Measuring Total Electron Content with GNSS: Investigation of Two Different Techniques

Benoît Bidaine¹ - F.R.S.-FNRS - B.Bidaine@ulg.ac.be Prof. René Warnant^{1,2} - R.Warnant@oma.be

¹University of Liège (Unit of Geomatics), Belgium - www.geo.ulg.ac.be ²Royal Meteorological Institute, Belgium - www.meteo.be

April 30th, 2009 11th International Conference on Ionospheric Radio Systems & Techniques (Edinburgh, UK)

Ionosphere

TEC

Mann

Total Electron Content

TEC can be measured using GNSS.

- Dispersive ionosphere
- GNSS signals on several frequencies
- → Different ionospheric effect on each frequency

→ Different combinations removing all but ionospheric effect

1. Measuring TEC

Two methods for measuring TEC with GNSS

1. Measuring TEC

Two methods for measuring TEC with GNSS

2. sTEC Comparison

Global statistics and case studies

1. Measuring TEC

Two methods for measuring TEC with GNSS

2. sTEC Comparison

Global statistics and case studies

3. vTEC Comparison

Differences between GIMs

2. sTEC Comparison

3. vTEC Comparison

Phase combinations are preferred but need levelling.

- GPS « geometric free » combinations \rightarrow TEC Code: $\Psi_{GF} = \Psi_2 - \Psi_1$ Phase: $\Phi_{GF} = \Phi_1 - \Phi_2$
- Phase measurements less noisy but ambiguous

$$\Phi_{GF} \simeq A \ sTEC \ + N_{GF}$$

 \rightarrow Ambiguity estimation = levelling

RMI

Levelling can be achieved using code measurements.

 Ambiguity = average on « arc » of difference between phase and sTEC

- sTEC ≈ code hardware delays
- Hardware delays estimated on a long period using code and polynomial approximation of sTEC
- Remaining effects from code = multipath, residual hardware delays, noise

GIMI

Levelling can be achieved using reference global TEC.

- Ambiguity = average on « arc » of difference between phase and sTEC
- sTEC ≈ vTEC from Global Ionospheric Maps (GIM) mapped to slant
- Remaining effects from GIM = mismodelling, mapping function error

We observe expected constant sTEC differences by arc.

- Remaining effects constant by arc
 - \rightarrow <u>Constant difference</u> by arc
 - \rightarrow Statistics by arc
- Data set:
 - Brussels (mid-latitudes)
 - 2002 (high solar activity level)
 - UPC GIMs

2. sTEC Comparison

3. vTEC Comparison

We obtain fairly large sTEC differences by arc.

- Bias = 6.8 TECu
- Std = 3.5 TECu
- <u>Correlation</u> with ionospheric and geomagnetic activity
- Specific cases wrt adjacent days

We obtain fairly large sTEC differences by arc.

- Large negative differences
- → -17 TECu on <u>March 24th</u>
- Coinciding with geomagnetic storm

GIMI sTEC seems to react less to geomagnetic storms.

We obtain fairly large sTEC differences by arc.

We observe irregular sTEC values in GIMI data.

sTEC + difference (December 11th to 13th, PRN 28)

• Visible effect in GIMI sTEC

→ Influence of GIM residual errors

Close satellites could help in highlighting geometry-dependent effects.

sTEC difference (December 11th to 13th)

- Continuously close differences
- <u>Close satellites</u>
- → Geometrydependent effects (not code delays)

We obtain fairly large sTEC differences by arc.

• Small differences

→ Range of 3.1 TECu on <u>August 12th</u>

 Geomagnetically <u>quiet</u>

We observe many arc discontinuities.

sTEC + difference (August 11th to 13th – PRN 17)

- Stable situation
- Recurrent
 discontinuities
 (cycle slips?)
- 12% of arcs
 involved in
 discontinuities
 larger than 1 TECu

Discontinuities reveal differences in averaged remaining effects.

sTEC + difference (August 13th – PRN 17)

• Several arcs for one satellite

→ Different ambiguities

→ Different averages for remaining effects

→ Eg multipath for RMI

2. sTEC Comparison

3. vTEC Comparison

vTEC is a different-level product for both data type.

- RMI:
 - sTEC mapped to vertical
 - IP filter: within 200km around the station
 - Average over 15 minutes
- GIM:
 - Resolution: 2.5° in latitude, 5° in longitude, 2h
 - Linear time interpolation between consecutive rotated maps
 - Bi-linear space interpolation
 - Several centres (5) + combination (IGS)

We obtain consistent results for most of the GIMs.

Difference between RMI and GIM vTEC (Brussels - 2002)

- Consistent with sTEC comparison
- Underestimation
 from RMI vTEC

Potential
 overestimation
 from GIM vTEC

• Levelling using

- code measurements → residual hardware delays, multipath and noise
- global reference TEC (GIM) → mismodelling and mapping function error
- Investigation for mid-latitudes and high solar activity

- sTEC difference constant by arc
 - 6.8 TECu on average
 - Large differences concommitant or not with geomagnetic disturbances
 - Day-to-day variability or recurrence → GIMs or multipath main influence
- vTEC underestimation from RMI but potential overestimation from GIM

TEC can be measured using GNSS.

- Further investigations
 - Arc-to-arc (discontinuities)
 - Inter-satellite
 - Inter-station
- Comparison with new TEC monitoring techniques (triple frequency)

TEC modelling eg for Galileo needs reliable measurements...

Many

Measuring Total Electron Content with GNSS: Investigation of Two Different Techniques

Benoît Bidaine¹ - F.R.S.-FNRS - B.Bidaine@ulg.ac.be Prof. René Warnant^{1,2} - R.Warnant@oma.be

¹University of Liège (Unit of Geomatics), Belgium - www.geo.ulg.ac.be ²Royal Meteorological Institute, Belgium - www.meteo.be

April 30th, 2009 11th International Conference on Ionospheric Radio Systems & Techniques (Edinburgh, UK)

We observe expected constant sTEC differences by arc.

Standard deviation of sTEC difference by arc (Brussels - 2002)

We observe some correlation with ionospheric/geomagnetic activity.

Daily vTEC (Brussels - 2002)

GIMI sTEC seems to react less to geomagnetic storms.

Dst (March 23rd to 25th)

GIMI sTEC seems to react less to geomagnetic storms.

foF2 (Dourbes, March 23rd to 25th)

 \leftarrow

GIMI sTEC seems to react less to geomagnetic storms.

sTEC difference (March 23rd to 25th)

We observe irregular sTEC values in GIMI data.

Dst (December 11th to 13th)

We observe irregular sTEC values in GIMI data.

foF2 (Dourbes, December 11th to 13th)

 \leftarrow

We observe irregular sTEC values in GIMI data.

sTEC difference (December 11th to 13th)

Close satellites could help in highlighting geometry-dependent effects.

Sky plot (December 12th, PRN 26 and 29)

We observe many arc discontinuities.

Dst (August 11th to 13th)

We observe many arc discontinuities.

foF2 (Dourbes, August 11th to 13th)

 \leftarrow

We observe many arc discontinuities.

sTEC difference (August 11th to 13th)

