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We analyze the influence of dipole-dipole interactions between Rydberg atoms on the generation
of Abelian artificial gauge potentials and fields. When two Rydberg atoms are driven by a uniform
laser field, we show that the combined atom-atom and atom-field interactions give rise to new,
nonuniform, artificial gauge potentials. We identify the mechanism responsible for the emergence
of these gauge potentials. Analytical expressions for the latter indicate that the strongest artificial
magnetic fields are reached in the regime intermediate between the dipole blockade regime and the
regime in which the atoms are sufficiently far apart such that atom-light interaction dominates
over atom-atom interactions. We discuss the differences and similarities of artificial gauge fields
originating from resonant dipole-dipole and van der Waals interactions. We also give an estimation
of experimentally attainable artificial magnetic fields resulting from this mechanism and we discuss
their detection through the deflection of the atomic motion.
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I. INTRODUCTION

In 1996, Lloyd [1] showed that the dynamics of com-
plex many-body quantum systems can be efficiently sim-
ulated by quantum computers, an idea first put forward
by Manin [2] and further developed by Feynman [3]. Al-
though the first quantum computers of a few qubits have
been realized experimentally [4, 5], the advent of scalable
quantum computers might take another few decades. An
alternative tool in the context of simulation is a highly
controllable quantum system able to mimic the dynamics
of other complex quantum systems, known as an analog
quantum simulator. Cold neutral atoms and trapped ions
have been shown to be versatile quantum simulators [6, 7]
thanks to their high flexibility, controllability, and scala-
bility. They permit one to study a wide range of problems
arising from atomic physics, relativistic quantum physics,
or cosmology [8]. Since neutral atoms do not carry any
net charge, the simulation of electric and magnetic con-
densed matter phenomena, such as the spin Hall effect,
seems out of reach. To overcome this apparent difficulty,
the idea has been proposed to create artificial electro-
magnetic potentials for neutral atoms based on atom-
light interaction [9–12]. These artificial potentials act on
neutral atoms as real electromagnetic potentials act on
charged particles. Soon after, proposals for the gener-
ation of non-Abelian gauge potentials came out [13–15],
inspired by the work of Wilczek and Zee [16] on adiabatic
evolution in the presence of degenerate eigenstates.

Many works on artificial gauge potentials induced by
atom-light interaction adopt a single-particle approach.
The predicted potentials are then supposed to be valid for
a system of many weakly interacting atoms, like, e.g., in a
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Bose-Einstein condensate [17–20]. However, new physics
arise in ultracold dipolar gases where long-range inter-
actions between atoms are known to play an important
role [21–23]. So far, the consequences of atom-atom in-
teractions on the generation of artificial gauge fields has
little been studied. In particular, dipole-dipole interac-
tions could significantly modify artificial gauge fields, or
even give rise to new artificial gauge fields otherwise not
present. The aim of this paper is to address this problem
analytically by studying a system of two long-lived in-
teracting Rydberg atoms driven by a common laser field.
In a recent work [24], another configuration was studied
in which two interacting Rydberg atoms are subjected
to a static electric field. Abelian and non-Abelian artifi-
cial gauge fields were computed numerically for different
amounts of Stark shifts asymmetry of the Zeeman sub-
levels, and were shown to realize a velocity-dependent
beam splitter [25].

The paper is organized as follows. In Sec. II, we present
some established results on artificial gauge fields for a sin-
gle two-level atom evolving adiabatically [12] as these will
be used throughout the paper. We give at the same time
a different formulation of the single-atom artificial gauge
potentials. We then generalize the analysis to two nonin-
teracting two-level atoms. In Sec. III, we study a system
of two interacting Rydberg atoms driven by a uniform
laser field and calculate the associated artificial gauge
potentials when the system evolves adiabatically. We dis-
cuss the general expressions and explain the mechanism
responsible for these potentials and fields. We estimate
the attainable field strengths and consider their detec-
tion in view of recent experiments. A brief conclusion
is drawn in Sec. IV. Sections V and VI are appendixes
dedicated to the calculation of the artificial gauge po-
tentials in the center-of-mass coordinate system and to
the derivation of an effective Hamiltonian in the dipole
blockade regime.
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II. ARTIFICIAL GAUGE POTENTIALS

WITHOUT ATOM-ATOM INTERACTIONS

A. A single two-level atom

We consider a single two-level atom interacting with
a classical electric field E(r, t) = E0 ǫ cos(kL · r − ωLt)
of amplitude E0, polarization ǫ, and wavevector kL. In
the electric dipole and rotating wave approximations, the
Hamiltonian accounting for the internal dynamics of the
atom is given, in the interaction picture, by

Ĥ2l =
~

2

(

Ω eikL·r|e〉〈g|+H.c.
)

− ~δ

2
σz (1)

where |e〉, |g〉 are the atomic excited and ground states
respectively, separated in energy by ~ω, Ω = −d∗

·ǫ E0/~
is the Rabi frequency with d = 〈g|d̂|e〉 the dipole ma-
trix element for the transition |e〉 ↔ |g〉, δ = ωL − ω
is the detuning between the laser and atomic transi-
tion frequencies, H.c. stands for Hermitian conjugate and
σz = |e〉〈e| − |g〉〈g|. Hamiltonian (1) admits two nonde-
generate eigenvectors:

|χ±(r)〉 =
(−δ ± Λ) eikL·r

√

2 (Λ2 ∓ δΛ)
|e〉+ Ω∗

√

2 (Λ2 ∓ δΛ)
|g〉 (2)

of energy E± = ±~Λ/2 where

Λ ≡ Λ(r) =
√

|Ω(r)|2 + δ(r)2 (3)

is the generalized Rabi frequency. The latter can vary
with the atomic position both through the Rabi fre-
quency Ω via the electric field amplitude and through
the detuning which can be made position dependent by
means of the Zeeman effect [18, 19].

When the atomic motion is treated quantum-
mechanically, the Hamiltonian governing the system is
given in the position representation by

Ĥ =

(

p̂2

2m
+ U

)

⊗ 1̂
int + 1̂

ext ⊗ Ĥ2l (4)

where p̂ = ~∇r/i is the atomic momentum operator, m
is the atomic mass, U is a potential energy insensitive
to the atomic internal state, Ĥ2l, given by Eq. (1), is

the atomic internal Hamiltonian, and 1̂
int (1̂ext) denotes

the identity operator in the atomic internal (external)
Hilbert space.

The internal state of the atom can always be decom-
posed onto the basis states (2) which depend parametri-
cally on the atomic position r. With such a decomposi-
tion, the global wave function of the atom in the position
representation reads [12]

〈r|ψ(t)〉 =
∑

j=±

ψj(r, t)|χj(r)〉. (5)

When the atom is initially in the internal state |χ+(r)〉
and moves sufficiently slowly to ensure adiabatic evolu-
tion, it stays over time in the internal state |χ+(r)〉. In

this case, the population of the state |χ−(r)〉 remains neg-
ligible such that 〈r|ψ(t)〉 ≈ ψ+(r, t)|χ+(r)〉 at any time
t. Plugging this expression of the wave function into the
time-dependent Schrödinger equation for Hamiltonian
(4) and projecting onto |χ+(r)〉, we obtain a Schrödinger-
like equation for ψ+(r, t),

i~
∂

∂t
ψ+(r, t) =

[

(

p̂− qA+
)2

2m
+ qφ+ + U +

~Λ

2

]

ψ+(r, t),

(6)
with

qA+(r) = i~〈χ+|∇rχ+〉, (7)

and

qφ+(r) =
~
2

2m
|〈χ−|∇rχ+〉|2. (8)

Equation (6) is formally equivalent to Schrödinger’s
equation for a particle of electric charge q immersed
in an electromagnetic field described by the potentials
A+(r) and φ+(r) and experiencing an additionnal poten-
tial U+~Λ/2. The potentials A+(r) and φ+(r) are there-
fore referred to as Abelian artificial gauge potentials. The
completeness relation |χ+〉〈χ+|+ |χ−〉〈χ−| = 1̂

int allows
us to rewrite Eqs. (7) and (8) in terms of the expecta-
tion value 〈p̂〉χ+

and variance (∆p̂2)χ+
of the momentum

operator p̂ = ~∇r/i in the position-dependent internal
state |χ+(r)〉,

qA+(r) = −〈p̂〉χ+
, qφ+(r) =

(∆p̂2)χ+

2m
. (9)

This formulation of the artificial gauge potentials makes

explicit the interpretation of the term
(

p̂+ 〈p̂〉χ+

)2
/2m

appearing in (6) as the kinetic energy associated with
the slow center-of-mass motion of the atom during its
adiabatic evolution. It also makes clear that the origin
of the scalar potential φ+ lies in the quantum fluctua-
tions of momentum as measured by the variance, in full
agreement with the interpretation of this term as addi-
tional kinetic energy associated with the micro-motion
of the atom resulting from its interaction with the laser
field [26].

In the remainder of this paper, we set the artificial
charge q equal to one unless otherwise stated. When the
Rabi frequency has a constant phase ϕ, Ω(r) = |Ω(r)|eiϕ,
we directly obtain from Eqs. (2), (7), and (8),

A+(r) =

(

−1 +
δ

Λ

)

~kL

2
,

φ+(r) =

[

(δ |∇rΩ|+ |Ω| |∇rδ|)2
k2LΛ

4
+

|Ω|2
Λ2

]

~
2k2L
8m

.

(10)

If the system had adiabatically followed the state |χ−〉
(instead of |χ+〉), the resulting scalar potential would be
identical to Eq. (10) whereas the vector potential would
appear with the opposite sign in front of δ/Λ.
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The artificial magnetic and electric fields associated
with these potentials are B± = ∇r × A± and E± =
−∇rφ

±. For instance, the artificial magnetic field is given
by

B±(r) = ±~|Ω|
2Λ3

(

|Ω|∇rδ − δ∇r|Ω|
)

× kL. (11)

Whenever δ and Ω are uniform, i.e., do not vary in space,
the artificial vector potential is uniform and the magnetic
field vanishes everywhere.

B. Two noninteracting two-level atoms

For comparison with latter results and to introduce no-
tations, we briefly consider the case of two noninteracting
two-level atoms driven by a common laser field. Let us
denote by rα the position of atom α = a, b. The Hamil-
tonian describing the internal dynamics of the atoms in-
teracting with the laser field is given by

Ĥnon−int = Ĥ2l,a ⊗ 1̂
int
b + 1̂

int
a ⊗ Ĥ2l,b, (12)

where 1̂
int
α denotes the identity operator in the internal

Hilbert space of atom α and Ĥ2l,α is the single-atom in-
teraction Hamiltonian (1) for atom α (α = a, b). The
eigenvectors of Hamiltonian (12) follow directly from the
eigenvectors |χ±(r)〉 [Eq. (2)] of (1),

|χij(ra, rb)〉 = |χi(ra)〉a ⊗ |χj(rb)〉b, (13)

with i, j = ±.
The full Hamiltonian, including quantization of the

atomic motion, is given by

Ĥ =

(

p̂2
a

2ma
+

p̂2
b

2mb
+ U

)

⊗ 1̂
int
ab + 1̂

ext
ab ⊗ Ĥnon−int, (14)

where 1̂
·

ab = 1̂
·

a ⊗ 1̂
·

b, p̂α = ~∇rα/i is the momentum
operator for atom α, and U is a potential energy insensi-
tive to the atomic internal state. The global state of the
two-atom system is given in the position representation
by

〈ra, rb|ψ(t)〉 =
∑

i,j=±

ψij(ra, rb, t)|χij(ra, rb)〉, (15)

where the wave functions ψij(ra, rb, t) describe the
atomic motion. When the atoms are initially in
the (separable) internal eigenstate |χij(ra, rb)〉, their
adiabatic evolution ensure them to follow the same
separable internal state such that 〈ra, rb|ψ(t)〉 ≈
ψij(ra, rb, t)|χij(ra, rb)〉 at any time t. Similar devel-
opments as before then lead us to the Schrödinger-like
equation

i~
∂

∂t
ψij(ra, rb, t) =

[

∑

α=a,b

[p̂α −Aij
α (rα)]

2

2mα
+ φijα (rα)

+ U + Ei(ra) + Ej(rb)

]

ψij(ra, rb, t),

(16)

with the artificial gauge potentials,

Aij
α (rα) = i~〈χij |∇rαχij〉, (17)

φijα (rα) =
~
2

2mα

∑

kl 6=ij

|〈χkl|∇rαχij〉|2, (18)

where the sum runs over all eigenstates of the two-atom
Hamiltonian except the initial state. For independent
atoms, the eigenstates |χij〉 are separable [Eq. (13)] and
Eqs. (17) and (18) reduce to the single-atom potentials
(7) and (8). As could be expected when the electromag-
netic field is treated classically, e.g., as an external field,
the noninteracting atoms experience the same artificial
gauge potentials as those calculated for a single atom,
with the slight difference that they can experience dif-
ferent potentials depending on their respective internal
state. Again, when δ and Ω are constant over space, the
artificial vector potentials are constant and the artificial
magnetic fields vanish everywhere.

The generalization of these results to a system of N
noninteracting atoms in a classical laser field proceeds
along the same lines.

III. ARTIFICIAL GAUGE POTENTIALS FOR

TWO INTERACTING RYDBERG ATOMS

In order to highlight the contribution of atom-atom
interactions on the generation of artificial gauge fields,
we consider uniform Rabi frequency and detuning. In
this case, the single-atom artificial gauge potentials are
constant and do not give rise to any magnetic or electric
fields, as recalled in the previous section.

A. Hamiltonian

We consider a system of two atoms interacting with
each other when they are both in an excited Rydberg
state. The interaction energy between a ground-state
atom and the other atom is assumed to be negligible [27].
To account for the energy shift of the doubly excited state
|ee〉 ≡ |e〉a ⊗ |e〉b caused by dipole-dipole interactions,
the term ~V |ee〉〈ee| is added to the Hamiltonian (12)
describing two independent atoms driven by a common
laser field. This leads us to the Hamiltonian,

Ĥd−d = Ĥnon−int + ~V |ee〉〈ee|. (19)

This simple but realistic model provides the core founda-
tion for several theoretical works on Rydberg gases [28].
Gillet et. al. [29] showed that it successfully reproduces
experimental observations on the dipole blockade ef-
fect [30]. Very recently, it was applied by Béguin and
coworkers [27] to deduce from experimentally measured
excitations probabilities the 1/r6ab dependence of the van
der Waals interaction between two Rydberg atoms (here
rab = |ra − rb| is the interatomic distance).
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For resonant dipole-dipole (RDD) interactions, the en-
ergy shift takes the form ~V = ~C3/r

3
ab. In the ab-

sence of an external field, C3 has no angular depen-
dence because of rotational invariance. However, when
the atoms are excited by a laser field, C3 may depend
on the angle between the interatomic axis and light po-
larization. Here, we shall consider the case of s-state
atoms for which the energy shift is almost spherically
symmetric [31], even though our analysis can be general-
ized directly to account for an angular dependence. For
van der Waals (vdW) interactions, when the atoms are
far apart or in the absence of Förster resonance, the en-
ergy shift displays the characteristic 1/r6ab dependence,
~V = ~C6/r

6
ab. Let us define a crossover distance rc at

which the atom-atom interaction energy equals the atom-
field interaction energy. The distance rc is implicitely
determined by the equality

|V (rc)| = Λ, (20)

where Λ is given by Eq. (3). For RDD interactions, we

have rc =
3
√

|C3|/Λ, whereas for vdW interactions, rc =
6
√

|C6|/Λ.

B. Eigenstates

It is convenient to introduce the symmetric and anti-
symmetric one-excitation states

|ψ±〉 =
1√
2
(eikL·ra |eg〉 ± eikL·rb |ge〉), (21)

because |ψ−〉 is a trivial eigenstate of Ĥd−d with eigen-
value 0. In the basis {|ψ−〉, |ee〉, |ψ+〉, |gg〉}, Hamiltonian

Ĥd−d reads

Ĥd−d = ~(V − δ)|ee〉〈ee|+ ~δ|gg〉〈gg|

+

[

~Ω√
2

(

eikL·(ra+rb)|ee〉〈ψ+|+ |ψ+〉〈gg|
)

+ h.c.

]

(22)
It has non-degenerate eigenvalues

E0 = 0, E1 =
~

2

[

s+ + s− +
2

3
V

]

E± =
~

2

[

−1

2
(s+ + s−) +

2

3
V ± i

√
3

2
(s+ − s−)

] (23)

where

s± =
3

√

γ ±
√

η3 + γ2 (24)

and

η =
4

3

(

δ(V − δ)− |Ω|2 − V 2

3

)

γ =
V

3

(

8

9
V 2 − 4δ(V − δ)− 2|Ω|2

) (25)

The associated eigenvectors are given by (i = 1,±)

|χi〉 = Ni

[

~Ω eikL·(ra+rb)Ei |ee〉+
√
2EiFi |ψ+〉

+ ~Ω∗Fi |gg〉
] (26)

where Ni ≡ Ni(ra, rb) is a normalization constant and

Ei(ra, rb) = Ei − ~δ, Fi(ra, rb) = Ei + ~(δ − V ) (27)

C. Artificial gauge potentials and fields

1. General expressions

When the system is initially in the internal state |χi〉
(i = 1,±) [see Eq. (26)], the general expressions of the
artificial gauge potentials are still given by Eqs. (17) and
(18) but with |χij〉 replaced by the two-atom eigenstates
(26). A direct calculation yields

Ai
α(rab) = Ai

α(rab) ekL
, (28)

with rab = |ra − rb|, ekL
= kL/kL and

Ai
α(rab) = −N2

i E2
i

(

~
2|Ω|2 + F2

i

)

~kL. (29)

The dependence of Ai
α(rab) on the position rα of atom

α appears only through the interatomic distance rab via
Ni, Ei, and V . Since the artificial potentials (28) are
identical for both atoms and depend only on rab, the
magnetic fields for atoms a and b have opposite signs. To
reduce the amount of notation, we only give the magnetic
field experienced by atom a, which reads

Bi
a(rab) = ∇raA

i
a × ekL

=
dAi

a

drab
erab

× ekL
,

(30)

with erab
= rab/rab. In a reference frame in which atom b

is at the origin, and equipped with spherical coordinates
{rab, θ, ϕ} where the z-axis points in the same direction
as the laser wave vector, the artificial magnetic field takes
the form,

Bi
a(rab) =

dAi
a

drab
sin θ eϕ = Bi

a,ϕ eϕ (31)

where θ is the angle between the z axis and rab. The
structure of this vector field is illustrated in Fig. 1.

From Eqs. (18) and (26), we obtain for the artificial
scalar potentials

φiα(rab) =N
2
i

{E2
i F2

i

2
+
∑

j 6=i

N2
j

[

(E ′
iEjCF

ij + CE
ijF ′

iFj)
2/k2L

+E2
i E2

j (~
2|Ω|2 + FiFj)

2
]

}

~
2k2L
2mα

,

(32)
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FIG. 1. (Color online) Vector plot of B
+
a for δ/|Ω| = 0 and

kL = (0, 0, kL). Color indicates the magnetic field strength,
from black (strong magnetic field) to white (zero magnetic
field). The blue dot shows the position of the fixed atom with
which atom a interacts.

with CE
ij = ~

2|Ω|2 + 2EiEj , CF
ij = ~

2|Ω|2 + 2FiFj,
i, j = 1,± and where the prime denotes a derivative with
respect to rab.

Artificial scalar potentials are of the order of the recoil
energy ~

2k2L/2m, which for Rubidium atoms and an opti-
cal transition is about 1 µK. This is usually much weaker
than the trapping potential U and can be compensated
by additional light shifts. We shall therefore concentrate
our attention on artificial vector potentials and magnetic
fields. For the sake of completeness, we also provide in
Appendix A the derivation and a brief discussion of the
artificial gauge potentials in the center-of-mass coordi-
nate system.

2. Dipole blockade regime

In the blockade regime, dipole-dipole interactions be-
tween excited atoms dominate over atom-light interac-
tions. This prevents the system from populating the dou-
bly excited state |ee〉, which can be eliminated from the
equations of motion, thus leading to an effective Hamil-
tonian that captures the dynamics as long as the inter-
atomic distance is much smaller than the crossover dis-
tance rc defined by Eq. (20). The derivation of the effec-
tive Hamiltonian and the determination of its eigenvalues
and eigenvectors are exposed in Appendix B. There we
also show that the artificial gauge potentials take the
simple form,

Aeff,±
α (rα) =

∓(Γ + δ)−
√
Ξ

2
√
Ξ

~kL

2
,

φeff±
α (rα) =

[

1± Γ + δ√
Ξ

+
|Ω|2
Ξ

+
4|Ω|2|∇rαΓ|2

k2LΞ
2

]

~
2k2L

16mα
,

(33)

where

Γ =
|Ω|2

2(V − 4δ/3)
,

Ξ = (Γ + δ)2 + 2|Ω|2,
(34)

with the correspondence Aeff,+
α ↔ A+

α , Aeff,−
α ↔ A−

α

in the case of repulsive interactions and Aeff,+
α ↔ A−

α ,
Aeff,−

α ↔ A1
α in the case of attractive interactions. The

same correspondence holds for the scalar potentials. In
this regime, the third vector potential is constant and
equal to −~kL because the corresponding eigenstate of
energy ~(V − δ) reduces to exp[ikL · (ra + rb)]|ee〉. For
consistency, we checked numerically that these potentials
are close to the general expressions (28) and (32) for in-
teratomic distances much smaller than rc.

Expression (33) for the artificial vector potentials
shows a crucial feature: The artificial magnetic fields ap-
pear only because of the combined atom-atom and atom-
field interactions. Indeed, in the absence of field, Ω = 0,
the vector potentials are constant and the magnetic fields
vanish. On the other hand, when there is no interaction,
V = 0 and the vector potentials are constant which again
leads to zero magnetic fields.

For a vanishing detuning (δ = 0), the vector potentials
become

Aeff,±
α (rα) =

(

−1∓ |Ω|
√

|Ω|2 + 8V 2(rab)

)

~kL

4
. (35)

Comparison of Eq. (35) with Eq. (10) shows that the
artifical vector potentials have the same form, up to a
multiplicative factor 1/2, as those felt by a single two-
level atom irradiated by a laser field where |Ω| plays the
role of the detuning and 8V 2(rab) the role of the Rabi
frequency. This similarity breaks down for the scalar
potentials and for both potentials in the presence of a
detuning in the interacting two-atom system.

3. Weak interaction regime

For large interatomic distances, r ≫ rc, atom-light in-
teraction dominates over atom-atom interactions (~V ≪
~Λ). In this limit, a series expansion of the general ex-
pression (29) yields, after some algebra,

A1
α =

[(

−1 +
δ

Λ

)

+

(

2δ3 + 3|Ω|2(δ − Λ)

6Λ4

)

V

]

~kL

2
,

A+
α =

[(

−1− δ

Λ

)

+

(

2δ3 + 3|Ω|2(δ + Λ)

6Λ4

)

V

]

~kL

2
,

A−
α =

[

−1−
(

δ|Ω|2
3Λ4

)

V

]

~kL

2
.

(36)
In the absence of atom-atom interactions, the vector po-
tentials A1

α and A+
α and the scalar potentials reduce to

the single-atom potentials (10) as required. We note that
for weak interactions, the artificial vector potentials are
linear in the interatomic potential.
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D. Discussion

Resonant dipole-dipole interactions give rise to an at-
tractive or repulsive interaction potential between ex-
cited atoms of the form ~V = ~C3/r

3
ab, whereas van

der Waals interactions are usually attractive with an in-
teraction potential of the form ~V = ~C6/r

6
ab [31, 32].

When the laser frequency matches the atomic transi-
tion frequency (δ = ωL − ω = 0), the sign of the in-
teraction potential does not affect the artificial magnetic
fields [33]. More generally, it follows from Eq. (23) that
E1(V, δ) = −E+(−V,−δ) and E−(V, δ) = −E−(−V,−δ)
where Ei(V, δ) denotes the energy eigenvalue for an in-
teratomic potential V and a detuning δ. These rela-
tions, together with Eqs. (27), (29) and (31), imply that
B1

α(V, δ) = B+
α (−V,−δ) and B−

α (V, δ) = B−
α (−V,−δ).

In the remainder, we choose to focus on attractive poten-
tials (C3, C6 < 0) both for RDD and vdW interactions,
given that the artificial magnetic fields for repulsive inter-
actions can directly be deduced from those for attractive
interactions.

Before we discuss the features of the artificial magnetic
fields, it is useful to construct from the characteristic
length rc [see Eq. (20)], the laser wave number kL and
the elementary charge e, a characteristic magnetic field
strength,

B0 =
~kL
erc

. (37)

As we shall see, B0 gives the typical strength of the arti-
ficial magnetic fields induced by the joint atom-laser and
atom-atom interactions for a particle with electric charge
q = e.

We show in Fig. 2 the only non-vanishing component
of the artificial vector potential as a function of the di-
mensionless interatomic distance rab/rc for a vanishing
detuning. Firstly, we note that the artificial vector po-
tentials for RDD and vdW interactions display the same
qualitative behavior. For small interatomic distances,
rab/rc ≪ 1, the system is dipole blockaded and the com-
ponent along the laser propagation axis of the vector
potential tends to a non-zero value (−~kL/4 or −~kL)
which only depends on the atomic internal state, and
not on the type of interaction. The largest variations of
the vector potentials occur around rab = rc, and are more
pronounced in the case of vdW interactions (see bottom
panel). For large rab/rc, atom-atom interactions become
negligible with respect to atom-field interactions, and Ai

α

tends in both cases to the value obtained for noninteract-
ing atoms, i.e. −~kL/2 [see Eq. (10)]. Figure 3 displays
the corresponding artificial magnetic fields, which are siz-
able over a distance interval of the order of rc. A max-
imum of intensity appears around rab = rc, where the
atom-atom interaction energy ~V equals the atom-field
interaction energy ~Λ [see Eq. (20)]. The magnetic field
profiles depend markedly on the atomic internal state,
and are more squeezed in the case of vdW interactions.

The behavior of the artificial magnetic field is strongly

43210

−0.2

−0.4

−0.6

−0.8

−1

rab/rc

Ai
α

~kL

−0.2

−0.4

−0.6

−0.8

−1

Ai
α

~kL

FIG. 2. (Color online) Only nonvanishing component of the
dimensionless artificial vector potentials A

i

α/~kL (green dot-
ted curve, i = 1; blue dashed curve, i = −; orange solid
curve, i = +) as a function of the interatomic distance rab/rc
for δ/|Ω| = 0, (top panel) resonant dipole-dipole interactions,
and (bottom panel) van der Waals interactions.

dependent on the sign of the detuning, as shown in
Figs. 4, 5 and 6 for RDD interactions. The curves for
vdW interactions are not shown as they display the same
qualitative features. For positive detunings (sign oppo-
site to that of the energy shift ~V ), the overall mag-
netic field amplitude decreases whereas for negative de-
tunings it increases as compared to the zero detuning
case. A series expansion of Eq. (29) inserted into Eq. (31)
shows that for large negative detunings (δ < 0 with
|δ/Ω| ≫ 1), the peak height of the dimensionless mag-
netic field B1

a/B0 scales linearly with the dimensionless
detuning δ/|Ω| according to B1

a,min
/B0 ≈ β1 δ/|Ω| with

β1 = 3/(4
√
2) for RDD interactions and β1 = 3/(2

√
2)

for vdW interactions. Given Eqs. (20) and (37), it follows
that |B1

min
| scales like |δ|4/3/|Ω| for RDD interactions and

like |δ|7/6/|Ω| for vdW interactions. This behavior is il-
lustrated in the inset of Fig. 4. The position of the mag-
netic field peak appears around rab = rc as in the zero
detuning case, which corresponds to the distance where
atom-atom and atom-field interaction energies are equal.

The magnetic field B+
a displays a single peak around
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43210

1.4

0.8

0.2

−0.4

−1

rab/rc

Bi
a,ϕ

B0

1.4

0.8

0.2

−0.4

−1

Bi
a,ϕ

B0

FIG. 3. (Color online) The ϕ-component of the dimensionless
magnetic fields Bi

a/B0 (green dotted curve, i = 1; blue dashed
curve, i = −; orange solid curve, i = +) as a function of
the interatomic distance rab/rc for δ/|Ω| = 0, (top panel)
resonant dipole-dipole interactions, and (bottom panel) van
der Waals interactions.

rab = γ+ rc, as Fig. 5 shows. For large negative detun-
ings, its intensity scales quadratically with δ/|Ω| accord-
ing to B+

a,max
/B0 ≈ β+ (δ/|Ω|)2 with γ+ = 2−1/3 ≈ 0.79,

β+ = 3 3
√
2 for RDD interactions (see inset of Fig. 5), and

γ+ = 2−1/6 ≈ 0.89, β+ = 6 6
√
2 for vdW interactions. As

regards B−
a , it displays both a maximum and a minimum

(see Fig. 6). For large negative detunings, the minimum
occurs around rab = γ−

min
rc and scales quadratically

with the detuning, i.e., B−
a,min

/B0 ≈ −β−
min

(δ/|Ω|)2 with

γ−
min

= 2−1/3 ≈ 0.79, β−
min

= 3 3
√
2 for RDD interactions

(see inset of Fig. 6), and γ−
min

= 2−1/6 ≈ 0.89, β−
min

=

6 6
√
2 for vdW interactions. In the same limit, the max-

imum occurs around rab ≈ rc, and scales linearly with
the detuning according to B−

a,max
/B0 ≈ −β−

max
δ/|Ω| for

δ/|Ω| ≫ 1 with β−
max

= 3/(4
√
2) for RDD interactions

and β−
max

= 3/(2
√
2) for vdW interactions.

The location of the intensity peaks displayed by the
magnetic field in the regime of large detunings can be
related to transitions between bare states. For negative
detunings large compared to the Rabi frequency, transi-

100−10−20

0

−5

−10

δ/|Ω|

B1
a,min

B0

3210

0

−0.5

−1

−1.5

−2

rab/rc

B1
a,ϕ

B0

FIG. 4. (Color online) The ϕ-component of the dimension-
less magnetic field B

1
a/B0 as a function of the interatomic

distance rab/rc for different values of the detuning and RDD
interactions. (From bottom to top) δ/|Ω| = −3,−2,−1, 0, 1.
(Inset) Largest value of the artificial magnetic field given by
the minimum value of its ϕ-component as a function of the
dimensionless detuning δ/|Ω|.

100−10−20

1400

900

400

−100

δ/|Ω|

B+
a,max

B0

3210

8

6

4

2

0

rab/rc

B+
a,ϕ

B0

FIG. 5. (Color online) The ϕ-component of the dimension-
less magnetic field B

+
a /B0 as a function of the interatomic

distance rab/rc for different values of the detuning and RDD
interactions. (From top to bottom) δ/|Ω| = −3,−2,−1, 0, 1.
(Inset) Largest value of the artificial magnetic field given by
the maximum value of its ϕ-component as a function of the
dimensionless detuning δ/|Ω|.

tions between bare states are highly inhibited. However,
at small interatomic distances, dipole-dipole interactions
give rise to an energy shift of the doubly excited state
which can compensate the energy mismatch stemming
from the detuning. When the two-photon antiblockade
condition 2~ω+ ~V = 2~ωL is met, the |gg〉 ↔ |ee〉 tran-
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100−10−20

0

−500

−1000

−1500

δ/|Ω|

B−a,min

B0

3210

2

0

−2

−4

−6

−8

rab/rc

B−a,ϕ

B0

FIG. 6. (Color online) The ϕ-component of the dimension-
less magnetic field B

−

a /B0 as a function of the interatomic
distance rab/rc for different values of the detuning and RDD
interactions. (From top to bottom) δ/|Ω| = −3,−2,−1, 0, 1.
(Inset) Largest value of the artificial magnetic field given by
the minimum value of its ϕ-component as a function of the
dimensionless detuning δ/|Ω|.

sition is on resonance. Similarly, the |ψ+〉 ↔ |ee〉 transi-
tion becomes resonant when the single-photon antiblock-
ade condition ~ω + ~V = ~ωL holds [34, 35]. In terms
of interatomic distances, the two-photon condition reads
rab = 3

√

|C3|/(2δ) = rc
3
√

Λ/(2δ) for RDD interactions

and rab = 6
√

|C6|/(2δ) = rc
6
√

Λ/(2δ) for vdW interac-
tions. For large values of the detuning, Λ ≈ |δ| such that

the condition becomes rab ≈ rc/
3
√
2 ≈ 0.79 rc (RDD)

and rab ≈ rc/
6
√
2 ≈ 0.89 rc (vdW). Likewise, the single-

photon antiblockade condition reads rab ≈ rc for both
types of interactions. The distances corresponding to
these antiblockade conditions coincide with the locations
where the magnetic fields are found to be the most in-
tense. This can be understood as follows. Equations (17)
and (30) show that large artificial magnetic fields ap-
pear where the eigenstates present strong nonuniform
spatial variations. This is not the case in the pres-
ence of large detunings because transitions between the
bare states |gg〉, |ψ+〉, and |ee〉 are then highly inhib-
ited. However, some of these transitions are enabled at
interatomic distances where the antiblockade conditions
are met. This is only possible when the detuning and
the energy shift ~V have the same sign. In this case
(negative detunings), the eigenstates display important
spatial variations which lead to large artificial magnetic
fields, whereas in the absence of antiblockade (positive
detunings) the spatial variation of the eigenstates, and
thus the magnetic fields, are small (see insets of Figs. 4,
5 and 6). Indeed, in the case of B1

a, the location of the
intensity peak (rab ≈ rc) satisfies to the single-photon
antiblockade condition. As regards the corresponding

eigenstate |χ1〉, it coincides nearly with |ψ+〉 at small
interatomic distances, turns into a superposition of |ψ+〉
and |ee〉 around rab ≈ rc, and coincides nearly with |ee〉
at larger distances. The same observation holds for the
artificial magnetic field B+

a , which displays a maximum

of intensity around rab ≈ rc/
3
√
2 (RDD) or rab ≈ rc/

6
√
2

(vdW) satisfying the two-photon antiblockade condition.
In this case, |χ+〉 reduces to |ee〉 for rab ≪ rc and to
|gg〉 for rab ≫ rc. When the two-photon antiblockade
condition is met, |χ+〉 becomes an equally weighted su-
perposition of |ee〉 and |gg〉. As for the artificial magnetic
field B−

a , the two antiblockade conditions are successively
met as the interatomic distance grows because the asso-
ciated eigenstate coincides with |gg〉 for rab ≪ rc. The
first (second) maximum of intensity corresponds to the
two-photon (single-photon) antiblockade condition. At
interatomic distances in-between the two maxima, |χ−〉
coincides nearly with |ee〉, and at large distances with
|ψ+〉. At the locations of the maxima, |χ−〉 is a super-
position of the two states involved in the antiblockade
mechanism.

This mechanism also allows one to understand qual-
itatively the width of the intensity peaks in the artifi-
cial magnetic fields. Indeed, the larger the detuning, the
smaller the crossover distance rc and the more impor-
tant the spatial variations of the dipole shift ~V around
rab = rc. Therefore, the interval of distances where the
dipole shift and the detuning counterbalance to allow
significant transitions between bare states becomes nar-
rower as the detuning increases.

A similar line of reasoning can be pursued to explain
the cause of the magnetic field peaks and their location
(rab ≈ rc) when the system is at resonance (δ = 0). In-
deed, at small interatomic distances, the dipole blockade
effect prevents the system from populating the doubly
excited state, which as a matter of fact do not contribute
to the artificial magnetic field. When the dipole shift is of
the order of the atom-light interaction energy, transitions
between |ee〉 and lower excitations states are enabled, re-
sulting in spatial variations of the eigenstates leading to
artificial magnetic fields. At large distances, the atoms
can be considered as independent and the magnetic fields
vanish.

E. Experimental considerations

In this section, we give an estimation of the attainable
artificial magnetic field strengths in the RDD and vdW
regimes in view of recent experiments. Moreover, we
show that the artificial gauge potentials could be detected
through the deflection of the atomic motion caused by the
artificial Lorentz force. To verify our theoretical predic-
tions, similar experimental setups as those designed by
Gaëtan et. al. [30] (RDD regime) or Béguin et. al. [27]
(vdW regime) could be considered. In those experiments,
two 87Rb atoms with residual temperature T ≈ 50 µK
(vrms ≈ 12 cm/s) are trapped in two optical tweezers with



9

a beam waist w ≈ 1 µm. The atoms are laser excited
to Rydberg states with high principal quantum number
(n = 53, 62, 82 in [27] and n = 58 in [30]) character-
ized by a radiative lifetime τ ranging from 200 to 500 µs.
Depending on the principal quantum number, either the
RDD or the vdW regime can be reached.

Let us now consider that one atom is kept at a fixed
position in space and a second atom is sent towards the
first one, e.g., by means of an optical conveyor belt [36].
The results of the preceding sections show that the mov-
ing atom will experience artificial gauge fields as a result
of its joint interaction with the trapped atom and the
laser field. As a consequence, its trajectory will be mod-
ified by the action of the artificial Lorentz force. In the
RDD regime, we consider |Ω|/2π = 6.5 MHz, λL = 296
nm [37], and C3/2π = 3200 MHz.µm3 as in [30]. In this
case, the crossover distance at zero detuning is rc ≈ 8 µm
and the characteristic magnetic field strength B0 ≈ 2 mT
for a particle with electric charge equal to the elementary
charge. In the vdW regime, we base our estimation on
Ref. [27] in which the single-atom Rabi frequency |Ω|/2π
can be varied in the range from 500 kHz to 5 MHz, and
|C6| can be varied from 10 to 10000GHz.µm6 by changing
the principal quantum number n of the atomic Rydberg
state. In this case, the crossover distance at zero detun-
ing can be tuned from rc ≈ 3.5 µm to rc ≈ 16 µm and the
characteristic magnetic field strength from B0 ≈ 4 mT
to B0 ≈ 0.8 mT. Note that in both regimes the crossover
distance is much larger than the waist of the tweezers.

For an initial velocity of 10 cm/s in the xy plane and
an impact parameter equal to rc ≈ 8 µm, a semiclassical
calculation predicts a deflection of the atomic trajectory
in the z direction (laser propagation direction) of the or-
der of 1 µm for a traveled distance equal to 2rc in the xy
plane. For such a velocity, the adiabatic approximation
is still valid to about 99% [12] and it takes a time equal to
160 µs < τ to travel a distance 2rc, during which sponta-
neous emission can be neglected to a good approximation.
This approximation holds even better if we consider that
the system follows adiabatically the internal state |χ+〉
corresponding to the two atoms in their ground state at
large interatomic distances with respect to rc. In this sit-
uation, the Rydberg states are populated only during a
small time in comparison with their radiative lifetime τ .
Larger (smaller) initial velocities would lead to smaller
(larger) deflections. The main experimental challenge is
thus to control the atomic velocity with sufficient pre-
cision to avoid a drift due to an initial velocity in the
z direction that would mask the deflection due to the
artificial Lorentz force.

IV. CONCLUSION

We have shown that dipole-dipole interactions between
Rydberg atoms submitted to a uniform laser field give
rise to nonuniform artificial Abelian gauge potentials.
We have obtained general analytical expressions for the

latter, as well as approximate expressions in the dipole
blockade and weak interaction regimes. We have iden-
tified the mechanism responsible for the artificial gauge
fields and have shown that they are the strongest when
atom-atom and atom-field interaction energies are of the
same order of magnitude. Note that a similar feature
has been observed experimentally in the population dy-
namics of a pair of interacting Rydberg atoms [27]. We
have discussed the differences and similarities of artificial
gauge fields originating from resonant dipole-dipole and
van der Waals interactions. We have estimated on the
basis of recent experiments the attainable artificial mag-
netic field to a few mT extending over a distance range
of a few micrometers. Finally, we have shown that these
fields lead under realistic conditions to a deflection of the
atomic motion of the order of 1 µm, measurable with
current imaging techniques [38].
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V. APPENDIX A : ARTIFICIAL GAUGE

FIELDS IN THE CENTER-OF-MASS

REFERENCE FRAME

In this appendix, we give the expressions of the artifi-
cial electromagnetic potentials induced by dipole-dipole
interactions between two Rydberg atoms in the center
of mass reference frame. This is the most natural ref-
erence frame in view of the interaction potential which
only depends on the relative coordinate. We first recall
the center-of-mass coordinates,







R =
mara +mbrb

ma +mb
,

r = ra − rb

(38)

and their conjugate momenta,







P = pa + pb,

p =
mbpa −mapb

ma +mb

(39)

where mα, rα and, pα are, respectively, the mass, the
position and the momentum of atom α = a, b. The total
mass of the system is M = ma+mb and the reduced mass
is µ = mamb/(ma+mb). In the center-of-mass reference
frame, the full Hamiltonian takes the form,

Ĥ =

(

P̂2

2M
+

p̂2

2µ
+ U

)

⊗ 1̂
int
ab + 1̂

ext
ab ⊗ Ĥd−d(R, r), (40)

where P̂ = ~∇R/i and p̂ = ~∇r/i in the position rep-

resentation, and with Ĥd−d(R, r) given by Eq. (19) but
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now expressed in terms of the center-of-mass coordinates
(38). The eigenstates of Ĥd−d(R, r) are still given by
Eq. (26) and, following the same procedure as in Sec. II,
we obtain

Ai
R
(r) = Ai

a +Ai
b,

Ai
r
(r) =

mbA
i
a −maA

i
b

ma +mb
.

(41)

The resulting artificial vector potentials have the same
form as the relations (39) between the center of mass
and relative momenta, and the momenta of atoms a and
b. This fully agrees with the reformulation of the artifi-
cial vector potentials as the expectation values of the mo-
mentum operator evaluated in the atomic internal states
as presented in Sec. II. In the center-of-mass reference
frame, the scalar potentials are given by

φiR(r) =
∑

j 6=i

N2
i N

2
j

[

E2
i E2

j

(

~
2|Ω|2 + FiFj)

2]
~
2k2L
2M

,

φir(r) =N
2
i

{E2
i F2

i

2
+
∑

j 6=i

N2
j

[

(E ′
iEjCF

ij + CE
ijF ′

iFj)
2/k2L

+

(

mb −ma

M

)2

E2
i E2

j (~
2|Ω|2 + FiFj)

2

]

}

~
2k2L
2µ

(42)
where CE

ij = ~
2|Ω|2 + 2EiEj , CF

ij = ~
2|Ω|2 + 2FiFj,

i, j = 1,± and where the prime denotes a derivative
with respect to rab. They correspond to (∆P̂2)χi

/2M
and (∆p̂2)χi

/2µ, respectively, and are thus determined
by the variance of center of mass and relative momenta
in the two-atom internal state |χi〉 [see Eq. (26)].

Expressions (41) and (42) show that the potentials in
the center-of-mass reference frame are simply connected
to those in the laboratory frame. Moreover, when one
atom is kept at a fixed position in space and another atom
is traveling around it, the vector potential for the relative
coordinate reduces to the one for the moving atom in the
laboratory frame.

VI. APPENDIX B : DERIVATION OF AN

EFFECTIVE HAMILTONIAN IN THE DIPOLE

BLOCKADE REGIME

In this appendix, we derive an effective Hamiltonian
describing the internal dynamics of two interacting Ry-
dberg atoms in the dipole blockade regime. We also de-
termine its eigenvalues and eigenvectors. For this pur-
pose, we eliminate the doubly excited state |ee〉 from
Hamiltonian (22) following a method recently proposed
by Paulisch et al. [39]. For the effective Hamiltonian to be
valid in the largest possible range, we add, beforehand,
a constant term C1̂

int
ab to Ĥd−d. This term does obvi-

ously not affect the dynamics of the system but leads
to a different effective Hamiltonian. Following [39], C is

chosen so as to satisfy the condition Tr(Ĥ ′ + C1̂3) = 0

where Ĥ ′ is the restriction of Ĥd−d to the subspace
spanned by {|ψ−〉, |ψ+〉, |gg〉} and 1̂3 the identity opera-
tor in this subspace. A straightforward calculation shows
that C = −~δ/3. We now eliminate the state |ee〉 from

Hamiltonian Ĥ ′
d−d = Ĥd−d − (~δ/3)1̂int

ab by first writing
the internal states of the two-atom system in the form

|ψ(t)〉 = ce(t)|ee〉+ c+(t)|ψ+〉+ c−(t)|ψ−〉+ cg(t)|gg〉.
(43)

Inserting this expression into the time-dependent
Schrödinger’s equation, we obtain the set of equations:

i ċe = ∆ ce +
Ω√
2
eikL·(ra+rb) c+, (44)

i ċ+ = − δ
3
c+ +

Ω√
2
cg +

Ω∗

√
2
e−ikL·(ra+rb) ce, (45)

i ċ− = − δ
3
c−, (46)

i ċg =
2δ

3
cg +

Ω∗

√
2
c+, (47)

where a dot denotes a time derivative and ∆ = V −4δ/3.
Solving Eq. (44) for ce(t), we get

ce(t) = − i√
2

∫ t

0

e−i∆(t−t′)ΩeikL·(ra+rb)c+(t
′)dt′. (48)

In the Markov approximation, memory effects are ne-
glected, which amounts to taking the coefficient c+(t

′)
out of the integral. This approximation is valid as long
as Λ =

√

δ2 + |Ω|2 ≪ |V | and implies that ci(t) (i 6= e)
oscillates slowly in comparison to exp (−iV t). In this
case, ce(t) takes the simple form,

ce(t) = − Ω√
2∆

eikL·(ra+rb)c+(t). (49)

Inserting this expression into Eq. (45), we readily de-
duce from the equations of motion (45)–(47) the effective
Hamiltonian,

Ĥeff
d−d = − ~

3
(3Γ + δ)|ψ+〉〈ψ+|

+
~δ

3
(2|gg〉〈gg| − |ψ−〉〈ψ−|)

+

(

~Ω√
2
|ψ+〉〈gg|+ h.c.

)

(50)

where Γ = |Ω|2/2∆. The state |ψ−〉 ≡ |χ0〉 remains
eigenstate of the effective Hamiltonian, but with energy
E0 = −~δ/3. The two other eigenstates are

|χeff
± 〉 = N±

[

(

−(Γ + δ)∓
√

(Γ + δ)2 + 2|Ω|2
)

|ψ+〉

+
√
2Ω∗ |gg〉

]

(51)
with eigenvalues

Eeff
± =

~

6

[

δ − 3Γ∓ 3
√

(Γ + δ)2 + 2|Ω|2
]

. (52)
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Similarly to Eqs. (17) and (18) of Sec. II, the artificial
gauge potentials are given by

Aeff,±
α (rα) = i~〈χeff

± |∇rαχ
eff
± 〉,

φeff,±
α (rα) =

~
2

2mα

(

|〈χeff
∓ |∇rαχ

eff
± 〉|2 + |〈χ0|∇rαχ

eff
± 〉|2

)

.

(53)

After some algebra, we arrive at Eq. (33). When the signs
of the detuning (δ) and the interatomic potential (V ) are
changed simultaneously, Eeff

± → −Eeff
∓ , and Aeff,±

α →
Aeff,∓

α .
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