Mid-infrared prediction of cheese yield from milk and its genetic variability in first-parity cows

F.G. Colinet1, T. Troch1, S. Vanden Bossche1, H. Soyeurt1, O. Abbas2, V. Baeten2, F. Dehareng2, E. Froidmont2, G. Sinnaeve2, P. Dardenne2, M. Sindic1, and N. Gengler1

1 University of Liège, Gembloux Agro-Bio Tech, Belgium
2 Walloon Agricultural Research Center, Belgium

Introduction

- Cheese manufacture and yield
 - Economical importance
 - Empirical and theoretical formula for cheese yield (CY)
 - Generally based on some factors:
 - Milk fat content
 - Milk protein content
 - Milk casein content
 - Moisture
 - Salt
 - ...

Objectives

- To determine CY of fresh milk at large scale
 - Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
 - Fast method using small quantity of milk
 - Adapted to Walloon dairy cattle (multi-breed)
 - MIR spectrometry already implemented in milk labs
Objectives

- To determine CY of fresh milk at large scale
 - Expressed as fresh Individual Laboratory Cheese Yield (ILCY)
 - Fast method using small quantity of milk
 - Adapted to Walloon dairy cattle (multi-breed)
 - MIR spectrometry already implemented in milk labs

⇒ MIR chemometric method for ILCY prediction

Objectives

- To determine CY of fresh milk at large scale
 - Expressed as fresh Individual Laboratory Cheese Yield (ILCY)
 - Fast method using small quantity of milk
 - Adapted to Walloon dairy cattle (multi-breed)
 - MIR spectrometry already implemented in milk labs

⇒ MIR chemometric method for ILCY prediction

- To study the genetic variability of predicted ILCY
 - First-parity Holstein cows in Wallonia (Belgium)

MIR chemometric method

- Sampling
 - Wallonia
 - Spectra and reference data variability: several criteria
 - Milk sampling: individual or bulk milk
 - Breed: Dual Purpose Belgian Blue, Holstein, Red-Holstein, Montbeliarde and Jersey
 - Time of sampling: morning milking, evening milking
 mix of 50% morning & 50% evening milk samples

⇒ 258 fresh samples collected

MIR chemometric method

- Analysis
 - Milk lab (Comité du Lait, Battice, Belgium)
 - FT-MIR
 - Fresh Individual Laboratory Cheese Yield (ILCY)
 - g coagulum / 100 g milk
 - Determined according to Hurtaud et al. 1995
 (Ann. Zootech. 44, 385-398)
 - Intra-assay variation coefficient = 3.2%
 - Sample analyzed in duplicate
MIR chemometric method

Methods
- Modified Partial Least Square regressions
 - [Shenk & Westerhaus, 1991]
- Use of a first derivative pretreatment
 - To correct the baseline drift
- Detection of spectral outliers
 - Based on Mahalanobis distance
- Use of a repeatability file
 - Spectra from the same samples analyzed on different spectrometers

Calibration equation
- Statistical parameters of final dataset

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>26.8 g/100g</td>
</tr>
<tr>
<td>Standard deviation (SD)</td>
<td>6.5 g/100g</td>
</tr>
<tr>
<td>Range (from 13.8 to 47.9)</td>
<td>34.1 g/100g</td>
</tr>
</tbody>
</table>

- Calibration

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard error of calibration (SE_c)</td>
<td>2.6 g/100g</td>
</tr>
<tr>
<td>Calibration coefficient of determination (R²_c)</td>
<td>0.83</td>
</tr>
</tbody>
</table>

MIR chemometric method

Methods
- Internal cross-validation (50 groups)
 - To determine the number of factors
 - To assess the robustness of equation
- T-outlier test
 - Compared observed and predicted values
 - Samples with T-outlier value > 2.5 were discarded
 - Maximum 5 tests performed
 - 22 additional samples discarded

Calibration equation
- Statistical parameters to assess the accuracy

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard error of cross-validation (SE_cv)</td>
<td>2.8 g/100g</td>
</tr>
<tr>
<td>Cross-validation coefficient of determination (R²_cv)</td>
<td>0.81</td>
</tr>
<tr>
<td>RPD = SD / SE_cv</td>
<td>2.27</td>
</tr>
<tr>
<td>RER = Range / SE_cv</td>
<td>12.0</td>
</tr>
</tbody>
</table>
MIR chemometric method

- Calibration equation
 - Statistical parameters to assess the accuracy

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard error of cross-validation (SEcv)</td>
<td>2.8 g/100g</td>
</tr>
<tr>
<td>Cross-validation coefficient of determination (R²cv)</td>
<td>0.81</td>
</tr>
<tr>
<td>RPD = SD / SEcv</td>
<td>2.27 > 2</td>
</tr>
<tr>
<td>RER = Range / SEcv</td>
<td>12.0 > 10</td>
</tr>
</tbody>
</table>

Calibration equation: good practical utility

Result: Prediction

- Data editing
 - Walloon MIR spectral database
 - > 2,500,000 spectra
 - Routinely collected since 2007 by milk recording
 - Outliers discarding
 - Based on Mahalanobis distance computing using 234 MIR spectra of the final calibration dataset as reference
 - Upper standardized Mahalanobis distance cut off: 3
 - Below 0.5 percentile and above 99.5 percentile

Result: Prediction

- Averaged MIR predicted ILCYf throughout first three lactations

Genetic variability

- Data editing
 - After edits:
 - 7,870 first-parity Holstein cows from 101 herds
 - Cows with ≥ 4 predicted ILCYf and known parents
 - > 58,000 animals in extracted pedigree file
 - > 51,000 records for MIR predicted ILCYf
Genetic variability

Data
- Average MIR predicted ILCYf = 24.2 g/100g (± 4.5 g/100g)
- MIR predicted ILCYf throughout first lactation

Genetic variability

Single-trait random regression animal test-day model

\[
y = X\beta + Q(Z_p + Z_a) + e
\]

- **\(\beta\)** = fixed effects
 - Herd x test day
 - Lactation stage (classes of 5 days)
 - Gestation stage
 - Age at calving x season of calving x lactation stage

- **\(p\)** = permanent environment random effect
- **\(a\)** = additive genetic random effect
- Regression curves modelled with 2nd order Legendre polynomial

Variances components estimated by AIREMLF90

(Misztal, 2012)
ILCYf heritability

- Daily heritability throughout first lactation

 Average daily $h^2 = 0.52$
 Average daily SE of $h^2 = 0.03$
 Min = 0.31 at 5th DIM
 Max = 0.59 at 279th DIM

Conclusions

- MIR chemometric methods
 - Developed equation
 - $R^2_{cv} = 0.81$
 - $RPD > 2$ and $RER > 10$
 - Good practical utility
 - Results are promising for the prediction of fresh Individual Laboratory Cheese Yield from MIR spectrum

- Genetic variability study
 - Moderate daily heritability
 - Potential of selection for ILCYf

Next steps

- Improvement with new samples
- Study of phenotypic and genetic correlations of ILCYf with
 - milk production traits
 - other milk components
 - milk technological properties
- Feasibility/opportunity to develop a genetic evaluation?

Thank you for your attention

- Acknowledgments for financial support
 - Service Public de Wallonie SPW – DG03 and European Commission (ERDF) through projects D31-1255/S1 ProfFARMilk and INTERREG IVA BlueSel

- Acknowledgments
 - CECI for computational resources
 - Milk Committee of Battice
 - Walloon Breeding Association (AWE asbl)
 - Walloon dairy breeders

Corresponding author’s e-mail: Frederic.Colinet@ulg.ac.be