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A computational method is introduced to infer statistical information on laminar to
turbulent transition in hypersonic regime. A probabilistic approach is combined to deter-
ministic simulations to take into account the physical variability of the environment and
to treat transition as a stochastic mechanism. The input uncertainty is the perturbation
spectrum in term of frequency distribution inside the boundary layer upstream of the tran-
sition onset. The analysis is divided into a forward and into an inverse problem. In the
forward problem, this distribution is first imposed to match experimental data collected in
the VKI-H3 hypersonic facility. The transition location is determined in the deterministic
simulations with the eN prediction method which relies on Linear Stability Theory. In the
experiments, the transition onset is highlighted by a steep rise of the heat flux measured
at the surface of the model. Then, in the inverse problem, the experimental data are used
to infer the distribution of the frequency through a Markov-Chain Monte Carlo Method.
The approach has demonstrated encouraging results even though further investigation is
necessary for a deeper comparison with the experimental data.

Nomenclature

Symbols

A0 initial amplitude of the disturbances
F dimensional frequency (kHz)
M Mach number
N amplification ratio
Ncrit critical N for transition onset
Re Reynolds number
St Stanton number
pT probability of transition
v̂(y) amplitude of the perturbations
x streamwise coordinate (m)
y normal coordinate (m)
z spanwise coordinate (m)

Greek Symbols

α streamwise wave number
β spanwise wave number
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δµF
MCMC increment for the mean

δσF
MCMC increment for the variance

γ intermittency factor
µ mean
ω non-dimensional frequency
σ variance

Abbreviation

CFD Computational Fluid Dynamics
DNS Direct Numerical Simulations
MCMC Markov chain Monte Carlo
QoI Quantity of Interest
RANS Reynolds Averaged Navier-Stokes
TPS Thermal Protection System
UQ Uncertainty Quantification
V KI von Karman Institute for Fluid Dynamics
cdf cumulative distribution function
pdf probability distribution function

I. Introduction

The knowledge of the location of laminar to turbulent transition is essential for numerous engineering
applications. For a hypersonic vehicle, an accurate prediction of the transition onset may allow to precisely
define the dimensions of the thermal protection system (TPS). The transition onset depends on a large num-
ber of parameters and consequently it is difficult to predict. In particular, perturbations in the boundary
layer upstream of the transition onset are known to affect this mechanism.
The laminar-turbulent transition process may be divided into three stages: receptivity, linear disturbance
evolution, and nonlinear breakdown to turbulence. Most transition modeling approaches are deterministic
and rely on empirical data (Menter10), but they do not capture the stochastic nature of the physical processes
active during these stages. Only the nonlinear breakdown stage, including the formation of turbulent spots,
has been modeled in a probabilistic way (Vinod,27 Pecnick21).
Investigations with explicitly forced, controlled perturbations (Marxen17) at low levels of free stream turbu-
lence are useful to advance our understanding of mechanisms involved in the laminar-turbulent transition
process. These studies consider the so-called controlled deterministic transition. Using random forcing to
introduce the disturbances responsible for transition is an alternative to account for the its non-deterministic
nature (Marxen18). The corresponding process, controlled random transition, is essentially the same as the
controlled deterministic transition, except that the forcing is not deterministic.
Natural transition is when intentional forcing of boundary-layer perturbations is entirely absent and the
flow still becomes turbulent. In environments with low disturbance levels representative of free flight in the
atmosphere, controlled and natural transition share a central feature. The transition process is typically gov-
erned by the convective amplification of high-frequency boundary-layer disturbances. Unlike for controlled
transition, a commonly accepted way to numerically treat natural transition has not yet emerged. One way
to compute natural transition is to apply the numerical approach used for controlled random transition, but
with the controlled forcing adapted to the operating conditions of interest (Jacobs9).
Such an approach requires a good a priori statistical characterization of the natural disturbance spectrum
upstream of the transition location, i.e. a statistical description of frequencies, wave lengths, amplitudes,
and relative phase differences. Unfortunately, boundary-layer perturbations are difficult to measure and are
usually not sufficiently well characterized experimentally. On the other hand, the region of laminar-turbulent
transition is often fairly well documented in the form of skin-friction coefficients or heat transfer at the wall.
Our objective is to evaluate whether a statistical inverse analysis, using e.g. measured heat-transfer coeffi-
cients as a basis, offers the possibility to provide a characterization of relevant disturbance spectra upstream
of the transition zone.
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II. Transition modeling and Linear Stability Theory

Todays State-of-the-Art transition models provide a deterministic, fixed transition location.
Two commonly used classes of methods are correlation-based methods and the eN -method. Correlation-
based methods rely on tuning relevant parameters in order to match available experimental data (Serino24).
On the other hand, Linear Stability Theory (LST) for compressible boundary layers (Mack11) is an accurate
way to capture the stage of linear disturbance evolution by computing the local growth rate of boundary
layer perturbations. It is based on the linearized Navier-Stokes equations together with a parallel-flow
assumption. The eN -method applied to supersonic boundary layers (Malik14), considers the integrally most
amplified disturbance from LST to yield the transition onset location. Typical N -factors at transition onset
lie in the range of 5− 10 (Malik15).
Both the receptivity and the nonlinear stages are only indirectly considered in the eN method by choosing a
so-called critical value for N . This value, Ncrit, hence collectively represents the physical mechanisms active
in the receptivity and nonlinear stages. In setups with a high level of freestream turbulence or significant
surface roughness, the level of boundary layer perturbations at the end of the receptivity stage is expected to
be high. This is reflected by choosing a small Ncrit. Regarding the nonlinear stage, the standard eN -method
assumes that transition is caused by the linear disturbance which is integrally most amplified and reaches
the critical N -factor first, independent of the underlying amplification mechanism.

III. Theoretical background

The probabilistic approach used in the current work can be divided in a forward problem and in an inverse
problem. In the forward problem we aim at matching the experimental data by imposing a distribution for
the input parameters (e.g. the frequency distribution).In the inverse problem instead, the goal is to find the
distribution of the input parameters starting from the experimental data.

A. The forward problem

We assume that laminar-turbulent transition is caused by perturbations in the boundary layer upstream of
the transition location. These perturbations often occur in the form of wave packets. In order to better
characterize them, a signal g measured somewhere inside the boundary layer at the streamwise location x0
can be decomposed into J Fourier modes with frequency F , amplitude A0 and phase φ, respectively (here,
g can be e.g. a velocity component, temperature, or pressure):

g(t) =

J∑
j=1

Aj0sin(2πF jt− φj) (1)

The signal possesses a random character, i.e. g(t) is a random function, since every measured signal
containing one or more wave packets will be slightly different. Below, we consider only a single wave (and
neglect phases φ):

b(t) = A0sin(2πFt) (2)

Both F andA0 are random variables so that we can define a joint probability density function PDF (A0, F )
and, for instance, p(A ≤ Ac) denoting the probability that A is smaller or equal to Acrit, which is the critical
amplitude at the transition onset. Below we assume for simplicity a multivariate Gaussian distribution with
mean (µA0

, µF ), variance (σA0
, σF ) and covariance λ.

Downstream of x0, the amplitude of the wave grows due to a linear instability of the boundary layer. LST
can be used to compute the amplitude further downstream A(x > x0) as a function of the perturbation
frequency F . LST yields local amplification rates αi(x, F ) and here we relate the amplitude A(x) to the
initial amplitude A0 as follows:

A = A0 ×
∫ x

x0

max(−αi(x̃, F ), 0)dx̃ ≡ CLST (x, F )×A0 (3)
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Furthermore, we assume that transition to turbulence occurs at the streamwise location xT where the
amplitude exceeds a critical value A(xT ) = Acrit. Hence, the probability of having turbulent flow at a given
x is defined as follows:

pT (x) =

∫
F

∫
A0

p(A(x,A0, F ) > Acrit)dA0dF (4)

The probability pT is not measurable experimentally in the transition region. It is more convenient to
describe the state of the flow in this region by the intermittency factor γ. This factor specifies the normalized
fraction of time for which the flow is turbulent at a given streamwise location. For γ = 0 the flow is fully
laminar and for γ = 1 it is fully turbulent. We assume that at a given moment in time, transition at the
streamwise location xT causes a steep rise in the wall heat flux Qw and associated instantaneous Stanton
number:

St∗ = Qw/(ρ∞U∞(h0 − hw)) (5)

where h0 and hw are the total enthalpy and the enthalpy at the wall. We assume that the instantaneous
Stanton number may possess two different values:

St∗ = Stlaminar x < xT ; St∗ = Stturbulent x ≥ xT (6)

Then, γ can be computed from time-averaged measurements of the heat flux and corresponding Stanton
number (St = S̄t∗):

γ(x) = (St(x)− Stlaminar)/(Stturbulent − Stlaminar) (7)

For very long times during which several wave packets have passed the transition region, the intermittency
can be assumed to be equal to the probability of the flow to be turbulent, i.e. pT (x) = γ(x). In summary,
our forward model serves to connect the measurement of boundary-layer perturbations, the joint probability
PDF (A0, F ), with the probability of transition pT or intermittency γ, with LST lying at the core of the
model.
In the application on the experimental data, the forward model is simplified by assuming a single constant
(deterministic) A0 so that the input probability density function is a function of frequency only PDF (F ) at
x0. A Gaussian distribution with mean µF and variance σF is assumed. In this case, instead of using the
amplitude A, we use the N -factor as in the eN -method. It is expressed as an amplitude ratio:

N(x, F ) = ln(A(x, F )/A0) (8)

Analogously, we replace the critical amplitude Acrit by a critical N -factor:

Ncrit = ln(Acrit/A0) (9)

For a fixed x = x∗, the transfer function N = N(x∗, F ) is invertible within the interval N ∈ [0, Nmax],
and hence the PDF (N) can be computed as:

J(F,N) = dF/dN, PDF (N) = J(F,N)× PDF (F ) (10)

Integrating along N up to Ncrit yields:

pT = 1−
∫ Ncrit

0

PDF (Ñ)dÑ = γ (11)

First results obtained using this simplified model can be found in Serino et al.23 and in Marxen et al.19.
The different steps used in the forward model are presented as follows.

• Definition of the uncertainties: LST has been carried out by considering the variation of the dimensional
frequency (F ) of the free stream perturbations. The UQ approach aims at defining how the variation
of this parameter affects the transition onset location. In order to do that, a probability function
(pdf) with a normal distribution is assumed to describe this source of uncertainty. Generally, a normal
distribution includes all the possible values of a parameters from −∞ to +∞. In the current work,
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in order to prevent non physical values, such as negative frequencies, the probability distribution has
been truncated into a fixed range. Frequencies are then selected in this range that includes the typical
values for second mode instability. An example of the pdf for the input uncertainties is shown in Fig. 1.

Figure 1. Example of pdf of the input parameter for the UQ analysis

• Propagation: LST analysis defines a transfer function which links the input uncertainty (i.e. the fre-
quency F ) to the output (i.e. the N -factor) for the estimation of the transition onset in the simulations.
Once the input pdf is assumed, the output pdf is obtained by applying the method of transformation.
This method is valid as long as the input − output relation is unique, that is when the transfer func-
tion is monotonic. An illustration of the method is represented in Fig. 2 for generic input, f(x), and
transfer function y(x). In our case, the transfer function N = N(F ) is unique up to the maximum
N -factor for each curve which describes the relation between the input frequency F and the output
N -factor. The method consists in obtaining the output pdf by multiplying the input pdf and the
Jacobian, J(F,N) = dF/dN , of the transfer function as reported in Eq. 10.

Figure 2. Example of the method of transformation

• Output: the probability distribution of the N−factor for each station of the computational domain is
the output of the analysis. Since the work aims at modeling the transition region, results are presented
in terms of the probability of having transition at a fixed location. This probability is computed by
integrating, at a fixed streamwise coordinate, along N up to Ncrit, which is the N value corresponding
to the transition onset experimentally observed. The integration is reported in Eq. 11.
The probability of transition starts from 0 where the flow is most likely to be laminar. Then it gradually
rises to 1 where the flow is most likely to be fully turbulent. This probability can be interpreted as the
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intermittency factor γ, which has been defined by Narasihma20 as the time ratio between turbulent
and laminar flow at a fixed location. A summary of the procedure described above is reported in
Fig. 3(a), while in Fig. 3(b) an example of the output probability of transition is shown.

(a) (b)

Figure 3. (a) Summary of the procedure to obtain the probability of transition, (b) Example of probability of
transition.

B. The inverse problem

The forward problem described above can be regarded as a computational model f(s) that takes D input
parameters s = (s1, ..., sD) and produces a K-vector of derived outputs m = (g1(f(s), r), ..., gK(f(s), r)) with
auxiliary parameters r = (r1, ..., rN ). Solving for m given s is called the forward problem, while inferring s
given the measurements of m is denoted as the inverse problem.
For this test case, the simplified forward model is applied, with the two input parameters s1 = µF and
s2 = µF . Auxiliary parameters r are given in Tab.2. Again, we consider as outputs at selected locations
x1, ..., xK and hence m = (1, ...,K).

P∞ [Pa] T∞ [K] ρ∞ [kg/m3] U∞ [m/s] Re∞ [1/m] Twall [K]

1640.41 59.875 0.09529 931.45 2.28E+07 294.73

Table 1: Free stream conditions (subscript ∞) for the test case.

Due to measurement uncertainties, the input quantity s can only be characterized by its statistics, namely
the probability p(s). The solution of the forward problem hence yields a probability p(m). In the inverse
problem, the measurements of m are noisy, i.e. the input to the statistical inverse problem is m+ η, where
η quantifies the noise.
In the inverse problem, we start with given noisy measurements m+η and seek the input parameters s using
our computational model f(s). The inverse problem is solved by Bayesian inversion. Instead of calculating
s, we compute a probability of s given m, p(s|m), which is the so-called posterior density.
Bayes’ theorem states that the conditional probability of the parameters s given the measurements m is equal
to the product of the probability of the measurements m given the parameters s, times the ratio between
the probabilities of the parameters s and the measurements m:

p(s|m) =
p(m|s)× p(s)

p(m)
∝ p(m|s)× p(s) (12)

where p(s) is the prior probability density which is related to the information on the input parameters
and p(m|s) is the likelihood probability which relates the measurements to the input parameters. Finally,
p(m) is simply a normalizing constant that ensures that the product of the likelihood and the prior is a
probability density function, which integrates to one.
Several methods are available to infer the posterior probability density, for instance the Markov Chain Monte

6 of 12

American Institute of Aeronautics and Astronautics



Carlo (MCMC) method or the Kalman filtering method (Tarantola25). The first includes algorithms for
sampling from probability distributions based on building a Markov chain that has the desired distribution
as its equilibrium distribution. The state of the chain after a large number of steps is then used as a sample
of the desired distribution. The quality of the sample improves as a function of the number of steps. For
the current application, the MCMC method has been implemented and used to compute p(s|m) with a
Metropolis-Hastings algorithm (Hastings6). For simplicity, we assume a Gaussian distribution for p(s). The
effect of this assumption will be assessed in future works.

IV. Results on the VKI-H3 test case

Here, a test case for natural transition on a 7◦ half cone model in the VKI-H3 facility is presented. The
test conditions are summarized in Tab. 2 for different Reynolds numbers. Experiments were carried out
by Masutti16 and results are represented in Fig. 4. Transition is detected by surface measurements of the
heat flux which is then expressed as the non dimensional Stanton number (St). This number quantifies the
ratio of heat transferred to the wall and the heat converted through the boundary layer. From experimental
data, it can be seen that the transition onset location moves upstream as the free stream Reynolds number
increases.
The analysis is divided in two parts. The first is focused on studying how the uncertainties on the freestream
perturbations propagate to the numerical results and on the comparison between the numerical results and
the experimental data. In the second part, an inverse analysis is carried out to investigate the distribution
of the free stream perturbations which are most likely to cause transition for one of the cases. The first
analysis is also defined as the forward problem and it follows the steps described in Sec. A. The second part
is called the the inverse problem and it will be described in the following sections.

Test case M∞ Re∞ [1/m] Tw [K]

Low Reynolds 6.0 18.0× 106 294

Medium Reynolds 6.0 22.8× 106 294

High Reynolds 6.0 27.1× 106 294

Table 2: Test case and free stream conditions

Figure 4. Experimental results obtained in VKI-H3 facility (conditions are given in Tab. 2). Modified Stanton
number (top curves) and pressure variations (bottom curves) against the stream wise coordinates

.
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A. The forward problem

We assume that laminar-turbulent transition is caused by perturbations in the boundary layer upstream of
the transition location. The aim of the forward problem is to obtain the probability of transition caused by
an assumed free stream perturbation spectrum.
For the conditions indicated in Tab. 2, a linear stability analysis has been carried out and the N -factor
has been obtained. Then, a pdf has been assumed for the frequencies which characterize the freestream
perturbations. We assume that the pdf is normally distributed around its mean µF with a variance σF in a
given range of frequencies. The value of the mean and the variance are indicated in Tab. 3 for the different
Reynolds numbers. The values have been obtained by choosing the mean of frequency distribution such that
the amplification ratio reaches the threshold value at the experimental transition onset. It has been found
that, in the VKI-H3 facility, the limiting N -factor is equal to 5. In Fig. 5 the isolines of the N -factor are
computed for the High Reynolds conditions in which transition is observed at ≈ 0.13 m (see Fig. 4). A mean
frequency of 480 kHz with a variance of 25 kHz allows to have a satisfying agreement with the experimental
data.

Test case µf [kHz] σF [kHz] Range [kHz]

Low Reynolds 330 10 200÷ 800

Medium Reynolds 410 20 200÷ 800

High Reynolds 480 25 200÷ 800

Table 3: Parameters for the input pdf

Figure 5. N-factor isolines against Frequency and streamwise coordinate for the High Reynolds condition
computed with LST

Experimental data are available in term of Stanton number St(x) (Fig. 4) along the cone model. In order
to compare them with our results, the St has been normalized to obtain the experimental intermittency
factor γ within the transition region. Since the transition onset xonset and the transition offset xoffset are
known, the experimental intermittency can be obtained through Eq. 13.

γ(x) =
St(x)− Stx=xonset

Stx=xoffset
− Stx=xonset

(13)

The normal distribution with the parameters given in Tab. 3 allows to compute the probability of tran-
sition and, thus, the intermittency curves for the different test conditions. Results are represented in Fig. 6
and compared to the experimental data. The transition onset location and the shape of the intermittency
factor within the transition region agree very well with the experimental data. For all cases, a character-
istic shape is obtained similar to the classical error function. The good agreement with the experimental
data demonstrates the validity of the approach and, in particular, confirms the validity of the eN transition
prediction for high-speed flows.
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Figure 6. Intermittency as a function of the streamwise location : comparison between UQ analysis (-) and
experimental results (�) for the conditions given in Tab. 2.

B. The inverse problem

In our specific context, the inverse problem consists in obtaining the distribution of the frequency which
gives the intermittency closest to the experimental data. The parameter to be inferred are the mean µF and
the variance σF of the frequency pdf at the transition onset.
This approach has been applied to the VKI-H3 experimental data for the low-Reynolds number case
(Re = 18 × 106). The inverse problem has been solved by using the Markov-Chain Monte Carlo method
where the forward problem is solved several times by varying the input parameters in a given range. Starting
from an initial distribution defined by µ0 and σ0, successive realizations are obtained with different combina-
tions of the parameters and selected increments (δµF

, δσF
) for the mean and the variance, respectively. The

method guarantees the convergence to the exact solution after a certain number of steps. An illustration
of the sampling space is shown in Fig.7 with the starting point (µF0, σF0) and the burn in period. The
converged mean and variance are evaluated on the remaining samples as represented in Fig.8 and Fig.9. The
final values are reported in Tab.4 and compared to the probability distribution previously assumed for the
forward problem.

Figure 7. Sampling space : starting point (red), burn in period (black) and useful samples (blue)

The posterior probability density is represented in Fig.10 where it can be seen that the computed inter-
mittency agrees well with the experimental data in the first part of the transition region that is between
0 < P < 0.5. On the other hand, the agreement is not as good in the second half of the transition region.
This is due to the noise η which characterizes the experimental data. The error bars represent the uncer-

9 of 12

American Institute of Aeronautics and Astronautics



Figure 8. Probability density function for the mean of the frequency (µF ) for the low Reynolds case

Figure 9. Probability density function for the variance of the frequency (σF ) for the low Reynolds case

tainty of the measurements, what we called the noise η, which linearly grows in the transitional zone. In
fact, when the noise vanishes the agreement is almost perfect as shown for the forward problem (see Fig. 6).
For the current case n = 5000 samples are used for the MCMC approach which is enough to guarantee the
convergence. For the estimation of the steady state, the Geweke′s4 test has been used. This consists in
splitting the samples in three parts. The first 20% of them represent the ”burn-in” period which groups the
number of samples necessary to assess the random walk of the MCMC method towards the exact solution.
This first percentage is not considered in the final solution. The reamaining samples correspond to the
60% and the 20% of the total. The Geweke′s test says that convergence is achieved if the mean of both
distributions is approximately the same. In our case, with n = 5000 samples the variation on the mean µF
is 0.1% while the variation on the variance σF is 3% between the last two groups of samples.

V. Conclusion

Deterministic tools and a probabilistic approach have been combined to predict laminar to turbulent
transition in high speed flows. The method has been applied to experimental data available at the VKI

Low Reynolds µf [kHz] σF [kHz] Range [kHz]

Forward problem 330 10 200÷ 800

Inverse problem 333 11 200÷ 800

Table 4: Comparison of the probability density functions for the forward and the inverse problem in the low
Reynolds number case
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Figure 10. Intermittency as a function of the streamwise location. Comparison of the experimental data with
respect to the probability of transition obtained from MCMC.

for laminar transition studies on a cone model. Applications have been presented in terms of the forward
problem and of the inverse problem.
In the forward problem, we assumed a distribution for the input uncertainties and, using the eN transition
prediction method, we retrieved the probability of transition or intermittency curve γ. The comparison
with experimental data at different Reynolds number has demonstrated the validity of the approach for high
speed flows. It should therefore be possible to use the intermittency distributions in order to improve existing
transitional models. In fact, in the present case, only the Reynolds number was varied between the different
cases but other parameters can vary as well, for example the Mach number. A database of intermittency
distribution can be built for different conditions and used to predict transition in numerical simulations.
The idea is to use the database validated through comparison with experiments to extrapolate the transition
onset in different conditions. In particular, the integration of this approach into existing transitional model
for RANS simulations, will be studied in future works.
On the other hand, the inverse problem allows to infer disturbance spectra at a location upstream of the
transition onset using measured intermittency curves. In the forward problem, intermittency curves are
computed for a given disturbance spectrum by using LST. The inverse method applies a statistical analysis
based on the MCMC method and it has been illustrated using one of the experimentally measured data in
the VKI-H3 facility.
For the test case, good agreement was found between the given noisy intermittency curve and the curve
resulting from inferred spectra. This suggests that the forward model is able to represent the intermittency
curve sufficiently well.
These data will be processed and then used in future works for a better comparison with the results of the
inverse analysis. Results could be also improved by using a higher-fidelity forward model since LST lacks
in capturing the later stage of the transition process. Moreover, the present method relies on a number of
assumptions, including the shape of the pdf for the frequency, as well as the kind and number of parameters
that are inferred. The effect of these assumptions should carefully be assessed in future works.
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