rule is to keep the num-
ber of elements by group constant. Permutation tests are based on the null hypothesis
that the two groups are not different with respect to the variable x. This means that an
element of the group C could belong to the group D, and that this permutation should
imply no significant difference. In other words, the null hypothesis is that the labeling of
elements is arbitrary. Given this hypothesis and the fact that data are exchangeable (i.e.
they provide from different subjects), the significance of x can be assessed by comparison
with the distribution of values under all possible permutations. This is illustrated by the
histogram in Figure 6.1, B. In practice, this distribution is approximated: only a certain
number of permutations are computed. For each permutation, the novel mean difference
is computed and denoted by ∆∗

k, where k is the index of the permutation. The histogram
of Figure 6.1 is built from all computed values ∆∗

k, and represents the distribution of the
mean-difference under the null hypothesis. If the observed difference ∆0 is in the tail of
the distribution, it means that very few permutations of the data have a larger value by
chance, and the true labeling is unlikely arbitrary. The p-value of the test is given by the
ratio between the number of times that a permuted statistics ∆∗

k is higher or equal than
the observed value ∆0 and the total number of permutations. The test is statistically
significant at a level α if the p-value is smaller than α. This means that this value has less
than 100α% of chance to have be found randomly.

The generalization of a permutation test to data that takes values on a manifold is
conceptually straightforward because it only requires a proper notion of mean. In the case
of DT images, this notion of mean has been widely studied, as shown in preceding chapters.

However, it should be emphasized that a mean-based permutation test may represent
a formidable computational task. For instance, computing the Riemannian mean of sev-
eral positive definite matrices with the affine-invariant metric (3.18) has been shown to be
computationally expensive. For a population of size N classified in G groups of size ng,
this computation must be repeated M = N !/

∏G
g=1 ng! which is prohibitive for large pop-

ulations, even if the full distribution is not computed. In the context of DTI, the statistics
are typically computed for a large number of voxels, which adds to the computational
burden.
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Figure 6.1: General procedure of a permutation test. Given the observed value of the statistic, values
corresponding to N permutations of the labels are computed. This gives an approximation of the (unknown)
distribution of the statistic. The comparison between the observed value and this distribution enables to
compute the p-value of the test.

One computational remedy for positive definite tensors is to compute the arithmetic
mean of tensors (that is, to work with the Euclidean metric) or, better, to compute a
matrix geometric mean which is known as less computationally demanding, as the Log-
Euclidean mean (3.21) or the spectral-quaternion mean (4.20).
Even with such computational simplifications, the computational burden of a mean-based
approach remains prohibitive for a real application of group studies using Diffusion Tensor
Images because the matrix log operation will scale in a factorial way with the population
size.

6.1.2 Dispersion-based permutation tests

The MultiResponse Permutation Procedure (MRPP) proposed in (Mielke and Berry, 2001)
is not based on repeated computations of means but only requires to build a similarity
matrix between all data points. Given a symmetric similarity measure s(i, j) between data
points xi and xj , the similarity matrix is defined as the symmetric matrix S with element
Sij = s(i, j).

The statistical test proposed in (Mielke and Berry, 2001) is based on a measure of
dispersion of the data points within each group rather than on a measure of mean.
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The dispersion δg of a group g of ng elements is defined as

δg =
2(ng − 2)!

ng!

∑

i<j
i,j∈g

s(i, j) , (6.1)

where the sum is computed over all data points of the group.

The overall dispersion δ of the variable x in the population is defined as a weighted
sum of the dispersions in each group:

δ =
G
∑

g=1

Cgδg ,

where Cg > 0, g = 1 . . . G are the weights of each group (their sum must be 1).

The rest of the procedure follows the permutation test described in Section 6.1.1, with
the mean-difference ∆ replaced by the dispersion δ. The observed dispersion is judged
statistically significant only if it occurs in the lower tail of the histogram among all possible
permutations of the population.

The distance-based permutation test has the same advantages than the mean-based
permutation test: it does not require any assumption about the statistical distribution
and only requires a similarity measure between data points, for instance a distance on
Riemannian manifolds. But a significant computational advantage is that the similarity
matrix must be computed only once, requiring O(N2) computations of pairwise similarity
for a total population of size N .

Every distance on the manifold of positive tensors qualifies for a similarity measure.
Four distances have been studied in this thesis, and two of them will be used for statistical
studies: the computationally fast Log-Euclidean and spectral-quaternion measures.

Another type of dispersion test (but not based on permutations) is the one presented
in (Whitcher et al., 2007). In this case, the test statistic is the difference of the sum of
all Euclidean interpoint distances between the random variables from the two different
groups and one-half of the two corresponding sums of distances of the variables within the
same group. If we denote s1,j the vector representing the j-th tensor of the group 1, and
by n1, n2 the number of elements in each group, the test statistic is

Tn1,n2 =
n1n2

n1 + n2





1

n1n2

n1
∑

i=1

n2
∑

j=1

||s1,i − s2,j || − 1

2n2
1

n1
∑

i=1

n1
∑

j=1

||s1,i − s1,j||

− 1

2n2
2

n2
∑

i=1

n2
∑

j=1

||s2,i − s2,j||


 . (6.2)
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This test assume that sj is identically distributed with a distribution function Gj , and
the null hypothesis is that G1 = G2. As explained in (Whitcher et al., 2007), the null
hypothesis is rejected for large values of Tn1,n2. Different methods can be used to obtain
critical values for this statistic. Different parametrizations of the tensors can be used,
since it is sufficient to replace sj by the appropriate vector.

6.1.3 Multivariate testing

Our description of permutation tests has so far assumed an univariate statistical testing
but is easily extended to multivariate testing. A widely used method for the statistical
comparison of multivariate data consists in the computation of ’marginal‘ or ’partial‘ tests
(one for each of the nv considered variable) and to combine the p-values obtained for each
partial test by a combining function, which can be of different forms (Pesarin, 2001). This
method involves two stages of computation.

• First, the marginal p-values (denoted ξi, i = 1, . . . , nv) are computed through a
permutation test (here, we will use a MRPP test for univariate data).

• Then, the combining function is used to compute the combined observed value, To =
C(ξ1, . . . , ξnv

). The distribution of this T is computed through the combination of the
p-values computed for each permutation of the first step, i.e. T ∗

k = C(ξ∗
1,k, . . . , ξ∗

nv,k).
The combined p-value for the test is then estimated via the ratio between the num-
ber of occurrences where T ∗

k was larger than To and the total number of performed
permutations.

Regarding multivariate testing, we propose to compare an ‘Euclidean’ statistical test
based on the six independent quantities of a 3 × 3 positive definite tensor (as proposed in
(Whitcher et al., 2007)) to a ‘geometric’ test. For a tensor S, the Euclidean parametriza-
tion writes

vE =



















Sxx

Syy

Szz√
2Sxy√
2Sxz√
2Syz



















, (6.3)

while the ‘geometric’ statistical test is based on the six geometric quantities that define
scaling and orientation of the tensor: the three eigenvalues and the first three components
of the quaternion (the fourth element of the quaternion is not useful, as it can be com-
puted from the others three and the fact that the quaternion is of unit norm). We use

a geometric similarity measure for the (positive) eigenvalues s(λ, µ) =

√

log2
(

λ
µ

)

and an

Euclidean (chordal) measure for the quaternions. This parametrization of the tensor is of
course related to the spectral-quaternion framework of Chapter 4.
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vg =
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. (6.4)

A further alternative would be a Log-Euclidean statistical test based on the six ele-
ments of the logarithm of the tensor, as investigated in (Whitcher et al., 2007). We do
not include this comparison here since the work of (Whitcher et al., 2007) suggests that
it does not offer significant advantages compared to the Euclidean test.

For comparison purposes, we will also compute an univariate test using the fractional
anisotropy of tensors (Chung et al., 2008).

6.2 Results on synthetic data sets

In this section, dispersion tests with different measures will be compared through their
results for some synthetic data sets. The construction of those sets is based upon plausible
differences, which may appear in the brain, as explained in Section 6.2.1.

The performance of the different tests in many situations will be assessed through
the computation of the power of these tests. This quantity is computed by performing
the same test a large amount of times and by counting the occurrences of significant
results. The power is the ratio between this number of occurrences and the total amount
of performed tests. If the test is not efficient, the power will be close to the significance level
α. A value of the power equal to one means that the test is particularly efficient for the
analyzed situation. The different values used (number of tests, level of significance, . . . )
are summarized in Table 6.1.

Parameter Value

Level of significance α 0.05
Number of group G 2
Number of samples by groups ng 10
Weight of each group Cg 0.5
Number of permutations Np 20 000
Number of tests by situation Nt 500

Table 6.1: Parameters of the statistical tests.
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6.2.1 Construction of the data sets

The power of the proposed statistical tests will be compared on the following synthetic
data sets.

We will generate two groups of tensors starting from a reference tensor and a trans-
formed tensor. The parameter γ quantifies the amount of difference in a specific parameter
between the two groups. Denoting by λi, i = {1, 2, 3}, the eigenvalues of the reference ten-
sor and by λ′

j the ones of the transformed tensor, the following five different geometric
transformations of the reference diffusion tensor are studied (Boisgontier et al., 2012):

• Decrease of longitudinal diffusion (DL): λ′
1 will be given by λ′

1 = λ1 −γ(λ1 −λ2), γ ∈
[0, 1]. The two others eigenvalues will be left unchanged.

• Increase of radial diffusion (IR): λ2 and λ3 will be replaced by λ′
j = λj +γ

λ1−λj

2 , j =
{2, 3}, γ ∈ [0, 1], while λ1 will be left unchanged.

• Increase of mean diffusion (IM): all the eigenvalues of the deformed tensor will be
given by λ′

j = (1 + γ)λj , j = {1, 2, 3}, γ ∈ [0, 1].

• Change of diffusion orientation (CO): the angle θ between principal directions of
the reference tensors will change following θ′ = θ + γ π

2 , γ ∈ [0, 1].

• Change in both eigenvalues and orientation: in this case, we will combine a differ-
ence in orientation (CO) with one of the first three differences. Both modifications
will evolve following the same γ.

The statistical comparison will be tested in a situation of high anisotropy, where the
eigenvalues of the reference are Λ = (5, 1, 0.5), a situation of small anisotropy where they
are given by Λ = (3, 1, 1), and a situation of near isotropy, Λ = (1.3, 1, 1).

Starting from the reference tensor and its reference deformation, we will generate
a population of N = 20 tensors by sampling from a Wishart distribution 10 tensors
around the reference tensor and 10 tensors around the deformed tensor. The Wishart
distribution is a generalization to multiple dimensions of the χ2 distribution. It is a
distribution for symmetric positive semidefinite matrices, typically covariance matrices,
the diagonal elements of which are each χ2 random variables. The Wishart distribution
is parameterized with a symmetric, positive semidefinite matrix, Σ, and a positive scalar
degrees of freedom parameter, v. v is analogous to the degrees of freedom parameter of a
univariate χ2 distribution, and Σv is the (Euclidean) mean of the distribution. It should
be noted that a large number of degree of freedom corresponds to a low level of noise.
In the following, v = 32 (except when otherwise indicated), which corresponds to a large
level of noise (Whitcher et al., 2007).
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6.2.2 Univariate tests

Figure 6.2 illustrates an uncommon situation, where the desired result is not a maximal
power of the test, but a minimal one. The simulated situation is the one of near isotropic
tensors, with a progressive change of orientation. As the tensors are all nearly spherical,
the uncertainty in their orientation is high, as explained in (Parker et al., 2003) and in
Section 4.3.5. There should be no noticed difference between them, and the tests should
not be sensitive to the simulated deformations. However, it can be seen that this is not
the case using Euclidean or Log-Euclidean measures. In this case, the spectral-quaternion
measure and the test based on Fractional Anisotropy perform better, as they do not detect
any difference between the reference and the deformed tensors. It is interesting to note that
these curves of power can also be interpreted as curves of sensibility and robustness of the
measures. The power of a test is a measure of its sensitivity to the considered deformation.
Conversely, flat curves indicate a robustness of the test to a given deformation.

Figure 6.2: Power of the statistical tests in a situation of very low anisotropy (the tensors are nearly
isotropic). The tests use the spectral-quaternion measure (δ SQ, blue circles), the Log-Euclidean measure
(δ LE, green squares), the Euclidean measure (δ E, black diamonds) and the Fractional Anisotropy of
tensors (δ FA, red triangles). A difference in the diffusion orientation (CO) is simulated. In this case,
as illustrated on the figure, the tensors are very similar (all almost spheric) and we argue here that no
difference should be noted. However, this is not the case for the Log-Euclidean and Euclidean tests.

This analysis of robustness is also applicable to the example of Figure 6.3, showing a
difference in orientation in the case of low anisotropy. In this figure, a clear difference can
be observed between the Fractional Anisotropy test and the Euclidean and Log-Euclidean
tests. As expected, the Fractional Anisotropy test is never significant for this type of
difference, showing one more time the limitation of using a unique scalar to represent
multivariate data, as the orientation information is totally lost. To the contrary, the
Euclidean and Log-Euclidean tests are very sensitive to this difference and thus exhibit
strong performance. The spectral-quaternion measure offers an intermediate situation:
it is sensitive to the orientation information, but less than the two Euclidean tests. In
fact, as explained in Section 4.5, the orientation term of this measure is weighted by a
parameter κ, which depends on the anisotropy of tensors. The role of this parameter is
to decrease the importance of the orientation term in case of low anisotropy, due to high
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uncertainty of this information. This explains why the spectral-quaternion measure is
not sensitive to the deformations shown in Figure 6.2. It is important to understand the
impact of this parameter on the results. If it is increased, the orientation term will become
more important, which will produce an increase of the sensitivity of the measure (i.e. an
increase of the performance of the test). Depending upon the tradeoff between sensitivity
and robustness, the curve of the spectral-quaternion test can be closer to the Fractional
Anisotropy one, or to the contrary, closer to the Log-Euclidean test. The fact that this
tradeoff can be tuned is of relevance for clinical applications.

Figure 6.3: Power of the statistical tests in a situation of low anisotropy. A difference in the orientation
of the tensors is simulated. The tests use the spectral-quaternion measure (δ SQ, blue circles), the Log-
Euclidean measure (δ LE, green squares), the Euclidean measure (δ E, black diamonds) and the Fractional
Anisotropy of tensors (δ FA, red triangles). For γ = 0, which means no difference between the two references
of the groups, the power of the tests is about α. As expected, the test based on the Fractional Anisotropy
fails to detect the difference in orientation. The Euclidean and Log-Euclidean tests are very sensitive to
this kind of deformation, while the spectral-quaternion measure is between those two situations.

Figure 6.4 presents another type of tests, with variation of the eigenvalues. The
anisotropy is low in Figure (a) and tensors are highly anisotropic in Figure (b). The
simulated transformation is an increase of the mean diffusion (IM). It can be observed
that the Fractional Anisotropy is not efficient in those situations, since the shapes of the
tensors are not affected. To the contrary, the spectral-quaternion measure is very efficient.
Both Euclidean tests have good performances, but are a little less efficient than the spec-
tral framework.

Figure 6.5 shows the results for a transformation combining variation of orientation
and decrease of the first eigenvalue. The Euclidean and Log-Euclidean tests are very sen-
sitive in this case. The FA test is better than in Figure 6.2 and Figure 6.3, since the
first eigenvalue also varies. Finally, it can be observed that the spectral-quaternion test is
better for the high anisotropy case than for the low anisotropy case. This can be explained
by the weighting factor of the similarity measure (4.44), which depends upon anisotropies.
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Figure 6.4: Power of the statistical tests in a situation of low anisotropy (Figure (a)) and of high anisotropy
(Figure (b)). An increase of the mean diffusion is simulated. The tests use the spectral-quaternion measure
(δ SQ, blue circles), the Log-Euclidean measure (δ LE, green squares), the Euclidean measure (δ E, black
diamonds) and the Fractional Anisotropy of tensors (δ FA, red triangles). The tests based on the Fractional
Anisotropy fail to detect this modification, since only the size is varying, and not the shape of the tensors.
The spectral-quaternion test is very efficient in both cases, being in all situations slightly better than both
Euclidean tests.
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Figure 6.5: Power of the statistical tests in a situation of low anisotropy (Figure (a)) and of high anisotropy
(Figure (b)). The simulated transformation is a variation of both the first eigenvalue (DL) and the
orientation (CO). The tests use the spectral-quaternion measure (δ SQ, blue circles), the Log-Euclidean
measure (δ LE, green squares), the Euclidean measure (δ E, black diamonds) and the Fractional Anisotropy
of tensors (δ FA, red triangles). It can be observed that the spectral-quaternion framework is more sensitive
when the tensors are highly anisotropic, an observation which is also explained by the weighting factor κ
of the spectral-quaternion similarity measure (4.44). Due to the combination of transformations, the FA
test is sensitive in this case. The Euclidean and Log-Euclidean tests are very efficient, and seem better in
the high anisotropy case.
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The simulated transformation in Figure 6.6 is an increase of the radial diffusion. The
two tests using a geometric distance (spectral-quaternion and Log-Euclidean tests) are
efficient, and better than the two other tests. The Fractional Anisotropy measure seems
more sensitive when the anisotropy is high.
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Figure 6.6: Power of the statistical tests in a situation of low anisotropy (Figure (a)) and of high anisotropy
(Figure (b)). The simulated transformation is an increase of the radial diffusion (IR). The tests use the
spectral-quaternion measure (δ SQ, blue circles), the Log-Euclidean measure (δ LE, green squares), the
Euclidean measure (δ E, black diamonds) and the Fractional Anisotropy of tensors (δ FA, red triangles).
In both cases, the results of the spectral-quaternion and Log-Euclidean tests are very similar, and those
two tests are more performant than the FA and Euclidean ones. In particular, the FA test seems more
sensitive to this transformation when the anisotropy is high.

The impact of the level of noise on the results is illustrated in Figure 6.7 . The simulated
transformation is a decrease of the longitudinal diffusion (DL). The two tests associated
to a high level of noise are very similar. In both cases, the four methods are equivalent,
with a slight predominance of the Euclidean test. These observations are shared with the
results of the same tests with a lower level of noise. However, it can be seen that in this
case, the tests are more efficient for a smaller transformation. This seems logical, since
for a lower noise level, there should be less ‘covering’ between the two distributions of
samples.
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Figure 6.7: Top: Power of the statistical tests in a situation of low anisotropy (Figure (a)) and of high
anisotropy (Figure (b)), with a high level of noise (32 degrees of freedom for the Wishart distribution).
Bottom: Power of the statistical tests in a situation of low anisotropy (Figure (c)) and of high anisotropy
(Figure (d)), with a low level of noise (128 degrees of freedom for the Wishart distribution). The simulated
transformation is a decrease of the longitudinal diffusion (DL). The tests use the spectral-quaternion
measure (δ SQ, blue circles), the Log-Euclidean measure (δ LE, green squares), the Euclidean measure (δ
E, black diamonds) and the Fractional Anisotropy of tensors (δ FA, red triangles). It can be observed that
for a low noise level, small transformations are better detected than in a high level of noise.
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6.2.3 Multivariate tests

In the following, we will focus on the interpretation of the results of multivariate tests.

Figure 6.8 illustrates the results of each partial tests for multivariate parametrizations
of the tensors, for a simulated change of orientation in a case of high anisotropy. The
comparison between geometric parametrization (left) and algebraic one (right) is straight-
forward. As the geometric parametrization clearly shows that the orientation only has
been changed (since only the partial tests related to q2 and q3 are efficient), this interpre-
tation can not be drawn from the results of the Euclidean tests. This information could
however be of great importance in clinical studies.

(a) Geometric parametrization (b) Euclidean parametrization

Figure 6.8: Power of each of the partial statistical tests for multivariate parametrizations of the tensors. (a)
A geometric parametrization is used. (b) An Euclidean parametrization is used. The simulated situation
is a deformation of orientation in a case of high anisotropy. The results of the geometric tests are easily
interpretable, as only the partial tests associated to the orientation are performant. To the contrary, the
Euclidean tests are poorly understandable.

In a similar way, the decrease of longitudinal diffusion simulated in Figure 6.9 is clearly
seen with the geometric parametrization, while this is not the case for the Euclidean one.
Indeed, for a geometric parametrization, the partial test of the first eigenvalue is the only
one to detect a difference. It should be noted that, from γ = 0.9, the first eigenvalue is
very close to the second one, which increases the uncertainty in orientation (this explains
why other partial tests become significant). The easy interpretation of the statistical tests
using the geometric parametrization is a desirable feature, which opens the way to many
applications.

Combining multivariate tests

Figure 6.10 shows the results of the multivariate parametrizations in a situation similar
to the one of Figure 6.4: an increase of the mean diffusion for highly anisotropic tensors.
As expected, the tests based on three eigenvalues are particularly efficient. It should be
noted that the Euclidean parametrization is also efficient, as the three diagonal elements
clearly detect the simulated transformation.
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(a) Geometric parametrization (b) Euclidean parametrization

Figure 6.9: Power of each of the partial statistical tests for multivariate parametrizations of the tensors. (a)
A geometric parametrization is used. (b) An Euclidean parametrization is used. The simulated situation
is a decrease of the longitudinal diffusion in a case of high anisotropy. The results of the geometric tests
are easily interpretable, as only the partial test associated to the first eigenvalue is performant. To the
contrary, the Euclidean tests are difficult to interpret.

As explained above, the partial tests can be combined, in order to obtain a unique
value for each test. For example, Figure 6.11 illustrates the results of the combination of
the geometric partial tests (in blue) and of the combination of the algebraic partial tests
(in green). The combining function used is the Fisher function

T ∗
k = C(ξ∗

1,k, ξ∗
2,k, . . . ξ∗

nv,k) = −2
nv
∑

i=1

log(ξ∗
i,k) , (6.5)

where ξj is the p-value of the test using the j-th variable, and nv is the number of variables,
nv = 6 for both parametrizations.

Both tests are efficient to detect the simulated transformation, the geometric one being
slightly better than its Euclidean counterpart. It is interesting to note that, even if some
partial tests do not detect any difference, the combination of all the tests give performant
results. One more time, this observation is in agreement with the fact that studies based
on a single scalar as Fractional Anisotropy could be misleading.

The results presented in Figure 6.11 can be compared with the one of Figure 6.4.
This comparison is shown in Figure 6.12, where only the spectral-quaternion and Log-
Euclidean univariate tests are shown, for the sake of clarity. The tests based on the
spectral-quaternion framework are slightly better. From those results, it can be observed
that the multivariate tests do not lead to better results, and that univariate tests based
on appropriate measures are sufficient. However, those tests are less interpretable than
their multivariate counterparts. The selection of a type of tests should depend upon the
application: if the goal is to detect differences, the univariate tests should be used. If
the nature of the difference is needed, the geometric multivariate tests could be of great
interest.
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(a) Geometric parametrization (b) Euclidean parametrization

Figure 6.10: Power of each of the partial statistical tests for multivariate parametrizations of the tensors. (a)
A geometric parametrization is used. (b) An Euclidean parametrization is used. The simulated situation is
an increase of the mean diffusion in a case of high anisotropy. For the geometric parametrization, only the
three eigenvalues show a consistent difference. The three diagonal elements of the tensor are significantly
affected by the transformation, as well as Dxy , the first off-diagonal element.

Figure 6.11: Combination of the partial tests presented in Figure 6.10, using the Fisher function (6.5).
Both tests are efficient for a sufficiently large simulated difference. The combination of geometric results
is slightly better in this case.
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Figure 6.12: Comparison between the combination results of Figure 6.11 and the univariate results of
Figure 6.4. It can be observed that all methods are efficient. The tests using a combination of multivariate
partial results are very similar to their univariate counterparts.

6.3 Conclusions and perspectives

In this chapter, we have shown that existing methods in the field of group comparison
could be advantageously used for the statistical analyses of data lying on Riemannian
manifolds. These methods have several advantages as they do not use any assumptions
about the distribution of the data (which is seldom known). Moreover, it has been shown
that the only specific tool which is needed for this group comparison is an appropriate
similarity measure between the data (or a parametrization of them). We have illustrated
the computational advantage of basing the permutation test on dispersion rather than
means.

Regarding the statistical analysis of Diffusion Tensor Images, we have shown how
different measures or different parametrizations of the data can affect the results of the
tests. Moreover, two interesting features of the spectral-quaternion measure (and the
geometric parametrization associated to this measure) have been highlighted, which both
could be relevant for clinical applications:

• The sensitivity of the framework to variation in orientation is tunable, via the pa-
rameter κ in the similarity measure (4.44).

• The geometric parametrization (6.4) enables an easier interpretation of the results
in terms of what could have physically cause the difference between tensors.

Both for computational and conceptual reasons, dispersion based permutation tests
offer an appealing framework for group comparison of manifold-valued data.

Future works should focus on the extension of those ‘single voxel’ tests to whole brain
tests, using real data. Statistical tests can be used for many different applications, as
change detection for a single subject (Chung et al., 2008), investigation of different brain
pathology as cerebral ischemia, schizophrenia, cognitive impairment, epilepsy, brain tu-
mors,... A review of the potential clinical applications of DTI is found in (Sundgren et al.,
2004).
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Chapter 7

Conclusions and perspectives

The research described in this thesis was motivated by the need to provide a suitable
set of algorithmic tools to process and analyze Diffusion Tensor Images. To this end, we
have adopted a geometric framework with the threefold aim of addressing the nonlinear
nature of the data, preserving their physical information, and allowing for their statistical
processing at a computational cost scalable to medical applications.

The first step was to understand the non-linear nature of the images to motivate a geo-
metric framework. The general need of processing data in nonlinear spaces is addressed in
an optimization framework on manifolds. Since the majority of processing algorithms are
based on the three concepts of interpolating curve, weighted mean and similarity measure,
the study of these three mathematical objects in the context of algorithms on manifolds
has constituted an important part of this thesis, see Chapter 2. The developments of
the thesis have been limited to two cases of interest: the manifold of symmetric positive
definite matrices and the manifold of semi-definite positive matrices of fixed rank. This
latter case has highlighted an important point: the geodesic curve between two elements
of a Riemannian manifold is not necessarily the ‘best’ curve for applications, and the same
goes for Kärcher means. If geodesic curve will always enable to follow the shortest path
between two elements, it is possible that this path possesses some detrimental properties,
or that its computational cost is prohibitive.

Chapter 3 briefly reviews the state of the art for DTI processing in order to under-
stand the physical nature of the measurements. We have seen that scalar indices such as
anisotropy are informative, but not sufficient to process diffusion tensor images, and that
two important frameworks have been developed for the processing of Diffusion Tensor Im-
ages, namely the affine-invariant and Log-Euclidean frameworks. An important message
of the chapter is to underline an intrinsic limitation of those frameworks: they do not
preserve the anisotropy of tensors during the processing. Specifically, the mean of two
anisotropic tensors tends to be isotropic, so that the anisotropy information is degraded
through averaging.

The limitation of the existing Riemannian frameworks is a fundamental motivation for
the development of a new geometry. The second motivation is the necessity to keep the
computational cost as low as possible. Starting from those two pillars, we have developed
what we call the spectral-quaternion framework.
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The term ‘spectral’ refers to the fact that we have used a decoupling between the in-
tensities and orientations of diffusion. This decoupling enables to preserve the anisotropy
of tensors. Moreover, a novel anisotropy index has been proposed, which has an intrinsic
meaning and the particularly attractive property to be linearly interpolated through the
proposed interpolation method.

The ‘quaternion’ term refers to a second important feature of the novel method, which
is to parametrize orientation of tensors by unit quaternions instead of rotation matrices.
This different parametrization is responsible for great computational saving, since it en-
ables Euclidean processing of the orientation.

These developments are the core of Chapter 4. An additional contribution is to deal
with the uncertainty of orientations in isotropic tensors. Building upon those theoretical
foundations, the chapter proposes novel algorithms for the basic processing operations:
interpolation, averaging, and similarity measure.

The application of the basic operations developed in Chapter 4 to some simple process-
ing algorithms is the topic of Chapter 5. We have explained transformations of images,
with the important notion of reorientation, and have implemented a simple rigid body
algorithm for the registration of two images. The topic of filtering of images has also been
covered, in particular the simple Gaussian algorithm and a ‘transformed’ version of the
Perona-Malik anisotropic filtering are explained. These illustrations are viewed as a proof
of concept that our framework could be used in more complex algorithms. This could be
facilitated by the development of a DTI toolbox, which has been implemented in Matlab R©.

In the field of Diffusion Tensor Imaging, as well as in the general field of medical imag-
ing, the final goal is not to process images, but to analyze them. Statistical analysis of
DTI images is an important topic of current research. We want to compare images, to
infer where significant differences are located. In Chapter 6, we have introduced a novel
method for the statistical analyses of diffusion tensor images. The introduction of this
framework is based on two motivations: non-parametric methods are more appropriate
than parametric ones for those images, since the distribution of tensors is seldom known,
and those methods should be computationally tractable. The proposed method is based
on the dispersion of data, and only uses a similarity measure. The use of the spectral-
quaternion framework was shown to be promising, interpretable and allowing for a tunable
tradeoff between sensitivity and robustness to a variation of orientation.

To summarize, the thesis offers a novel framework for DTI processing, which combines
geometric foundations, physical relevance, and computational efficiency.

A general lesson from the PhD experience is that the modeling of ‘special’ nonlinear
data should always be developed prior to algorithmic developments. Those questions
should concern the physical and information properties of the data, and in particular those
that motivate the particular measurement technique. At the other end of the spectrum,
computational efficiency is a fundamental requirement for the end user.
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Future work and perspectives for future research

The thesis has introduced a novel set of tools and preliminary investigations suggest that
those tools could be competitive in medical applications. The list of perspectives that this
work opens is listed below, together with the planned future work.

• The toolbox containing all the tools presented in this dissertation should be made
available for anyone who would want to use them.

• An atlas of DT images should be created, based on the average between a large
sample of subjects. The spectral-quaternion mean could be advantageously used.

• The construction of this atlas implies to use appropriate and efficient registration
methods. Those complex methods should use the spectral-quaternion framework.

• Once registration methods and atlases will be developed, statistical tests will have to
be tested on real images, and a procedure will have to be developed for the analysis
of whole brain images.

• Although not addressed in this thesis, tractography algorithms could benefit from
the work presented here, since anisotropy is often used as a stopping criterion for
those algorithms.

• The framework proposed in Chapter 4 could be extended to S+(n). An alternative to
unit quaternions should be found, as unit quaternions are only representative of ori-
entations in 3D. Data on S+(n) include zero-mean Gaussian models (represented by
their covariance matrix), and anisotropy in this context refers to highly informative
directions.
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