

Introduction Cheese yield Influence of animal selection on milk component also on milk processability Interest for determining CY at large scale and for increasing CY

Introduction Cheese manufacture and yield Economical importance Empirical and theoritical formula for cheese yield (CY) Generally based on some factors: ✓ Milk fat content ✓ Milk protein content ✓ Moisture ✓ Salt ✓ ...

Objectives

- □ To determine CY of fresh milk at large scale
 - > Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
 - > Fast method using small quantity of milk
 - > Adapted to Walloon dairy cattle (multi-breed)
 - > MIR spectrometry already implemented in milk labs

Objectives

- □ To determine CY of fresh milk at large scale
 - > Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
 - > Fast method using small quantity of milk
 - > Adapted to Walloon dairy cattle (multi-breed)
 - > MIR spectrometry already implemented in milk labs
 - → MIR chemometric method for ILCYf prediction

64th annual EAAP Meeting, Nantes, France, August 26th – 30th 201:

MIR chemometric method

- Sampling
 - Wallonia
 - > Spectra and reference data variability: several criteria
 - Milk sampling: individual or bulk milk
 - Breed: Dual Purpose Belgian Blue, Holstein,
 - Red-Holstein, Montbeliarde and Jersey
 - * Time of sampling: morning milking, evening milking
 - mix of 50% morning & 50% evening milk samples
 - → 258 fresh samples collected

64th annual EAAP Meeting, Nantes, France, August 26th - 30th 2013

Objectives

- □ To determine CY of fresh milk at large scale
 - > Expressed as fresh Individual Laboratory Cheese Yield (ILCYf)
 - > Fast method using small quantity of milk
 - > Adapted to Walloon dairy cattle (multi-breed)
 - > MIR spectrometry already implemented in milk labs
 - → MIR chemometric method for ILCYf prediction
- ☐ To study the genetic variability of predicted ILCYf
 - > First-parity Holstein cows in Wallonia (Belgium)

64th annual EAAP Meeting, Nantes, France, August 26th – 30th 2013

MIR chemometric method

- Analysis
 - > Milk lab (Comité du Lait, Battice, Belgium)
 - FT-MIR
 - > Fresh Individual Laboratory Cheese Yield (ILCYf)
 - * g coagulum / 100 g milk
 - * Determined according to Hurtaud et al. 1995

(Ann. Zootech. 44, 385-398)

- Intra-assay variation coefficient = 3.2%
- * Sample analyzed in duplicate

Colinet et al

MIR chemometric method ☐ Methods ☐ Modified Partial Least Square regressions ☐ (Shenk & Westerhaux, 1991) ☐ Use of a first derivative pretreatment ☐ To correct the baseline drift ☐ Detection of spectral outliers ☐ Based on Mahalanobis distance ☐ Use of a repeatability file ☐ Spectra from the same samples analyzed on different spectrometers

Result: Prediction Data editing Walloon MIR spectral database > 2 500 000 spectra Routinely collected since 2007 by milk recording Outliers discarding Based on Mahalanobis distance computing using 234 MIR spectra of the final calibration dataset as reference ✓ Upper standardized Mahalanobis distance cut off: 3 Below 0.5 percentile and above 99.5 percentile

Genetic variability Data editing After edits: 7 870 first-parity Holstein cows from 101 herds Cows with ≥ 4 predicted ILCYf and known parents > 58 000 animals in extracted pedigree file > 51 000 records for MIR predicted ILCYf

Genetic variability

□ Single-trait random regression animal test-day model

$$y = X\beta + Q (Zp + Za) + e$$

64th annual EAAP Meeting, Nantes, France, August 26th – 30th 201

Genetic variability

☐ Single-trait random regression animal test-day model

$$y = X\beta + Q (Zp + Za) + e$$

- > p = permanent environment random effect
- > a = additive genetic random effect
 - * Regression curves modelled with 2nd order Legendre polynomial
- □ Variances components estimated by AIREMLF90

(Misztal, 2012)

64th annual EAAP Meeting, Nantes, France, August 26th - 30th 2013

Conclusions ■ MIR chemometric methods Developed equation Reform = 0.81 Reprosed = 0.81

